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Hugh Garavang, Rüdiger Brühlh, Jean-Luc Martinoti, Marie-Laure Paillère Martinoti,j , Eric
Artigesi,k , Luise Poustkam, Sarah Hohmannd, Sabina Millenetd, Nilakshi Vaidyao, Henrik

Walterp, Robert Whelanq, Gunter Schumannp,r, Baptiste Couvy-Duchesnea,s, Olivier Colliota,
and The IMAGEN consortium1
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ABSTRACT

Incomplete Hippocampal Inversion (IHI) is an atypical anatomical pattern of the hippocampus that has been
associated with several brain disorders (epilepsy, schizophrenia). IHI can be visually detected on coronal T1
weighted MRI images. IHI can be absent, partial or complete (no IHI, partial IHI, IHI). However, visual
evaluation can be long and tedious, justifying the need for an automatic method. In this paper, we propose, to
the best of our knowledge, the first automatic IHI detection method from T1-weighted MRI. The originality of
our approach is that, instead of directly detecting IHI, we propose to predict several anatomical criteria, which
each characterize a particular anatomical feature of IHI, and that can ultimately be combined for IHI detection.
Such individual criteria have the advantage of providing interpretable anatomical information regarding the
morphological aspect of a given hippocampus. We relied on a large population of 2,008 participants from the
IMAGEN study. The approach is general and can be used with different machine learning models. In this
paper, we explored two different backbone models for the prediction: a linear method (ridge regression) and a
deep convolutional neural network. We demonstrated that the interpretable, anatomical based prediction was at
least as good as when predicting directly the presence of IHI, while providing interpretable information to the
clinician or neuroscientist. This approach may be applied to other diagnostic tasks which can be characterized
radiologically by several anatomical features.

Keywords: Deep Learning, Machine Learning, MRI, Incomplete Hippocampal Inversion

1. INTRODUCTION

Incomplete Hippocampal Inversions are found in around 20% of the general population and are more commonly
observed in the left hemisphere (17.1% left hemisphere and 6.5% right hemisphere).1 While their origin is not well
understood, they are thought to occur during the pre-natal development of the temporal lobe. IHIs have been
shown to have a higher prevalence in patients with epilepsy (30-50% of the population),2–5 or schizophrenia.6

This suggests that IHI might play a role in the development of several brain disorders, and more research is
needed to investigate the association between IHI and other psychiatric or neurodevelopmental disorders.

However, IHIs need to be detected visually by a trained rater. This can be a long and tedious task and
could greatly benefit from an automated method. We are not aware of any such method. IHIs can be absent,
partial or total and they are thus associated with a global three-class score (no IHI, partial IHI, total IHI).
However, this global score does not account for the different anatomical characteristics of IHI and is likely to lack
reproducibility from one laboratory to another. Thus, different authors have proposed to rate IHI using a set of
criteria.1,3, 4 Specifically, Cury et al.1 proposed a rating scale composed of five criteria/dimensions assessing the
different characteristics of the hippocampus: verticality/roundness, medial positioning and neighbouring sulci
characteristics (sulcal depth). Individual criteria can be summed-up to form an IHI score representing the IHI
level of a given hippocampus. The IHI criteria allow for a more specific assessment of individual characteristics
and allow designing a more interpretable automatic rating method.

The aim of this work was to develop an automatic method to detect IHI from anatomical MRI. More specifi-
cally, we propose to predict individual anatomical criteria in order to obtain an intrinsically interpretable rating.
The predicted criteria are subsequently combined to detect IHI. We then aimed to assess whether this prediction
strategy leads to performances at least on par with those obtained when directly predicting the IHI status.

2. MATERIALS AND METHODS

2.1 Materials

We studied 2,008 participants from the IMAGEN study.7 We included all participants with a T1-weighted
anatomical MRI acquired at 3 Tesla. The average age at MRI was 14.5 years (range: 12.9 - 17.2). 51%
participants were females, 49% males and sex information was missing for one. Both the global three-class
criterion (denoted as C0) corresponding to IHI detection and the individual interpretable criteria (denoted from
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C1 to C5) were assessed on all MRI images by trained raters. The sum of individual criteria was called the IHI
score denoted as SC.1 Each of these criteria and scores have been evaluated separately on the left ( L) and on
the right ( R) hemisphere. Local ethics committees approved the study. Participants as well as their parents
gave informed written consent.

