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1 Introduction

The measurements of the anomalous magnetic moment of the muon aµ, made at BNL [1]
and more recently at Fermilab [2, 3], give the results:

aBNL
µ = 116 592 089 (63)× 10−11 and aFNAL

µ = 116 592 040 (54)× 10−11 . (1.1)

They agree with each other at the level of 0.6 standard deviations (0.6σ) and their combined
number

aµ(2021) = 116 592 040 (41)× 10−11 , (1.2)

has the remarkable accuracy of 0.35 parts per million.
The theoretical evaluation of the same observable in the Standard Model has been

made to a comparable precision. The result

aµ(Th. WP) = 116 591 810 (43)× 10−11 (1.3)

reported in the 2020 White Paper (WP) of ref. [4] has been the consensus theory number
for a while. When compared to the experimental number in eq. (1.2) it turns out to be
4.2σ below, a significant difference, which has triggered many speculations on what kind
of new physics could explain this difference.
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The 2020 WP number, however, does not take into account the lattice QCD (LQCD)
result of the BMW collaboration [5]

aµ(HVP)BMW = 7 075 (55)× 10−11 , (1.4)

which differs from the evaluations using data-driven dispersion relations [6, 7]:

aµ(HVP)ref.[6]
lowest order = 6 940 (40)× 10−11 and aµ(HVP)ref.[7]

lowest order = 6 928 (24)× 10−11 ,

(1.5)
incorporated in the consensus theory number of the 2020 WP. The BMW-lattice QCD result
reduces the total discrepancy with the experimental result in eq. (1.2) from 4.2σ to 1.6σ.
Still a discrepancy, but not significant to argue evidence for new physics. Recently, the
BMW result has also been confirmed, at least partially, by other LQCD collaborations [8–
10]. If the disagreement between LQCD and the experimental dispersive evaluations of
the HVP persists, one will have to find the explanation for that. The two methods involve
integrals of different quantities which makes the comparison difficult but not impossible.
A lot of activity on that is underway, mostly concentrated on evaluations of the so called
window observables proposed in ref. [12] (see e.g. refs. [8, 11, 13] and references therein).

In the meantime, the Fermilab Muon g − 2 experiment expects to reduce the error
of their 2021 result by a factor of four, as more statistics accumulate. There is also a
new experiment at the Japan Proton Accelerator Research Complex in Tokai, the J-PARC
experiment E34 [14], which will employ a new different technique to measure the muon
anomaly. Another expected experiment is the MUonE proposal at the CERN SPS [15–
17]. It consists in extracting the value of the HVP self-energy function in the Euclidean
from its contribution to the differential cross-section of elastic muon-electron scattering,
with muons at Eµ = 160 GeV colliding on atomic electrons of a fixed low Z target [18].
The muon anomaly can then be obtained from a weighted integral of the measured HVP
self-energy function.

The purpose of this paper is to introduce a new type of model independent approx-
imants adapted to the time momentum representation (TMR) of hadronic vacuum po-
larization used in LQCD evaluations of aµ(HVP) at present. The method is based on
the reconstruction approximants which follow from the transfer theorem of Flajolet and
Odlyzko [19, 20], and has previously been applied to the MUonE-proposal [21] as well as to
other observables (see e.g. refs. [22–24]). We show how to adapt this method to extrapo-
late the LQCD results obtained in a restricted TMR-interval to the full integration domain
required to evaluate aµ(HVP).

The paper is organized as follows. Section 2 reviews the properties of HVP and its
TMR which will be needed. Section 3 is dedicated to the asymptotic behaviours of the
TMR function G(x0) in QCD, both at short distances and at long distances. As far
as we know, some aspects of this section are new, in particular the construction of a
skeleton G∗(x0) function in terms of Bessel functions which provides a first approximant
to the TMR G(x0) function in its full x0 range. Section 4 discusses the formulation of
the reconstruction approximants that follow from the transfer theorem of Flajolet and
Odlyzko [19, 20]. The content of this theorem is explained in subsection 4.1, and its
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application to construct what we call FO-approximants (for short) is discussed in detail
in subsection 4.2. Section 5 is dedicated to show how to implement the FO-approximants
in practice, and we illustrate this with the example of a phenomenological model which
simulates the physical hadronic spectral function. The conclusion and outlook are finally
given in section 6. We have relegated to an appendix the mathematical details of the
FO-theorem needed in our application.

2 Properties of HVP and its TMR

The function which governs HVP is the Fourier transform of the vacuum expectation value
of the time-ordered product of two electromagnetic hadronic currents of the Standard
Model Jhad

µ (x) at separate space-time x-points:

Πhad
µν (q) = i

∫ +∞

−∞
d4x eiq·x〈0|T

(
Jhad
µ (x)Jhad

ν (0)
)
|0〉 = (qµqν − q2gµν)Πhad(q2) . (2.1)

The hadronic photon self-energy function Πhad(q2) is a complex function of its q2 variable.
It is an analytic function in the full complex plane, but for a cut in the real axis which
goes from the physical threshold t0 to infinity.1 As such, the on-shell renormalized HVP-
function, i.e. Πhad(q2) subtracted at its value at q2 = 0, obeys the dispersion relation:

ΠHVP(q2) ≡ Πhad(q2)−Πhad(0) =
∫ ∞
t0

dt

t

q2

t− q2 − iε
1
π

Im Πhad(t) , t0 ≡ 4m2
π± , (2.2)

and the optical theorem relates the hadronic spectral function 1
π Im Πhad(t) to the one-

photon annihilation cross-section into hadrons:

σ(t)e+e−→had ∼
me→0

4π2α

t

1
π

Im Πhad(t) . (2.3)

The evaluation of the HVP contribution to the anomalous magnetic moment of the muon
aHVP
µ can then be made using the integral representation [25–27]:

aHVP
µ = α

π

∫ ∞
t0

dt

t

∫ 1

0
dx

x2(1− x)
x2 + t

m2
µ

(1− x)
1
π

Im Πhad(t) . (2.4)

This so called dispersive method, is the way that experimental data-driven determinations
of aHVP

µ have been made; the earliest in ref. [27] using the Gounaris-Sakurai parametrization
of the pion form factor [28], the latest in refs. [6, 7] using a wealth of experimental results.

