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Summary

Nanoparticles (NPs) are used for drug delivery with enhanced selectivity and reduced
side-effect toxicity in cancer treatments. Based on the literature, the influence of the
NPs mechanical and geometrical properties on their cellular uptake has been stud-
ied through experimental investigations. However, due to the difficulty to vary the
parameters independently in such a complex system, it remains hard to efficiently
conclude on the influence of each one of them on the cellular internalization of a NP.
In this context, different mechanical / mathematical models for the cellular uptake of
NPs have been developed. In this paper, we numerically investigate the influence of
the NP’s aspect ratio, the membrane tension and the cell-NP adhesion on the uptake
of the NP using the model introduced in1 coupled with a numerical stochastic scheme
to measure the weight of each one of the aforementioned parameters. The results
reveal that the aspect ratio of the particle is the most influential parameter on the
wrapping of the particle by the cell membrane. Then the adhesion contributes twice
as much as the membrane tension. Our numerical results match the previous experi-
mental observations.
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1 INTRODUCTION

The development of nanoparticles (NPs) for the delivery of anti-cancer agents is a rapidly expanding field2–8. The effectiveness
of this strategy relies on the internalization of NPs by malignant cells to obtain an intracellular release of the active compounds.
A better understanding of the mechanisms and the interactions involved is necessary to develop adapted NPs. Investigations have
initially and mainly been conducted experimentally9–14, while numerical studies have been emerging more recently15–23, many
of them focusing on the influence of the NP’s physico-chemical properties, illustrated in Figure 1. The cellular internalization
pathway usually preferred by NPs is endocytosis24,25, among which one can distinguish specific from non-specific ones. In the
latter, NPs can be internalized by the cells using non-specific interactions, also known as non-receptor-mediated uptake, to be
distinguished from internalization involving interactions between ligands and receptors present on the cell surface. Thus, in
the case of a non specific uptake, the cellular NP’s internalization process initiates spontaneously after that the NP’s adheres
to the cell membrane4,26,27. In the literature, the cellular uptake of NPs is often simulated with methods based on molecular



dynamics4,15,20,28,29 that allow to model molecules and atoms. However, models such as the ones described in1,30–34 represent
the phenomenon at the scale of the NP and model both the cell membrane and the NP with thin homogeneous lines.

FIGURE 1 The cellular uptake of a NP is influenced
by its mechanical and geometrical properties.

In order to take into consideration the real-world manufacturing
challenges relative to the control and repeatability of the NP’s size,
aspect ratio or surface adhesion13,35,36, it is necessary to identify the
sensitivity of its uptake to those parameters. Indeed, this identification
would allow the producers to prioritize some properties over oth-
ers, taking into account the manufacturing and economic constraints
among others.

In this study, we present a simplified model for the cellular uptake
of an elliptic NP to investigate the influence of the mechanical proper-
ties of the cell membrane and of the aspect ratio of the particle, using
a stochastic approach. In order to perform a purely mechanical inves-
tigation, we chose to model non specific NP’s cellular internalization,
focusing at the scale of the NP. The novelty of this work is (i) to clar-
ify the models that already exist in the literature1,4,37 and to present
complementary results from the ones commonly exposed, (ii) to pro-
vide a biophysical explanation of them and (iii) to perform a stochastic
modeling of the input parameters, to build a metamodel for the output
random wrapping degree at equilibrium and subsequently to estimate
the sensitivity of the results to each of them. The outline of this paper
is the following. Section 2 presents the model along with its corre-

sponding hypotheses, the adopted investigation strategy with a broad description of the stochastic approach and the subsequent
sensitivity analysis (Section 3). Section 4 then provides an overview of the results, highlighting separately the influence of the
cell membrane’s mechanical properties and aspect ratio of the particle and the sensitivity of the endocytosis to these parameters.
Section 5 discusses the results and hypotheses. Finally, Section 6 summarizes the results and discussions with the concluding
remarks and perspectives for further work.

2 METHODS

2.1 Investigation strategy and hypotheses
In order to identify the influence of the mechanical properties of the cell membrane and of the aspect ratio of the particle, the
following strategy is adopted. First, the influence of the cell membrane’s mechanical properties on the uptake of a rigid circular
NP is studied. An elliptic NP is then considered and the influence of its aspect ratio is investigated. A coupled study involving
the aspect ratio of the NP and the cell’s mechanical properties is afterwards conducted. Finally, a metamodel is built in order to
perform a sensitivity analysis of different parameters on the cellular uptake of the NPs.