2.2 MRI pre-processing

We processed the MRI using the t1-volume pipeline implemented in Clinica.8,9 This pipeline is a wrapper of
the Segmentation, Run Dartel and Normalise to MNI Space routines implemented in SPM. First, the Unified
Segmentation procedure10 is used to simultaneously perform tissue segmentation, bias correction and spatial
normalization of the input image. Next, a group template is created using DARTEL, an algorithm for diffeo-
morphic image registration,11 from the participants’ tissue probability maps on the native space, usually GM,
WM and CSF tissues, obtained at the previous step. The DARTEL to MNI method11 is then applied, providing
a deformable registration of the native space images into the MNI space. We further cropped the gray-matter
maps into a box of interest containing both hippocampi and the surrounding sulci.

2.3 Split between learning and testing set

We isolated 25% (502) of the participants to form a test set. We performed the split prior to running any analysis
and only used the test set to evaluate results. This left a learning data-set of 1,506 participants (also used for
model selection and hyperparameter optimization through cross-validation within these 1506 participants). We
stratified the split based on all IHI criteria as well as age, weight, height, sex, handedness and imaging centre.
In practice, we performed 200 random splits, and selected the one that minimised differences in distributions for
all considered variables between the learning and test set (based on a Kolmogorov-Smirnoff test).

2.4 Proposed approach

The core of our approach is to predict the individual anatomical criteria C1 to C5, in place of the global criterion
C0. The individual predicted criteria are then combined to detect IHI. The first criterion (C1) assesses the
verticality and roundness of the hippocampal body. The second criterion (C2) evaluates the verticality and
depth of the collateral sulcus. The third criterion (C3) quantifies the medial position of the hippocampus.
The fourth criterion (C4) is a binary score defining if the subiculum is bulging upwards or not. However, we
did not use this criterion because it leads to difficulties in human annotations and because it is normal in the
overwhelming majority of participants (> 97%1). The fifth criterion (C5) assesses whether any sulci of the
fusiform gyrus exceed the level of the subiculum. Each of these criteria is rated on a 2 point scale with 0.5 steps
for criteria 1 to 3 and 1 point steps for criterion 5. A schematic of these criteria extracted from the paper by
Claire Cury et al. can be found in figure 1.

Figure 1. Schematic of criteria 1,2,3 and 5 reproduced from [1] (CC BY).



We trained machine learning models to predict each score (C1, C2, C3, C5) separately. Our approach can
work with various machine learning models as a backbone. In this work, we compared two models. First, we
considered a linear model (ridge regression) and used a cross-validation to estimate the best hyper-parameter.
Next, we considered a convolutional neural network with five convolutional layers and three fully connected
layers, denoted as Conv5-FC3 in the following, and implemented in ClinicaDL .12,13 It was trained to perform
regression using the mean squared error loss. The deep-learning model was trained over 50 epochs and we
performed early stopping, i.e. the model with the lowest validation loss was used for further analysis. Note
that none of these operations involved the test set in order to not to bias the results. Both the linear and deep
learning models used as input the voxel-based gray-matter maps described in Section 2.2. Finally, we summed
the predictions for the individual criteria and the result was denoted as SC add L (resp. SC add R) for the left
(resp. right) hemisphere.

2.5 Comparison to the global criterion

For comparison, we trained the same models to predict the global criterion C0. We searched for the optimal
threshold to discretize the continuous IHI score into three classes of C0. To that purpose, we iteratively searched
for the threshold on SC that gave the most accurate classification for C0 (as measured by balanced accuracy).
Absence of IHI (C0=0) corresponds to IHI scores below 2.25 , partial IHIs (C0=0.5) to scores between 2.25 and
4.25, total IHI (C0=1) to scores above 4.25. Note that we only used the learning set and the manually-obtained
SC to compute these thresholds, in order not to bias the results. Finally, we also compared our approach to a
direct prediction of SC.

2.6 Performance metrics and statistical analysis

To compare the prediction to the ground truth, we used 1) a quadratic weighted kappa score for the discretized
SC, the global criterion C0 and the individual criteria C1, C2, C3 because these are discrete ordered variables;
2) a non-weighted kappa for C5 as it is a binary variable; 3) inter-class correlation coefficients (ICC) for the
continuous SC. We performed a bootstrap on the isolated test set, using 1000 iterations of 502 samples, the same
size as the isolated test set. From this, we deduced the mean kappa/weighted kappa/ICC score along with the
standard error.