A crucial observation made by the authors of ref. [29] is that, in Euclidean space-time
and in the special kinematic configuration where ~q = 0, the Πhad

µν (q) function in eq. (2.1)
becomes

Πhad
ij (q0,~0) =

∫ +∞

−∞
dx0e

−iq0x0

∫ +∞

−∞
d3~x δij 〈0|T (Ji(x0, ~x)Jj(0)) |0〉︸ ︷︷ ︸

G(x0)

, (2.5)

1In the presence of higher order electromagnetic corrections the threshold is at the mass of the π0 because
of the π0γ contribution to the spectral function. In this paper the threshold will be fixed at t0 = 4m2

π± ,
but can be adjusted to m2

π0 if necessary.
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and the underlined time-dependent function G(x0), for x0 in an optimal region, is accessible
to accurate evaluations in LQCD. The expression of aHVP

µ in terms of G(x0), the so called
TMR [29], is then given by the integral:

aHVP
µ = α

π
m2
µ

∫ ∞
0

dx0
x4

0
2 G2,3

3,5

(
(mµx0)2

∣∣∣∣∣ −1,−1
2 , 0 ; —

0, 1,−3,−3
2 ,−2

)

×
∫ ∞
√
t0
dω ω2 e−ω|x0| 1

π
Im Πhad(ω2)︸ ︷︷ ︸

G(x0)

, (2.6)

where ω2 = t (the Minkowski t-variable of the spectral function) and

G2,3
3,5

(
(mµx0)2

∣∣∣∣∣ −1,−1
2 , 0 ; —

0, 1,−3,−3
2 ,−2

)

= 1
2πi

cs+i∞∫
cs−i∞

ds (mµx0)−2s
Γ(s)Γ(1 + s)Γ(1− s)Γ

(
3
2 − s

)
Γ(2− s)

Γ(4− s)Γ(3− s)Γ
(

5
2 − s

) , (2.7)

is a Meijer’s G-function.
The TMR-function G(x0) in eq. (2.6) is the second derivative (with respect to the

time variable x0) of the Laplace transform (with respect to the energy variable ω) of the
hadronic spectral function. From the usual definition of the Laplace transform:

L(x0) =
∫ ∞
√
t0
dω e−wx0 1

π
Im Πhad(ω2) , (2.8)

there follows that

G(x0) =
(
− ∂

∂x0

)2
L(x0) =

∫ ∞
√
t0
dω e−ωx0 ω2 1

π
Im Πhad(ω2) . (2.9)

Because of the positivity of the hadronic spectral function, both functions L(x0) and G(x0)
as well as the successive derivatives

(
− ∂
∂x0

)p
G(x0), p = 1, 2, 3, . . . , are all monotonously

decreasing functions of x0 for 0 ≤ x0 ≤ ∞; a well known property as well of the Mellin
transform of the hadronic spectral function [30]

M(s) =
∫ ∞
t0

dt

t

(
t

t0

)s−1 1
π

Im Πhad(t) , (2.10)

as a function of Re(s) < 1.
An alternative way to evaluate aHVP

µ to the one in eq. (2.6), is to use the integral
representation

ΠHVP(−Q2) = 2
∫ ∞

0
dx0

[
1− cos

(√
Q2x0

)]
L(x0) , (2.11)

equivalent to [29]

ΠHVP(−Q2) = 2
∫ ∞

0
dx0

1− cos
(√

Q2x0
)

Q2 − x2
0

2

 G(x0) , (2.12)
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and then the Euclidean representation of the anomaly proposed in refs. [31–33]:

aHVP
µ = −α

π

∫ 1

0
dx (1− x) ΠHVP

(
− x2

1− xm
2
µ

)
, Q2 ≡ x2

1− xm
2
µ . (2.13)

3 Asymptotic behaviours

The TMR-function G(x0) has a Mellin-Barnes representation which can be obtained by
inserting the identity

e−ωx0 = 1
2πi

cs+i∞∫
cs−i∞

ds (ωx0)−s Γ(s) , cs ≡ Re(s) > 0 , (3.1)

in the integrand of eq. (2.9) (recall that t = ω2) and following the steps:

G(x0) =
∫ ∞
√
t0
dω e−ωx0 ω2 1

π
Im Πhad(ω2) (3.2)

= 1
2πi

cs+i∞∫
cs−i∞

ds x−s0 Γ(s)1
2

∫ ∞
t0

dt

t
t3/2−s/2

1
π

Im Πhad(t) (t ≡ ω2)

= t
3/2
0
2

1
2πi

cs+i∞∫
cs−i∞

ds
(
x0
√
t0
)−s

Γ(s) M(5/2− s/2) , cs ≡ Re(s) > 3

= t
3/2
0

1
X5

1
2πi

cs+i∞∫
cs−i∞

ds

( 1
X2

)−s
Γ(5− 2s) M(s) , cs ≡ Re(s) < 1 , (3.3)

where going from the second line to the third we have used the definition of the Mellin
transform of the spectral function in eq. (2.10), and from the third line to the fourth we
have introduced the dimensionless variable

X
.= x0
√
t0 , (3.4)

and redefined the integration s-variable. From here onwards we shall often work with the
dimensionless TMR-G(X) function:

G(X) ≡
∫ ∞

1
dω̂ e−ω̂X ω̂2 1

π
Im Πhad(ω̂2t0) = 1

t
3/2
0

G(x0) , (3.5)

where
ω̂ ≡ ω√

t0
. (3.6)

The TMR of the muon anomaly with this redefinition in terms of the dimensionless variable
X is then:

aHVP
µ = α

π

m2
µ

t0

∫ ∞
0

dX K(X) X3 G(X) , (3.7)

– 5 –
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Figure 1. Plots of the kernel K(X) in eq. (3.8) versus X and versus x0 in Fermi units.

with
K(X) = X

2 G2,3
3,5

(
m2
µ

t0
X2

∣∣∣∣∣ −1,−1
2 , 0 ; —

0, 1,−3,−3
2 ,−2

)
(3.8)

the integration kernel. Figure 1 shows the familiar shape of this kernel, as a function of X
and as a function of x0 in Fermi units for comparison.

The Mellin-Barnes representation of G(X) that follows from eq. (3.3) is:

G(X) = 1
X5

1
2πi

cs+i∞∫
cs−i∞

ds

( 1
X2

)−s
Γ(5− 2s) M(s) , cs ≡ Re(s) < 1 , (3.9)

where the QCD dynamics is fully encoded in the Mellin transform of the hadronic spectral
functionM(s) defined in eq. (2.10). The singular expansion [34] of the s-integrand in this
representation produces the following series expansion for 0 ≤ X ≤ 1 (i.e. short distances):

G(X) ∼
X→0

α

π

{
a−3
X3 + a−1

X
+
∞∑
n=1

[an + bn logX]Xn

}
. (3.10)

The coefficient a−3 of the leading term is fixed by the residue of the QCD Mellin transform
at s = 1 which, to leading order in pQCD, is

a−3 = Nc

3
∑

quarks
e2
q × 2 . (3.11)

The next coefficient a−1 is governed by the quark mass terms of O
(
1/Q2) in the expansion

of Πhad(−Q2) at large Q2. The contribution from the light quark masses to a−1 vanishes
in the chiral limit. The form of the rest of the asymptotic series in eq. (3.10) assumes that
the singularities at s = 1, 2, 3, · · · ofM(s) are simple poles, otherwise higher power logX-
terms must also be included. Let us recall (see e.g. ref. [21]) that the singularities ofM(s)
at s = 1, 2, 3, . . . govern the asymptotic expansion of the hadronic self-energy at large Q2.
The coefficients an and bn, however, will become free parameters in our approach; only the
value of a−3 in eq. (3.11) will be used as an input.