In this paper, the focus is put on rigid particles for two reasons: (i) reasonable computational cost and complexity allowing us
to subsequently carry out a stochastic modeling and (ii) a moderate number of influencing parameters. Nonetheless, given that
the rigidity of the NP is typically at least 2 orders of magnitude greater than that of the cell membrane20,36,38, the assumption of
a rigid NP is acceptable in most cases. The model focuses on the non-receptor-mediated endocytosis of a rigid elliptic NP and
does not apply to phagocytes, as their physiology is specific to engulf objects from the extra-cellular middle39. A 2D model of
the system is used for the sake of simplification and to decrease the computation costs. However, the former could have been
straightforwardly extended to 3D30.

The diameter of rigid NPs used for drug delivery is usually around 100 nm20 while that of the cell is in the order of 10 μm40.
Moreover, the cell membrane’s thickness is about 4 nm41. These scales allow us to model the system at the scale of the NP as we
can neglect the mechanical interactions due to the membrane’s microstructure. Moreover, it also allows us to neglect the cell’s
curvature compared to the NP’s one.

The model consists in evaluating the variation of total energy during the endocytosis and then identifying the wrapping degree
at equilibrium.



2.2 Nanoparticle - membrane system
The system is illustrated in Figure 2. It is divided into four regions: region 1 is the free part of the particle, region 2𝑟 and 2𝑙 are
the free parts of the membrane, respectively on the right and left sides of the particle and region 3 is the contact region between
the particle and the membrane.

FIGURE 2 Illustration of the nanoparticle-membrane interaction and the coordinates.

The spatial coordinates are denoted with the tuple (𝑟, 𝑧) wherein the origin is located at the intersection between the regions
1, 2𝑙 and 3. Each region 𝑖 ∈ {1, 2𝑙, 2𝑟, 3} is parametrized by its arclength 𝑠𝑖 ∈

[

0; 𝑙𝑖
]

and by the angle 𝜓𝑖 used to compute
the curvature and subsequently the bending energy. The system is symmetric, therefore the length of the two free parts of the
membrane are equal and will henceforth be denoted as 𝑙2

(

𝑙2𝑙 = 𝑙2𝑟 = 𝑙2
)

. Animated figures of the system can be found in the
Supplemental Material.

The lengths 𝑙1 and 𝑙3 are defined in terms of the wrapping degree 𝑓 , which corresponds to the fraction of the particle wrapped
by the membrane. Hence, 𝑙3 = 𝑝𝑓 , 𝑙1 = 𝑝(1 − 𝑓 ) and thus 𝑓 = 𝑙3(𝑙1 + 𝑙3)−1, where 𝑝 is the circumference of the particle. The
membrane is supposed to be flat far from the nanoparticle, as the effects of the latter on the membrane weaken. A convergence
study was then conducted on 𝑙2 to verify that setting 𝑙2 = 20𝑎, where 𝑎 is the relative radius of the ellipse, defined as the ratio
between the circumference of the particle and 200𝜋 nm (which is the circumference of a circular particle with a radius of 100
nm), satisfies the hypothesis of membrane flatness at both extremities. See18 for more details.

2.3 Evaluation of the variation of energy
The variation of energy is due to the bending of the membrane Δ𝐸𝑏, the adhesion between the particle and the membrane Δ𝐸�̄�
and the membrane tension Δ𝐸�̄� 1,37. Hence, the former reads:

Δ𝐸 = Δ𝐸𝑏 + Δ𝐸�̄� + Δ𝐸�̄� . (1)

The bending energy of the membrane is decomposed as:

Δ𝐸𝑏 =
1
2
𝜅2𝑟

𝑙2

∫
0

(�̇�2𝑟 − 𝑐2𝑟)2𝑑𝑠2𝑟 +
1
2
𝜅2𝑙

𝑙2

∫
0

(�̇�2𝑙 − 𝑐2𝑙)2𝑑𝑠2𝑙 +
1
2
𝜅3

𝑙3

∫
0

(�̇�3 − 𝑐3)2𝑑𝑠3, (2)

where the overdot denotes the derivative with respect to 𝑠. 𝜅𝑖 and 𝑐𝑖 denote the bending rigidity and the initial curvature of
the region 𝑖 ∈ {1, 2𝑙, 2𝑟, 3}, respectively. Since the membrane is considered initially flat, its initial curvature is zero, leading to
𝑐2𝑟 = 𝑐2𝑙 = 𝑐3 = 0. Since we assume that the bending rigidity of each region 𝜅𝑖 is independent of 𝑠 (homogeneous membrane),
the former is put outside of the corresponding integrals. Hence, we have 𝜅2𝑟 = 𝜅2𝑙 = 𝜅2. The particle being considered rigid, it
does not deform. Consequently, the bending of the region 3 is only due to the deformations of the membrane. Thus, the bending
rigidity of the zone 3 is equal to that of the zone 2, i.e. 𝜅3 = 𝜅2. Furthermore, as defined in Figure 2, 𝜓2𝑙 = 2𝜋 − 𝜓2𝑟. As such,
equation 2 becomes:



Δ𝐸𝑏 = 𝜅2

𝑙2
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(3)

The bending energy of the free part of the membrane is computed based on the evolution of𝜓2𝑟(𝑠2)which could be analytically
obtained using the following formula42:

𝜓2𝑟(𝑠2) = 4 arctan

[
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4
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(4)

The spatial coordinates (𝑟, 𝑧) in regions 2𝑟 and 2𝑙 are then evaluated as follows18:
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𝑟2𝑙(𝑠2) = 𝑟2𝑟(0) − 𝑟2𝑟(𝑠2) (5b)
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(6a)

𝑧2𝑙(𝑠2) = 𝑧2𝑟(𝑠2) (6b)
In which 𝜓2(0) is the value of 𝜓2 at the intersection between the regions 3 and 2𝑟 (represented with a square in Figure 2).

The points (𝑠2𝑟 = 0) and (𝑠3 = 𝑙3) are coincident. Consequently, 𝜓2𝑟(𝑠2 = 0) can be calculated from 𝜓3(𝑠3 = 𝑙3) which is well
known from the definition of the ellipse (as well as 𝜓1, 𝑟1, 𝑧1, 𝑟3 and 𝑧3). Then, Δ𝐸𝑏2 can be readily computed.

The adhesion energy is defined as Δ𝐸𝛾 = −𝛾𝑙3, in which 𝛾 is the lineic adhesion force between the membrane and the particle.
The tension energy is defined as Δ𝐸𝜎 = 𝜎Δ𝑙, wherein 𝜎 is the membrane tension and Δ𝑙 is the length of stretched membrane.

Finally, in order to ease further comparison, the adimensional energy variationΔ𝐸 is introduced as Δ𝐸 = Δ𝐸 2𝑎
𝜅2

and Equation

1 is reformulated as Equation 7, in which adimensional variables �̄� and �̄� are introduced as �̄� = 𝛾 2𝑎2

𝜅2
and �̄� = 𝜎 2𝑎2

𝜅2
. A Python

script to compute the evolution ofΔ𝐸 in terms of 𝑓 for a given set of input parameters can be found in the Supplemental Material.
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Δ𝐸𝑏2
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

𝑎
4

𝑙3

∫
0

�̇�2
3𝑑𝑠3 +

Δ𝐸𝑏3
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

𝑎
4

𝑙2

∫
0

�̇�2
2𝑟𝑑𝑠2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Δ𝐸𝑏

− 1
4𝑎
�̄�𝑙3

⏟⏟⏟
Δ𝐸 �̄�

+ 1
4𝑎
�̄�
(

2𝑙2 + 𝑙3 − 𝑟2𝑟(𝑙2) + 𝑟2𝑙(𝑙2)
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Δ𝐸 �̄�

(7)

In this paper, all the investigated parameters are supposed constant during endocytosis and their values are set based on
experimental results from the literature: 𝜅2 ≈ 10−18N.m, 𝛾 ≈ 10−3N.m−1 and 𝜎 ≈ 10−5N.m−1 4,37,43,44. The units commonly
used for these variables are kBT or erg for 𝜅2, kBT.nm−2 or erg.cm−2 for 𝛾 and dyne.cm−1 for 𝜎 4,45,46 but we chose to convert
them to the SI units in order to allow a better understanding by an unfamiliar audience.

