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Abstract. Intrusion Detection Systems (IDS) are capital instruments
for protecting ATM networks against intrusion, and subsequently ensur-
ing the integrity of air traffic. An anomaly detection approach in such
systems enables the detection of multiple types of attacks with the aid of
a threshold as a criterion for differentiating between normal activity and
unusual events in the network. IDS with fixed threshold fail to detect
the presence of patterns in the data, thus hampering proper detection
ability, and requiring regular human intervention. Detection ability of
IDS can be improved by establishing an automated system that recog-
nises pattern shifts in evolving data streams and adjusts the threshold
accordingly. Our work focuses on designing an algorithm to recognize
the occurrence of new patterns and adjust the threshold consequently
for enhanced anomaly detection, whilst offering flexibility for different
frameworks and scalability to cope with large data streams. In this arti-
cle, we present an adaptive threshold approach based on extreme value
theory, which aims to automatically detect concept drifts in radar data
streams. We evaluate our method in a practical scenario of anomaly
detection on time series data collected by air traffic radars across France
and show that we can achieve a threefold performance improvement over
a standard approach using a fixed threshold.
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1 Introduction

Surveillance radars for air traffic monitor the behaviour of an aircraft during the 
course of a flight. Such communications between surveillance radars and aircraft 
are recorded and transferred over a private network linking the various air traffic 
management (ATM) entities. Nevertheless, the effort to connect multiple ATM 
systems, which were previously operating in a closed environment, is resulting in 
the disruption of previous security features, thereby exposing the entire system 
to attacks. In order to ensure security in the ATM network, intrusion detection 
systems (IDS) that can provide a hybrid of misuse and anomaly detection are 
deployed. Since attacks are not yet widespread in ATM networks, malicious
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actions are barely defined, thus an IDS based on misuse detection is unable
to detect unknown attacks. As air traffic increases, it is necessary to ensure
the reliability and relevance of the detections of all types of attacks. Existing
approaches based on a fixed threshold trigger numerous false alarms, resulting in
the failure to meet the criterion of relevance of an IDS. Hence, the importance of
introducing an alternative approach that breaks away from the classical approach
in order to respond to the qualities of an IDS.

We aim to provide a solution centred on concept drift recognition, with
improved anomaly detection over a fixed threshold due to the dynamic adjust-
ment of the threshold following the occurrence of drifts. The proposed solution
intended to be flexible and scalable, with the potential to be used in different
frameworks and to process high volumes of data. In this article, we present an
adaptive threshold approach based on extreme value theory (EVT), which aims
to automatically detect concept drifts in radar data streams. We evaluate our
method in a practical scenario of anomaly detection on time series data collected
by air traffic radars across France and show that we can achieve a threefold per-
formance improvement over a standard approach using a fixed threshold. We
also present a protocol for processing radar data to perform anomaly detection,
as it constitutes a preliminary step in order to asses our method.

We structure this article as follows. Section 2 presents the state of the art and
related work. In Sect. 3 we present the VPOT approach and provide a break-
down of our methodology. In Sect. 4 we provide the experimental framework and
discuss the outcomes. Finally, in Sect. 5 we review our progress and consider the
directions for future work.

2 Related Work

The existing approaches for anomaly detection through machine learning include
outlier detection (Lazarevic et al. [1]), classification (Bhuyan et al. [2]) and semi-
supervised learning techniques (de Riberolles et al. [3]). In all of the approaches
discussed, anomalies are detected via a fixed threshold. The capacity of a fixed
threshold is compromised by the presence of fluctuating data, which will often
require human intervention to correct the threshold. Considering that under
this approach the threshold is computed on the observed data set, calculating
the threshold on a relatively small data set will result in a poor extrapolation
of the threshold in data streams. It will thus be required to calculate it on
fairly large data sets in order to capture the overall behaviour. However, the
processing time of this threshold will be significantly long, especially when the
data set processed is large, thereby affecting its scalability. An effective approach
to ensure that manual intervention is not required to make adjustments, and to
reduce computing time through automation, is to employ an adaptive threshold,
which is a mechanism that has the ability to recognise the presence of new
behaviour patterns in the observed data in order to calculate a threshold on
that basis. In order to develop an adaptive threshold, numerous strategies have
been presented in the scientific literature. Machine learning related methods are