The Mellin-Barnes representation in eq. (3.9) does not give, however, direct informa-
tion about the behaviour of G(X) at large-X (i.e. long-distances). This is because the
fundamental strip [34] where the integral in eq. (3.9) converges goes all the way from

– 6 –
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Re(s) < 1 to Re(s) = −∞. One can nevertheless show, using inverse Laplace-transform
properties [35], that the large-X behaviour of G(X) is related to the ω̂ → 1 threshold
behaviour of the hadronic spectral function, i.e. to the power series:

ω̂2 1
π

Im Πhad(ω̂2t0) ∼
ω̂→1

α

π
(ω̂ − 1)3/2

∞∑
n=0

χn(ω̂ − 1)n , (3.12)

where, to lowest order in chiral perturbation theory (χPT)

χ0 ⇒
1

3
√

2
, χ1 ⇒

−1
12
√

2
, χ2 ⇒

11
96
√

2
, · · · . (3.13)

Higher order χPT corrects these values by a series in threshold t0-powers:

χ0 ⇒
1

3
√

2

(
1 + 1

3〈r
2〉π± t0 + · · ·

)
, χ1 ⇒

−1
12
√

2

(
1− 7

3〈r
2〉π± t0 + · · ·

)
· · · ,

(3.14)

where e.g., at the one loop level in χPT [36]

〈r2〉π± = 12L9(µ)
f2
π

− 1
32π2f2

π

[
2 log

(
m2
π

µ2

)
+ log

(
m2
K

µ2

)
+ 3

]
, (3.15)

and the low-energy constant L9(µ) can be obtained, either from experiment [37]:

〈r2〉π± = (0.439± 0.008) fm2 ⇒ L9(Mρ) = (6.9± 0.7)× 10−3 , (3.16)

or from LQCD determinations which are in good agreement (see e.g. ref. [38]) with the
experimental value.

Numerically
χ0 = 1

3
√

2

(
1 + 1

3〈r
2〉π± t0

)
= 0.284± 0.001 , (3.17)

and
χ1 = −1

12
√

2

(
1− 7

3〈r
2〉π± t0

)
= 0.026± 0.002 . (3.18)

Inserting the threshold expansion in the integrand of the G(X) function in eq. (3.5)
leads to the long-distance behaviour of G(X) in terms of a series of simple Laplace trans-
forms:

G(X) ∼
X→∞

α

π

∞∑
n=0

χn e
−X

∫ ∞
1

dω̂ e−(ω̂−1)X(ω̂ − 1)n+3/2 (3.19)

= α

π

e−X

X
5
2

∞∑
n=0

χn Γ
(5

2 + n

) 1
Xn

. (3.20)

This series, however, is a divergent series (though Borel summable in all the models
we have examined), which implies that both the small-X expansion as well as the large-X
expansion of G(X) will participate in the application of the transfer theorem of Flajolet
and Odlyzko [19, 20] that we shall later discuss.

– 7 –



J
H
E
P
0
3
(
2
0
2
3
)
2
4
8

3.1 Asymptotic expansions of G(X) and Bessel functions

An interesting observation about the long distance behaviour of G(X) in eq. (3.19) is that
each term of the series in the r.h.s. can be expressed as a sum of modified Bessel functions of
the second kind Kn(X) (BesselK[n,X] in Wolfram’s Mathematica notation). This follows
from the integral representation:2

Kn(X) = 2−n
√
π

Γ(n+ 1/2)X
n
∫ ∞

1
dω̂ e−Xω̂(ω̂2 − 1)n−1/2 , (3.21)

and the fact that the series expansion in eq. (3.12) can be rearranged as follows:

ω̂2 1
π

Im Πhad(ω̂2t0) ∼
ω̂→1

α

π
(ω̂2 − 1)3/2

∞∑
n=0

χ̂n(ω̂2 − 1)n , (3.22)

with the coefficients χ̂n recursively related to the χn-coefficients in eq. (3.20):

χ0 = 2
√

2χ̂0 , χ1 = 11√
2
χ̂0 + 4

√
2χ̂1 ,

χ2 =
( 3

8
√

2
+ 5
√

2
)
χ̂1 + 13

√
2χ̂2 + 8

√
2χ̂3 , · · · (3.23)

The equivalent long-distance asymptotic behaviour of G(X) in terms of the χ̂n-series in
eq. (3.22) is then

G(X) ∼
X→∞

α

π

∞∑
n=0

χ̂n e
−X ∂2

∂X2

(∫ ∞
1

dω̂ e−Xω̂(ω̂2 − 1)n+3/2
)

(3.24)

which, using the integral representation of the Bessel function in eq. (3.21), becomes

G(X) ∼
X→∞

α

π

∞∑
n=0

χ̂n e
−X 2n+2Γ(n+ 5/2)√

π

∂2

∂X2

[ 1
Xn+2 Kn+2(X)

]
, (3.25)

and

∂2

∂X2

[ 1
Xn+2 Kn+2(X)

]
= 1
X5+n [(20 + 18n+ 4n2)X +X3]Kn(X)

+ 1
X5+n [40 + 76n+ 44n2 + 8n3 + (7 + 4n)X2] Kn+1(X) .

(3.26)

In particular, the n = 0 term of the series in eq. (3.25) is

3χ̂0
e−X

X5

[
(20X +X3)K0(X) + (40 + 7X2)K1(X)

]
(3.27)

which, using the fact that

Kn(X) ∼
X→∞

e−X
√
π

2

(
1

X1/2 + 4n2 − 1
8

1
X3/2 + · · ·

)
, (3.28)

2See e.g. ref. [39].
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reproduces the leading behaviour of G(X) at X →∞ in eq. (3.20) because:

3χ̂0
e−X

X5

[
(20X +X3)K0(X) + (40 + 7X2)K1(X)

]
∼

X→∞
3χ̂0

√
π

2
e−X

X5/2 . (3.29)

Another observation about Bessel functions concerns the asymptotic behaviour of
G(X) at small-X. It is the fact that K0(X) =

X→0
O(lnX) and Kν(X) =

X→0
O(X−ν)

for ν 6= 0 and in particular

K3(X) ∼
X→0

8
X3 −

1
X

+ X

8 + X3

576(12 logX − 11 + 12γE − 12 log 2) + · · · , (3.30)

which has the same O(X−3) leading behaviour as G(X) in QCD at X → 0.
These observations about Bessel functions suggest considering the minimal linear com-

bination of Kn(X)-functions, modulated by X-polynomials, which reproduces the leading
asymptotic behaviours of G(X) in QCD, both at short distances and at long-distances. We
call this the skeleton G∗(X) approximant of the physical G(X) and discuss its construction
in the next subsection.

