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In this paper, we propose an improved semiparametric estimator of the distortion risk premiums for dependent insurance loses with heavy-tailed marginals. Our proposal is based on reduced bias estimators of the tail index and extreme quantiles for stationary insured risks with heavy-tailed distribution under dependence serials. Moreover, we illustrate the behaviour of our proposed estimator and give a comparison between in this estimator and the classical one in terms of the absulute bias and the root median squared error.

Introduction

In recent years, risk measures or premium calculation principles have become important tools in finance and actuarial science. They are used to quantify insurance losses and financial assessments. For the management of these risks, several risk measures have been proposed, we refer to [Gooverts et al. (1984)], [Wang (1995)], [Wand (1996)], [START_REF] Denuit | Actuarial Theory for Dependent Risk: Measures, Orders and Models[END_REF]] and references therein. One of the most commonly used one is the net premium (the mean) of a non-negative loss random variable X over the probability space (Ω, A, P) with tail distribution function F := 1-F and defined as

π = E(X) = ∞ 0 F (x)dx.
In general, premiums are required to be greater than or equal to the mean E(X) in order to avoid that the insurer loses money on average. One way to achieve this goal consists in introducing an increasing, concave function g that maps [0, 1] onto [0, 1], such that g(0) = 0 and g(1) = 1 and to define the following distortion risk premium introduced by [Wand (1996)]:

πg = ∞ 0 g(F (x))dx.
Note that the distortion Risk premiums can be seen as the expectation with respect to distorted probabilities. The function g is called distortion function and is in general parameterized by a one-dimensional parameter β ≥ 1, called the distortion parameter and represents the risk aversion. This parameter controls the amount of the risk loading included in the premium for a given riskiness of the loss variable X. Important properties of the distortion risk measure, such as coherence and second order stochastic dominance have been well studied see, for example [START_REF] Artzner | Coherent measures of risk[END_REF]], [START_REF] Wirch | A synthesis of risk measures for capital adequacy[END_REF]] and [Jones and Zitikis(2003)].

A standard reinsurance product is an excess of loss reinsurance, which means that the reinsurer only compensates the cedant's loss above a certain retention amount R > 0. Considering an excess-of-loss reinsurance policy in excess of a high retention level R, the tail distribution function of the total claim amount (X -R) + , with s+ = max(0, s), is easily seen to be equal to FR (y) = F (y + R), when y > 0. Applying Wang's premium principle to this reinsurance setting results in the following expression for the risk premium πg(R) for a reinsurance policy in excess of a high retention level R: By puting x = y + R, the risk premium πg(R) can then easily be rewritten as

πg(R) =
πg(R) = ∞ R g F (x) dx.
(1.1)

It is assumed throughout the present paper that F is a continous loss distribution. Let Q be the quantile function corresponding to F and defined by Q(s) = inf{x : F (x) ≥ s}, for every s ∈ [0, 1). The quantile function Q plays a pivotal role in defining numerous risk measures, and is a well known risk measure itself, called the Value-at-Risk (VaR). By a change of variables, the distortion risk premium πg(R) can be rewritten in terms of the quantile function Q as follows:

πg(R) = - F (R) 0 g(s)dQ(1 -s).
(1.2)

Several distortion functions t → g(t) are equal or can be approximated to a power function g β (y) = t 1/β , β ≥ 1, since they are regularly varying at zero with index 1/β, that is: g(t) = t 1/β g (t), where g (•) is a slowly varying function at zero satisfying g (λt)/ g (t) → 1 as t → 0, for λ > 0. This condition is used in [START_REF] Vandewalle | On univariate extreme value statistics and the estimation of reinsurance premiums[END_REF]] and [START_REF] Deme | Estimation of risk measures from heavy-tailed distributions[END_REF]] to estimate the reinsurance risk premiums in the context of independent extreme risks.

In the rest of this paper, we focus on the special case of power distortion function g(t) := g β (t) = t 1/β , β ≥ 1. The corresponding distortion risk measure (see, eg. [Wang (1995)], [Wand (1996)]) is defined in the case of excess of loss reinsurance policy by:

π β (R) := πg β (R) = - F (R) 0 g β (s)dQ(1 -s).
(1.3) When this parameter is at its minimum value β = 1, then π β is the net premium π, and thus there is no loading.

In reinsurance, the purpose of estimating the pure premium is to estimate, for each insured, the expected amount of claims for the studied insurance period. This evaluation is often done using statistical methods. For more details, see [Denuit and Charpentier (2004),]. However, large loss costs require rare event modeling, that is events with a low probability of occurrence, but with a large claim amounts and their disastrous effects. The analysis of these extreme events can be carried out by using the extreme values methodology, where their distribution function F are heavy tailed and mainly characterized by their index which make the possibility to indicate the size and the frequency of some extreme phenomena within the framework of a given probability distribution (See eg, [START_REF] Vandewalle | On univariate extreme value statistics and the estimation of reinsurance premiums[END_REF]]).

The heavy-tailed nature of insurance claims requires that special attention paid to be analyzing the tail distributions of a claims amounts. Thus the extreme value theory (EVT) offers adequate statistical tools to model these tail distributions. Also, reinsurance companies must calculate the premiums to cover these excess claims, which are usually very high. The EVT has become one of the leading theories in the development of statistical models for high insurance losses.

Many authors studied the estimation of the premium of these high excess loses by using classical EVT models, mainly based on the independent and identically distributed (i.i.d) assumption of the insured risks with large tails.

One can mention among others, [START_REF] Vandewalle | On univariate extreme value statistics and the estimation of reinsurance premiums[END_REF]] [START_REF] Reiss | Statistical Analysis of Extreme Values with Applications to Insurance[END_REF]], [START_REF] Necir | Estimating the conditional tail expectation in the case of heavy-tailed losses[END_REF]],

[ Rassoul (2013)], [Deme et al. (2013a)], , [START_REF] Deme | Reduced-biased estimators of the Conditional Tail Expectation for heavy-tailed distributions[END_REF]], [START_REF] Deme | Estimation of risk measures from heavy-tailed distributions[END_REF]], etc... However, this assumption is often violated in practice since, some financial and actuarial loses expose serial dependence. This motivated [de Haan et al. (2016)], [Chavez-Demoulin and Guillou (2018)] and [Barry et al. (2023)] to investigate reduced bias estimators of the Value-at -Risk ( quantile) of financial extreme losses under financial dependence series with heavy-tailed marginals. Also, [Ouadjed (2018)] looked at the high excess reinsurance losses to introduce a semiparametric estimator of the distorted premiums under heavy tailed dependent insured risks.

