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Abstract
Background: Forests are an important sink for atmospheric carbon and could release that carbon upon 
deforestation and degradation. Knowing stand biomass dynamic of evergreen forests has become necessary to 
improve current biomass production models. The different growth processes of managed forests compared to 
self-managed forests imply an adaptation of biomass prediction models.

Methods: In this paper we model through three models the biomass growth of two tree species (Japanese cedar, 
Japanese cypress) at stand level whether they are managed or not (self-thinning). One of them is named self-thinned 
model which uses a specific self-thinning parameter a and adapted to self-managed forests and an other model is 
named thinned model adapted to managed forests. The latter is compared to a Mitscherlich model. The self-thinned 
model takes into account the light competition between trees relying on easily observable parameters (e.g. stand 
density). A Bayesian inference was carried out to determine parameters values according to a large database collected. 

Results: In managed forest, Bayesian inference results showed obviously a lackof identifiability of Mitscherlich model 
parameters and a strong evidence for the thinned model in comparison to Mitscherlich model. In self-thinning forest, 
the results of Bayesian inference are in accordance with the self-thinning 3/2 rule (a = 1.4). Structural dependence 
between stand density and stand yield in self-thinned model allows to qualifying the expression of biological time as 
a function of physical time and better qualify growth and mortality rate. Relative mortality rate is 2.5 times more 
important than relative growth rate after about 40 years old. Stand density and stand yield can be expressed as 
function of biological time, showing that yield is independent of initial density.

Conclusions: This paper addressed stand biomass dynamic models of evergreen forests in order to improve biomass 
growth dynamic assessment at regional scale relying on easily observable parameters. These models can be used to 
dynamically estimate forest biomass and more generally estimate the carbon balance and could contribute to a 
better understanding of climate change factors.

Keywords: Dynamic, Biomass, Self-thinning, Sugi, Hinoki, Competition-Density rule

*Correspondence: valerie.nicoulaud_gouin@irsn.fr
Institut de Radioprotection et de Sûreté Nucléaire, St Paul-Lez-Durance, France

Springer Open
©The Author(s). 2021 Open Access This article is licensed undera Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit 
to the original author(s) and the source, provide a linkto the Creative Commons licence, and indicate ifchanges were made. The 
images or other third party material in this articleare included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended 
use is not permitted by statutory regulation or exceeds the permitted use,you will need to obtain permission directlyfrom the 
copyright holder. To viewa copy ofthis licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s40663-021-00354-4
http://crossmark.crossref.org/dialog/?doi=10.1186/s40663-021-00354-4&domain=pdf
http://orcid.org/0000-0002-2207-476X
mailto:%20valerie.nicoulaud_gouin@irsn.fr
http://creativecommons.org/licenses/by/4.0/


Nicoulaud-Gouin etal. ForestEcosystems (2021) 8:75 Page 2 of 18

Background
Forests are an important sink for atmospheric carbon and 
could release that carbon upon déforestation and dégrada­
tion (Lim et al. 2013). Therefore the dynamics of biomass 
growth are important to study especially in relation to 
future environmental changes (Fang et al. 2014; Lehto- 
nen et al. 2004). The forest ecosystem can also become 
a source of contamination for several ecosystems in the 
context of post-accident (watershed, leaching leading to 
contamination in aquatic and agricultural environments 
(Fukuyama et al. 2005; Karki and Shibano 2006), ground- 
water contamination (Bugai et al. 1996), fire problem re- 
emitting particles or gases in the atmosphere (Evangeliou 
et al. 2016),...).

Two-thirds of Japan’s land area is covered with forests, 
with a total forested area of 25 million hectares. Approx- 
imately 40% of these forests are artificially planted forests 
and the major planted species are Sugi (cedar), Hinoki 
(cypress), and Karamatsu (larch) (Forestry 2012). In 
Fukushima prefecture there are 83 cedar forests and 42 
cypress forests from the 190 private forests, from which 16 
cedar forests from the 25 public forests (Ministry of Agri­
culture 2012). This paper aims to extract an application 
methodology for an even-aged, mono specific popula­
tion corresponding to the cases of stands used for tim- 
ber. We focused on coniferous stands present in Japan 
(on Japanese cedar (Sugi) and Japanese cypress (Hinoki)) 
(Yoshihara et al. 2014; Yoshihara et al. 2016; Ogawa et al. 
2016; Aoki et al. 2017).

The determination of the biomass growth driving at the 
forest stand level animated different researchers and mod- 
elers (Bartelink et al. 1997; Canham et al. 2004; Will et 
al. 2002). Several studies reporting the construction of 
yield tables were provided in literature, often based on a 
diameter growth model (Matsumoto 1997; Nagahama and 
Kondoh 2006; Shimada and Mie-ken 2010; Nakajima et al. 
2014).

The notion of competition between trees within a popu­
lation density to maximize their access to resources (light, 
soil nutrients, ...) is an essential factor in stand growth. 
The initial density of a forest stand has a large impact on 
the yield of the logs in the plot. Relationships between 
yield and stand density will naturally result from tree 
growth assumptions.

Moreover, a forest can evolve either in autonomy that 
means without human intervention on its production 
of biomass (e.g. by pruning, cutting thinning, weeding 
and cutting the undergrowth species before closing the 
canopy, ...), it is then said to be auto-managed, or it is 
managed by foresters. When forest is self-managed, a self- 
thinning phase occurs naturally. This phenomenon allows 
a stand to self-regulate and leads to a naturally optimized 
production of biomass. We then obtain so-called self-

thinning lines in a log-log plot of stand density yield that 
indicate maximum forest yield. The method to determine 
the maximum density, line of self-thinning was discussed 
and a self-thinning model was developed using observed 
long-term data in (Fengri and Lingbin 1995). When the 
forest is harvested by foresters, thinning is scheduled 
regularly to achieve higher returns to the short term.

A forest growth model is an abstraction of the natural 
dynamics of the tree or stand that may include growth, 
mortality, and other changes in stand composition and 
structure. Classically predictive forest growth models are 
of three types:

• Population model which are characterized by global 
variables of the forest stand (stand density, basal area 
ofthe stand);

• Distribution model which refers to particular species 
or classes of trees within a forest and uses 
relationships based on the driving dendrometric 
variables such as diameter at breast height (DBH), 
dominant height, ...;

• Individual-tree model which consists of predicting 
stand growth and yield using individual trees as a 
base unit.

These different types of growth models position them- 
selves in relation to each other in terms of the resolution of 
the results (Cao 2014). An individual-tree model is finer at 
the tree level but leads to stand-level errors. Conversely, a 
population model provides information on the whole pop­
ulation but has a low resolution. The population models 
respond more to the problem of prediction over huge spa­
tial domains. Thus the notion of stand density as biomass 
growth explanatory variable answers this need of granu- 
larity, and allows to overcome the heterogeneity of smaller 
metric scales (individual level).