3.2 The skeleton G∗(X) function

The function in question must be of the form:

G∗(X) = α

π

[
a−3

1
8K3(X) + (A1,0 +A1,1X) K1(X) + (A0,0 +A0,1X) K0(X)

]
, (3.31)

with a−3 the same coefficient as in eq. (3.11), and the coefficients Ai,j adjusted so as to
reproduce the leading threshold behaviour of G(X) in eq. (3.20). This requires a set of
constraints on the Ai,j coefficients so that

G∗(X) ∼
X→∞

α

π

3
4
√
π χ0

e−X

X5/2 . (3.32)

The constraints follow from the fact that the G∗(X) function in eq. (3.31) has the asymp-
totic expansion:

π

α

√
2
π
eXG∗(X) =

X→∞
[A0,0 +A1,1]

√
X

+ 1
8 [a−3 + 8A0,0 −A0,1 + 8A1,0 + 3A1,1] 1√

X

+ 1
128 [70a−3 − 16A0,0 + 9A0,1 + 48A1,0 − 15A1,1] 1

X
3
2

+ 3
1024 [315a−3 + 24A0,0 − 5 (5A0,1 + 8A1,0 − 7A1,1)] 1

X
5
2

+O
[ 1
X

7
2

]
, (3.33)

which, in order to agree with the leading behaviour in eq. (3.32), forces the coefficients of
the first three terms of this expansion to vanish and the coefficient of the fourth term to
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Figure 2. Plot in α
π units of the skeleton function X3 G∗(X) in eq. (3.34) versus X.

reproduce the result in eq. (3.32). The solution of this system of four linear equations with
four unknowns is unique and the G∗(X) function is then completely determined in terms
of the two parameters a−3 and χ0 with the result

G∗(X) = α

π

{
a−3
8 K3(X)

+
[
−33

8 a−3 + 2
√

2 χ0 −
(
12 a−3 − 8

√
2 χ0

)
X

]
K1(X)

+
[
10 a−3 − 6

√
2 χ0 +

(
12 a−3 − 8

√
2 χ0

)
X
]

K0(X)
}
. (3.34)

The shape of the function X3 G∗(X) (in α
π units), for a−3 = 10/3 and the central value

χ0 = 0.28 in eq. (3.17), is shown in figure 2. As expected, it is a monotonic decreasing
function. A quality test of the skeleton interpolating approximant G∗(X) is its contribution
to the muon anomaly. The result (K(X) is the same kernel as in eq. (3.8))

aHVP
µ [G∗] = α

π

m2
µ

t0

∫ ∞
0

dX K(X) X3G∗(X) = 7 533× 10−11 (3.35)

reproduces the central value of, e.g. the LQCD determination in eq. (1.4), at the 6% level,
not bad for a first approximation to the physical G(X).

We have also evaluated analytically the associated spectral function to G∗(X), i.e. the
skeleton spectral function 1

π Im Π∗(t) such that

G∗(X) =
∫ ∞

1
dω̂ e−ω̂X ω̂2 1

π
Im Π∗(ω̂2t0) . (3.36)

The derivation follows from the analytic properties of the Bessel functions which define
G∗(X) with the result

1
π

Im Π∗(t = ω̂2t0) = α

π

(ω̂ − 1)2
[
a−3 (ω̂ − 1) (ω̂ + 4) + 4

√
2 χ0

]
2 ω̂2 (1 + ω̂)

√
ω̂2 − 1

. (3.37)
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Figure 3. Plot in α
π units of the skeleton spectral function 1

π Im Π∗(t) in eq. (3.37) versus t
t0
.

The shape of this spectral function plotted in figure 3 (in α
π units) shows a smooth inter-

polation of the two asymptotic leading behaviours of the HVP spectral function:

1
π

Im Π∗(t = ω̂2t0) ∼
ω̂ →1

α

π

1
12(ω̂ − 1)

3
2

(
1 + 1

3〈r
2〉π± t0

)
,

1
π

Im Π∗(t = ω̂2t0) ∼
ω̂→∞

α

π

5
3 . (3.38)

Our choice of a skeleton function is of course not unique. Any monotonically decreasing
function that interpolates the leading asymptotic behaviours of G(X) at long and short dis-
tances in QCD is a possible choice. One may even choose as a skeleton G∗(X) function the
one provided by the data-driven determination of the HVP spectral function, as suggested
in the Outlook. Our choice, however, is good enough to implement the approximants that
we discuss in the next section. These approximants do not depend on the choice of the
skeleton function, only the speed of their convergence depends.

4 Flajolet-Odlyzko approximants

We next discuss how to improve on the skeleton approximant G∗(X) that we have chosen.
The function

GFO(X) ≡ G(X)
G∗(X) − 1 (4.1)

defines the deviation of the hadronic G(X) function that we want to reconstruct from
the chosen skeleton G∗(X) function. The reason why we introduce this GFO(X) function
is that it no longer has an exponential behaviour at long-distances and, therefore, it is
better adapted to an application of the transfer theorem of Flajolet and Odlyzko [19] (FO-
theorem for short, hence the subscript FO in GFO(X)). Given some values of G(X) in a
finite X region (i.e. a finite x0 region), we shall first apply the FO-theorem to reconstruct
the corresponding GFO(X) function in its full x0 range and then, from this reconstruction,
the one of the G(X) function will follow from eq. (4.1).
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The asymptotic expansions of GFO(X) can be deduced from the fact that we know
G∗(X) explicitly, as well as the parametrizations of the expansions at small-X and large-X
of G(X), with the results

GFO(X) ∼
X→0

∑
`>0,n>2+`

sn,`Xn ln`X and GFO(X) ∼
X→∞

∑
n>1

ln
Xn

. (4.2)

where e.g.

s2,0 = a−1− 2
√

2χ0
a−3

+ 17
4 , (4.3)

s3,0 = a0 + 2a−3(6 + 5γE − 5 ln 2) + 2
√

2χ0(−4− 3γE + ln 8)
a−3

, (4.4)

s3,1 = 10− 6
√

2χ0
a−3

, (4.5)

· · ·

l1 =
5
(
−5
√

2a−3 + 6χ0 + 8χ1
)

16χ0
, (4.6)

l2 = 5
128
−5
√

2a−3 (73χ0 + 100χ1) + 625a2
−3 + 5χ0 (−15χ0 + 120χ1 + 224χ2)

128χ2
0

, (4.7)

· · ·

4.1 The FO-theorem

This theorem relates the non-analyticity of a function defined in a finite domain, to the large
order behaviour of the coefficients of its Taylor expansion at values where it is analytic.

In order to apply this theorem in our case we first project the domain 0 ≤ X ≤ ∞ to
a finite one using the mapping:

X 7→ ϕ = 1−X2

1 +X2 ⇐⇒ X 7→
√

1− ϕ√
1 + ϕ

⇐⇒


X → 0⇐⇒ ϕ→ 1
X → 1⇐⇒ ϕ→ 0
X →∞⇐⇒ ϕ→ −1

(4.8)

that projects X to the domain |ϕ| 6 1. The FO-theorem is then encoded in the identity:

GFO

(
X =

√
1− ϕ√
1 + ϕ

)
=
∞∑
n=0

(gn − gAS
n )︸ ︷︷ ︸

An

ϕn +
∞∑
n=1

gAS
n ϕn︸ ︷︷ ︸

Gsing
FO (ϕ)

, (4.9)

where the gn denote the coefficients of the Taylor expansion of GFO(X) at ϕ→ 0 and the
gAS
n the coefficients of the same Taylor series as n→∞. The FO-theorem relates the gAS

n

coefficients to the non-analyticity of the GFO(X) function at short distances (ϕ→ 1) and
at long-distances (ϕ→ −1). The second term in the r.h.s. of eq. (4.9) denotes the singular
function Gsing

FO (ϕ) that emerges from the sums of the asymptotic power series at ϕ→ 1 and
at ϕ→ −1.
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More precisely, the Taylor expansion of the GFO function at X → 1 becomes now a
Taylor expansion at ϕ→ 0:

GFO

(
X =

√
1− ϕ√
1 + ϕ

)
∼
ϕ→0

∞∑
n=0

gnϕ
n . (4.10)