addressed for detecting concept drift and computing the threshold. Esposito et
al. [4] present a method that relies on Cohen’s Kappa coefficient as a metric to
ascertain the threshold. This method is suitable for classification algorithms as it
does not constrain the training of the model being used. However, the drawing
of random samples in the process of calculating the threshold risks breaking
the time series continuity, resulting in a poor representation of the behaviour
of the data. Probabilistic approaches rely on the results of probability theory,
Ali et al.[5] study the automation of the threshold used for anomaly detection
systems in an effort to improve the detection capability of zero-day attacks in
the traffic of a computer network. To address this aim, a recognition algorithm
based on Markov chains is used to predict abnormal scores, leading to an a priori
threshold that fits these predictions. An extension of the work of Ferragut et al.
[6], who reformulate the notion of anomaly based on a probabilistic approach,
is proposed by Bridges et al. [7]. In their studies, the distribution of incoming
data is assumed to be known and a guideline is suggested to build a threshold
–either fixed or automated– in a generic form that would depend on the data
flow and the number of alarms allowed.

An interesting insight is brought by combining the using of sliding windows
and probabilistic tools. T. Wang et al. [8] present a martingale-based method to
learn the regularity of the observed data in a sliding window of variable size and
to identify the shifts in the data stream. The threshold is computed according to
a global factor that ascertains the confidence level of the detection. On the other
hand, H. Wang [9] defines a threshold for incoming observations by conducting
a wavelet analysis and the resulting confidence interval obtained by using the
Central Limit Theorem over a sequence of data on a sliding window of fixed
size. On their part, Clark et al. [10] present a method for detecting concept
drifts through a sliding window based approach that relies on a statistical test,
with the threshold being adjusted accordingly. Finally, Siffer et al. [11] suggest
the use of a threshold derived from the results of the extreme value theory.
The threshold is defined from the quantiles of a generalized Pareto distribution,
in dependence on the sensitivity chosen to differentiate between normal and
abnormal data.

We have discussed several approaches to establish a threshold that can adapt
to the nature of the data. In their majority, these approaches rely on statistical
tests or sliding windows, assuming that the theoretical distribution of the data is
known. Nevertheless, in a practical framework, the nature of data is constantly
changing. Hence, making an a priori assumption on the nature of the data or
the abnormal scores constrains the computation of the threshold to a single
case of the model. After a thorough review of the methods discussed, we will
consider the potential of linking a probabilistic approach with a sliding window
system to provide a solution with a level of flexibility that facilitates the inclusion
of an adaptive threshold in the operational environment of an IDS. Existing
approaches focus on either detecting concept drift or on computing the threshold,
and are often restricted to specific frameworks. We propose a generic approach
involving concept drift detection and robust threshold calculation. With this



insight, we design an automated method that employs sliding windows of variable
size, along the introduction of a non-parametric test to detect concept drifts in
fluctuating data. To achieve better efficiency, the threshold is obtained by using
an extreme value theory approach. On completion, we perform a benchmarking
analysis of the approaches VATU [10] and DSPOT [11] with our approach when
applied to surveillance radar data from ATM networks.

3 Method

In this section we present our approach VPOT that combines the VATU [10] and
DSPOT [11] concepts for developing an adaptive threshold capable of identifying
concept drifts. We also establish a guideline for obtaining an anomaly score from
radar data, on which our method will be evaluated.

3.1 VPOT Approach

VATU approach addresses the detection of concept drift zones in Gaussian dis-
tributions via the z-test. To perform the test, two sliding windows are dedicated
for the comparison of the last monitored and new incoming scores. However, the
z-test is bounded by its inability to perform on non-Gaussian distributions. To
ensure compatibility with scores from different distributions, we have introduced
the Kolmogorov-Smirnov test in VPOT, which is applied on the scores in the
two sliding windows. In contrast to VATU, where the threshold is calculated by
a linear combination of the mean and standard deviation of the scores, a more
advanced threshold calculation is possible with DSPOT. This approach based
on the EVT, and more accurately on the Peaks Over Threshold (POT) method,
allows to compute a threshold without prior knowledge of the distribution of
the scores. A crucial aspect is that EVT results, and the subsequent application
of the POT method, require the scores to be independent and identically dis-
tributed (iid), which is not met in a realistic scenario such as presented in this
study. On the case of the scores we generate, they are dependent on each other
if the distance between them is less than or equal to the size of the window used
for computing the scores. Nevertheless, this dependence weakens as two scores
become more distant from each other. By analysing the autocorrelation of the
scores (Fig. 1), we observe a decreasing degree of correlation as the lag increases.
This outcome, which is consistent with the scoring method, suggests that the
dependency between two scores is short-term. Under the condition of short-term
dependency, the same results of the EVT can be applied as for the iid variables
[12,13].