This article also aims to verify whether the process lead- 
ing to the dependence of mortality and self-thinning on 
population density can advantageously explain the non- 
managed forest stands observed data through the appli­
cation of an empirical self-thinned model. For managed 
forest, we compare two types of empirical model by a 
Bayesian approach with a likelihood criteria: one called 
thinned model and the other one was a Mitscherlich 
model.

To achieve this goal, a Bayesian inference was carried 
out with the software SAMCAT (Nicoulaud-Gouin et al. 
2016) to determine parameters values according to large 
collected data.

Methods
In this section we present in detail the forest growth mod- 
els we have chosen according to its resolution granularity 
corresponding to our objectives.
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Non managed forests are linked to the compétition 
effect by the density of their population as we will see in 
the next Competition-density effect paragraph.

We describe the stand density, the stand yield and its 
compartments biomass (branch, leaf and stem) at a time 
t according to known characteristics in Density, yield and 
biomass paragraph.

The data will be analyzed in the paragraph Data and the 
Bayesian inference method allowing to calibrate the dif­
ferent parameters of the models on the data is detailed in 
paragraph Bayesian inference and model validation.

Competition-density effect
Self-thinning in overcrowded pure stands under culti- 
vated and natural conditions was studied (Yoda et al. 
1963; Shinozaki and Kira 1956), and it was found that 
for each initial stand density a corresponding rate of 
maximal productivity was associated. That means that 
competition among trees and self-thinning were the 
most important ecological process in tree population 
dynamics. Authors derived the reciprocal equation of the 
competition-density (C-D) effect (Eq. 1) (Shinozaki and 
Kira 1956) for even-aged pure plant populations using the 
general logistic growth equation and the 3/2 power law of 
self-thinning (Yoda et al. 1963) (Eq. 2).

1

y
= A +

B
N

(1)

where y was the total biomass per unit area, and N was 
stand density.

y = K x N1-a (2)

where the coefficient a tends to 3/2 for ail species.
A theoretical equation (Eq. 3) which was derived by 

unifying the density effect and the 3/2 power law of 
self-thinning was proposed (Hagihara 1996):

This diagram presents the process of modeling biomass. 
Depending on whether there is thinning or not, two devel­
opment branches are chosen: No thinning, the stand den- 
sity noted Nsth is calculated and then the yield noted Ysth 
based on it is also calculated. If there is thinning, the stand 
density noted Nth is calculated as well as the yield noted 
Yth. From the stand yield Y derived from Ysth or Yth the 
biomass of the trunk WS, branches WB and leaves WL can 
be derived. The equations of all models are gathered in 
this figure too.

Density models
Without forest management, stand density time series 
followed self-thinning law taking account of the natural 
competition between trees (Ogawa 2007). The following 
empirical relation which is a logistic function was there- 
fore used to consider these phenomena (Ogawa 2017) 
(Eq. 4):

(1 ^sth )(1 + $sth) (4)
1 + Ssth x eYsthXt

where N0 was the initial stand density (t = 0) and the coef­
ficients o)sth (w.d.), Ssth (w.d.) and ysth (y-1) were fitted by 
Bayesian inference.

In the other case of managed forest, thinning out 
was done with different practical scenario, the fore- 
cast of stand density N (tree-ha-1) could be modelled 
by a Mitscherlich law. A German soil scientist, E. A. 
Mitscherlich, developed an equation that relates growth 
to the supply of growth factors. He observed that the 
growth response was proportional to the limiting element. 
Mitscherlich’s law states that “the increase in any crop 
produced by a unit increase in a deficient factor is propor­
tional to the decrease in that factor from the maximum.” 
The response is curvilinear, not linear (Eq. 5):

N = N0 sth +

N = N0 (rn + (1 - Uth)e-mxt) (5)

Y = K x N1-a x 1 - N (3)

where Y was the stand yield, N0 the initial stand den- 
sity, a and i were species specific coefficients. The main 
result of this formulation was that the density depen- 
dent mortality induced for any population an exponential 
decrease of its constituents after a sufficient lapse of bio- 
logical time which is the integral of intrinsic growth rate. 
This result will developed in Results of self-thinned model 
paragraph.

The maximum possible density obtained by an unlimited 
supply of time is the product of the initial density N0 
(tree-ha-1) and the parameter o)th (w.d.). yth (y-1) isacon- 
stant of proportionality. These parameters were fitted by 
Bayesian inference.

Yield models
Without forest management, stand yield (m3 • ha-1) time 
series were dependent on stand density by a natural self- 
thinning relationship developed at first for Japanese cedar 
then for Japanese cypress (Ogawa 2005), which is a gener- 
alization of Eq. 3 proposed by Hagihara (Eq. 6):

Density, yield and biomass
We propose a forest dynamic model for managed and 
non-managed forest which is summarized in the Fig. 1.

Y =Ym
N
N0

1-a
1-

n yyNe
(6)
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Self-manageel Forests Managed Forests

Density Models

AT   AT (, . i {l-Vath)(,l+6ath)\
M Mo [Usth + iÆ.xcrsft; *' J N = N0 (uth + (1 - uth)e 7,fcX1)

Yield Models

Self-Thinned Model Mitscherlich Model Thinned Model

Y = Y,naxthm (1 - u,ythme-’^t) Y = Ymaxth (1 - uythe-<»>‘*tf x N

Biomass Models

Stem Branch Leaf

Wt = Pwood x y WB = aB x wÿ WL =--- , ‘ ,

Fig. 1 Diagram of forest dynamic modelling. Depending on whether there is thinning or not, two development branches are chosen: No thinning, 
the stand density noted Nsth is calculated and then theyield noted Ysth based on it is also calculated. If there is thinning, the stand density noted Nth 
is calculated as well as theyield noted YtB. From the stand yield Y derived from Ysth or Yth the biomass ofthe trunk WS, branches WB and leaves WL 
can be derived

where Ymax (m3 • ha-1) was a maximum yield, a (w.d.), 
fi (w.d.) and n (w.d.) were characteristic coefficients of 
the self-thinning curve. The formulation was initially cali- 
brated with a series of observations of a natural Sugi plan­
tation in the Nagoya University Experimental Forest at 
Inabu, located about 55 km east of Nagoya, Aichi Prefec- 
ture, central Japan, over a period of 20 years. Parameters 
values were in this article fitted by Bayesian inference. 
This Eq. 6 associated to the Eq. 4 concerns the self-thinned 
model.

