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Abstract

Anaerobic digestion (AD) is an attractive bioprocess for waste treatment and energy recovery
through methane-rich biogas production. Under temperate to cold climate, the implementation of
AD for low-organic load wastewater treatment has been limited to date, due to the energetic and
economic cost of maintaining optimal mesophilic temperature. Hence, we aim at (i) exploring the
biotechnological potential of a microbial inoculum from Antarctic soils and sediments to run AD at
low temperatures; and (ii) evaluating the effect of temperature over a psychrophilic-mesophilic
range on both methane production rates and microbial community composition. Methane
production stimulated by acetate amendment was detected from 5 to 37 °C, with a maximum at
25 °C, corresponding to the highest relative abundance of methanogenic archaea (c. 21.4% of the

total community). From 5 to 25 °C, the predominant methanogen was Methanosaeta, while it



shifted to Methanocorpusculum at 30 °C. Compared with an industrial mesophilic sludge, the
relative methane production rate at 5 °C (compared to the maximum) was 40% greater in the
Antarctic inoculum. Microbial communities from permanently cold Antarctic sediments efficiently
produce methane at low temperatures revealing a biotechnological potential for the treatment of
low-organic load residues in cold regions.
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1. Introduction

Anaerobic digestion (AD) is a widespread bioprocess used for organic waste treatment and
energetic valorization, leading to biogas (methane - CH, and carbon dioxide — CO,) formation
(Kelleher et al.,, 2002). Temperature is a critical parameter for this process. As a mesophilic
process, AD provides optimal performance around 37 °C. At lower temperatures, the biogas
production is drastically affected (McKeown et al., 2012). For example, below 15 °C, anaerobic
reactors inoculated with mesophilic biomass lose more than 90% of their methanogenic activity
(Lettinga et al., 2001). For that reason, almost all large-scale AD applications for wastewater are
operated in a mesophilic range (Van et al., 2020). In temperate to cold climate regions, the
energetic requirement to heat and maintain anaerobic digesters for wastewater at mesophilic
temperature represents up to 30% of the biogas produced if the chemical oxygen demand (COD) is
low, which makes the overall economic yield marginal or negative (Lettinga et al., 2001; McKeown
et al., 2012). The low-temperature limitation is even more pronounced for residues with low
organic matter content, such as domestic and some industrial wastewater (Lettinga et al., 2001).
The AD operation at ambient to cold temperature can alleviate this requirement, through
technological improvement of reactor configuration (e.g. using expanded granular sludge bed,
EGSB), or by using a psychrophilic or cold-adapted microbial consortium ensuring stable biogas
production (McKeown et al., 2009a). The choice of inoculum has been recognized as a key factor
enabling the feasibility of low-temperature AD (McKeown et al., 2009b).

AD involves a complex microbial consortium performing a set of reactions, from hydrolysis to
methanogenesis. While hydrolysis is limiting for complex and/or solid substrates (Donoso-Bravo et
al., 2009), the methanogenesis is commonly recognized as the limiting step in the treatment of low
organic load wastewater at low temperature. Two main metabolic pathways exist for the

generation of CH, and CO, in AD, using either acetate or H,/CO,, however, methanogenesis from



methanol, methylamines, and formate has also been observed especially in marine environmental
(Conrad, 2020). The acetoclastic methanogens generate CH, and CO, from acetate in such a way
that carboxyl group of acetate is oxidized to CO, so the methyl group is reduced to CH, (Nathia-
Neves et al., 2018; Whitman et al., 2006). The only archaea capable of performing this conversion
are those belonging to the order Methanosarcinales, and more specifically to the genus
Methanosarcina and Methanosaeta (Evans et al., 2019; Zeikus, 1977). In contrast,
hydrogenotrophic methanogens generate CH4; by reducing CO, using H, as an electron donor
(Nathia-Neves et al., 2018; Whitman et al., 2006) and belong to the order Methanomicrobiales,
Methanobacteriales, Methanocellales, and Methanosarcinales (Conrad, 2020; Evans et al., 2019;
Zeikus, 1977).

While hydrogenotrophic methanogenesis is thermodynamically more favorable compared to
acetoclastic methanogenesis (Conrad, 2020), in mesophilic AD, approximately 60 to 70 % of CH, is
produced from acetate, because the stoichiometry of the fermentation reactions result in the
production of acetate in a greater proportion than H, (Conrad, 2020; Nozhevnikova et al., 2020;
Venkiteshwaran et al., 2015). The effect of low temperature on metabolic pathways for methane
production is not completely resolved (Horn et al., 2003). However, generally, it is considered that
at low temperature, about 70% of the produced CH, originates from acetate as the main
precursor, the remaining originating from H, and CO, (Conrad, 2020).

Among natural ecosystems, wetlands are the major source of CH, emissions (Reay et al., 2010;
Saunois et al., 2020). In permanently cold natural environments, such as high Arctic peat,
methanogenic archaea putatively adapted to low temperature (1-5 °C) have been detected using
molecular techniques (Hgj et al., 2008). The different functional groups involved in AD reactions
have psychrophilic or psychrotrophic representatives (Dhaked et al., 2010). A study of microbial

communities and methanogenic potential in wetland sediments from high Arctic regions



concluded that temperature was the dominant factor determining the rates of methanogenesis
and structuring the methanogenic community (Blake et al., 2015). Although CH,4 production has
been demonstrated in cold ecosystems, the inhabiting methanogenic archaea are generally
considered as psychrotolerant. Indeed, the CH, production rate (MPR) usually increases when the
temperature increases until reaching at least a temperature of 20 °C (de Jong et al., 2018;
Lavergne et al., 2021). However, in constantly low-temperature anoxic sediments from profundal
lakes in Switzerland, maximal methanogenic activity was observed at low temperature (6 °C)
within a range from 2 °C to 70 °C, demonstrating the psychrophilic activity of this methanogenic
community (Nozhevnikova et al., 2003). Psychrophilic methanogenic archaea species have been
reported, such as Methanogenium frigidum (optimal 15 °C) isolated from Ace Lake, Antarctica
(Franzmann et al., 1997) and Methanolobus psychrophilus (optimal 18 °C) isolated from a Tibetan
Plateau wetland (Zhang et al., 2008).