This semiparametric estimator surfers from a bias problem due to the fact it depends on a classical estimator of the Value at Risk estimator (the Weissman's estimator (see, [Weissman (1978)]), which have the same problem.

The aim of this paper is to introduce a reduced bias estimator of the distorted risk premiums under dependent insured risks with heavy tailed marginals. Our consideration is based on the bias reduction approach proposed by [de Haan et al. (2016)] in the estimation of the Value-at Risk under dependnce serials.

The rest of the paper is organised as follows. In Section 2, we propose a statistical estimation of the distortion risk premiums under dependent serials. In Section 3, we establish the asymptotic properties of proposed estimator.

Then in Section 5&6, we match our theoretical results with a simulation assessment and real reinsurance data analysis in order to highlight the efficiency of our methods. Finally, Section 4 is devoted to the proofs of our main results.

EVT under dependence serials

The extreme value theory (EVT) establishes the asymptotic behavior of the largest observations in a sample. It provides methods for extending the empirical distribution functions beyond the observed data. It is thus possible to estimate quantities related to the tail of a distribution such as small exceeding probabilities. or extreme quantiles.

The main result of the extreme value theory is based on the limit distribution of the standardized maximum of n > 1, i.i.d random variables sample (X1, .., Xn):

P a -1 n max 1≤i≤n Xi -bn ≤ x → G(x), as n → ∞, (2.4) 
for all continuity points of G, where an > 0, bn ∈ R are standardized sequences and G is a non-degenerate limiting distribution function. Necessary, G is the same type of the following generalized extreme value distribution:

Gγ(x) = exp -(1 + γx) -1/γ + ,
where y+ = max(y, 0) and Gγ(x) = exp(e -x ), for γ = 0. Here, the real-valued parameter is reffered to as the extreme value index γ of F , which in turn is said to belong to the maximum domain of attraction of Gγ, denoted by F ∈ DM(Gγ). We refer to [de Haan and Ferreira (2006)], for general accounts on extreme-value theory. Now, let Xi, i ∈ N, be stationary copies from a non negative stationary insured risk X defined over some probability space (Ω, A, P), with common marginal distribution function (df) F (x) = P(X ≤ x). If the Xi, i ∈ N are weakly dependent then (2.4) is equivalent to the weak convergence of the distribution function from the standardized maximum of n observations to G. In general, the maximum of a stationary time series is stochastically smaller than the maximum of an independent and identically distributed (i.i.d.) sequence with the same marginal distribution function. Indeed, under mild conditions on the dependence structure, F ∈ DM(Gγ) implies,

L a -1 n max 1≤i≤n Xi -bn → G θ γ weakly, (2.5) 
for some θ ∈ [0, 1] (see [START_REF] Leadbetter | Extremes and Related Properties of Random Sequences and Processes[END_REF]], Section 3.7) for more details).

Throughout this paper, we assume that the non negative stationary insured risks Xi, i ∈ N satisfies the following β-mixing dependence structure condition:

β(m) := sup p≥1 E sup C∈B ∞ p+m+1 |P(C|B p 1 ) -P(C)| → 0,
as m → ∞, where B j i denotes the σ-algebra generated by (Xi, ..., Xj). Without loss of generality, β(m) measures the total variation distance between the unconditional distribution of the future of the time series and the conditional distribution of the future given the past of the time series when both are detached by m time points.

In addition, we assume that the common marginal distribution function F of the β-mixing insured risks Xi, i ∈ N, is heavy-tailed (belonging to the the Fréchet domain of attraction). This is equivalent to the fact that its associated tail distribution function F is regularly varying at infinity with index -1/γ < 0, denoted F ∈ RV -1/γ . More precisely,

F (x) = x -1/γ F (x), x > 0, (2.6)
where F is a slowly varying function at infinity, i.e for all x > 0,

F (tx)/ F (t) → 1, as t → ∞. The rela- tion (2.6) is also equivalent to U (z) = Q(1 -z -1 ) = z γ U (z), z > 1, where U (tz)/ U (t) → 1, as t → ∞, for all z > 1.
The class of heavy-tailed distributions includes distributions such as Pareto, Burr, Student, Lévystable, and log-gamma which are known to be appropriate models in Extreme value theory for fitting large insurance claims, large fluctuations of prices, log-returns,etc. (see, e.g., [START_REF] Beirlant | Burr regression and portfolio segmentation[END_REF]]; [START_REF] Beirlant | Statistics of extremes: theory and applications[END_REF]]; [START_REF] Vandewalle | On univariate extreme value statistics and the estimation of reinsurance premiums[END_REF]], [START_REF] Peng | Estimating the first-and second-order parameters of a heavy-tailed distribution[END_REF]], [START_REF] Reiss | Statistical Analysis of Extreme Values with Applications to Insurance[END_REF]], [START_REF] Necir | Empirical estimation of the proportional hazard premium for heavy-tailed claim amounts[END_REF]], [START_REF] Necir | Estimating the conditional tail expectation in the case of heavy-tailed losses[END_REF]], [Deme et al. (2013a)], [START_REF] Deme | Reduced-biased estimators of the Conditional Tail Expectation for heavy-tailed distributions[END_REF]], [START_REF] Deme | Estimation of risk measures from heavy-tailed distributions[END_REF]]).