In the case of managed forest, thinning out was done 
with different practical scenario, the forecast of forest 
growth could be modelled by deriving the pipe model 
from the modelling of DBH, H and N. Actually, Inoue 
(2006) proposed a model describing the relationship 
between the form-factors for stem volume and those for 
stem surface area in coniferous species, especially for 
Japanese cedar and Japanese cypress. It based on the 
Kunze’s equation which led to the following equation of 
volume, as it is developped in supplementary data (Eq. 7):

mn 3 v = h3
3

(7)

We can find this result again by considering v as a cone 
volume which equation is n- (d/200)2 xh with the diameter 
d proportional to the height h.

If the height of a tree is modeled by a Mitscherlich 
equation with three degrees of freedom, then we can 
model the yield at the stand level Y (m3 • ha-1)(Eq. 8) as 
follows by having combined the Mitscherlich equation 
with the equation 7 by multiplying the density N (Eq. 8):

Y = Ymaxth (1 - 0)ythe-yythxt)3 x N (8)

where Ymaxth (m3), wyth (w.d.) and Yyth (y-1) were fitted by 
Bayesian inference.

Some author advise Mitscherlich equation for mod­
elling stand yield (Fukuda et al. 2003) (Eq. 9):

Y Ymmaxthm
(1 wyth„ Yythm te (9)
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where Ymaxthm (m3), Vythm (w.d.) and yythm (y 1) were spé­
cifie coefficients. The two models named thinned model 
(Eq. 8 associated to Eq. 5) and Mitscherlich model (Eq. 9 
associated to Eq. 5) were compared to determinate the 
best one with regards the data.

Biomass
Stand stem biomass was deduced from stand yield by 
wood density pWood (dry kg per m3) (Eq. 10):

Wt = Pwood x Y (10)

Values of basic wood density were fixed to their average 
values (Fujiwara et al. 2007) (314 kg-m-3 for Sugi and 407 
kg-m-3 for Hinoki).

Allometric relationships established by Nishizono et al. 
were used to model stand branch biomass (Eq. 11) and 
stand leaf biomass (Nishizono et al. 2005) (Eq. 12):

Wb = aB x wTB (11)

Wl =
1

(12)
1 1

aLxwTL WLmax

Data
From the compiled database on Cryptomeria japon- 
ica (Sugi) and Chamaecyparis obtusa (Hinoki) (Usoltsev 
2013), we extended it with several others publications (In 
supplementary data 1: Table S1). In total 311 data were 
collected. Among these data, 234 were coming from Sugi 
specy and 142 from Hinoki specy. 40 of Hinoki were self- 
managed and 25 of Sugi were self-managed. In managed 
forest the avaliable data for density were 156 for Sugi and 
57 for Hinoki, for stand volume they were 209 for Sugi and 
102 for Hinoki, for stem biomass they were 102 for Sugi 
and 58 for Hinoki, for branch biomass they were 99 for 
Sugi and 54 for Hinoki and for leaf biomass they were 105 
for Sugi and 54 for Hinoki. In managed forest the avail- 
able data for density were 25 for Sugi and 40 for Hinoki, 
for stand volume they were 19 for Sugi and 37 for Hinoki, 
for stem, branch and leaf biomass they were 6 for Hinoki, 
and no available data for Sugi. These data all concern 
Japaneses forests except for few data of South Korea. The 
distribution of Sugi stands in the Japan database is fairly 
well represented except for some areas north of Sendai 
such as Akita and Iwate, the Koti Peninsula and the north- 
western coastal margins as shown on the map showing the 
stands locations according to their density (top plot of Fig. 
S1 in supplementary data 1). On the other hand, Hinoki 
data are more disparate and cover a small part of Japan 
(bottom plot of Fig. S1 in supplementary data 1).

Managed forests have been identified and separated 
from self-thinned forests. Main statistics are gathered in

Table 1. These data were used to perform Bayesian infer- 
ence with the software SAMCAT (Nicoulaud-Gouin et al. 
2016), giving a density probability of all model parameters 
and goodness-of-fit as explained above.

Bayesian inference and model validation
Bayesian inference was conducted from data gathered on 
Hinoki and Sugi forest without distinguishing species, in 
this manner:
A statistical model f (t; 0) is defined for the observations 
D(t), and the parameters 0 (Eq. 13):

D(t) = f (t; 0) + e (13)

where e is the random error unexplained by the model f.
0 is assumed to be random. It has a prior probability 

distribution P(0), reflecting the existing knowledge before 
the calibration experiment, that can be updated by the 
observed data D through application of the Bayes’ rule 
(Jeffreys 1961) (Eq. 14):

P(0|D) a P(D\0) • P(0) (14)

Likelihood was modelled with a normal distribution law 
centered on the data with the following error model as

Table 1 Statistic data issued from Table S1 in supplementary 
data 1

Thinned forests

Japanese cedar Age DBH H N V Wb Wl

Min 5 1 3 204 12 0.5 6

Mean 41 23 16 2188 447 9 20

Max 153 65 40 29500 1726 30 35

Japanese cypress Age DBH H N V Wb Wl

Min 17 8 5 350 74 7 5

Mean 38 18 13 1883 302 16 15

Max 91 34 22 4170 560 32 27

Unthinned forests

Japanese cedar Age DBH H N V Wb Wl

Min 4 2 35 406 376 (-) (-)

Mean 44 26 35.8 3200 679 (-) (-)

Max 153 46 36 5020 1200 (-) (-)

Japanese cypress Age DBH H N V Wb Wl

Min 3 7 7 900 0 7 8

Mean 30 11 11 6100 199 13 14

Max 105 20 15 9800 393 19 22
Minimum, maximum and mean for the main variables as Age, DBH, H, V, Wb, Wl are 
gathered for the two species Japanese cedar and Japanese cypress and 
distinguishing managed forests (Thinned ones) and unmanaged forests (unthinning 
ones)
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Table 2 Prior distributions for parameters of Mitscherlich model (Eqs. 5, 9, 10, 11,12) and thinned model (Eqs. 5,8,10, 11, 12)

Mitscherlich Model Thinned Model

Model
parameters

Law Law parameter 1 Law parameter 2 Model
parameters

Law Law parameter 1 Law parameter 2

Ymaxthrri LogUniform 500 6000 Ymaxth LogUniform 1 50

Mythm LogUniform 0.5 1 &yth LogUniform 0.5 1

Yythrn LogUniform 1e-12 0.01 Yyth LogUniform 0.001 0.1

aythm InvGamma 3 0.05 ayth InvGamma 3 0.05
N0 LogUniform 1000 30000 Nü LogUniform 1000 30000

&N LogUniform 0.01 1 &N LogUniform 0.01 1

YN LogUniform 0.01 1.5 YN LogUniform 0.01 1.5

aN InvGamma 3 0.05 aN InvGamma 3 0.05

as LogUniform 1e-5 1 as LogUniform 0.05 1
bS LogUniform 0.1 2 bS LogUniform 0.1 2

as InvGamma 3 0.05 as InvGamma 3 0.05

aL LogUniform 1e-12 1 aL LogUniform 0.1 3

bt LogUniform 0.1 10 bt LogUniform 0.1 5

WLmax LogUniform 10 30 WLmax LogUniform 10 30

awt InvGamma 3 0.05 awt InvGamma 3 0.05

variance. For the error modelling a proportional error 
has been chosen for stand density, yield, branch, and leaf 
biomass, as the data were well fitted with a lognormal 
distribution.