The Antarctic region harbors one of the least human-impacted environments and provides a
model for low-temperature systems (Purdy et al., 2003). Due to their unique extreme conditions,
Antarctic ecosystems can be considered as a reservoir of psychrophilic biodiversity for potential
biotechnological applications (Bowman et al., 2005; Yarzabal, 2016). During the short austral
summer, ice-free areas appear in the coasts and islands of Antarctic Peninsula. Due to ice melting
and glacier runoff, these ice-free areas are usually saturated in water, impacted by marine animal
colonies, and sparse biological cover develops including microbial mats, lichens, mosses, and rare
vascular plants (Casanova-Katny et al., 2016; Putzke and Pereira, 2020). Until now, the acetoclastic
methanogenic potential of Antarctic soils and lake sediments has been understudied in
comparison with those obtained in Arctic and sub-Arctic regions.

Few reports using sediments/soils from permanently cold regions for waste treatment at low

temperatures show high rates of CH, production (Petropoulos et al., 2021, 2019; Xing et al., 2010)



suggesting their potential biotechnological application. Hence, the objectives of this work are (i) to
determine the feasibility of low-temperature AD from cold-adapted microbial communities from
Antarctic soils and freshwater sediments, without the need for sophisticated reactor configuration
change, and (ii) to evaluate the effect of temperature (i.e., within a psychrophilic-mesophilic
range) on CH, production rate (MPR) and microbial community composition. This work will lead to
the generation of a consortium with a biotechnological potential for anaerobic wastewater
treatment at low temperatures.

2. Materials and Methods

2.1, Inoculum origin. The studied inoculum is a composite of nine sediment and soil samples
(physicochemical characteristics available in Supplementary Table S1: temperature; pH; nitrate,
nitrite, ammonia, sulfate, and phosphate concentrations; volatile solid content) mixed and
homogenized, so that each individual sample contributed the same proportion of volatile solid
content (i.e. organic matter proxy) to the composite sample. The samples were collected in
February 2013 (Table S1) from the Antarctic peninsula and South Shetland islands, in water-
saturated and organic matter rich areas such as moss wetlands or animal colony ponds (Table S1).
All samples were strongly impacted by penguin and/or sea lion excrements, resulting in high
organic and nutrient contents (Table S1). The nine samples were selected among a preliminary
screening of 43 Antarctic samples, as the ones presenting the highest methanogenic activity at
both 5 and 37 °C and the shortest latency time before methane production. The dry weight (DW)
of all samples was determined by drying overnight at 110 °C. Then, volatile solid (VS) content was
measured via loss on ignition (LOI) on dry samples (550 °C, at least 6h, until no change in mass).
2.2. Experimental setup for MPR measurement. The determination of MPR was carried out in
triplicate 12 mL glass vials with 2 mL of headspace, inoculated with a similar volatile solid

concentration (i.e., 5.9 g VS L™). Each vial contained 8 mL of mineral nutrient solution specifically



developed for anaerobic biodegradation (Shelton and Tiedje, 1984), 2 g of fresh soil/sediment
inoculum and acetate substrate at 30 mM final concentration, as previously described (McHugh et
al., 2004). The vials were sealed with butyl septa (Plasticoid, USA) and the headspace was initially
flushed with N, for 15 minutes to ensure anaerobic conditions. Microcosms were incubated in
parallel at seven controlled temperatures: 5, 10, 15, 20, 25, 30 and 37 °C (+ 1 °C precision), setting
up triplicate microcosms at each temperature.

2.3.  Analytical monitoring for MPR determination. The biogas production was quantified
periodically by measuring the headspace pressure with a manometer (PCE-P05, PCE Instrument,
Germany). The biogas composition was determined by gas chromatography (Clarus 500, Perkin
Elmer, USA), equipped with a VICI Hayesep Q (4m x 1/8” OD) column (80 °C) and thermal
conductivity detector (TCD, 120 °C), on a gas sample collected from the headspace with gas-tight
syringe (SGE Analytical Science, Australia). The cumulated amount of moles of CH, in the gas phase
was calculated using the Ideal gases law from headspace pressure and CH, proportion. The
concentration of CH,; in the liquid phase was determined by Henry’s law considering the
incubation temperature. The amount of total cumulated CH, (in the gas phase and the liquid
phase) was plotted against time (Figure S2). The conversion from moles to volume of CH,; was
performed using normal pressure and temperature conditions (P= 1 atm, T= 273 K). The MPRs
were computed as the maximum slope of the linear phase (at least four points) of CH,
accumulation kinetics over time, normalized by dry weight (DW) or volatile solid (VS). The
conversion yield of the substrate was calculated to the end of the exponential phase of production
with respect to the fed substrate.

XTr1 _ ek(T1-T2) \ware T1 and T2

The temperature constant k (K*) was defined by the equation: "
X, T2

are temperatures (K); ryr1 and ryr, are MPR at temperature T1 and T2 respectively (Henze and

Harremoés, 1983). The activation energy Ea (k) mol™) was derived from the Arrhenius



—Ea
equation: k = Ae( RT) were k is the MPR; A is the Arrhenius constant; R is the ideal gas constant

(8.314 J K* mol™), T is the experimental temperature (K) (Shelley et al., 2015).