From (2.6), one can easily see that for all x > 0 and z > 1:

lim t→∞ F (tx) F (t) = x -1/γ and lim t→∞ U (tz) U (t) = z γ . (2.7)
The relation in (2.7) is namely called the first order regularly varying condition. The parameter γ is the tail index (or the extreme value index) and governs the tail behavior, with larger values indicating heavier tails. Its estimation has received a great attention in the extreme value literature, especially in the case of i.i.d. random variables (cf. [de Haan and Ferreira (2006)]). Although only few papers consider that for the case of time series with serial dependence features. We can mention among others, [Drees (2000)], [Drees (2003)]. And very recently [de Haan et al. (2016)], [Chavez-Demoulin and Guillou (2018)] and [Barry et al. (2023)].

The most popular positive tail index estimators in the framework of extreme value theory is the original Hill's estimator [Hill (1975)], defined as:

γ (H) k := 1 k k i=1 log Xn-i+1,n -log X n-k,n ,
where X1,n, ≤ • • • ≤ Xn,n stands for the order statistics and k = k(n) represents an intermediate sequence, that is, a sequence such that k → ∞ and k/n → 0, as n → ∞. To prove the asymptotic normality of the tail index estimators such as the Hill's one, we need a second order condition which specifies the rate of convergence for the left-hand side of the equations in (2.7) to their limits (See, eg. [START_REF] Bingham | Regular variation[END_REF]], ' [Geluk and de Haan (1987)] and [de Haan and Ferreira (2006)]). This condition can be formulated in different ways as shown below. We will use the formulation later-on.

Second order regularly varying condition (CSO). Suppose that there exists a positive or negative function A with lim t→∞ A(t) = 0 and a real number ρ ≤ 0 such that

lim t→∞ 1 A(t) U (tx) U (t) -x γ = x γ x ρ -1 ρ , ∀ x > 0. (2.8)
The rate of the convergence for the function A to 0 is essential since it helps to exhibit the bias term of the tail index estimators.

The asymptotic normality of the original Hill's estimator has been established for β-mixing sequences in [Drees (2000)]

and [Drees (2003)]. From the assumption that the intermediate sequence

k is such that k 1/2 A(n/k) → λ ∈ R, as
n → ∞ and assuming the following regularity conditions on the β-mixing coefficients:

Regularity conditions (CR). There exist > 0, a bivariate function r and a sequence n such that, as n → ∞,

(a) β( ) n + log 2 k √ k → 0; (b) n k Cov i=1 I {X i >F ← (1-kx/n)} , i=1 I {X i >F ← (1-ky/n)} → r(x, y), ∀ 0 ≤ x, y ≤ 1 + ; (c) For some constant C: n k E   i=1 I {F ← (1-ky/n)<X i ≤F ← (1-kx/n)} 4   ≤ C(y -x), ∀ 0 ≤ x < y ≤ 1 + and n ∈ N, [Drees (2000)] showed that √ k( γ (H) k -γ) d = γP (1) + λ 1 -ρ (1 + o P (1)),
(2.9)

where

P (1) = 1 0 t -1 W (t) -W (1)
dt and (W (t)) 0≤t≤1 is a centered Gaussian process with covariance structure r, and defined under a Skorohod construction. which leads to

√ k( γ (H) k -γ) d -→ N λ 1 -ρ , γ 2 r(1, 1) . (2.10)
In practice, the bias term of γ (H) k depends on whether ρ is close to zero or not, since under the second order condition (CSO), the function |A| is regularly varying at infinity with index ρ. This explains all the literature spread on bias correction in the i.i.d. context, see, e.g., [START_REF] Beirlant | Tail index estimation and an exponential regression model[END_REF]], [START_REF] Feuerverger | Estimating a tail exponent by modelling departure from a Pareto distribution[END_REF]],

[ [START_REF] Gomes | Asymptotically Unbiased" Estimators of the Tail Index Based on the Estimation of the Second Order Parameter[END_REF]], [START_REF] Gomes | Asymptotically best linear unbiased tail estimators under a second-order regular variation condition[END_REF]], etc.

However 3 Estimating the distortion risk premiums

Under the regularly varying condition (2.7), the first order moments of insured risks and its corresponding distortion risk premiums π β (R) defined in (1.3) are not hold when γ ≥ 1/β, However, they are both well defined in the case where 0 < γ < 1/β. This last situation motivate the need of a specific estimator of the distortion risk premium π β (R) for heavy-tailed distributions with tail index γ ∈ (0, 1/β].

To better understand the heavier of tail distribution of insured risks, which is governed by the unknown tail index, many authors used the extreme value methodology and investigated semoiparametric estimators of the distortion risk premiums in the case of i.i.id random variables, We can mention among others [START_REF] Vandewalle | On univariate extreme value statistics and the estimation of reinsurance premiums[END_REF]], [START_REF] Reiss | Statistical Analysis of Extreme Values with Applications to Insurance[END_REF]], [START_REF] Necir | Empirical estimation of the proportional hazard premium for heavy-tailed claim amounts[END_REF]], [START_REF] Necir | Estimating the conditional tail expectation in the case of heavy-tailed losses[END_REF]], [Deme et al. (2013a)], [START_REF] Deme | Reduced-biased estimators of the Conditional Tail Expectation for heavy-tailed distributions[END_REF]],

et. Although only [Ouadjed (2018)] considered the case of time series with serial dependence features to asses reinsurance risk premiums with an optimal retention level.

The optimal retention level corresponds to the Value-at-Risk Q(1 -k/n), which is the minimum amount that a company must have to cover the risk X with an uncertain ruin probability. Since

F (Q(1 -k/n)) = k/n, from (1.3),
the optimal risk adjusted reinsurance premiums is defined as:

π β,n := π β (Q(1 -k/n)) = - k/n 0 g β (s)dQ(1 -s). (3.11)
The distorted reinsurance premium π β,n is unknown since it depends on the unknown high quantile Q(1 -s), s → 0. The most popular of high quantile estimators for heavy-tailed distributions is the one introduced by Weissman [Weissman (1978)] and defined as:

Q (W ) k (1 -s) = (ns/k) -γ (H) k X n-k,n , s → 0, (3.12) 
where γ

(H) k
is the above Hill' s estimator and the quantity X n-k,n is a moderate quantile and assigned to be the empirical estimator of the optimal retention level Q(1 -k/n).