The parameters to be identified concern both the 
dynamic biomass model 0 and the error model (a). The 
components of 0 were assigned log-uniform distributions 
that cover several orders of magnitude and reflect the 
lack of knowledge of dynamic biomass model parameters 
(Tables 2, 3). By testing the calibration with several vari­
ation domains of the parameters we tested the sensitivity 
of prior values. As to conclude, often the model gave pos- 
terior distribution of some parameters bounded by the 
low bound or the high bound of the interval of variation. 
That led to enlarge some intervals in order to obtain good 
posterior distribution of parameters.

Since the range of density data for managed forests is 
from 204 trees per hectare to 29500 trees per hectare, we 
chose an initial density N0 range that allows us to reach 
these densities, i.e. [1000,30000]. The o)th parameter being 
the percentage of the initial density obtained after an infi- 
nite time, was chosen so that the product with the initial 
density is the maximum possible stand density after an 

infinite time. For the yth proportionality factor giving the 
decreasing velocity of density towards the final density we 
decided to enclose the values found by Fukuda et al. (2003) 
for this factor around 0.1 for the biomasses.

Since the range of density data for non managed forests 
is from 406 trees per hectare to 9800 trees per hectare, we 
chose an initial density N0 range that allows us to reach

these densities, i.e. [2000, 20000] and the wsth param- 
eter so that the product with the initial density is the 
maximum possible density of the stand after an infinite 

time. As the proportionality factor is a time decreas- 
ing function of ysth and Ssth, we chose these previous

Table 3 Prior distributions for parameters of self-thinned model 
(Eqs. 4, 6, 10, 11, 12)

Model
parameters

Law Law parameter 1 Law parameter 2

Ymaxthm LogUniform 5 5000

a LogUniform 0.8 2

ny LogUniform 0.001 8

Py LogUniform 0.2 6

ay InvGamma 3 0.05

Nü LogUniform 2000 20000

&N LogUniform 0.001 0.5

$N LogUniform 0.001 0.5

YN LogUniform 0.01 0.3

aN InvGamma 3 0.05

as LogUniform 0.5 1
bs LogUniform 0.1 2

as InvGamma 3 0.05

aL LogUniform 0.01 3
bL LogUniform 0.5 3
WLrnax LogUniform 10 30

aWL InvGamma 3 0.05



Nicoulaud-Gouin etal. ForestEcosystems (2021) 8:75 Page 7 of 18

parameter in according to their values found in Table 1 of 
(Ogawa 2018).

For the coefficients of the yield Y according to the 
Mitscherlich formulation (Eq. 9), we established the 
bounds of the domains of variation by referring partially 
to the Table 3 of regression coefficients for the Mitscher­
lich formula relating the accumulation of wood volume to 
stand age for Sugi and Hinoki forest types published in 
Fukuda et al. (2003): The asymptotic value Ymax showed 
values between 575 and 6188, hence the search interval 
of [500, 6000] chosen. For the parameter &ythm the values 
found in Fukuda seem strange to us because they are all 
greater than 1, but we can express omega as a function 
of the initial value of efficiency and the asymptotic value 
(Eq. 15).

ythm Y max

If we consider the initial value as zero, we should find 1 
as a value, hence our search domain of [0.5,1] chosen. For 
gamma we have widened the lower bound of the search 
interval because successive calibration tests indicated a 
poor identifiability of the parameter for domains that were 
too small.

The same reasoning has led to the variation domain 
of the coefficients for yield Y according to the Thinned 
formulation (Eq. 8).

For the coefficients of the yield Y of self-managed stands 
(Eq. 6), we established the ranges of variation from the 
values found in (Ogawa 2005), aY = 3/2, nY = 5.01, 
Py = 1.2, and Ymax = (1/141.10-6)a833 x 6143a5 = 20.

Table 1 in Nishizono’s publication (Nishizono et al. 
2005) shows the values of the regression constants for 
the branch and leaf biomass models. We chose expanded 
domains around these average values.

Since the range of leaf biomass values is [5; 27], a range 
for the WLmax coefficient of [10; 30] seems reasonable.

An inverse gamma distribution was chosen for the 
unknown standard deviation a of the Gaussian error.

Two performance criteria quantifying the deviation of 
model median predictions yi, ••• ,yn from observations 
yi, ••• , yn were also used. Geometric Reliability Index 
(GRI) is a dissimilarity measure, quantifying the accuracy 
factor of predictions around observed values. It is defined 
by Jachner et al. (2007) (Eq. 16):

1 +
GRI =-----

1 -

(16)

and optimal values correspond to 1. The efficiency fac­
tor EF (Nash and Sutcliffe 1970) is a validation measure, 
ranging from —œ to 1 (Eq. 17):

EF = 1
i(yi— yi)2 

t (yi— y)2
(17)

where prediction power increases as EF tends to ideal 
value 1, corresponding to exact model predictions.

Marginal likelihood P(Y\M) for each model M was used 
to select the most plausible model. This decision criterion 
is the probability of the observations Y according to model 
M (Eq. 18):

P(Y\M) = P(Y\e)P(d)de (18)

By analogy with classical likelihood ratio tests, a model 
M has a strong (resp. very strong) evidence if its marginal 
log-likelihood difference is larger than 3 (resp. 5) in 
comparison with alternative models (Kass and Raftery 
1995). Marginal likelihoods were calculated numerically 
with SAMCAT by the Laplace-Metropolis approximation 
(Kass and Raftery 1995).

Results
After analysing the database, results of Mitscherlich and 
thinned models are given. Then we focus on the model for 
self-thinning forests (self-thinned model), looking at the 
3/2 power law. The yield rate and best fit as well as the 
correlations between parameters are also analyzed.