To determine the final acetate concentration, at the end of the incubation (i.e., when kinetic
curves reached a plateau), the content of two vials was centrifuged (10 000 rpm for 15 min) and
supernatant was filtered through a 0.22 um membrane. Acetate concentration was measured in
the filtered supernatant by HPLC (Series 200, Perkin Elmer, USA) equipped with HP 1100 RID
detector, through an AMINEX column (HPX-87H, 300 * 7.8mm * 9 um, BioRad, USA) heated at 50
°C, setting the mobile phase flow rate at 0.5 mL min; allowing a detection limit of 2.85 mM of
acetate.

2.4. DNA Extraction. At the end of the exponential production phase of CH,; duplicated
incubation samples were centrifuged (10 000 rpm for 15 min) and the pellet was stored at -20 °C.
Total genomic DNA was extracted from approximately one gram of the pellet with the PowerSoil
DNA isolation kit (Qiagen, USA), following the recommendations of the supplier. DNA quantity and
quality were verified by UV spectrometry (BioSpec-nano, Shimadzu Scientific, Japan).

2.5. Quantitative PCR (qPCR). The copy number of 16S rRNA genes from total bacteria and
total archaea was determined through quantitative PCR (qPCR). The amplification was carried out
in duplicate using the SYBR Select Master Mix kit (Applied Biosystem) with the AriaMx
thermocycler (Agilent Technologies, USA). The thermal program consisted of one cycle at 95 °C for
20 sec and 44 cycles at 95 °C for 3 sec for denaturation and at 60 °C for 30 sec for hybridization
and extension. Each reaction consisted in 2 uL of DNA sample (DNA amount ranging 2.4 — 0.7 ng)
in a total reaction volume of 20 pl containing 750 mM of each primer (Supplementary Table S2).
For each group, standard curves were made with concentrations between 10 and 10° gene copy
number pL using pure strains Bacillus subtilis, DSM ref 10, for bacteria and Methanosarcina

mazei, DSM ref 3647, for archaea. The average amplification efficiency was higher 80% in the



linear range of standard curves (R’ > 0.99). The results obtained by qPCR were expressed in
number of gene copies per dry weight of sediment/soil.

2.6. High-throughput sequencing of bacterial and archaeal 16S rRNA genes. The diversity of
the bacterial and archaeal community was determined by high-throughput sequencing (lllumina
MiSeq, MrDNA Lab, Shallowater, USA) of the hypervariable region V4-V5 of the 16S rRNA gene,
using the universal primers 515F (GCGYCAGCMGCCGCGGTA) and 928R
(CCCCGYCAATTCMTTTRAGT) (Wang and Qian, 2009). The sequences were cleaned with the
pipeline of MrDNA (elimination of barcodes, sequences <150bp, chimeras removal, sequences
with ambiguous bases). The OTUs were defined at 97% similarity using MOTHUR (Schloss et al.,
2009) and taxonomically classified by comparison (BLASTn) with the cured databases derived from
GreenGenes, RDPII and NCBI. Raw sequence data are available in the European Nucleotide Archive
(ENA) under the BioProject reference PRJEB52010.

2.7. Data processing. A total of 418 035 sequences were obtained corresponding to 15 045
OTUs. After removal of singletons, the dataset resulted in 416 338 sequences corresponding to
99.6% of the whole dataset (Supplementary Table S3). The final dataset contained 5 386 OTUs
(35.8% of the pre-processed OTUs number). Number of sequences in each sample ranged from 41
658 (at 5 °C) sequences to 84 278 sequences (at 25 °C). The clean and trimmed sequences were
analyzed using R version 3.6.2 software (R Core Team, 2013). The alpha diversity indices were
calculated before rarefaction. For subsequent multivariate analyzes (using the ‘vegan’ package;
Oksanen et al. (2018)), a rarefaction was performed (function rarefy_even_depth of the ‘phyloseq’
package; McMurdie and Holmes, (2013)) resulting in 41 658 sequences per sample.

2.8. Statistical analyses. The influence of temperature on MPRs was evaluated by one-way

analysis of variance (ANOVA) followed by a Post-hoc test (Tukey HSD), making sure that ANOVA



assumptions were met (normality through Shapiro test and homoscedasticity through Levene
test). Spearman correlation was used to correlate methanogenic activity and latency time.

The differences of microbial community structure between samples were compared through
hierarchical clustering (UPGMA method) and principal component analysis (PCA ordinate
function, ‘phyloseq’ package) based on Bray Curtis dissimilarity. Discriminating OTUs for
temperature were defined by a contribution on the first two PCA dimensions greater than 2%
(‘FactoMineR’ package).

3. Results

3.1. CH,; production rates (MPRs). MPRs from the mixed Antarctic consortium were
significantly affected by a temperature increase from 5 to 37 °C (ANOVA, df= 6, F = 195.6, p-value
< 0.001), with the maximum MPR reached at 25 °C (Table 1, Figure 1A). The MPR value at 25 °C
was higher and significantly different from those obtained at other temperatures (Tukey Post-Hoc
test, p-value < 0.05). When the temperature decreased from 25 °C to 5 °C, the MPRs decreased
significantly and gradually (Tukey Post-Hoc test, p-value < 0.05), being reduced by up to 52-55% at
5 °C. Similarly, when the temperature increased from 25 °C to 37 °C, a decrease in the MPR was
observed compared to 25 °C (Tukey Post-Hoc test, p-value < 0.05) with 27-31% of activity loss.
Interestingly, the MPRs at 20 °C were not significantly different compared to the values at 37 °C
(Tukey Post-Hoc, p-value > 0.05). The reproducibility of the MPR measurements between
duplicates was robust as revealed by a relative coefficient of variation always lower than 2.3%. The
maximum substrate conversion yield was also obtained at 25 °C, with a value of 11.19 mmol CH, g
! COD (250.7 mL CH, g* COD), which is significantly higher than the yield obtained at lower
temperatures (Tukey Post-Hoc test, p-value < 0.05). Between 5 and 20 °C, substrate conversion
yield remained stable with no significant differences (Tukey Post-Hoc test, p-value > 0.05). At

higher temperatures, the yield was not significantly different from that of 25 °C (Tukey Post-Hoc



test, p-value > 0.05). At the end of the incubation (as defined in the Material and Method section),
the residual acetate was always undetectable (below the detection limit).