Then:

• At short distances ϕ→ 1, and from the expansion at X → 0 in eq. (4.2), one gets:

GFO

(√
1− ϕ√
1 + ϕ

)
∼
ϕ→1

s2,0
2 (1− ϕ) + 2 s3,0− ln 2 s3,1

4
√

2
(1− ϕ)

3
2

+ s3,1

4
√

2
(1− ϕ)

3
2 ln(1− ϕ) + · · · . (4.11)

The second and third terms in this series are at the origin of the leading non-analytic
contributions when ϕ → 1. The FO-theorem relates them to the n-behaviour of
their contribution to the gAS

n coefficients in eq. (4.9) as follows (see the appendix for
details):

(1− ϕ)
3
2 7−→ 2√

π

1
n

5
2

[
1 + 15

8
1
n

+ 385
128

1
n2 + · · ·

]
, (4.12)

and

(1− ϕ)
3
2 ln(1− ϕ) 7−→

2√
π

1
n

5
2

{8
3 − γE − ln 4− lnn+ 15

8

[56
15 − γE − ln 4− lnn

] 1
n

+ · · ·
}
.

(4.13)

The leading terms of these two asymptotic behaviours i.e., the term proportional to
1

n5/2 in eq. (4.12) and the term proportional to 1
n5/2 log n in eq. (4.13), generate then

the following singular functions:
∞∑
n=1

ϕn

n5/2 = Li5/2(ϕ) and −
∞∑
n=1

log n
n5/2 ϕ

n = Li(1,0)
5/2 (ϕ) , (4.14)

where
Li(1,0)
a (x) .= d

ds
Lis (x)

∣∣∣∣
s=a

. (4.15)

These singular functions, modulated by their corresponding coefficients, are then to
be included in the function Gsing

FO (ϕ) in eq. (4.9).
• At long distances ϕ→ −1, and from the expansion at X →∞ in eq. (4.2), one gets:

GFO

(
X =

√
1− ϕ√
1 + ϕ

)
∼

ϕ→−1

l1√
2
√

1 + ϕ+ l2
2 (1 + ϕ) + l1−2 l3

4
√

2
(1 + ϕ)

3
2 + · · · . (4.16)

The first term in the r.h.s. is at the origin of the leading non-analytic contribution
when ϕ → −1. The FO-theorem relates it to the n-behaviour of its contribution to
the gAS

n coefficients in eq. (4.9) as follows (see the appendix for details):√
1 + ϕ 7−→ −(−1)n

2
√
π

1
n

3
2

[
1 + 3

8
1
n

+ 25
128

1
n2 + · · ·

]
. (4.17)
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The leading term proportional to 1
n3/2 generates then the singular function

∞∑
n=1

(−1)nϕn
n3/2 = Li3/2(−ϕ) (4.18)

that modulated by its corresponding coefficient, contributes to Gsing
FO (ϕ) in eq. (4.9).

4.2 The FO-approximants in practice

A priori, the problem to implement in QCD the procedure discussed above is that, except
for the coefficients a−3 and χ0, the other coefficients of the asymptotic expansions are
not known from first principles and, therefore, practically all the coefficients sn,l and ln in
eqs. (4.2) are unknown. The FO-identity in eq. (4.9) and the explicit examples previously
discussed show, however, the way to construct successive approximants to GFO(X). The
particular approximants that emerge from the leading non-analytic contributions discussed
in the previous subsection are defined by successive power series of N terms, plus a linear
combination of the three types of singular functions in eqs. (4.14) and (4.18) i.e.,

GFO(X) ≈ G

(
N ; 3

2 ; 5
2 ,

5′
2

)
FO (X) =

N∑
n=0
An

(
1−X2

1 +X2

)n
+
B−1, 3

2

η
(

3
2

) Li 3
2

(
−1−X2

1 +X2

)

+
B1, 5

2

ζ
(

5
2

) Li 5
2

(
1−X2

1 +X2

)
+
B′1, 5

2

ζ ′
(

5
2

) Li(1,0)
5
2

(
1−X2

1 +X2

)
, (4.19)

with coefficients
An = gn − gAS

n , B−1, 3
2
, B1, 5

2
, (4.20)

that are unknown parameters (they will be the free parameters in the fits discussed later);
exceptionally the coefficient

B′1, 5
2

= 3
16
√

2π
ζ ′
(5

2

)
s3,1 , (4.21)

is known because s3,1 given in eq. (4.5) is fixed by χ0.3 The polylog functions in eq. (4.19)
have been normalized, for convenience, to their values at X = 0 where ζ(s) denotes the
Riemann zeta-function and η(s), ζ ′(s) the related functions:

η(s) = Lis(−1) =
∞∑
n=1

(−1)n
ns

, ζ(s) = Lis(1) =
∞∑
n=1

1
ns
,

ζ ′(s) = Li(1,0)
s (1) = −

∞∑
n=1

lnn
ns

. (4.22)

3In fact, all the coefficients s2n,n for n ≥ 1 depend only on a−3 and χ0.
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The parameters in eq. (4.20) are further restricted by the two sum rules:

0 =
N∑
n=1
An + B−1, 3

2
+ B1, 5

2
+ B′1, 5

2
, (4.23)

0 =
N∑
n=1

(−1)nAn + B−1, 3
2

ζ
(

3
2

)
η
(

3
2

) + B1, 5
2

η
(

5
2

)
ζ
(

5
2

) + B′1, 5
2

η′
(

5
2

)
ζ ′
(

5
2

) , (4.24)

where η′(s) = Li(1,0)
s (−1) = −

∞∑
n=1

lnn
ns

(−1)n , (4.25)

which guarantee that the asymptotic behaviours

lim
X→0

GFO(X) = 0 and lim
X→∞

GFO(X) = 0 (4.26)

are satisfied.
The reason why the polynomials in eq. (4.19) are of finite degree N is due to the fact

that only the contribution of the leading non-analytic terms has been taken into account
in the construction of the approximants. One expects, therefore, that beyond a certain
critical N value depending also on the input number of LQCD G(x0) values, the approx-
imants will cease to improve. It is possible, however, to correct this by adding successive
extra contributions associated to the subleading non-analytic terms, but it requires the
introduction of extra An parameters as well as further singular functions modulated by
extra unknown B-like parameters and, furthermore, a more refined and/or extended set
of G(x0) input values. In this work we shall, therefore, only consider the leading set of
approximants defined in eq. (4.19) which, as we shall see, already produce significantly
accurate results.