Database analyses
An overview of the different variables volume V (in m3 • 
ha-1), density N (in tree•ha-1) in log scale, age and DBH 
(in cm) shows (Fig. S2 in supplementary data 1) a corre- 
spondence between high DBH, high yields, an age above 
50 years and a fairly high stocking density. The high stand 
densities concern the early development stage below 10 
years of age. Some DBH data are not available as shown 
by the gray circles in the graph. 76 on 160 Hinoki data 
were all filled for the main variables (Age, DBH, Volume, 
Density and Height) and 83 on 248 Sugi data were also all 
filled. 40 data were self-thinned Hinoki stand and 25 data 
were self-thinned Sugi stand. A non-hierarchical cluster 
partitioning by K-means method was conducted on the 
data set of the two species Sugi and Hinoki reduced to a 
pool where all important variables (Age, DBH, Volume, 
Density and Height) are filled in to assess if they could 
be grouped together in order to have unique parameter- 
ization in models of yield versus stand density. The Fig. 
S3 in supplementary data 1 shows the normalized vari­
able ^ versus the normalized variable — for the

Vmax Nmaxtwo species noticed Co for Hinoki and Cj for Sugi. Five 
groups were identified taking account the different vari­
ables (Age, DBH, Volume, Density and Height). The fifth 
group reduced to a Sugi stand is clearly an outlier because 
of the high stand density it has relative to all the other 
stands. The second group also stands out with a high
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density. Then we have three other groups in which the 
two species are distributed and which show similarities in 
behavior between species. These two species have been 
gathered together in order to have an unique parametriza- 
tion for the models. This implies that our models are 
independent of species.

Results of mitscherlich and thinned models
On the same data set Mitscherlich model has larger pro- 
portional error variances than our model for yield and 
stand density (Table 4):

• for the yield (Eqs. 8 and 9) there is a vYthm equal to 
41.4 with [33.8, 50.1] as credible interval against a 
aYth equal to 36.6 with [29.6, 44.2] as credible interval;

• for the stand density (Eq. 5) there is a &Nthm equal to 
604 with [508, 717] as credible interval against a oNfh 
equal to 598 with [505, 707] as credible interval.

The major interest of our model has been to obtain fine 
results for the Ymaxth parameter with a median of 1.91 
and [1.36, 2.78] credible interval, compared to the Ymaxthm 
parameter with a median of 5370 and [4220, 6000] cred- 
ible interval. It is due to the fact that the two parameters 
do not correspond to the same physical expression. The 
effective yields when age is infinity could be expressed as:
Yt^œth = Ymaxth x N0 x 0Yth and Yt^<x,thm = Ymaxthm.
Because of the senescence of the forest, it is more realis- 
tic to have in median Yt^,x>th = 1897 m3-ha-1 compared 
to the median value for Mitscherlich model Yt^œthm = 
5370 m3 • ha-1.

The branches and leaves biomass models are equivalent 
with respect to the parameters values and errors variance.

The posterior probability distributions of Ymaxth and 
Yyth are quite well established showing good identifiabil- 
ity, with regards to the posterior probability distributions
of Ymaxthm, wythm and Yythm.

This result could be forecasted due to biological phe- 
nomenon which it is explained based on geometrical 
consideration: the height is a one-dimensional model and 
the biomass is a three-dimensional model. Therefore, as 
height modelling is also a Mitscherlich model the applica­
tion of this type of model cannot work suitably for yield 
dynamic growth and the proposal model named thinned 
model based on this three-dimensional aspect reflects 
more the reality of yield growth (Ogawa 2019).

Results of self-thinned model
Without forest management, the Ogawa model (Ogawa 
2005) was chosen for the stand yield (m3 •ha-1). Although 
the self-thinned model was initially calibrated on a single 
Sugi stand, the pooling of Sugi and Hinoki data to a total 
of 65 data improves the robustness of the parameter val­
ues. With the Bayesian calibration results, we will analyze 
the 3/2 power law of self-thinning.

Changes in self-thinning slope (Xue et al. 1997) with 
increasing stand age, showed that the self-thinning slope 
approaches the self-thinning line of 3/2 which is near the 
median value of a = 1.4 we found with a credible interval 
of [0.9, 1.7]. Therefore, results on this database respects 
the 3/2 power law of self-thinning. The credible interval

Table 4 Optimal parameters values of Mitscherlich model (Eqs. 5, 9, 10, 11, 12) and thinned model (Eqs. 5, 8, 10, 11, 12)

Mitscherlich Model Thinned Model

Model parameters Lower CI Median Upper CI Model parameters Lower CI Median Upper CI

Ymaxthrri 4220 5370 6000 Ymaxth 1.36 1.96 2.78

Mythm 0.99 1 1 &yth 0.95 0.97 0.99

Yythm 1.610-3 1.910-3 2.510—3 Yyth 1.410-2 1.810-2 2.110-2

Oythm 33.8 41.4 50.1 &yth 29.6 36.6 44.2

N0 1590 2070 2630 Nü 15000 18600 22200

&N 3.810-2 4.710-2 5.710-2 &N 4.310-2 5.210-2 6.210-2

YN 0.09 0.11 0.13 YN 0.08 0.10 0.11

&N 508 604 717 &N 505 598 707

ÜB 0.06 0.11 0.19 ÜB 6.210-2 0.14 0.24

bB 0.89 1.01 1.11 bB 0.85 0.98 1.13

0.88 1.12 1.41 °B 0.92 1.18 1.4

ÜL 1.510-6 0.03 0.72 ÜL 0.1 0.96 2.6

bt 2.42 5.8 9.5 bt 2.05 3.39 4.96

WLmüx 17.6 18.5 19.4 WLmax 17.6 18.5 19.4

&WL 1.42 1.8 2.22 &WL 1.4 1.8 2.2

The median and lower and upper credible interval (Highest Posterior Densityinterval) were gathered
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takes into account the phenomena of aggregation and 
dumping which affect the competition process (Weiner 
1985). Indeed, spatial pattern can influence self-thinning. 
With a same stand density, the proximity of neighbors 
in a clumped stand increases competition between plants 
compared to regularly spaced stand.

The first part of the self-thinned yield model indicates 
that trajectory gradually approaches and eventually moves 
along the following self-thinning line at the final stage of 
stand development (Ogawa 2005). But the n and i param- 
eters allow deviating from this line between the beginning 
of stand growth and before the end of the stand develop­
ment. Self-thinning process in even-aged stands consists 
of creating gaps due to mortality and filling some of these 
by surviving trees (Zeide 1987).