The shortest latency time (i.e., 10 days) was found between 20 °C and 30 °C, while 37 days were
needed to detect first CH4 production at 5 °C. Interestingly the latency time at 10-15 °C were
comparable to the latency time at the highest tested temperature (37 °C, usually considered as
optimal for AD), and was twice as high as the optimal one (Table 1). MPR values were negatively

correlated with latency time (Spearman correlation; R*=-0.89; p-value < 0.05).

The values of MPRs were expressed as a percentage of the maximum MPR (measured at 25 °C)
and compared with an empiric model from a compilation of experimental data given in Henze and
Harremoés (1983) for 32 reactors inoculated with mesophilic sludge (Figure 2). The optimal
temperature was 25 °C for Antarctic inoculum and 35 °C for mesophilic sludge. At the lowest
temperature (i.e., 5 °C), the MPR of the conventional reactors inoculated with mesophilic sludge
drastically dropped, down to 5% of their maximum MPR. By contrast, the studied Antarctic
inoculum enabled to maintain at 5 °C 50% of its maximum MPR. Between 10 and 20 °C, the MPR of
the mesophilic reactors was as low as 8 to 22% of the maximum MPR, while the Antarctic
inoculum maintained from 46% to 70% of its maximum MPR. At 25 °C, which is the optimal
temperature of the Antarctic inoculum, the mesophilic reactors present only 37% of their
maximum MPR. Using the Arrhenius model, the MPR temperature dependency in the Antarctic
inoculum was characterized by a calculated temperature constant of 0.047 °C™ and an activation
energy E, = 26.23 ki mol™.

3.2 Proportion of archaea and bacteria. The abundance of bacteria was stable between 5 and
25 °C with an average of 6.44 + 1.47 x10% 16S rRNA gene copies g DW (Turkey Post-Hoc test, p-
value > 0.05). As the temperature increased (30-37 °C), the abundance of bacteria decreased

significantly compared to the range 5-25 °C (Turkey Post-Hoc test, p-value < 0.05) with an average
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gene copies. The lowest archaeal abundance was recorded at 30 °C with on average 4.13 x106 16S
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Figure 1B). At 37 °C, the relative abundance of archaea reached 13.6% of the total prokaryotic
abundance (mainly because of the lower bacterial absolute abundance).

3.4. Microbial community composition. The OTU number remained relatively constant in all
the samples from 5 to 20 °C (in average 2590 + 109 OTUs), and then decreased by 25%, 30% and
37%, at 25, 30 and 37 °C, respectively. The alpha diversity indices decreased with increasing

temperature (Table S4). More specifically, the Shannon index was stable within the range 5-20 °C
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3.5. Figure 1C). Interestingly, at higher temperature, the diversity was low suggesting that
higher temperatures applied a strong selective pressure on cold-adapted Antarctic microbial
communities.

Analysis of microbial structure showed that the most abundant phyla were Bacteroidetes (28.5%
to 61.0% of total sequences), Proteobacteria (20.9% to 34.9% of total sequences) and Firmicutes
(2.9% to 31.1% of total sequences) (Figure 3A). At low temperature (5-20 °C), the community was

strongly dominated by two phyla, while the community was more uniformly distributed when the



temperature increased above 25 °C. The samples clearly clustered according to incubation
temperature, revealing the strong influence of temperature on microbial community structure.
The first two dimensions of the PCA (Figure 3B) allowed to visualize 71.6 % of variation in the total
microbial community structure. The horseshoe distribution of the samples traduced the
progressive changes of community structure with the gradual increase of temperature. The
conformations of microbial community were structured in two groups driven by the temperature
of incubation, distinguishing (i) low and medium temperature (5-20 °C) and (ii) high temperature
(30-37 °C). Interestingly, at 25 °C (corresponding to the optimal MPR), the community composition
was intermediate between the two temperature ranges.

Interestingly, 15 microbial OTUs were found discriminant for the construction of the PCA (Figure
3B). Between 5-25 °C, the discriminating OTU_53 was affiliated to methanogenic archaea
Methanosaeta, representing 1.0 + 0.4% of the total community between 5-20 °C and 18.1% of the
community at 25 °C, and the discriminating OTU_10 was affiliated to the bacterial genus
Parabacteroides, representing 7.5% to 19.9% of the total community. At 30 to 37 °C, the
methanogenic community clearly changed with the highest relative abundance of the genera
Methanocorpusculum (0.3% of total community) and Methanosarcina (4.0% of total community)
respectively. In the bacterial community, most of the discriminant genera were fermentative
bacteria (e.g., Clostridiisalibacter, Bacteroides, Candidatus Cloacimonas).

Methanosaeta dominated the archaeal community from 5 to 25 °C. It showed a constant
abundance of 58.7 + 5.1% of the archaeal community from 5 to 20 °C, and increased at 25 °C
reaching 84.2% of archaeal community. At higher temperatures, the archaeal community
composition shifted from Methanosaeta-dominated to a co-dominance of genera
Methanocorpusculum and Methanosarcina representing 44.5% and 68.8% of archaeal community

at 30 °C and 35 °C, respectively (Figure 2).



4. Discussion

In cold and temperate regions, the development of AD processes at ambient (low) temperature for
organic waste treatment is of major economic and ecological interest (Lettinga et al., 2001). In this
study, a new microbial consortium from Antarctic soils and sediments, able to produce CH, at low
temperature, was enriched and characterized for both methane production efficiency and
microbial diversity, over a temperature gradient from 5 to 37 °C.