Substituting in (3.11) the extreme quantile Q(1 -s), s → 0 with its estimator Q W k (1 -s), [Ouadjed (2018)] introduced the following semiparametric estimator for π β,n :

π β,k,n := - k/n 0 g β (s)d Q (W ) k (1 -s), (3.13) 
which leads to:

π β,k,n = γ (H) k 1/β -γ (H) k g β (k/n)X n-k,n , (3.14) 
provided that P( γ

(H) k > 1/β) = o(1)
, for large values of n. Under the second order regularly varying condition (CSO)

and regularity conditions on the β-mixing coefficients (CR), [Ouadjed (2018)] established, the asymptotic normality of the estimator π β,k,n . Clearly, the estimator π β,k,n suffer from a high bias due to the fact that its depends to Hill's estimator, which from (2.10) as the same problem and the bias heavily depends on the intermediate sequence, making the choice of k difficult in practice.

To overcome to this problem, we propose in next section an asymptotically unbiased estimator of the distortion premium π β,n for heavy tailed distributions and we establish its asymptotic normality under the β-mixing condition and the regulatory conditions.

Main Results

In this section, we first introduce a reduced bias estimator of the distortion risk premiums π β,n and after, we state our main results on its asymptotic properties.

4.1 Reduced bias estimator for π β,n

Our bias reduction approach is based to the one adopted in [de Haan et al. (2016)] to estimate the tail index under the β mixing times series. To this spirit, let ρ := ρ kρ be a consistent estimator of ρ, with kρ := kρ,n an intermediate sequence of integers greater than k, satisfying kρ → ∞ and kρ/n → 0, k

1/2 ρ A(n/kρ) → ∞, as n → ∞.
With the second order condition CSO, the β-mixing serials assumptions and the fact that k → ∞, k/n → 0 and Haan et al. (2016)] investigated the asymptotic properties of the following unbiased tail index estimator:

k 1/2 A(n/k) = O(1), as n → ∞, [de
γ k, ρ := γ (H) k - M (2) k -2 γ (H) k 2 2 γ (H k ρ (1 -ρ ) -1 , (4.15)
where

M (α) k := 1 k k j=1 (log Xn-j+1,n -log X n-k,n ) α . (4.16)
Clearly, this estimator is a corrected bias version of the Hill's estimator γ 

√ k ( γ k, ρ -γ) d → γ ρ (2 -ρ)P (1) -(1 -ρ)P (2) , as n → ∞, (4.17) 
where

P (α) = 1 0 (-log t) α-1 t -1 W (t) -W (1) dt with (W (t)) 0≤t≤1
, the same centered Gaussian process with covariance structure r, defined in (2.9). Therefore, the process term P (α) is a Gaussian Process with mean zero and covariance Cov P (α) , P (β) = c α,β defined as,

c α,β = 1 0 1 0 (-log s) α-1 (-log t) β-1 r(s, t) st - r(s, 1) s - r(1, t) t + r(1, 1) dsdt. (4.18)
Computing the the variance term of γ ρ (2 -ρ)P (1) -γ(1 -ρ)P (2) . with respect to the covariance structure r, [de Haan et al. (2016)] deduced the following asymptotic normality, as n → ∞:

√ k ( γ k, ρ -γ) d → N 0, σ 2 γ, ρ , where σ 2 γ, ρ = γ 2 ρ 2 (2 -ρ) 2 c1,1 + (1 -ρ) 2 c2,2 + 2(1 -ρ)(2 -ρ)c1,2 .
A possible choice for ρ kρ is the most performed estimator among those studied in the i.i.d. case (see, e.g, In order to introduce an asymptotically unbiased estimator of distortion premiums, we , we propose to estimate the extreme quantile Q(1 -s), s → 0 by using second order condition (SOC ), for which the following approximation holds:

Q(1 -s) ≈ ns k -γ Q(1 -k/n) 1 - A(n/k) ρ 1 - ns k -ρ , s → 0, (4.19)
where γ, A(•) and ρ are unknown. The first part ((ns

)/k) -γ Q(1 -k/n) in the right side of (4.19) is exactly estimated by the Weissman's estimator Q (W ) k (1 -s). The expression 1 -ρ -1 A(n/k)[1 -ns k -ρ
] can be viewed as a correcting term since A(n/k) tends to zero when n goes to infinity.

A possible choice for ρ kρ is the most performed estimator among those studied in the i.i.d. case (see, e.g, [Gomes et. (2002)], [Deme et al. (2013b)]) and used in the β-mixing case by [de Haan et al. (2016)] and [Chavez-Demoulin and 

ρ kρ = 6S (2) kρ -4 + 3S (2) kρ -2 1/2 4S (2) kρ -3 , provided S (2) kρ ∈ 2 3 , 3 4 , ( 4 
Q(1 -s), s → 0: Q k, ρ (1 -s) = ns k -γ k, ρ X n-k,n 1 -T k, ρ 1 - ns k -ρ , (4.21)
where T k, ρ is the estimator of ρ -1 A(n/h) defined as:

T k, ρ = M (2) k -2 γ (H) k 2 (1 -ρ ) 2 2 γ (H) k ρ 2 . (4.22)
For more details, one can refer to [Barry et al. (2023)]. Finlay, substituting

Q(1 -•) with Q k, ρ (1 -•) in (3.11), we
introduce the following unbiased estimator for π β,n :

π β,k,n, ρ := γ k, ρ 1 β -γ k, ρ + ρ T k, ρ ( 1 β -γ k, ρ )(1 -β γ k, ρ -β ρ ) g β (k/n)X n-k,n . (4.23)
Before we establish the asymptotic properties of our unbiased estimator π β,k,n, ρ , we start to give in Proposition 

t 1/2+ε √ k X n-[kt],n U (n/k) -t -γ -γt -γ-1 W (t) - √ k Ã(n/k) k n Y n-[kt],n γ t -ρ -1 ρ → 0 (4.24)
The following theorem establishes the asymptotic expansion of our distorted risk premiums estimator πβ,k,kρ in terms of Gaussian process.