Moreover, in broad strokes, the POT method is based on the Pickands-
Balkema-De Haan theorem [14,15] and is applied for ascertaining the probability
of an anomalous event. The method, however, is considered for situations where
the scores do not vary considerably, and to ensure this condition, a change of
variables X ′ = X − Md, where Md is the moving average over the last d scores,
is introduced. Finally, the maximum likelihood method is used to ascertain the



Fig. 1. Autocorrelation of the scores in relation to the lag k

extreme quantile to be used as a threshold for identifying abnormal activity.
In DSPOT, the extreme quantile is computed with every new observation. In
contrast, in VPOT, every time a drift is detected, the extreme quantile is com-
puted over the scores in a third window that includes both the observed and the
incoming scores, thus improving the computational efficiency.

Following a similar procedure as in VATU, we regularly update the scores
stored in the third window. The purpose of this update is to prevent a station-
ary threshold in the case where concept drifts are not present or not properly
detected. In the following diagram (Fig. 2), we present the steps of the VPOT
algorithm.

3.2 Methodology

In order to evaluate the performance of the discussed methods, we produce scores
that capture the degree of abnormality in a sequence of data. In the following
paragraphs we will briefly describe the process leading to the setting of our
adaptive threshold.

Initially, we collect the features of interest from raw data stored in network
packet records. We then proceed to the preparation of the data to be transferred
to the autoencoder model for its training. For a brief overview, following on [3],
we consider an autoencoder consisting of GRU (Gated Recurrent Units) cells.
After concluding the training of the model, we artificially introduce anomalies
that represent spoofing attacks in the test samples. The last step in the process
consists in comparing the reconstruction provided by the autoencoder with the
input data by using a metric –abnormal score– derived from the cosine similarity.
Once the scores are computed, we then set up the threshold –fixed or adaptive–
to identify anomalies in the testing data sets. On these scores, adaptive threshold
algorithms employ sliding windows to identify concept drifts that occur, and set
the threshold in accordance with the incoming data. Our protocol is described
in Fig. 3.



Initialise on a calibration sample

Calculate X ′

Identify potential anomalies

Perform hypothesis testing

Periodically update the threshold

Control the size of tw

Fig. 2. Algorithm VPOT proceeding

Data extraction Data processing Training of the
autoencoder

Introduce anomalies
in testing data sets

Scoring Introducing
the threshold

Fig. 3. Stages of anomaly detection using an autoencoder

4 Experimental Assessment

In this section, we will provide our experimental protocol, followed by an
overview of the experimental data sets and their corresponding abnormal scores.
Finally, we will evaluate and discuss the results of the three methods VATU,
DSPOT and VPOT, including their performance with respect to a fixed thresh-
old.



4.1 Experimental Protocol

The purpose of our experiments is twofold. First, to evaluate the ability of our
algorithm to identify the areas where concept drift occurs. Our second aim is to
assess the effectiveness of the threshold to be adjusted in such a way to detect
a maximum of anomalies –criterion of reliability– and to raise the fewest false
alarms –criterion of relevance–. For these experiments we formulate the following
assumptions. We set ourselves in a realistic framework, in which the data is
complex, with the occurrence of different patterns that result in concept drifts
in data and subsequently in anomalous scores. The data set used for training the
autoencoder consists of real world data from normal air traffic activity. On the
other hand, the data sets used for testing include anomalies corresponding to
spoofing attacks where information have been altered. In order to measure the
scalability of our solution, we chose test samples with size of 3 million records
that represent 5% of all records over a 24-h time span.

We perform our experiments in a virtual machine under the following envi-
ronment: 12 CPUs x Intel Xeon(R) Silver 4216 CPU @ 2.10 GHz, 62.8 GB of
RAM, 214.7 GB of disk memory, a 256-bit LLVM 11.0.0 GPU, running on a 64-
bit Ubuntu 20.04.2 LTS system. The runtime of the algorithms varies with the
sample size. However, we can differentiate the algorithms based on their rapidity.
In the following table, we have illustrated the average runtime of the reviewed
methods on the larger samples (Table 1).

Table 1. Table of performances

Algorithm Sample size Average runtime

VATU 3 × 106 14 s

DSPOT 1 × 106 4 h 36 min 47 s

VPOT 3 × 106 1 min 35 s

Fixed threshold 3 × 106 38 min 54 s

In view of the considerably high execution time for the DSPOT algorithm
for large sample sizes, we have opted to rely on the results generated by a
one-time execution of the algorithm. Given this constraint, we also choose to
benchmark the other algorithms under the same conditions to provide a more
fair comparison.

4.2 Data Set

The data at our disposal corresponds to the captured messages sent by surveil-
lance radars for civil aviation air traffic. Raw network capture files (.pcap) con-
tain 4 h of records, with the average size of each file being 700 Mb, which varies
depending on the traffic at the time of recording. To facilitate the analysis and
processing of such data, we transform the raw capture files into .csv files.