4.1. High CH,; production rates in the newly generated Antarctic enrichment. Comparing data
of CH,; production with literature is challenging since MPRs are reported either in natural
environments or in bioreactors, each field using different conventional units and protocols. The
main variations can be 1) the liquid and/or headspace volume, 2) the inoculum history and
concentration, 3) the addition of substrate and its concentration and 4) the incubation
temperature, among others. Considering these discrepancies, we set up our incubations and
expressed our results in such a way to be broadly comparable with both ecological studies (MPRs
expressed in nmol CH, d* g DW, Table 2) and bioengineering studies (MPRs expressed in mL CH,
g'vsd?, Table 3).

The acetate-derived MPRs of the newly generated consortium at low temperatures (5-15 °C)
ranged from 4 200 to 5 600 nmol CH, d* g' DW. These values are 5 to 10-fold higher than
published data from cold natural environments with acetate amendment at comparable
incubation temperatures, mainly recorded from the Arctic region (Table 2 and Table S5). Different
works conducted in Antarctica demonstrated the presence of methanogenic activity in soils and
lake sediments. In Wilson Piedmont glacier samples, Stibal et al. (2012) reported unamended MPR
of 0.5, 1, and 1.1 nmol CH, d™ g’l FW (fresh weight) at 1 °C, 4 °C and 10 °C, respectively. Our
consortium presented an optimal temperature of 25 °C, with acetate-derived MPR reaching 9 055

nmol CH, d™* g* DW. The optimal temperature for methanogenesis can vary in different soils from

Table 2




cold environments. In general, in low temperature ecosystem, the optimal MPR is reported at
mesophilic temperatures (25 °C - 30 °C). Metje and Frenzel (2005) incubated northern peatland
soils (68 °N) between 4 °C and 40 °C without amendment and concordantly found an optimum at
25 °C (i.e., 2 300 nmol CH, d* g* DW). However, Nozhevnikova et al. (2003) reported true
psychrophilic methanogenic communities exhibiting an MPR optimum at 6 °C (i.e., 73.4 nmol CH4
d-1 g-1 DW) when comparing unamended incubations between 4 and 60 °C of anoxic sediments
from permanently cold deep lakes (4 to 5 °C). Interestingly, the maximal MPRs were reported from
lakes and reservoir sediments of Chilean Patagonia (Lavergne et al., 2021), exhibiting higher
content of organic matter, which can potentiate CH,; production and influence the composition of
the methanogenic community.

4.2, High performance at low temperature compared with mesophilic sludge. By fitting the
model proposed by Henze and Harremoés (1983), we determined that for the Antarctic inoculum,
the constant traducing the temperature effect on MPR was 0.047 °C™, i.e. two times lower than
the constant reported for mesophilic sludge exposed to low temperatures (0.1 °C™*). This means
that the detrimental temperature effect is much stronger on conventional AD, and our Antarctic
inoculum was more efficient for producing CH, at low temperature compared to mesophilic ones,
certainly thanks to active psychrophilic microorganisms able to produce CH, at low temperature
(Figure 2).

4.3. A biotechnological potential for AD at low temperatures. The MPRs of continuous low
temperature anaerobic digesters (LTAD) operated with adapted and non-adapted mesophilic
inocula have been extensively studied, mostly in state-of-the-art technological configurations such
as UASB or EGSB (as reviewed in Table 3 and Table S6). They are measured in batch assays outside
the reactor, after long adaptation times in the reactor (app 100-1000 days). By contrast, in the

present study, the Antarctic inoculum was active after 10 to 37 days between 5-25 °C, in a simple

Table 3

Table 3



batch configuration. The acetoclastic MPRs from our natural consortium (i.e., 2.65 and 5.71 mL
CH, g VS d?) are comparable with non-adapted seed inocula and approximately 10 times lower
than those obtained in long-term LTAD reactors. This difference can be explained by the fact that
the biomass coming from anaerobic digesters is considerably more concentrated and enriched in
active methanogens than the biomass from natural soil environments, especially in Antarctic soils
and sediments poor in organic content. Notably, the reactor configurations used for LTAD and
reported in Table 3, where biomass is granulated or attached to a growth-support through a
biofilm, lead to considerably enhanced biomass retention in the reactor, thus facilitating the
treatment of higher flow rates and lower substrate concentrations and enabling the operation at
low temperature. Furthermore, organic matter from mosses can overestimate our estimation of
biomass by volatile solids in Antarctic sediments and soils.

Hence, when available, the normalization of MPRs by the abundance of archaea (quantified by
gPCR) allows more robust comparisons between different types of inocula. Here, unit conversions
were performed assuming that there is on average 2.4 copies of 165 RNA per cell for
methanogenic archaea (Sun et al.,, 2013). The specific MPRs of the Antarctic inoculum at
temperatures below 25 °C ranged between 8 and 28 x10® mL CH, d™ cell®, which is significantly
higher than previously reported rates. In reactor treating synthetic sewage, the specific MPR at
12 °C ranged from 0 to 6 x10® mL CH, d* cell'* depending on the adaptation time (from 105 to 889
days) (Keating et al., 2018). From synthetic wastewater, McAteer et al. (2020) found specific MPRs
between 3 and 29 x10® mL CH, d* gene copy™”, with the greatest rates measured after long
acclimatization times of the microbial community (from 110 to 443 days). Petropoulos et al.
(2017b) used a mixture of lake sediment (temperature between -11 to 17 °C) and high Arctic soil
(temperature between -16 to 6 °C) to treat sterile complex wastewater from a treatment plant

and reported specific methanogenic activity of 4, 8 and 15 °C of 14, 17 and 23 x10™ mL CH, cell



'day™ respectively. When the mixture was previously acclimatized to 4 °C, the specific
methanogenic activity increased to 88 x10™ mL CH, cell*day™ at 15 °C (Petropoulos et al., 2017a).
The difference between MPRs may be due to the substrate used.