Theorem 4.1 Let (X1, X2, . . . ) be a stationary β-mixing time series with a continuous common marginal distribution function F and assume that (CSO) and (CR) hold. Let ρ kρ be the estimator for ρ defined in (4.20), where the intermediate sequence kρ

:= kρ(n) satisfies kρ → ∞, kρ/n → 0 and kρA(n/kρ) → ∞, as n → ∞. If k = k(n) is another intermediate sequence such that k → ∞, k/n → 0 and √ kA(n/k) = O(1), as n → ∞, then for 1/2 < γ < 1 and β < 1/γ, we have : √ k( π β,k,n, ρ -π β,n ) g β (k/n)Q(1 -k/n) d → a0W (1) + a1P (1) + a2P (2) ,
as n → ∞, where P (α) = 1 0 (-log t) α-1 t -1 W (t) -W (1) dt is a centered Gaussian process with covariance defined in (4.18) and

a0 = βγ 2 1 -βγ , a1 = βγ ρ(1 -βγ) 2 (2 -ρ) -2 βγ(1 -ρ) 2 ρ(1 -βγ -βρ)(1 -βγ) , a2 = - βγ ρ(1 -βγ) 2 (1 -ρ) + βγ(1 -ρ) 2 ρ(1 -βγ -βρ)(1 -βγ) .
Corollary 4.1 Under the assumptions of Theorem 4.1, we have:

√ k( π β,k,n, ρ -π β,n ) g β (k/n)Q(1 -k/n) d → N 0, σ 2 (γ, ρ, β) , where σ 2 (γ, ρ, β) = a 2 0 r(1, 1) + a 2 1 c1,1 + a 2 2 r(2, 2) + 2a1a2 c1,2 + 2a0a1 1 0 t -1 r(1, t) -r(1, 1) dt -2a0 a2 1 0 log t t -1 r(1, t) -r(1, 1) dt,
with ci,j is the function in (4.18) and r(, ) defined in the regularity conditions (CR).

Simulation Study

The simulation study is based on the following classical stationary models, which satisfy the regularity (CR) assumptions.:

• (Autoregressive (AR) model): Consider first the stationary solution of the AR(1) equation: (5.25) for some θ ∈ (0, 1) and i.i.d. random variables Zi. The distribution function of the innovations Zi is denoted by FZ .

Xi = θXi-1 + Zi, i = 1, ..., n,
Assume that FZ admits a positive Lebesgue density which is L1 Lipschiz-continuous; see [Drees (2003)] eq. ( 42).

Suppose that as x → ∞, 1 -FZ (x) ∼ px -1/γ (x) and FZ (-x) ∼ qx -1/γ (x), for some slowly varying function and p = 1 -q ∈ (0, 1). Then from Sect. 3.2 of [Drees (2003)], we get that 1 -F (x) ∼ d θ (1 -FZ (x)), as x -→ ∞, where

d θ = (1 -θ 1/γ ) -1
. Furthermore, the regularity conditions hold with/ r(x, y) = x ∧ y + ∞ m=1 (cm(x, y) + cm(y, x)) , where cm(x, y) = x ∧ yθ m/γ .

• (Moving average (MA) model): Consider the stationary solution of MA(1) equation:

Xi = θZi-1 + Zi, i = 1, ..., n;
(5.26)

where the innovation Zi satisfies the same conditions as in the above AR(1) model. And from Sect. 3.2 of [Drees (2003)], we obtain 1 -F (x) ∼ d θ (1 -FZ (x)) as x → ∞, where d θ = 1 + θ 1/γ . One can also compute the covariance structure as : r(x, y)

= x ∧ y + (1 + θ 1/γ ) -1 (x ∧ yθ 1/γ + y ∧ xθ 1/γ ).
Now, we proceed by generating the data for the three (03) models. This involves an independent model and the two models mentioned above. We first generate the i.i.d innovations (Z1, ..., Zn), such that:

FZ (z) =    (1 -q)(1 -F (-z)) if z < 0, 1 -q + q F (z)) if z > 0,
where F stands for the Fréchet distribution function F (z) = exp((-z) -1/γ ) for z > 0, and p = 0.75. Then FZ belongs to the domain of attraction with extreme value index γ > 0. In the following table, we generate the three (03) time series models under simulation with their tail distribution, which are needed to compute the true distortion risk premiums:

For each generating model, we simulate N = 1000 samples with size n = 1000. To evaluation of the true value of distortion risk premiums π β,n , we use the approximation of the tail distribution F given in 

i = Z i X i = θX i-1 + Z i X i = θZ i-1 + Z i Tail-distribution F (x) = F Z (x) F (x) ∼ (1 -θ 1/γ ) -1 F Z (x) F (x) ∼ (1 + θ 1/γ )F Z (x)
coefficients θ = 0 and γ = 0.6 θ = 0.3 and γ = 0.6 θ = 0.3 and γ = 0.6 Table 5.1: Description of models under simulation with their tail distribution functions.

simulated samples.

The estimator π β,k,n, ρ is computed for ρ := ρ kρ defined in (4.20), where kρ is selected as follows:

kρ := sup k : k ≤ min m -1, 2m log log m
and ρ exists .

Next, we compare on the one hand the performance of the mentioned reinsurance premium estimators by computing the absolute value of the median together with the root median squared errors (RMSE) based on the N samples, and defined as the following form:

ABias(π, k) := median π (1) π , ..., π (N ) π -1 and RMSE(π, k) := median π (1) π -1 2 , ..., π (N ) π -1 2 ,
where π := π β,n is the true value of the distortion risk premium with optimal retention level Q(1 -k/n), and π (i) is the i-th value (i = 1, ..., N ) of an estimator of π (i) evaluated as mentioned above different number of top order statistics k = 1, ..., m with different aversion parameter β = 1, 1.1.