An example of the contributions of Δ𝐸𝑏, Δ𝐸𝛾 and Δ𝐸 �̄� on the total energy variation Δ𝐸 are presented in Figure 3. With the
particular set of parameters used to generate this figure, it appears that tension and adhesion contribute more to the total energy
than bending.

2.4 Phases
The next step of the study consists in evaluating the influence of the aspect ratio �̄� (ratio between the semi-major and semi-
minor axes) of the particle on the wrapping degree at equilibrium, denoted by 𝑓 . Contrary to circular NPs, Δ𝐸(𝑓 ) may have



FIGURE 3 Contribution of bending, adhesion and tension on the total energy variation, �̄� = 10, �̄� = 2.

multiple local minima. It is then necessary to provide a clear definition of the equilibrium. According to the literature31,32, there
is no mechanism that could contribute to overcome the energy barriers following a local minimum, except the energy due to
thermal fluctuations. However, the latter are too weak to overcome the energy barriers we met in this study. Consequently, the
equilibrium is defined as the first local minimum.

Three phases are schematically defined in Figure 4. The first phase (no wrapping) gathers the configurations which lead to
𝑓 < 0.2. For this range of wrapping degrees, one can consider that the endocytosis aborts soon after the particle touched the cell
(no wrapping). The phase 3 (full wrapping) includes the configurations which lead to an equilibrium where the two sides of the
free membrane cross, i.e. max 𝑟2𝑙(𝑠2𝑙) ≥ min 𝑟2𝑟(𝑠2𝑟). The former is called full wrapping, since the particle is already engulfed
by the cell. The phase 2 is composed of all the intermediate configurations, which lead to partial wrapping. A Python script to
determine the wrapping phase at equilibrium for a set of input parameters is available in the Supplemental Material.

FIGURE 4 Illustration of the three wrapping phases: no wrapping (left), partial wrapping (middle) and full wrapping (right).

To investigate the influence of the membrane tension �̄� and adhesion �̄� , Δ𝐸(𝑓 ) is computed for 𝑓 ∈ [0, 1] for a given aspect
ratio �̄�, say 1 (a circular NP), and a range of values for �̄� and �̄� . It is necessary to set ranges of values because of the variability
of these parameters (considering the variety of cell types and the diversity of their membrane composition47,48). Based on the
literature1,18,30,43 and considering a radius of 100 nm, the ranges were considered as �̄� ∈ [0.5, 5.5] and �̄� ∈ [1, 10]. For each one
of these testcases, the phases are identified, as illustrated in Figure 6.

From the phase diagram, the proportion of each phase is evaluated. Then, to investigate the influence of another parameter,
here, the aspect ratio �̄� of the elliptic particle, one generates the phase diagram and then computes the proportion of the three
phases, denoted as 𝜓1, 𝑝𝑠𝑖2 and 𝑝𝑠𝑖3, for each value of the investigated parameter and compare them in a phase comparison
graph, as illustrated further in Section 4.

To investigate the influence of �̄�, the circumference of the NP was fixed to 2𝜋 and the values of the semi-minor and semi-major
axes were defined based on the Ramanujan’s approximation of the circumference of an ellipse49, for a given aspect ratio. The



TABLE 1 Geometric parameters of the investigated ellipses, the circumference is set to 200𝜋 nm.

vertical ellipse circle horizontal ellipse
aspect ratio 1/6 1/4 1/3 1/2 1 2 3 4 6

semi-major axis (x100) [nm] 0.25 0.37 0.47 0.65 1 1.30 1.41 1.46 1.5
semi-minor axis (x100) [nm] 1.5 1.46 1.41 1.30 1 0.65 0.47 0.37 0.25

geometric parameters used to perform the investigation are detailed in the Table 1. The results, necessary to build the response
surface used to carry out sensitivity analyses detailed in the next section, are presented in Section 4.