All together, these results show that the Antarctic inoculum obtained in this study (i) is highly
active at low temperature, with specific methanogenic rates similar or higher than those reported
in LTAD reactors; (ii) enables to reduce considerably the biomass adaptation time to reach high
activity at low temperature; (iii) is active in a simple batch configuration mode which can be easily
scaled to a ASBR reactor; (iv) could be further enriched in anaerobic granules and/or biofilm grown
on a fixed support. In the present work, acetate was used as a proxy to target the methanogenic
step activity which is usually limiting for low strength wastewater. Further work should evaluate
the efficiency of this inoculum to treat more complex substrates, since lipolysis has been identified
as the rate limiting step on the treatment of real waste by AD at low temperature (Petropoulos et
al., 2018).

4.4, Effect of increasing temperature on methanogenic community composition. As expected,
the addition of acetate as a substrate, led to a dominance of acetoclastic methanogens (Figure 2).
While a dominance of Methanosaeta between 5-25 °C was associated with gradual increment of
MPR until a maximal value at 25 °C, we observed a shift in the methanogenic composition above
30 °C with a dominance of Methanocorpusculum and Methanosarcina.

It suggests that Methanosaeta would be more tolerant/adapted to low temperatures below 25 °C
with a slow growth rate, enabling to maintain significant MPR up to the highest measured CH,
production efficiency. On the other hand, Methanosarcina should be more competitive at higher
temperature (37 °C) with faster growth rate but exhibiting lower MPR than Methanosaeta at 25
°C; moreover, Methanosarcina was overcompeted at low temperatures. The presence of the

genus Methanosaeta is consistent with the addition of acetate in the experiment. However, its

Figure 2




dominance over Methanosarcina at low temperatures (below 25 °C) in the Antarctic inoculum
incubated with 30 mM acetate can be more surprising since at high (> 4 mM) acetate
concentrations the r-strategist Methanosarcina is usually considered as more competitive than the
K-strategist Methanosaeta (Jetten et al., 1992). This could be explained by the capacity of
Methanosarcina to use methanol and/or H,/CO, with no acetate dependence for growth under
low temperature conditions (Gunnigle et al., 2013).

A large diversity of Methanosarcina species has been reported in cold regions. For example
Methanosarcina lacustris has been described in anoxic sediments from Switzerland growing
between 1 and 35 °C with optimum at 25 °C (Simankova et al., 2001). Also, Methanosarcina baltica
was isolated from sediment in the Baltic Sea and in anoxic marine sediments in Alaska as capable
to grow from -2 to 28 °C, with an optimum at 21 °C (Von Klein et al., 2002). Methanosarcina sp.
was also found in the frozen Antarctic lake Fryxell (Karr et al., 2006). Finally, Methanosarcina
subterranea was the predominant methanogenic archaea in sub-Antarctic freshwater sediments
incubated with acetate at low temperature (5-20 °C) (Lavergne et al., 2021). On the other hand, in
organic-rich Antarctic marine sediments, Methanosaeta was reported as the predominant and
active methanogenic archaea, highlighting their role in CH, production and overall carbon cycling
within sedimentary environments (Carr et al., 2018).

In LTAD, Methanosaetaceae are usually predominant and positively correlated to process
efficiency, whereas low levels of Methanosarcinaceae have been reported in well-functioning
LTAD systems (Gunnigle et al., 2013). Ribera-Pi et al. (2020) operated three configurations of
reactors and concluded that Methanosaeta was by far the most abundant genus (> 50%) and
suggested the importance of the acetoclastic pathway when operating at low temperatures (9.7 +
2.4 °C). Similarly, Singh et al.,(2019) reported dominant acetoclastic pathway at low temperatures

(10 and 20 °C) in batch reactors, highlighting the role of Methanosaeta.

Figure 3




4.5. A putative hydrogenotrophic detour. Interestingly, at 30 °C, we measured a change in the
main methanogenic group, with hydrogenotrophic methanogens, such as Methanocorpusculum,
representing 53.3 % of the archaea community (Figure 2). This suggests a change in the CH,
generation pathway that could be linked to the presence of acetate-consuming bacteria that can
produce hydrogen (e.g. Clostridium and other syntrophic acetate-oxidizing bacteria (SAOB))
(Schink, 1997). The shift from acetoclastic-dominated methanogenesis to SAO-coupled
hydrogenotrophic methanogenesis has been previously observed in anaerobic digestion
microbiome exposed to different environmental disturbances (Hardy et al.,, 2021). The genus
Candidatus Cloacimonas presents a maximal relative abundance at 30 °C with 14.1% of total
sequences. The in silico proteome analysis of Candidatus Cloacimonas acidaminovorans (not
cultivated) indicated that this bacterium, present in many anaerobic digesters, is a syntrophic
producer of H, and CO, from formate (Pelletier et al., 2008; Solli et al., 2014). Also, Clostridium was
present over the whole temperature range (representing 1.7% at 5 °C and 5.1% of total sequences
at 37 °C). This group is able to produce H, and volatile fatty acids through a syntrophic pathway
(Ghasimi et al., 2015). Psychrophilic species of Clostridium have been reported in arctic permafrost
growing between 5 and 6 °C (Shcherbakova et al., 2004). Finally, the genus Geobacter
(representing between 0.3% and 4.9% of total sequences) is an anaerobic microorganism that
completely oxidizes acetate, among other fatty acids, to CO, with Fe (lll) as an electron acceptor
(Lovley et al., 1993).