2.7 Visual analysis

For the ridge regression, we extracted a weight map, i.e. a 3D image showing the weight attributed to each voxel.
We computed a saliency map14 from the Conv5-FC3 models using the implementation provided in ClinicaDL.13

To visualise which regions contribute most to the models’ decisions, we only show the 100 voxels with the highest
values over-layed on a T1 MRI image.

3. RESULTS

3.1 Evaluation of the proposed approach

Table 1 presents the performance obtained for the prediction of each individual criterion, when computing the
sum of the predictions for C1, C2, C3 and C5 to obtain the IHI score, and when predicting the IHI score directly.
The deep learning model systematically achieved higher performance compared to ridge regression. However,
this difference ranged from small (about 0.05 points) to very high (about 0.25 points). Kappa and ICC scores
were systematically lower in the right hemispheres, which we attributed to to the lower number of IHIs on this
side.The fifth criterion was predicted with greater difficulty due to its unbalanced nature1 (right side : 85%,
6%, 9%; left side : 59%, 20%, 20% ). When summed, predictions obtained from individual criteria produced
comparable results to predicting directly the IHI scores.

3.2 Comparison to the direct prediction of C0

Table 2 displays results for prediction of C0, either directly, or through thresholding the sum of the predictions
of the individual criteria, or through thresholding the prediction of the IHI score (SC). Overall, the performance
of the proposed approach (predicting interpretable individual scores) was comparable to the direct prediction of
C0. For ridge regression, there were even some cases where the results were substantially better.



Table 1. Performances for the prediction of individual criteria C1, C2, C3, C5 and for the direct prediction of the IHI score
(either using the sum of the predictions of individual criteria, denoted as “SC {L,R} add”, or using direct prediction of
SC, denoted as “SC {L,R}”). The table shows the mean ± the standard error computed using bootstrap on the test set.

C1 L C1 R C2 L C2 R C3 L C3 R
Weighted Kappa

Ridge regression 0.558±0.027 0.256±0.037 0.675±0.024 0.599±0.019 0.717±0.019 0.627±0.031
Conv5-FC3 0.717±0.022 0.501±0.033 0.749±0.021 0.644±0.028 0.769±0.018 0.694±0.028

C5 L C5 R SC L add SC R add SC L SC R
Kappa ICC

Ridge regression 0.268±0.031 0.187±0.034 0.684±0.023 0.576±0.031 0.708±0.021 0.633±0.024
Conv5-FC3 0.502±0.031 0.331±0.047 0.811± 0.015 0.678±0.032 0.788±0.015 0.703±0.027

Table 2. Results for prediction of C0, either directly, or through thresholding the sum of the predictions of the individual
criteria (“SC {L,R} add”), or through thresholding the direct prediction of the IHI score (“SC {L,R}”). Mean ± standard
error (of each metric), computed using bootstrap on the test set.

C0 L C0 R SC L add SC R add SC L SC R
Ridge Regression 0.546±0.031 0.500±0.047 0.640±0.027 0.563±0.037 0.628±0.029 0.601±0.033

Conv5-FC3 0.763±0.026 0.668±0.045 0.739±0.023 0.647±0.037 0.740±0.023 0.610±0.043

3.3 Visual interpretation

Weight maps and saliency maps can be seen in Figure 2. We noticed that both models seem to rely on voxels
located in the hippocampus and the surrounding gyri. The hippocampus seems to be outlined for C1 and C3
while the gyri are highlighted for C2 and C5. The saliency maps are slightly less clear and exhibit sparser results.
However, a similar tendency may be observed.

Figure 2. Weight maps extracted from ridge regression and saliency maps from the Conv5-FC3 for C1, C2, C3, and C5
in the left hemisphere on T1 weighted MRI image.

4. CONCLUSION

In this paper, we have proposed to automatically detect IHI by predicting anatomically interpretable individual
criteria. We showed that this approach does not decrease predictive performance compared to directly predicting



the presence of IHI. Predicting individual criteria provides much more information about the specific anatomical
characteristics underlying the IHI of a given participant, thereby providing more interpretable information to
the clinician or neuroscientist. This training strategy has the potential to be applied to other diagnosis tasks
which can be characterized by individual interpretable criteria.
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