The values of the unknown parameters in eq. (4.20), restricted to satisfy the two

sum rules above, can then be obtained from a linear fit of the successive G

(
N ; 3

2 ; 5
2 ,

5′
2

)
FO (X)

approximants in eq. (4.19) to the data input provided by LQCD evaluations of G(x0) in a
given optimal x0-region. It is always possible to have a solution for the unknown parameters
provided that: with A = {A0, . . . ,AN} and G = {G(x0), . . . ,G(xN )} where

G(ϕi) = GFO(ϕi)−
B′1, 5

2
ζ ′
(

5
2

)
2ζ2

(
5
2

)
[c1(0)− c1(1)] Li 3

2
(−ϕi) + [c2(0)− c2(1)] Li 5

2
(ϕi)

+2
ζ
(

5
2

)
ζ ′
(

5
2

) Li(1,0)
5
2

(ϕi)

 , (4.27)

the matrix M such that M ·A = G is invertible. This implies the condition

detM ≡ det
[
ϕji + c1(j) Li 3

2
(−ϕi) + c2(j) Li 5

2
(ϕi)

]
i,j
6= 0 ,
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with

c1(j) = 4
√

2(−1)j − 2 + 4
√

2(√
2− 6

)
ζ
(

3
2

) and c2(j) =
4
((√

2− 1
)

(−1)j +
√

2
)

(√
2− 6

)
ζ
(

5
2

) , (4.28)

to be satisfied.
We illustrate in the next section how to implement this procedure with a phenomeno-

logical model that simulates the hadronic spectral function.

5 Illustration with a phenomenological model

The spectral function of the model in question is inspired from lowest order χPT, ρ-vector
meson dominance, and asymptotic freedom:

1
π

Im ΠHVP
model(t) = α

π

(
1− 4m2

π

t

)3/2
 1

12 |F (t)|2 +
∑

quarks
e2
q Θ(t, tc,∆)

 θ(t− 4m2
π) . (5.1)

It consists of a Breit-Wigner-like modulous squared form factor4

|F (t)|2 =
M4
ρ

(M2
ρ − t)2 +M2

ρ Γ(t)2 , (5.2)

with an energy dependent width

Γ(t) = Mρt

96πf2
π

(1− 4m2
π

t

)3/2

θ(t− 4m2
π) + 1

2

(
1− 4M2

k

t

)3/2

θ(t− 4M2
k )

 ; (5.3)

plus a function

Θ(t, tc,∆) =
2
π arctan

( t−tc
∆
)
− 2

π arctan
( t0−tc

∆
)

1− 2
π arctan

( t0−tc
∆
) , (5.4)

that has two arbitrary parameters tc and ∆ and smoothly matches the low energy behaviour
to the asymptotic pQCD continuum. The shape of this spectral function, using the physical
central values for mπ, Mk, Mρ, fπ = 93.3 MeV, and the choice: tc = 1 GeV2 and ∆ =
0.5 GeV2, with ∑quarks e

2
q = 5

3 , is shown in figure 4.
The shape of the TMR function of the model

x3
0 Gmodel(x0) = x3

0

∫ ∞
√
t0
dω e−ωx0 ω2 1

π
Im ΠHVP

model(ω2) , (5.5)

is shown in figure 6. The same function plotted in terms of the variable ϕ in eq. (4.8) is
shown in figure 5. Its contribution to the muon anomaly, using only the center values of
the parameters given above, is(

aHVP
µ

)
model

= 6 992× 10−11 . (5.6)

4This is a simplified version of phenomenological spectral functions discussed in the literature, e.g. in
refs. [40, 41] and references therein.
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Figure 4. The model spectral function in eq. (5.1) for tc = 1 GeV2 and ∆ = 0.5 GeV2 in α
π -units.
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Figure 5. The model TMR function x3
0 Gmodel(x0) in eq. (5.5) in α

π units.
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Figure 6. The model TMR function x3
0 Gmodel(x0) as a function of the ϕ variable in α

π units.
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Figure 7. Shape of the integrand of
(
aHVP
µ

)
model in

α
π

m2
µ

t0
units as a function of ϕ.

We also show the shape of the integrand of
(
aHVP
µ

)
model

as a function of the ϕ variable
in figure 7. Notice that in this representation, the intermediate region 0.4 fm ≤ x0 ≤ 1.0 fm
favoured by the LQCD evaluations and shown in blue, corresponds to the interval 0.51 ≥
ϕ ≥ −0.33. One can see that, in spite of the exponential decrease of G(x0) at large x0
(small ϕ), the contribution to

(
aHVP
µ

)
model

from the long-distance region −1.0 ≥ ϕ ≥ −0.33
is highly weighted; a fact that demands a good reconstruction of G(x0) in the low-energy
region (large-x0) in order to have an accurate evaluation of

(
aHVP
µ

)
model

. This we expect
to be a generic feature in QCD as well.

The function
Gmodel

FO (x0) ≡ Gmodel(x0)
G∗(x0) − 1 , (5.7)

with the two parameters of the G∗(x0) function adjusted to the asymptotic behaviours
of the model, i.e. a−3 = 10

3 and χ0 = 0.31, is plotted in figure 8 in black for a finite x0
interval. This shape is what the successive FO-approximants in eq. (4.19) are expected to
reproduce, all the way from x0 = 0 to x0 = ∞ (i.e. from ϕ = 1 to ϕ = −1). The red dots
in the figure are the points used in the fit described in section 5.1. More compact plots of
the Gmodel

FO function in terms of the ϕ-variable are shown in figure 9 for −1 ≤ ϕ ≤ −0.5
and in figure 10 for −0.5 ≤ ϕ ≤ −1.

5.1 Fits to the model data using FO-approximants

The input we use as an example are the values of the function Gmodel
FO (x0) at twelve points,

equally spaced with no errors, in the intermediate region5

0.4 fm ≤ x0 ≤ 1.0 fm . (5.8)

The corresponding data points are shown as red dots in figure 8 and figure 10. We then make
linear fits of the successive FO-approximants defined in eqs. (4.19), (4.23) and (4.24) to

5This is the x0-region where at present LQCD simulations are most precise [5, 8–10].
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Figure 8. Shape of the Gmodel
FO (x0) function in eq. (5.7) in the interval 0 ≤ x0 ≤ 1.4 fm.

−1 −0.95 −0.9 −0.85 −0.8 −0.75 −0.7 −0.65 −0.6 −0.55 −0.5
−0.6

−0.4

−0.2

0

ϕ

G
F
O
(ϕ

)

exact
N = 3
N = 7
N = 10

Figure 9. Shape of the Approximants G
(
N ; 3

2 ; 5
2 ,

5′
2

)
FO (ϕ) for N = 3 (green), N = 7 (blue) and N = 10

(red). The model function Gmodel
FO (ϕ) which the approximants are expected to approach is in black.
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Figure 10. Shape of the Gmodel
FO (ϕ) function in the interval −0.5 ≤ ϕ ≤ 1.
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Figure 11. Shape of the Approximants G
(
N ; 3

2 ; 5
2 ,

5′
2

)
FO (x0) in eq. (4.19) for N = 3 (green), N = 7

(blue) and N = 10 (red). The model function Gmodel
FO (x0) which the approximants are expected to

approach is in black.

the Gmodel
FO (x0) function in eq. (5.7), and this way obtain the values of the free parameters

of each approximant that fix the reconstruction of the Gmodel
FO (x0) function in the full

0 ≤ x0 ≤ ∞ range. The corresponding reconstruction of G(x0) follows then from eq. (5.7).
The quality of the fits is shown in figure 11 for the approximants with N = 3 in green,

N = 7 in blue and N = 10 in red. The shape of Gmodel
FO (x0) is shown in black. One can see

how the reconstruction in the extended region 0.0 fm ≤ x0 ≤ 1.5 fm beyond the one used
for the fit, improves as N increases. The blue (N=7) and red (N=10) curves are already
quite closed to the Gmodel

FO (x0) black curve.
In order to show the shapes of the approximants in the full 0 ≤ X ≤ ∞ it is better

to use the representation in terms of the equivalent ϕ variable, covering the full range
−1 ≤ ϕ ≤ 1. This is shown in figure 9 for −1.0 ≤ ϕ ≤ −0.5 and, in a different scale, in
figure 12 for −0.5 ≤ ϕ ≤ 1.0.