The increase of temperature can also favor other members of the community that could compete
with methanogens and CHj-associated microorganisms. Among them, the most abundant genus
within Proteobacteria was Desulfobacterium (representing between 0.9% and 4.9% of total
sequences), which is a strict anaerobic bacteria reducing sulfate, able to use acetate among other

fatty acids as carbon source, as reported in Siberian permafrost (Rivkina et al., 2016).



4.6. Main bacterial members affected by temperature. Our results of alpha-diversity
corroborate the hypothesis that, in an Antarctic inoculum, the diversity decreases with increasing
temperature, selecting only the microorganisms capable of growing at mesophilic temperatures.
In addition, the temperature has also an effect on bacterial community composition and relative
abundances, especially on taxa known to be involved directly or indirectly in methane-cycling, as
shown below.

The most abundant bacterial phyla Bacteroidetes, Proteobacteria and Firmicutes exhibited
different patterns in response to temperature. While Proteobacteria remained constant whatever
the temperature (mean relative abundance of 27.1 + 5.3% of total sequences), the relative
abundance of the phylum Bacteroidetes (that represented between 61.03% at 5 °C and 35.62% at
37 °C of total sequences) decreased with increasing temperature. Among this phylum, several
genera followed this pattern. Parabacteroides (constituting 19.9% at 5 °C and 0.5% of total
sequences at 37 °C) and Anaerophaga (representing 8.3% at 5 °C and 0.1% of total sequences at
37 °C) produce volatile fatty acids, such as acetate and succinate (Denger et al., 2002; Sakamoto
and Benno, 2006). Also, Flavobacterium (representing between 5.4% at 5 °C and 0.8% of total
sequences at 37 °C) are facultative anaerobes able to ferment polysaccharides, as evidenced in
permafrost (Zhang et al., 2007). This genus is widely studied in cold environments and is present in
Antarctic lakes (Humphry et al., 2001). The negative impact of increasing temperature on these
bacteria suggests that, in the studied environment, they might be adapted and specific to low
temperatures. In contrast, the abundance of genus Bacteroides increased with temperature above
30 °C (constituting 1.8% at 5 °C and 26.8% of total sequences at 37 °C). This genus is recognized to
be anaerobic and fermentative of sugar and peptone, and was reported in Alaskan tundra for
example (Lipson et al., 2013). It seems that this genus can tolerate low temperatures, but its

optimal temperature would be closer to the mesophilic range. Finally, the relative abundance of



the phylum Firmicutes increased with temperature (Figure 3). A representative genus is
Clostridiisalibacter, which never exceeded 0.04% of total sequences from 5 to 25 °C and
represented up to 12% at 37 °C. This genus is recognized as a moderate halophilic, thermotolerant,
chemoorganotrophic anaerobe (Liebgott et al., 2008). A second representative genus is
Thermaerobacter which is present in the range from 5-30 °C in average relative abundance of
0.05% * 0.02% of total sequences, while at 37 °C it represented 4.70% of total sequences.
Thermaerobacter has characteristics of aerobic thermophile, neutrophil heterotroph, capable of
using organic substrates (Takai et al., 1999).

5. Conclusion

Under psychrophilic conditions, the newly generated Antarctic inoculum successfully maintained
relatively high CH4 production rate at low temperature, more efficiently than a mesophilic sludge,
and had higher specific methanogenic activity than a mesophilic sludge. Temperature affected the
CH4; generation as well as methanogenic and total bacterial and archaeal community. The
microbial community was similar between 5 and 25 °C, but the diversity decreased above 25 °C,
and our data suggest a shift of methanogenic pathway from acetoclasty to SAO-coupled
hydrogenotrophy. The generated Antarctic inoculum has a biotechnological potential and could be
considered as a future solution, after further enrichment and immobilization, for the treatment of

wastes at low temperatures in cold mid- and high-latitude regions of the planet.
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Table 1: Kinetic parameters of the Antarctic inoculum obtained from incubations along a
temperature gradient. MPR stands for methane (CH4) production rate. R1 and R2 indicate the
batch replicates.

MPR MPR Yield Latency period
Tem’(’fé)at“re (nmol CH, g DWd?) | (mLCH,g*Vsd?) | (mmolCH,g" cop) (days)

R1 R2 R1 R2 R1 R2 R1 R2

5 4275 4314 2.7 2.7 8.6 8.2 37 37

10 4391 4005 2.8 2.5 8.5 7.9 24 24

15 5720 5658 3.6 3.6 8.4 8.3 17 17

20 6262 6553 3.9 4.1 8.2 8.3 10 10

25 8891 9218 5.6 5.8 10.9 11.4 10 10

30 8540 8185 5.4 5.2 11.4 10.6 10 10

37 6489 6343 4.1 4.0 10.7 10.9 22 22

Table 2: Published data reporting CH,; production rates (MPR) in different soil/sediment samples
from low temperature ecosystems.

ar:::cti::nt Incubation MPR
Latitude Origin Sample type . temperature (nmol CH, d™ g* Reference
concentration ) DW)
(mM)

Northern hemisphere
72°N Siberia Peat 20 04-7.5 170- 1560 (Wagner et al., 2005)
72°N Siberia Permafrost 10 5 1-120 (Wagner et al., 2007)
71°N Alaska Lake sediments 2 4-10 3400-4 700 (de Jong et al., 2018)
68° N Alaska Lake sediments 1 10 1000 - 9 000 (Lofton et al., 2015)
50°N Germany Peat swamp 5 20 8 (Horn et al., 2003)
46" N Swiss Alps Lake sediments 5-10 6-30 370-2 940 (NOZhevlns;g‘;‘)’a etal,