The results are displayed on the graphs in Figure 5.1 and Figure 5.2. Regarding the estimation of the distortion risk risk premiums, we observe from the graphs in the left-side of Figure 5.1 and Figure 5.2 that our goal in reducing the bias is well illustrated on finite sample behavior, when using large values of top order statistics k. In addition, on the graphs in right-side of Figure 5.1 and Figure 5.2, the RMSE of our reduced bias estimator π β,k,n, ρ , stays at a lower level than that of the classical estimator π β,k,n proposed by [Ouadjed (2018)] for large values of k, whatever the value of the aversion index β. We also observe that the reduction in RMSE is higher for dependent series than for independent series. We conclude that the simulation studies show that under bias reduction procedure, the estimators for the distortion risk premiums remain stable for a wider range of k values even if the observations of insured risks exhibit serial dependence. Thus, the bias reduction method under dependence serials helps to tackle the two major critiques for applying extreme value statistics to time series in insurance data.

As mentioned above, it is also crucial to compare the estimators at their optimal number k of top extreme risks.

To this end, we use the algorithm of [START_REF] Reiss | Statistical Analysis of Extreme Values with Applications to Insurance[END_REF]], p.137, which gives an automatic choice of k for any estimator γ • k of the tail index γ. According to these authors, an automatic choice of top extremes as the value

k * that minimizes 1 k k j=1 j δ γ • j -median γ • 1 , ..., γ • k , (5.27) 
where 1 ≤ k ≤ m and 0 ≤ δ < 1/2. By the way, choosing δ = 1/4, we compute the optimal values k * as in (5.27)

for each tail index estimator used in the computation of their associated distortion risk premium estimators π β,k,n and π β,k,n, ρ .

In Table 5.2, we present the results of the estimated values of the above mentioned distortions risk premium estimators. Since their asymptotic variances depend on some unknown parameters, we opt to use a block bootstrapping method to construct a 95% confidence interval for the reinsurance premiums.

The block bootstrapping follows the routine boot of the package boot in R software. By repeating such bootstrapping procedure T = 10, 000 times, we obtain T bootstrapped estimates for each distortion risk premium estimator.

The sample standard deviation across the T estimates gives an estimate of the standard deviation of the underlying estimators for a given k ∈ {1, ..., m}. We construct the 95% confidence interval using the point estimate and the estimated standard deviation. This procedure is applied to all values of k of each estimator. The point estimates of the distortion risk premium at its optimal value k * as well as the lower bound (Lb), upper bound (Ub) and the cover of the confidence intervals are given in Table 5.2.

The independence model (defined in Table 5.1) 

β = 1, π β,n = 0.8133 β = 1.1,
π β (Q(1 -k * /n
)) for β = 1; 1.1 and with their 95% confidence intervals, computed with their associated optimal numbers of top statistics k * , based on N = 1000 samples of size n = 1000, from the different three (03) models listed in Table 5.1

.

After the inspection of the table, two conclusions can be drawn regardless of the situation. First, we notice that the absolute bias of our reduced bias estimator π β,k * ,n, ρ is lower than the classical estimator π β,k * ,n . Second, our reduction bias estimator π β,k * ,n, ρ is more efficient than π β,k * ,n regardless to the the root median squared errors and the cover values. That illustrates well our conclusions drawn from the graphical analysis. 

Proofs of the results

Proof of Proposition 4.1. Assume that the second order condition (CSO) holds. From Theorem B.2.18 in [de Haan and Ferreira (2006)], we have for all ε, δ > 0, there exists some positive number t0 = t0(ε, δ) such that for tx ≥ t0:

( U (tx) U (t) -x γ ) Ã(t) -x γ x ρ -1 ρ ≤ εx ρ+γ max(x δ , x -δ ).
(6.28)

Now, using the representation Xi d = U (Yi) where Yi follows a standard Pareto distribution and (Y1, Y2, .., Yn) is a stationary β-mixed series satisfying the (CR) regularity conditions. Then, according to [Drees (2003)], under a Skorohod construction, there exists a centered Gaussian process W (t), 0 ≤ t ≤ 1, with covariance r such that for

ε > 0, when n → ∞ sup t∈(0,1] t 1/2+ε √ k t Y n-[kt],n n/k -1 -t -1 W (t) -→ 0. (6.29)
We combine the asymptotic property of Y n-[kt],n in (6.29) with the inequality (6.28) as follows. Taking t = n/k and tx = Y n-[kt],n in (6.28), we get that,

U (Y n-[kt],n ) U (n/k) -k n Y n-[kt],n γ Ã(n/k) -( k n Y n-[kt],n ) γ ( k n Y n-[kt],n ) ρ -1 ρ ≤ ε k n Y n-[kt],n ρ±δ+γ .
This implies that,

U (Y n-[kt],n ) U (n/k) -( k n Y n-[kt],n ) γ -Ã(n/k)( k n Y n-[kt],n ) γ ( k n Y n-[kt],n ) ρ -1 ρ ≤ ε| Ã(n/k)|( k n Y n-[kt],n ) ρ±δ+γ . Since √ kA(n/k) = O(1), this leads to t 1/2+ε √ k U (Y n-[kt],n ) U (n/k) -( k n Y n-[kt],n ) γ - √ k Ã(n/k)( k n Y n-[kt],n ) γ ( k n Y n-[kt],n ) ρ -1 ρ ≤ ε √ k| Ã(n/k)|t 1/2+ε ( k n Y n-[kt],n ) ρ±δ+γ . Furthermore t 1/2+ε √ k U (Y n-[kt],n ) U (n/k) -( k n Y n-[kt],n ) γ - √ k Ã(n/k)( k n Y n-[kt],n ) γ t -ρ -1 ρ - t -ρ -( k n Y n-[kt],n ) ρ ρ + √ kt -γ - √ kt -γ + γt -γ-1 W (t) -γt -γ-1 W (t) ≤ ε √ k| Ã(n/k)|t 1/2+ε ( k n Y n-[kt],n ) ρ±δ+γ . Therefore t 1/2+ε √ k X n-[kt],n U (n/k) -t -γ -γt -γ-1 W (t) - √ k Ã(n/k)( k n Y n-[kt],n ) γ t -ρ -1 ρ + √ k Ã(n/k)( k n Y n-[kt],n ) γ t -ρ -( k n Y n-[kt],n ) ρ ρ - √ k ( k n Y n-[kt],n ) γ -t -γ -γt -γ-1 W (t) ≤ ε √ k| Ã(n/k)|t 1/2+ε ( k n Y n-[kt],n ) ρ±δ+γ . (6.30)
Since ε can be arbitrarily close to 0, hence by applying (6.29) to (6.30) and by choosing δ ∈ (0, -ρ), the Proposition 4.1 follows.