The contribution of each approximant to the muon anomaly is then given by the
integral

aµ(N) =
∫ ∞

0
dX K(X)X3G∗(X)

1 +G

(
N ; 3

2 ; 5
2 ,

5′
2

)
FO (X)

 , (5.9)

where K(X) is the kernel defined in eq. (3.8) and G

(
N ; 3

2 ; 5
2 ,

5′
2

)
FO (X) the approximant defined

in eq. (4.19) with the values of the free parameters fixed by the fit. The results for each
N -approximant compared to the exact result in eq. (5.6) are given in table 1. The errors
in % are the values of

Err(N) =
∣∣∣∣∣aµ(N)− amodel

µ

aµ(N) + amodel
µ

∣∣∣∣∣ 2× 102 . (5.10)
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Figure 12. Shape of the Approximants G
(
N ; 3

2 ; 5
2 ,

5′
2

)
FO (ϕ) for N = 3 (green), N = 7 (blue) and

N = 10 (red) and their matching to the model function Gmodel
FO (ϕ) (black). The model function

Gmodel
FO (ϕ) which the approximants are expected to approach is in black. The red and black curves

in this region are already practically identical. Notice the vertical scale in the figure.

N aµ(N) in 10−11 units Err(N) in %
1 7814 11
2 7696 9.6
3 7597 8.3
4 7446 6.3
5 7335 4.8
6 7233 3.4
7 7162 2.4
8 7104 1.6
9 7066 1.0
10 7043 0.7
11 6990 0.04

Table 1. Predicted values of the model anomaly from the approximants defined in eq. (5.9) and
the errors in % defined by eq. (5.10) in the third column.

5.2 Errors of the FO-approximants

The results in table 1 show that the approximants reproduce the value of amodel
µ with better

and better accuracy as N increases. The best result is obtained for N = 11 when the
number of free parameters equals the number of input points and the linear fit corresponds
then to solving a linear system of N equations with N unknowns. These results are very
encouraging, however, in a potential application of the FO-Approximants to LQCD one
will have to take into account the errors of the input data as well as an evaluation of the
expected error associated to the FO-Approximants. Inclusion of the errors of the LQCD
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data is beyond the scope of this paper,6 but two obvious questions which require answers
on our part are:

1. Given a finite number of G(x0) input values from LQCD simulations, and given
the N results of the successive reconstructions of the full G(x0) function using FO-
approximants, what is the optimal value of aHVP

µ and what error should be assigned
to it?

2. Can one give a systematic error to the method of FO-Approximants?

An answer to the first question follows from the observation in table 1 that

aµ(N + 1) < aµ(N) for all N = 1 to 11 . (5.11)

• If this decreasing pattern persists in the case of an application to LQCD, the value
aµ(N∗) from the FO-approximant with N = N∗ i.e. the total number of input values,
is clearly the optimal choice. In this case it seems natural to assign as the error
attributed to each aµ(N) approximant the difference |aµ(N) − aµ(N∗)|. Provided
that N is sufficiently large, the optimal value is then:

aoptimal
µ = aµ(N∗)± |aµ(N∗ − 1)− aµ(N∗)| . (5.12)

• If the pattern of the aµ(N) estimates, as N increases, has a minimum or a maximum
at a given N∗-value, then the optimal choice is the same as before with N∗ at the
value of the extrema.

• If the pattern of the aµ(N) approximants oscillates as N increases then the most
natural optimal choice is the one at the N∗ closest to the mean value of all the
approximants.

In order to get an estimate of the systematic error of the method of FO-approximants
when applied to a finite set of input values of G(x0), let us consider the extreme case where
G(x0) = G∗(x0). The corresponding function GFO(x0) is then, by definition, trivially zero.
However, because of the systematic errors of the FO-approximants, one expects deviations
from zero from the results of the approximants in the x0 regions outside the one used as an
input in the fit, and this is what one observes. Since in this case we know exactly the value
of the muon anomaly (the one given by the chosen G∗(x0)), we can define as a systematic
error of each approximant the one which follows from applying the definition in eq. (5.10)
to this case where aµ(model) = a∗µ. We show in table 2 this resulting systematic error for
each FO-approximant.

We have also analyzed the results of the FO-approximants in the following alternative
situations:

• With only six input points, equally spaced, in the interval 0.4 fm to 1 fm one gets

aµ(5) = 7327× 10−11 (5.13)

which reproduces the model value at the level of 5%. The number of input points is
however too small to give a significant systematic error in this case.

6This is something to be discussed with each LQCD collaboration.
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N ErrorSyst(N) in %
1 1.00711
2 0.20572
3 0.16359
4 0.04585
5 0.05261
6 0.01495
7 0.02230
8 0.00484
9 0.01052
10 0.00070
11 0.00524

Table 2. Systematic error in % attributed to each FO-approximant defined in eq. (5.9).

• With an input of 10 points, equally spaced, but in the larger interval 0.3 fm to 1.2 fm
as compared to the 0.4 fm to 1.0 fm interval used above, one gets

aµ(11) = 7003× 10−11 (5.14)

which reproduces the model value to 0.15% with a systematic error of 0.2%:

aoptimal
µ = (7003± 15)× 10−11 (5.15)

and indicates that using the same number of input points in a larger interval improves
the result of the FO-approximants.

6 Conclusion and outlook

We have shown how the FO-theorem can be used to reconstruct the TMR function G(x0)
in its full 0 ≤ x0 ≤ ∞ domain, when one only uses as an input its values in a restricted
x0-domain where LQCD evaluations are most precise. We have explicitly derived the
functional form of the reconstruction approximants that emerge from the properties of the
FO-theorem. These FO-approximants depend linearly on a set of N parameters that are re-
lated to the successive terms of the short-distance and long-distance expansions of the G(x0)
function in QCD. The specific values of these QCD parameters are unknown, but they can
be fixed from a fit of the FO-approximants to the LQCD evaluation of G(x0) in an optimal
region. In section 5 we have illustrated the procedure to follow in an eventual application to
LQCD, with the simulation of a phenomenological model which captures the leading short
and long distance behaviours of HVP in QCD. The application of FO-approximants in
this case shows how the reconstruction of the model TMR function Gmodel(x0) improves as
the number N of terms in the FO-approximant increases: using an input of twelve points,
equally spaced with no errors, in the intermediate region 0.4 fm ≤ x0 ≤ 1.0 fm, we find
that the best FO-approximant reproduces the value:

(
aHVP
µ

)
model

= 6 992 × 10−11 to an
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accuracy of 0.6%. We find these results encouraging and worth considering for applications
to the reconstruction of the G(x0) function in LQCD and the corresponding evaluations of
aHVP
µ from first principles.