With real world data being used, anomalies are artificially introduced into
the data set. Hence, it is not convenient to fix permissible false alarm rates for
the framework. Our data sets are built from a collection of information retrieved
from different aircraft. This information enables us to identify an aircraft –
aircraft address (ACAddr)– and track its position –in polar coordinates (RHO,
THETHA)– and route –flight level (FL), calculated ground speed (CGS) and cal-
culated heading (CHdg)–, to identify the radar station transmitting the messages
to the network –system identification code (SIC)–, and the timestamp (TS). In
view of this background, and the importance of considering the reporting time
of the transmitted messages, the data collection under study consists of a mul-
tivariate time series. For this paper, we will use a training data set consisting
of 12 million records registered over a 24-h period. As data collected since the
start of the Covid-19 pandemic constitute an unprecedented scenario, it becomes
a serious challenge to characterise a pattern of normal air traffic activity. Our
finality being to develop a generic support tool for the air traffic controller, by
using data from normal activity, we can assess the benefits of our approach with
a real world data set. Therefore, we will be focusing on data collected prior to
the pandemic. More precisely, the data set used for training the autoencoder
consists of 12 million records, that were retrieved on 24/09/2019. For testing, we
use two distinct data sets, each one consisting of 3 million records retrieved on
25/09/2019 and 26/09/2019, over a 4-h time frame corresponding to the peak of
air traffic throughout the day in order to gather the more relevant information.

4.3 Benchmarking

Before evaluating the performance of the proposed algorithms, we tuned the
parameters of each method to define the optimal setting. The window size is
adjusted to allow enough data to compute the threshold. A narrow margin of
error is assigned to the test that identifies concept drift. The likelihood of an
anomaly occurring is typically low, therefore we opt for large quantiles that
enable the recognition of anomalies. We employed the following metrics as bench-
marks: precision, recall, accuracy and F1 score. We therefore suggest the follow-
ing settings for each algorithm (Table 2):

Table 2. Table of optimal settings

Algorithm Window size Significance level of the test Probability (quantile)

VATU T = 300 alpha = 0.05 �
DSPOT d = 150 � q = 0.01 (z0.99)

VPOT T = 2000 alpha = 0.05 q = 0.01 (z0.99)



Taking these settings as a reference, we conducted a benchmark of the perfor-
mances achieved by the VATU, DSPOT and VPOT algorithms on sub-samples of
different sizes, along with the ones achieved by using a fixed threshold. To define
the fixed threshold, we selected the threshold s∗ that presented the lowest false
positive rate (FPR) amongst the thresholds that exhibited a true positive rate
(TPR) superior to a certain value δ that is arbitrarily adopted in consideration
of the capacity of the autoencoder: s∗ = argmin

s
{FPR(s);TPR(s) ≥ δ, s ∈ S},

with S being the set of the fixed thresholds s used to calculate the ROC curve.

4.4 Observation

After running the algorithms on the scores achieved on subsamples of sizes rang-
ing from 50,000 to 3 million records from the test data sets, we provide the
following remarks.

The first remark is that an adaptive threshold provides a better overall perfor-
mance (Fig. 4 and 6) than the fixed threshold. However, it shows less sensitivity
compared to a fixed threshold (Fig. 5 and 7). On the smaller samples, VATU,
DSPOT and VPOT have similar performance and sensitivity for the first test
data set (Fig. 4 and 5), whereas we perceive a gap in performance and sensitivity
between VPOT and DSPOT for the second data set (Fig. 6 and 7). On medium
and large samples for both test data sets, both VATU and VPOT maintain the
same level of efficiency, with a slightly decreasing sensitivity in spite of a slight
decline in the efficiency of VPOT for the second test data set on medium sam-
ples. An efficiency decay is noticeable for DSPOT on both data sets. As a result,
it appears that overall VPOT shows slightly better results, while VATU and
DSPOT exhibit similar performances, all three performing significantly better
than a fixed threshold.