Yield velocity among models
The Fig. S4 in supplementary data 1 reflects the velocity 
of yield with regards to maximum of yield for different 
modelling with parameters median values (Tables 5,6): for 
self-thinned and thinned models, the velocity is high at the 
beginning of tree life to achieve 80% of their maximum at 
about 80 years or 150 years. Unlike to Mitscherlich model 
or the model consisting in a proportion of height cube 
(y^ a H3^ or the model consisting of a proportion of

DBH square times height a DBH2 x H , in which

Table 5 Optimal parameters values of self-thinned model (Eqs. 4, 
6, 10, 11,12)

Model parameters Lower CI Median Upper CI

Ymaxthrri 185 366 1090

a 0.9 1.4 1.7

ny 0.8 4 7

iY 1.8 3.7 5.8

Vy 36 56 82
Nq 8500 9940 11400

&N 3.510—2 7.210-2 0.12

$N 5.510 2 0.25 0.48

YN 4.710-2 6.610-2 9.710-2

VN 238 349 490

ÜB 0.05 0.33 0.88
bB 0.49 0.71 1.04

VB 0.2 0.6 1.4

ÜL 0.01 0.52 2.4
bt 0.57 1.52 2.7
WLmüx 11.5 15.5 25.3

VWL 0.26 0.76 1.8
The median and lower and upper credible interval (Highest Posterior Density
interval) were gathered

Table 6 With the Bayesian inference, goodness of fit and 
marginal likelihood of the three models Mitscherlich model, 
thinned model and self-thinned model

N

Model GRI EF ML

Mitscherlich model 2.29 0.30 -4940.9

thinned model 2.28 0.31 -4929.6

self-thinned model 1.52 0.65 -1006.5

y

Mitscherlich model 4.53 0.28 -4940.9

thinned model 4.52 0.36 -4929.7

self-thinned model 2.50 -0.05 -1006.8
GRI: geometric reliabilityindex, EF: efficiencyfactor and ML: marginal loglikelihood

the velocity does not overtake 30% of their maximum at 
about 200 years.

Goodness-of-fit
Managed observed datas of Sugi were quite well explained 
by the calibrated models (as well Mitscherlich or thinned 
models) with a more dispersive fitting with Mitscher- 
lich model (Figs. 2 and 3). Managed observed datas of 
Hinoki were largely more dispersive far from the plume 
prediction. There is little significant difference between 
the Mitscherlich model and the thinned model for both 
the GRI and EF indices for modeling population density 
or yield (Table 6). Nevertheless the marginal loglikelihood 
discriminates between these two models (with a differ- 
ence of 11.2 on marginal loglikelihood, thinned model has 
a strong evidence in comparison to Mitscherlich model). 
This finding confirms the ability of Bayesian inference to 
identify the correct models of population density, yield 
and error.

One can also see a low goodness-of-fit since for a very 
good quality of prediction one expects a GRI and an EF 
close to 1. This low quality of prediction is due to the 
fact that the data are very largely variable with a great 
range of values. The self-thinned model is better than 
the Mitscherlich or thinned models with regards to this 
goodness-of-fit GRI and EF.

Correlation between parameters
The Mitscherlich model has no correlation between its 
stand density and yield parameters (Fig. 4). This is because 
the models of yield and stand density are completely inde- 
pendent of each other. They depend only on the stand age. 
Two strong correlations are observed, one positive (0.94) 
between N0 and yN on the one hand and negative (-0.97) 
between Ymax and yY on the other hand. A lesser cor­
relation (0.57) between mn and yN is also observed. No 
correlation is observed between wY and yY.
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Fig.2 Plots ofMitscherlich dynamic growth model with stand density, stand yield, stand branch biomass and stand leafbiomass 
curves forthe two species ofconiferous (Japanese cedaror Sugi, and Japanese cypress or Hinoki) and associated data (from Table 
S1 in supplementary data 1). There are the predictions with median parameters, with mean parameters and the plume prediction 
with 1000 samples ofparameters within the posteriordistribution coming from Bayesian inference (grid ofprediction)
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Fig.3 Plots ofthinned dynamic growth model with stand density, stand yield, stand branch biomass and stand leafbiomass curves 
for the two species ofconiferous (Japanese cedarorSugi, and Japanese cypress or Hinoki) and associated data (from Table S1 in 
supplementarydatarefMOESMl). There are the predictions with median parameters, with mean parameters and the plume 
prediction with 1000 samples ofparameters within the posteriordistribution coming from Bayesian inference (grid ofprediction)
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Fig.4 Plots of self-thinned dynamic growth model with stand density, stand yield for the two species of coniferous (Japanese cedar 
or Sugi, and Japanese cypress or Hinoki) and associated data (from Table S1 in supplementary data 1). There are the predictions 
with median parameters, with mean parameters and the plume prediction with 1000 samples of parameters within the posterior 
distribution coming from Bayesian inference (grid of prediction)

In contrast to the Mitscherlich model the thinned model 
exhibits non-negligible correlations between the parame­
ters of density and yield models. For example between mn 
and wY with a negative correlation (-0.47); between Ymax 
and yN with a negative correlation (-0.58); between yN 
and yY with a positive correlation (0.61). We observe the 
same types of strong intra-model correlations between N0 
and yN (0.80) and between Ymax and yY (-0.85). Therefore, 
the higher the initial density, the higher the exponen- 
tial decay rate of density, and the higher the Ymax, the 
lower the exponential decay rates yY and yN too. On 
the other hand, there is a correlation between wY and 
yY (0.44) whereas none is observed with the Mitscher- 
lich model. A double and inverse correlation between 
o)N and No compared to Mitscherlich model, a weaker 
correlation between ù)N and yN than for Mitscherlich 
model.

For the self-thinned model, a strong negative corre­
lation between Ymax and the self-thinning parameter a 
is detected (-0.86). The quite strong positive correla- 
tion between ù)N and the self-thinning parameter a is

observed too (0.6). The initial density has weak correla- 
tion with all other parameters of stand density or yield. 
As we saw in the precedent paragraph yield is indepen- 
dent of initial density. The negative quite weak correla- 
tion between nY and intial density N0 (-0.30) is due to 
the negative correlation between nY and SN (-0.43) and 
the positive correlation between SN and N0 (0.27). We 
observe strong intra-model correlations for yield model 
and density model.