Concerning the comparison of LQCD results with the data driven determinations in
eqs. (1.5) we suggest considering the case where the so called skeleton function introduced
in sections 3.2 and 4 is chosen to be the one resulting from the data-driven determination
of HVP. It is well known that the shape of this function is at present in disagreement
with LQCD determinations in intermediate x0-windows (see e.g. refs. [8, 10, 12]). The
corresponding GFO(x0) function defined in section 4 will, therefore, be different from zero
in these windows. The application of the FO-approximants in this case provides a way to
evaluate how this difference propagates outside the region of x0 used as an input. Compar-
ing the optimal aHVP

µ (N∗) value obtained from the FO-approximants to the data driven
results in eqs. (1.5) would give an evaluation of the total discrepancy.
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A Mathematical details of the FO-theorem

In full generality, the short-distance expansion in eq. (4.11) and the long-distance expansion
in eq. (4.16) are given by the sums:

GFO

(
X =

√
1− ϕ√
1 + ϕ

)
∼
ϕ→1

∑
n>2

∑
`>0

s̃n
2 ,`

(1− ϕ)
n+`

2 ln`(1− ϕ) (A.1)

GFO

(
X =

√
1− ϕ√
1 + ϕ

)
∼

ϕ→−1

∑
n>1

l̃n
2
(1 + ϕ)

n
2 , (A.2)

where the s̃n
2 ,`

and l̃n
2
coefficients are linear combinations of the sn

2 ,`
and ln

2
coefficients in

eqs. (4.2). The type of singular terms that appear in these expansions are:
For k and ` integer numbers,

(1− ϕ)k ln`(1− ϕ) for ϕ→ 1 , (A.3)

(1− ϕ)
2k+1

2 and (1− ϕ)
2k+1

2 ln`(1− ϕ) for ϕ→ 1 ; (A.4)

and
(1 + ϕ)

2k+1
2 for ϕ→ −1 . (A.5)

The FO-theorem gives the results for the large n behaviour of the coefficients gAS
n in the

ϕn power series in eq. (4.9), associated to these four types of singular terms. They can be
found in the appendix II of ref. [21] and are given below.
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• For ` = 1 in eq. (A.3):

(1− ϕ)k ln (1− ϕ) 7−→ −(−1)kΓ(k + 1)
nk+1

∞∑
j=0

{
k + j

m

}
1
nj
, (A.6)

where the symbol
{
·
·

}
denotes Stirling numbers of the second kind.

• For the first term in eq. (A.4).
The result can be directly obtained from the evaluation of the ϕn coefficient of its
Taylor series at ϕ→ 0, and then its behaviour as n→∞:

[ϕn] (1−ϕ)
2k+1

2 =
Γ
(
−2k+1

2 +n
)

Γ
(
−2k+1

2

)
Γ(n+ 1)

∼
n→∞

1
n1+ 2k+1

2

∞∑
j=0

B[− 2k+1
2 ]

j

(
−2k+1

2

)
Γ
(
−2k+1

2 − j
)

Γ(1 + j)
1
nj
,

(A.7)
where B[a]

n (x) are the so-called generalized Bernoulli polynomials [39] or Nørlund
polynomials (as encoded in Mathematica B[a]

n (x) = Norlund[n, a, x]). Their first few
terms are

B[λ]
0 (λ) = 1 , B[λ]

1 (λ) = λ

2 , B[λ]
2 (λ) = 1

12λ(3λ− 1) , . . . . (A.8)

In particular, for k = 1, this is the way that the result in eq. (4.12) follows

(1− ϕ)
3
2 7−→ 2√

π

1
n

5
2

[
1 + 15

8
1
n

+ 385
128

1
n2 + · · ·

]
. (A.9)

• For the second term in eq. (A.4).
We use the property that

(1− ϕ)
2k+1

2 ln`(1− ϕ) = ∂`

∂ε`

[
(1− ϕ)

2k+1
2 +ε

]
ε=0

, (A.10)

where from the coefficient of the ϕn term of its Taylor series at ϕ→ 0 can be easily
calculated

[ϕn] (1− ϕ)
2k+1

2 ln`(1− ϕ) = ∂`

∂ε`

[
[ϕn] (1− ϕ)

2k+1
2 +ε

]
ε=0

(A.11)

= ∂`

∂ε`

 Γ
(
−2k+1

2 − ε+ n
)

Γ
(
−2k+1

2 − ε
)

Γ(n+ 1)


ε=0

. (A.12)

Only the case ` = 1 is needed in our case with the result

[ϕn] (1−ϕ)
2k+1

2 ln(1−ϕ)

=
Γ
(
−2k+1

2 +n
)

Γ
(
−2k+1

2

)
Γ(n+ 1)

[
ψ

(
−2k+ 1

2

)
−ψ

(
n− 2k+ 1

2

)]
(A.13)

∼
n→∞

− lnn+ψ
(
−2k+1

2

)
n1+ 2k+1

2

∞∑
j=0

B[− 2k+1
2 ]

j

(
−2k+1

2

)
Γ
(
−2k+1

2 − j
)

Γ(1 + j)
1
nj
− 1
n1+ 2k+1

2

∞∑
j=0

bj
(
−2k+1

2

)
nj

,

(A.14)
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where the bj (λ) are the polynomials

bj (λ) = δj,0
Γ(λ) +

j∑
m=1

B[λ]
j−m(λ)

Γ (λ− j +m) Γ(1 + j −m)
(−1)m B[1]

m (λ)
m

, (A.15)

and where we have also used the fact that

ψ (n− λ) ∼
n→∞

lnn+
∞∑
p=1

(−1)p B[1]
p (λ)

p

1
np

. (A.16)

The result in eq. (4.13) is the one which corresponds to the particular case where
` = 1 and k = 1

(1− ϕ)
3
2 ln(1− ϕ) 7−→

2√
π

1
n

5
2

{8
3 − γE − ln 4− lnn+ 15

8

[56
15 − γE − ln 4− lnn

] 1
n

+ · · ·
}
.

(A.17)

A general expression for any ` can be easily obtained from the results above
before using successive derivatives in ε.

• For the terms in eq. (A.5).
The result can be directly obtained from the evaluation of the ϕn coefficient of its
Taylor series at ϕ→ 0, and then its behaviour as n→∞:

[ϕn] (1 + ϕ)
2k+1

2 = (−1)n
Γ
(
−2k+1

2 + n
)

Γ
(
−2k+1

2

)
Γ(n+ 1)

(A.18)

∼
n→∞

(−1)n

n1+ 2k+1
2

∞∑
j=0

B[− 2k+1
2 ]

j

(
−2k+1

2

)
Γ
(
−2k+1

2 − j
)

Γ(1 + j)
1
nj
. (A.19)

The final expression for the gAS
n coefficients follows from the sum of the results given

in the three items discussed above i.e.,

gn ∼
n→∞

gAS
n =

B−1, 3
2

η
(

3
2

) (−1)n

n
3
2

+
B1, 5

2

ζ
(

5
2

) 1
n

5
2
−
B′1, 5

2

ζ ′
(

5
2

) lnn
n

5
2
, (A.20)

where the coefficient B−1, 3
2
is proportional to l1 and the coefficients B1, 5

2
and B′5

2
are a

linear combination of the sn,` coefficients.
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