Proof of Theorem 4.1. Recall that

π β,n := π β (Q(1 -k/n)) = ∞ Q(1-k/n) g β (F (x))dx.
Next, we have

π β,k,n, ρ -π β,n = γ k, ρ 1 β -γ k, ρ + ρ T k, ρ ( 1 β -γ k, ρ )(1 -β γ k, ρ -β ρ ) g β (k/n)X n-k,n - ∞ Q(1-k/n) g β (F (x))dx.
Let consider

H1 = g β (k/n)X n-k,n γ k, ρ 1 β -γ k, ρ - γ 1 β -γ H2 = γ 1 β -γ g β (k/n)Q(1 -k/n) X n-k,n Q(1 -k/n) -1 H3 = γ 1 β -γ g β (k/n)Q(1 -k/n) - ∞ Q(1-k/n) g β (F (x))dx H4 = T k, ρ X n-k,n g β (k/n) ρ ( 1 β -γ k, ρ )(1 -β γ k, ρ -β ρ ) It easy to verify that: π β,k,n, ρ -π β,n = H1 + H2 + H3 + H4.
Under assumptions and for all n large enough, we have from (4.17), 2) .

√ k γ k, ρ -γ d → γ ρ (2 -ρ)P (1) -(1 -ρ)P ( 
where the

P (α) 1 = 1 0 (-log t) α-1 (t -1 W (t) -W (1)
)dt are normally distributed random variables with mean zero. This Leads to the consistence in probability γ k, ρ to γ. Therefore, using the Delta-method procedure, we get for all n large enough:

H1 d = (1 + o P (1)) β (1 -β γ) 2 k -1/2 g β (k/n)X n-k,n γ ρ (2 -ρ)P (1) -(1 -ρ)P (2) ,
where

P (α) = 1 0 (-log t) α-1 t -1 W (t) -W (1)
dt is a centered Gaussian Process with covariance defined in (4.18).

Next, from the Proposition 4.1, we have for all n large enough: (6.32)

√ k X n-k,n Q(1 -k/n) -1 d = γW ( 
Similarly, we have for all n large enough:

√ k H2 g β (k/n)Q(1 -k/n) d = (1 + o P (1)) γβ 1 -β γ √ k X n-k,n Q(1 -k/n) -1 .
Using again (6.31), we get:

√ k H2 g β (k/n)Q(1 -k/n) d = (1 + o P (1)) γ 2 β 1 -β γ
W (1). (6.33)

For the term H3, we have:

√ k H3 g β (k/n)Q(1 -k/n) = √ k γβ 1 -β γ - π β,n Q(1 -k/n)g β (k/n)
Where π β,n = ∞ U (n/k) g β (F (x))dx and U (t) = Q(1 -1/t), t ≥ 1. A change of variables with x = U (nt/k) yields to:

π β,n = ∞ 1 g β (k/nt) d U (nt/k).
Since g β (x) = x 1/β and U (•) is a regularly varying function with index γ > 0, then g β (k/nt)U (k/nt) → 0, as t → ∞.

Thus, an integration by parts yields to:

π β,n = g β (k/n) 1 β ∞ 1 t -1/β-1 (U (nx/k) -U (n/k))dt.
Therefore, by using again U (n/k) = Q(1 -k/n), we get:

√ kH3 g β (k/n)Q(1 -k/n) = √ k βγ 1 -βγ - 1 β ∞ 1 t -1/β-1 U (nt/k) U (n/k) -1 dt = -1 β √ k ∞ 1 t -1-1/β U (nt/k) U (n/k) -t γ dt.
Since à ∼ A, from (6.28) with 1/2 < γ < 1/β, we obtain the following expansion as n → ∞, √

kH3 g β (k/n)Q(1 -k/n) = - 1 β √ kA(n/k) ∞ 1 x γ-1/β-1 x ρ -1 ρ dx(1 + o(1)) = - √ kA(n/k) 1 ( 1 β -γ)(1 -βγ -βρ)
(1 + o(1)).

For term H4, using the fact that X n-k,n /Q(1 -k/n) = 1 + o P (1), we have

√ kH4 g β (k/n)Q(1 -k/n) = √ k T n, ρ ρ ( 1 β -γ k, ρ )(1 -β γ k, ρ -β ρ )
(1 + o P (1)).

Since γ k, ρ and ρ := ρkρ are respectively consistent to γ and ρ, we obtain:

√ kH4 g β (k/n)Q(1 -k/n) d = √ k T n, ρ ρ ( 1 β -γ)(1 -β γ -β ρ)
(1 + o P (1)).

Hence, for all large n, we have

√ k(H3 + H4) g β (k/n)Q(1 -k/n) = √ k T n, ρ - A(n/k) ρ ρ ( 1 β -γ)(1 -β γ -β ρ)
(1 + o P (1)).

Recall from (4.22) that

T k, ρ = M (2) k -2 γ (H) k 2 (1 -ρ ) 2 2 γ (H) k ρ 2
, where M

(2) k is as in (4.16). One can rewrite T k, ρ as:

T k, ρ = M (2) k 2( γ (H) k -γ (H) k (1 -ρ) 2 ρ 2
We have from (2.9) and for all n large enough: Next, The Theorem 2.1 in [Barry et al. (2023)] shows that for all n large enough:

M (2) k 2( γ (H) k d = γ + γ P (2) √ k -γ P (1) √ k + A(n/k) 1 -(1 -ρ) 2 ρ(1 -ρ) 2 - 1 1 -ρ
(1 + o P (1)). (6.35)

Combining (6.34) and (6.35) with the consistency of ρ to ρ, we get for all n large enough: 

√ k T k, ρ - Ã(n/k) ρ d = γ(1 -ρ) 2 ρ 2 (P (2) -2P (1) ) + o P (1). Hence, √ k(H3 + H4) g β (k/n)Q(1 -k/n) d = γ(1 -ρ) 2 ρ( 1 β -γ)(1 -β γ -β ρ) (P (2) -2P ( 

  , in the case of β-mixing time series, only the very recent papers by [de Haan et al. (2016)], [Chavez-Demoulin and Guill and [Barry et al. (2023)] deal with this problem and proposed a bias corrected estimator for γ. By the way, they established their asymptotic properties under the regularity conditions (CR) and the second order assumptions (CSO).