Fig. 4. F1 score for test data set collected on 25/09/2019



Fig. 5. Recall for test data set collected on 25/09/2019

Fig. 6. F1 score for test data set collected on 26/09/2019

Fig. 7. Recall for test data set collected on 26/09/2019

4.5 Discussion

Firstly, we shall stress that while the fixed threshold ensures a better detection of
the introduced anomalies, it triggers frequent false alarms that cause a decrease
in precision and a consequent poor performance. Regarding accuracy, the use of



an adaptive threshold produces fewer false alarms, yielding improved precision
as compared to the fixed threshold. Both methods VATU and VPOT use the
scores within a sliding window (tw) of reasonably small size to calculate the
threshold. This means that the calculated thresholds depend to a lesser extent
on the previous scores, ensuring a better fit to the observed patterns, which in
turn provides consistency to the methods. In contrast, DSPOT’s method of cal-
culating the threshold considers the excesses of all previous observations. As a
consequence, a substantial impact is caused by the excesses of data showing a dif-
ferent behavioural pattern and therefore the calculated threshold is increasingly
less dependent on the actual data. This allows us to understand the decrease
in performance experienced as the sample size increases. We can attribute the
enhanced efficiency of the VPOT method to the fact that the EVT provides a
threshold that is more adapted to the observed data compared to using a lin-
ear combination of the mean and the standard deviation, particularly by using
only the excesses within the sliding window. On the second data set, the decay
in efficiency experienced by all threshold methods suggests that effectiveness of
such methods is higher for data sets corresponding to the following day of the
data set used for training the autoencoder.

5 Conclusion and Future Work

In this paper, we have discussed the interest of a developing an adaptive threshold
approach for detecting anomalies in ATM networks. To overcome the limitations
of an IDS based on a fixed threshold, we have defined an algorithm –VPOT–
based on an adaptive threshold approach that provides improved performance,
while being consistent, accurate and fast on high volume data streams.

From an overall standpoint, this approach brings us closer to the requirements
–reliability and relevance– for an IDS in a wider international ATM network.
However to achieve operability in a real life application, certain aspects can be
further addressed. In particular, transition areas between data from two separate
aircraft are interpreted as anomalies by the autoencoder model, yielding a higher
scores that trigger numerous false alarms, thus reducing the performance of
the threshold. We therefore contemplate a more extensive handling of concept
drift [16] in order to identify transition zones more accurately, and introducing
machine learning-based approaches for concept drift detection [17].

In addition, the capacity of the autoencoder is an underlying factor in our
protocol, therefore to enhance its efficiency, we intend to conduct continual learn-
ing of the model, which will enable us to yield more accurate scores.
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with extreme value theory. In: KDD 2017, August 2017, pp. 1067–1075 (2017).
https://doi.org/10.1145/3097983.3098144

12. Leadbetter, M., Lindgren, G., Rootzén, H.: Extremes and Related Properties of
Random Sequences and Processes. SSS, Springer, New York (1983). https://doi.
org/10.1007/978-1-4612-5449-2

13. Poon, S.-H., Rockinger, M., Tawn, J.: Modelling extreme-value dependence in inter-
national stock markets. Stat. Sin. 13(4), 929–953 (2003). https://doi.org/10.2139/
ssrn.302961. Institute of Statistical Science, Academia Sinica

14. Balkema, A.A., de Haan, L.: Residual life time at great age. Ann. Probab. 2(5),
792–804 (1974). https://doi.org/10.1214/aop/1176996548

15. Pickands III, J.: Statistical inference using extreme order statistics. Ann. Stat.
3(1), 119–131 (1975). https://doi.org/10.1214/aos/1176343003

16. Hoens, T.R., Polikar, R., Chawla, N.V.: Learning from streaming data with concept
drift and imbalance: an overview. Prog. Artif. Intell. 1(1), 89–101 (2012). https://
doi.org/10.1007/s13748-011-0008-0

17. Harries, M., Horn, K.: Detecting concept drift in financial time series prediction
using symbolic machine learning (July 1996)

https://doi.org/10.1109/AERO47225.2020.9172292
https://doi.org/10.1109/AERO47225.2020.9172292
https://doi.org/10.1021/acs.jcim.1c00160
https://doi.org/10.1145/2445566.2445569
https://doi.org/10.1109/ICMLA.2012.151
https://doi.org/10.1109/ICMLA.2012.151
https://doi.org/10.1109/BigData.2017.8258031
https://doi.org/10.1109/BigData.2017.8258031
https://doi.org/10.1007/s10033-017-0191-4
https://doi.org/10.14257/ijfgcn.2015.8.6.20
https://doi.org/10.1109/DSAA.2018.00014
https://doi.org/10.1109/DSAA.2018.00014
https://doi.org/10.1145/3097983.3098144
https://doi.org/10.1007/978-1-4612-5449-2
https://doi.org/10.1007/978-1-4612-5449-2
https://doi.org/10.2139/ssrn.302961
https://doi.org/10.2139/ssrn.302961
https://doi.org/10.1214/aop/1176996548
https://doi.org/10.1214/aos/1176343003
https://doi.org/10.1007/s13748-011-0008-0
https://doi.org/10.1007/s13748-011-0008-0