Discussions
In this paragraph, we explain why we did not use 
biomass expansion factors, we discuss the two mod- 
els adapted to managed forests (the Mitscherlich model 
and the thinned model), looking carefully at the iden- 
tifiability of the parameters and the posterior distribu­
tions. Concerning the self-thinned model we discuss rel­
ative growth and mortality rates, physical and biological 
times. Then, characteristics of DBH and height models 
are discussed. Finally, comparison with other models is 
looked at.
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Biomass expansion factors

Wb = BEFb x Wt (19)
Wl = BEFl x Wt (20)

Biomass expansion factors (Lim et al. 2013)(Eq. 19 and 
Eq. 20) were not applied. Their formulation indicates that 
the leaf biomass ratio ( W) on an average tree is decreas- 
ing over time, because the biomass expansion factors vary 
on age class with decreasing values. By Nishizono formu­
lation (Eq. 12) the leaf biomass is limited by the parameter 
WLmax and this whatever the density of the stand. This 
seems to be in a more realistic physical sense than allo­
cation fractions or BEFs that do not take into account the 
maximum leaf biomass capacity that a stand of a given 
species can produce on the basal area. From canopy clo- 
sure, leaf biomass growth is limited, although log biomass 
may continue to increase more or less strongly depending 
on initial stand density. In other words, the fact that leaf 
biomass per unit area remains constant in closed forests 
of the same species results from the limited intensity of 
light, although other factors necessary for photosynthesis 
such as water, temperature ... may differ from one stand 
to another. We can say that light is a limiting factor to leaf 
growth (Tadaki and Kawasaki 1966). If biomass allocation 
or expansion fraction formulations are kept, the calcula­
tion of biomass and leaf area index will be largely distorted 
and will not reflect the reality for stands of high initial 
density. Indeed, when the stand biomass becomes maxi­
mal or time is over the canopy closure time, foliar biomass 
approaches an upper limit and the stand leaf biomass can 
be expressed as (Eq. 21):

Yf = WL x N = WL x N0
F Lmax x Lmax x 0

Msth +
(1 — msth)(1 + $sth) 

1 + &sth x eYsthxt

(21)

Therefore, the stand leaf biomass Yf(t) decreases expo- 
nentially as stand age increases. A simple allometric rela- 
tionship between mean leaf mass and mean tree mass 
does not reflect the age-related changes in forest stand leaf 
biomass (Ogawa 2018).

Comparison of mitscherlich and thinned models 
Advantage ofbayesian analysis
The advantage of Bayesian analysis over frequentist anal­
ysis is the possibility of comparing models without neces- 
sarily being nested, thanks to the application of marginal 
log-likelihood. Bayesian methods need much smaller sam- 
ple size than frequentist methods to estimate parameters 
accurately (Zapata-Cuartas et al. 2012). The hierarchical 
Bayesian framework provides robust approach for esti- 
mating models parameters (Price et al. 2009). Moreover, 
Bayesian analysis directly provides probability densities

for the parameters of the models that take into account 
the data. In addition, the parametric uncertainty obtained 
allows to know if a parameter is well identifiable.

Identifiability
Raw data used to calibrate Mitscherlich formulas (Eq. 9) 
in the initial publication (Fukuda et al. 2003) were issue 
from national stand density control diagram (forestry 
agency of Japan 1981a; forestry agency of Japan 1981b), 
and were separately pooled into 10 Sugi and 5 Hinoki 
regional datasets. However, the variations in R2 values of 
Mitscherlich formulas for the accumulation of wood vol­
ume per hectare over time (between 0.476 and 0.706 for 
the two species) were showed without scrutinizing the 
identifiability of the parameters of the formulas (Table 3 of 
(Fukuda et al. 2003)). Actually, we have tried to fit this type 
of equation with regards to our data and it was obvious 
that the parameters were not well identifiable compared 
with the suggested model in this paper (Eq. 8). The stand 
yield Y function was derived to obtain analytical expres­
sions of ( ——, and —-) for the Mitscherlich

d Ymaxthm àmythm dYythm
model (Eq. 8 in supplementary data 1) and (dYY , dYk 

and jY) for the thinned model (Eq. 9 in supplementary 

data 1).
The plot of these sensitivity functions, locally calculated 

at a likely parameter values with the managed forests data 
observations showed the lack of parameters identifiability 
for the Mitscherlich model compared to thinned model 
(Fig. S5 in supplementary data 1) (Nicoulaud-Gouin et 
al. 2016). The correlation matrix of the scaled sensitivity 
matrix had conditioning indices ni = 1, n2 = 10.89 and 
n3 = 151.35 for Mitscherlich model and n1 = 1, n2 = 3.44 
and n3 = 25.42 for thinned model which indicate possible 
problems of parameter unstability, parameter redundancy 
and poor precision of estimation (Seber and Wild 1989) 
(Table 7).

Parameter identifiability was critical for all parame- 
ters Ymaxthm, Uythm, Yythm in Mitscherlich model and for 
Ymaxth and yyth in thinned model (Table 7). Parameter 
uncertainty was maximum in the direction of the eigen- 
vector associated to conditioning index g3 (corresponding 
to the smallest eigenvalue), for which the contributions 
of Ymaxthm, Uyhm and Yythm were high (0.97, 1 and 0.99) 
for Mitscherlich model and for which the contributions 
of Ymaxth and Yyth were high (0.99 and 0.99) for thinned 
model.

Self-thinned model
Relative growth and mortality rate
We can express the quotient of relative growth rate on 
relative mortality rate, and this quotient depends on time 
and particularly on N (Eq. 22). Therefore, this quotient is 
independent on initial stand density N0 (see equations 10,
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Table 7 Matrix n of the variance décomposition and 
conditioning indices for Mitscherlich model and thinned model: 
Collinear parameters were identified in the variance 
decomposition matrix n deduced from the correlation matrix of 
X (Belsley et al. 1980), whose lines correspond to conditioning 
indices, and columns correspond to parameters

Conditioning Variance proportion

Mitscherlich model

Indices Symüxthm Smythm SYythm

n = 1 0 0 0

n2 = 10.89 0.031 0 0.008

n3 = 151.35 0.97 1 0.99

Thinned model

Indices Smyth SYyth

n = 1 0.001 0.011 0.001

n2 = 3.44 0.013 0.296 0.002

n3 = 25.42 0.99 0.69 0.99
For a large conditioning index nj, parameters are collinear iftheir contributions to 
thevariance are high

11 and 12 in supplementary data 1).

, RGR 
lim -----

t_>œ m
lim _ dlog(Y) 

t_>œ dlog(N)
mn= (a _ 1) + fi x n x — 0.4

1 _ mn
(22)

where RGR is the relative growth rate with regard phys- 
ical time and m is the relative mortality rate with regard 
physical time.

At the beginning of life stage (about five years old) the 

relative growth rate is 60 times the relative mortality rate. 
Stand yield growth is greater than trees mortality. At a 

infinity time the relative mortality rate is 2.5 times more 
important than relative growth rate if we consider median 
values for model parameters (Eq. 22). Indeed, the limit is 

quickly reached at around 40-50 years old. This can also be 
seen in the figures of the density and yield curves for the 
two species Sugi and Hinoki (Fig. 5) which show an inflec- 

tion around 40 years old. Unfortunately we have not data 
between 40 years and 140 years to confirm this theory.