7°N i
3 TR Swamp wetland 10 10 60.9 - 552.7 (Yang et al., 2017)
Plateau
Southern hemisphere
- Lak i
53-54°S sub- 2ke and reservoir 30 5-20 590-50280 | (Lavergne etal., 2021)
Antarctic sediments

62-63° S Antarctica Soil and sediments 30 5-25 4295 -9 055 This study

69°S Antarctica Subglacial sediments 10 1-12 0.04-0.2 (Ma et al., 2018)

Table 3: Bibliographic survey of methanogenic activity of low temperature anaerobic digesters
(LTAD), obtained in batch tests with acetate amendment. UASB= Upflow Anaerobic Sludge Bed,;
EGSB-AF = Expanded Granular Sludge Bed- Attached Film; EGSB = Expanded Granular Sludge Bed;
UASB-GAC = Upflow Anaerobic Sludge Bed- Granular Activated Carbon; AnMBR = Anaerobic
Membrane Bioreactor. Seed = unadapted inoculum, initial time in reactor, Adapted = inoculum
with previous adaptation period inside the reactor at low temperature.




Operation characteristics of the

Batch Tests

reactor
Temper
Waste Sample Operating Operating Acetate amendment ature MPR . Refer
Reactor type type period (days) temperature concentration (mM) for (TL CH."lg ence
type (°c) MPR vsd’)
(cc)*
Acetat Soil and 2.71- This
Batch e sediment 10-37 5-25 30 5-25 571 study
(Uem
ura
uase | V38 | adapted 178 13 333 13 28.0 and
e Harad
a,
2000)
Synthe Seed 0 37 30 22 0.9 (McH
UASE tic ugh et
Waste Adapted 165 - 300 16-25 30 15-22 14.7 -31.0 al.,
water 2004)
Synthe Seed 0 20 30 15 24.8 (Collin
EGSB- tic 117.0- set
AF waste Adapted 111-250 18-20 30 15 51(; 0 al.,
water i 2006)
(Sumi
UASB Se‘;"ag Adapted 236 9.7-27.1 333 10 1.8 ”;’I et
2007)
Seed 0 37 12 15 36.0 (Akila
Synthe
tic and
UASB | aste | Adapted 630 15 12 15 134.4 Chrz"d
water 2007)
Domes Seed 0 NR 16.7 20 9.1-17.5 | (Alvar
HUSB/ tic 13.1- ezet
UASB waste Adapted 76 -97 13.1-17 16.7 1'7 8.8-18.9 al.,
water 2008)
Seed 0 37 30 15 31.0 (McKe
Synthe own
EGSB- tic 17.0- | etal,
AF waste Adapted 673 -1243 4-95 30 4-15 83.0 2009h
water )
Synthe (Enrig
E‘ZSFB' s | Adapted 218-313 9-12 30 15 13252'?0' h;ft
water 2009)
Synthe Seed 0 NR 30 15 0.0 (O’Rei
tic lly et
EGSB | aste Adapted 66 - 194 15-37 30 15 1:"100_ al.,
water i 2009)
Synthe Seed 0 30 30 15 21.5 (Mad
EGSB- tic den et
AF waste Adapted 202 -361 15 30 15 12.9-66.5 al.,
water 2010)
Synthe (Ho
anmer | U | Adapted 15-75 15-25 10 15-25 | 70-665 | 2™
waste Sung,
water 2010)
(Biale
EGsB | "3 | Adapted 355 10 30 10 38.0 ket
water al.,
2013)
Hybrid Synthe Seed 0 35 30 12 7.0 (Keati
sludge tic ng et
bed/fix sewag Adapted 105 - 889 12 30 12 0-51.0 al.,
ed-film e 2018)




Reactor

Synthe Seed 0 37 30 15 4.3 (McAt

UASB- tic 16.6— eer et
EGSB waste Adapted 110- 443 15-37 30 15 6!;: 3 al.,

water ) 2020)

UASB/ Munici (zhan
UASB- pal Adapted 30-120 20 16.7 20 13.8 - get
GAC waste 93.9 al.,

water 2020)

* For the MPR determination, a subsample from the reactor is incubated in sealed vials. Temperature for the MPR determination

sometimes vary from the operating temperature of the reactors.
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Figure 1: A) Methane production rate (MPR) of Antarctic inoculum, R1 and R2 indicate the batch
replicates; B) Absolute abundance of bacteria and archaea from the Antarctic inoculum incubated
at different temperatures (Bacteria= bacterial 16S rRNA gene, Archaea= archaeal 16S rRNA gene);
C) Shannon index of Antarctic inoculum. In the panel B), errors bars represented the standard

deviation (n = 4).
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Figure 2: Relative MPR (expressed as a percentage of maximal MPR) in function of temperature for
the Antarctic inoculum (in blue) and 32 conventional mesophilic reactors (in orange; Henze and
Harremoés, 1983). Note that the y-axis represented the log-transformed percentage of maximal
MPR. The pie charts represented the methanogen composition in the Antarctic inoculum at the

genus level.
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Figure 3: Microbial community structure of Antarctic inoculum incubated at different
temperatures. A) Taxonomic composition at the phylum level (ten most abundant phyla). The
clustering is based on Bray Curtis distance and calculated with the UPGMA method. B) Principal
component analysis (PCA) based on Bray Curtis distance from 16S rRNA gene diversity of the

Antarctic inoculum incubated at different temperatures. The 15 most discriminant OTUs are



plotted in red (identified as described in the Material and Method section). Taxonomic affiliation

of the discriminant OTUs is indicated in the table on the right.
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Highlights

e Antarctic sediments are suitable for low-organic load residue treatment in cold regions
e Methanogenic activity and microbial community are affected by temperature (5-37 °C)
e Maximum methane production rate at 25 °C

e Methanosaeta was the predominant archaea between 5 and 25 °C

e At low temperature Antarctic inoculum was 40% more efficient that mesophilic sludge