.

  It has been initially studied in the i.i.d. context by [Peng L. (1998)]. According to [de Haan et al. (2016)], under the second order regularly varying condition (CSO) and regularity conditions on the β-mixing coefficients,

.

  The consistency and the asymptotic normality of ρ kρ have been established in[de Haan et al. (2016)] in the case of β-mixing serials. Now,Using (4.19), [de Haan et al. (2016)] proposed the following reduced bias estimator of the high quantile

  4.1 below a Gaussian representation of the empirical process X n-[kt],n t∈[0,1] , where [x] is the integer part of x.To his end, let Y1, ..., Yn be stationary β-mixed series and identically distributed from a unit Pareto distribution G,with G(y) = 1 -y -1 , y ≥ 1. Clearly, Xj,n d = U (Yj,n) where Y1,n ≤ ... ≤ Yn,n denote the order statistics pertaining to (Y1, ..., Yn). Proposition 4.1 Suppose that (X1, X2, • • • ) is a stationary β-mixing time series with continuous common marginal distribution function F and assume that (CSO) and (CR) hold. Let k = k(n) be an intermediate sequence satisfyingk → ∞, k/n → 0 and k 1/2 A(n/k) = O(1), as n → ∞. Then for a given ε > 0, under a Skorohod construction, there exists a function à ∼ A, and a centered Gaussian process (W (t)) 0≤t≤1 , with covariance function r, such that,
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 51 Figure 5.1: Absolute Bias of the median (left column) and Root median squared error (right column) of π β,k,n (full line) and π β,k,n, ρ (dotted line) as a function of k based on N = 1000 samples of size 1000 of the models in Table 5.1: independence model (top), AR(1) model (middle) and MA(1) model (down) for the distortion risk premiums with aversion index β = 1.
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 52 Figure 5.2: Absolute Bias of the median (left column) and Root median squared error (right column) of π β,k,n (full line) and π β,k,n, ρ (dotted line) as a function of k based on N = 1000 samples of size 1000 of the models in Table 5.1: independence model (top), AR(1) model (middle) and MA(1) model (down) for the distortion risk premiums with aversion index β = 1.1.

  1) + o P (1).(6.31) This implies thatX n-k,n /Q(1 -k/n) = 1 + o P (1). And then, √ k H1 g β (k/n)Q(1 -k/n) d = (1 + o P (1)) γβ ρ(1 -β γ) 2 (2 -ρ)P (1) -(1 -ρ)P (2) .

  β,k,n, ρ -π β,n ) g β (k/n)Q(1 -k/n) d = √ k(H1 + H2 + H3 + H4) g β (k/n)Q(1 -k/n) ,where Which leads to:√ k( π β,k,n, ρ -π β,n ) g β (k/n)Q(1 -k/n) d → a0W (1) + a1P (1) + a2P (2) ,(6.37) where a0 = βγ 2 1 -βγ W (1).

  βγ) 2 (1 -ρ)(ρ -1) + γ(1 -ρ) 2 ρ( 1 β -γ)(1 -β γ -β ρ)This completes the proof of Theorem 4.1.Proof of Corollary 4.1. Computing the variance of the centered Gaussian process a0P
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 5 

	Description	Independence	AR(1)	MA(1)
	of Models	X		

.1. Now, we apply to each sample both the estimator π β,k,n in (3.14) and our reduced bias estimator π β,k,n, ρ introduced in (4.23), for different integers of top order statistic k = 1, ..., m, where m is the number of positive values of the

Table 5 .

 5 π β,n = 1.1989 π β,k,n 0.9680 π β,k,n, ρ 0.7916 π β,k,n 1.5945 π β,k,n, ρ 1.1284 2: Estimation results of π β,k * ,n and π β,k * n, ρ estimators of the true distortion premium π β,n :=

	ABais 0.1547 ABais 0.0217	ABais 0.3956 ABais 0.0705
	RMSE 0.1917 RMSE 0.1323 RMSE 0.3299 RMSE 0.1741
	Lb	0.0137	Lb	0.1898	Lb	0.2329	Lb	0.3133
	Ub	6.1595	Ub	1.0116	Ub	7.9907	Ub	1.2749
	Cover 6.1458	Cover	0.8218	Cover 7.7578	Cover	0.9616
			The AR(1) model (defined in Table 5.1)		
		β = 1, π β,n = 0.9938			β = 1.1, π β,n = 1.3090
	π β,k,n 1.2535 π β,k,n, ρ 0.9678	π β,k,n 1.5049 π β,k,n, ρ 1.2229
	ABais 0.2597 ABais 0.0260	ABais 0.1959 ABais 0.0861
	RMSE 0.2612 RMSE 0.1220 RMSE 0.1666 RMSE 0.1732
	Lb	0.1848	Lb	0.2024	Lb	0.2725	Lb	0.3194
	Ub	6.8500	Ub	1.1446	Ub	8.9188	Ub	1.4600
	Cover 6.6652	Cover	0.9422	Cover 8.6463	Cover	1.1406
			The MA(1) model (defined in Table 5.1)		
		β = 1, π β,n = 0.9640			β = 1.1, π β,n = 1.3345
	π β,k,n 1.2038 π β,k,n, ρ 0.9585	π β,k,n 1.7171 π β,k,n, ρ 1.2827
	ABais 0.2398 ABais 0.0055	ABais 0.3826 ABais 0.0518
	RMSE 0.2487 RMSE 0.1164 RMSE 0.2866 RMSE 0.1612
	Lb	0.1375	Lb	0.2014	Lb	0.2165	Lb	0.3100
	Ub	6.9503	Ub	1.1584	Ub	8.9853	Ub	1.4669
	Cover 6.8128	Cover	0.9570	Cover 8.7688	Cover	1.1569