Physical and biological time
We can also express physical time in function of stand 
density (Eq. 23):

t =
1 log 

Y

1
S

(1 -m)(1 + S)N0 

N _ mN0
(23)

For this model and the median parameters values of 
Bayesian inference according to database (Table 5), the 

valid maximal time is about 180 years with a limit of stand 
density of 716 tree-ha-1.

The growth rate of mean tree biomass decreases expo- 
nentially with the age and this phenomenon defines a 
biological time, a specific time of trees species, different 

from physical time and such that time is slowing down in 
relation to physical time as the tree evolves as it ages.

t
We can deduce the biological time r(t) = f X(t)dt

0
where X(t) is relative to an intrinsic growth rate in the gen- 
eralized logistic curve (Eq. 16 in supplementary data 1). 
Therefore, we have a sigmoid curve for the biological time.

The limit of the biological time when the physical time 
tends towards infinity is lim t = —alog(m) — 3.68. The

t_>œExtreme Surface Estimator (ESE) and Extremum Distance 
Estimator (EDE) methods were used to find the inflection 

point of the convex/concave sigmoid curve (Fig. S6 in sup­
plementary data 1). We find an inflection point between 
32 and 43 years.

The stand density can be expressed with biological time 
as (Eq. 20 in supplementary data 1).

The derivative of stand density with regards physical 
time, gives us velocity of the stand density decreasing (Eq. 
20 in supplementary data 1).

Up to 21 years of rapid loss of stand density can be 
observed and then fall asleep in old stands.

This biological time allows linking self-thinning param- 
eter a with stand density dynamic. The stand yield 
becomes independent of initial stand density (Eq. 22 in 
supplementary data 1):

In parallel with stand density, the rate of decreasing of 

stand yield is very high in young stands and decreases until 
the age of 40 to increase more reasonably until it stabilizes 
in old stands (Eq. 23 in supplementary data 1).

Comparison with others models
Some models finely characterize the generic parameters of 
the Richards or Gompertz type models in terms of quan- 
tities such as dominant height, basal area, etc., by expres­
sing them as a function of different indexes (site index, 
last thinning index, time elapsed since the last thin- 
ning, etc.) (Candy 1989). These details certainly make 
it possible to better qualify the models of the man- 
aged forests and to reduce the parametric uncertainty, 
but they require the knowledge of specific quantities 
for each stand, which are not necessarily accessible, and 
they also result in a considerable number of modeling 
parameters.

We did not distinguish between stands with high thin- 
ning and those with low thinning, and the models (thinned 
or Mitscherlich) do not take into account explicitly this 

thinning weight nor the type of thinning carried out. This 
weight can be appreciated by an index of relative space 
between trees by the relation (Eq. 24) and the type of
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Fig. 5 Corrélation matrix of Mitscherlich, thinned and self-thinned model parameters (respectively at top, middle and bottom)
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thinning by the change in diameter distribution (Eq. 25).

RS =
V10000/N 

H
Nthn/Ntot 

Gthn/ Gtot

(24)

(25)

where Nthn, and Ntot are respectively removed and total 
number of stems and Gthn and Gtot are respectively 
removed and total basal area.

In fact the thinned model could be expressed with the 
relative space index, if we model the yield with a product 

of dominant height model and DBH model instead using 
cube of Mitscherlich law (Eq. 8).

However, in the study conducted, information on thin- 

ning practices is not always available, so it would have 
been difficult to assign a weight and type of thinning to the 
different stands in the database to establish a clear classi­

fication that would improve the predictive quality of the 
models.

Our models don’t reflect spatial structure of biomass. 
We did not test general linear models (GLM) of every 

possible first-order combination of environmental vari­
ables like latitue, longitude, elevation, rainfall, ... in order 

to assess what extent environmental effects can explain 
biomass spatial variation as it is made in (Guitet et al. 

2015).

Conclusions
This paper addressed stand biomass dynamic models of 
evergreen forests in order to improve biomass growth 
dynamic assessment at regional scale relying on easily 
observable parameters (e.g. stand density). Two types 
of population were considered, self-thinned and man- 
aged one, and two species (Japanese cedar and Japanese 
cypress) were looked at. The models were performed on a 
large database with Bayesian inference.

For managed forests two types of modelling approaches 
were compared Mitscherlich one and a new approach 
called thinned model based on geometric considerations. 
The results showed an obvious lack of identifiability of 
Mitscherlich model parameters by the analysis of sen- 
sitivity functions and conditioning indices and with the 
posterior density of input parameters too. By Bayesian 
inference, marginal loglikelihood showed that thinned 
model has a strong evidence in comparison to Mitscher- 
lich model too.

The study of the relationships between the parameters 
of the presented models allowed to highlight the charac- 
teristics of the biomass dynamics at different stages of the 
forest evolution:

These models, unlike biomass expansion factor mod- 
els, provided an ecological view by estimating yield rate 
dynamics across life stages, growth rates and mortality 
rates.

Results of self-thinned model brought evidence of light 
self-thinning law with the 3/2 rule with a a parameter 
(a = 1.4) quite close to 3/2. Quotient of relative growth 
rate on relative mortality rate were given as function 
of physical time and relative mortality rate is 2.5 times 
more important than relative growth rate after about 40 
years old. The growth rate of mean tree biomass can 
be expressed as a generalized sigmoid curve relative to 
biological time. Stand density and stand yield can be 

expressed as function of biological time, showing that 
yield is independant of initial density.

Managed forest models (thinning or Mitscherlich one) 
do not allow the expression of the relative growth rate 
quotient by the relative mortality rate, or the growth rate 
of an average tree. This is because these models do not 
incorporate a structural dependence between stand den- 
sity and stand yield. It is therefore not easy to express 

biological time as a function of physical time, unlike the 
self-thinning forest model, which has a structural depen- 
dence between stand density and stand yield.

The implementation of these dynamic models with few 
parameters and easy-to-measure explanatory variables 
such as stand density will allow them to be integrated into 
larger forest ecosystem modeling systems for predictive 

purposes.
The interest of having at one’s disposal a parameteriza- 

tion of dynamic biomass models as a function of accessible 
physical quantities such as stand density, goes beyond 
the problem of integrating these models into predictive 
systems within forest ecosystems. These models can be 
used to dynamically estimate the carbon balance and con- 
tribute to a better understanding of climate change factors 
(Schulze et al. 2021). Dynamic models can also quantify 
the carbon stored in Sugi and Hinoki forests in specific 
years when no data are available (Aguirre et al. 2021).
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