3 SURROGATE MODELING AND SENSITIVITY ANALYSIS

This section briefly introduces the uncertainty quantification (UQ) methods that will be used in this paper. Let 𝐹 denote the
positive, second-order stochastic wrapping degree at equilibrium. The former is a function of a vector of three input random
variables 𝑿 = {Γ̄, Σ̄, �̄�}⊤, i.e. 𝐹 = Ξ(𝑿). To investigate the probabilistic content of the random variable 𝐹 , classical sampling
techniques such as Monte Carlo (MC) simulation can be used. However, the convergence is only guaranteed for a large number of
datasets implying high computational costs. As such, metamodeling approach will be used as an appropriate alternative allowing
us to build fast-to-evaluate surrogate models requiring significantly a lower number of calls to the numerical solver. For this
purpose, we will use two popular surrogate models: Kriging50–53 and Polynomial Chaos Expansion (PCE)54–57 which are briefly
discussed in Sections 3.1 and 3.2. Finally in Section 3.3, the Sobol indices are introduced to quantify the global sensitivities of
𝐹 with respect to each input random variable.

3.1 Kriging
Kriging, also known as Gaussian process regression, is based on the decomposition of the random variable 𝐹 into a deterministic
mean (trend) and a residual Gaussian process as Ξ𝐾 (𝒙) = 𝒂⊤𝒈(𝒙) + 𝜎𝑍𝑍(𝒙;𝓵)52. In this equation 𝒙 is a realization of the
random vector 𝑿, 𝔼[Ξ𝐾 ] = 𝒂⊤𝒈(𝒙) is the mean of 𝐹 , represented by a vector 𝒂 and a set of predefined shape functions 𝑔𝑖, 𝑖 ∈
{0, ..., 𝑃 − 1}, and 𝑍(𝒙;𝓵) is a standard Gaussian random field defined by its auto-correlation function (ACF) 𝑅(𝒙,𝒙′;𝓵) =
𝔼[𝑍(𝒙;𝓵)𝑍(𝒙′;𝓵)]. The vector 𝓵 = {𝓁1,𝓁2,𝓁3}⊤ is called the correlation distance that should be calculated. Note also that 𝜎𝑍
represents the standard deviation of the Kriging’s residual.

The objective is to evaluate the unknown parameters using a sample of size 𝑁 (experimental design), 𝗫 = {𝒙𝟏, ...,𝒙𝑵}⊤ and
the corresponding wrapping degrees at equilibrium �̃� = {𝑓1, ..., 𝑓𝑁}⊤ in which 𝑓𝑖 = Ξ(𝒙𝒊), 𝑖 ∈ {1, ..., 𝑁} is the value of 𝑓 for
𝑖th realization of input parameters. The least-squares estimate of the 𝑃 × 1 coefficients vector 𝒂 is �̂� = (𝑮⊤𝑹−1𝑮)−1𝑮⊤𝑹−1�̃�
in which the 𝑁 × 𝑃 matrix 𝑮 is defined as 𝐺𝑖𝑗 = 𝑔𝑗(𝒙𝒊), 𝑖 ∈ {1, ..., 𝑁}, 𝑗 ∈ {1, ..., 𝑃 } and 𝑹 is the 𝑁 ×𝑁 correlation matrix
whose components are𝑅𝑖𝑗 = 𝑅(|𝒙𝑖−𝒙𝑗|;𝓵), 𝑖, 𝑗 ∈ {1, ..., 𝑁}. The main steps of the Kriging method are summarized as follows.
The first step consists in choosing the trend function. Then a model for the ACF is chosen58 with a correlation length vector
𝓵 to be determined. Then, using the experimental design 𝗫 and the values of the wrapping degree 𝑓𝑖, a maximum likelihood
optimization problem is solved to calculate 𝓵 59. The latter is then used to obtain the coefficients of the trend �̂�, the mean and
the variance of the Kriging predictor (see60 for more details).

Finally, we use a leave-one-out (LOO) cross-validation error estimator 𝜖LOO in order to quantify the quality of the metamodels.
The former is calculated by comparing the predictions obtained using 𝑁 surrogate models 𝗫(−𝑗) = {𝒙𝒊, 𝑖 = 1, ..., 𝑁, 𝑖 ≠ 𝑗} for
each of which one point is removed from the initial experimental design, with the real value of 𝐹 at the excluded point61.

3.2 Polynomial Chaos Expansion (PCE)
PCE is a functional representation of the random quantity of interest wherein the latter is written as an infinite linear combination
of some orthogonal polynomials with respect to the probability density functions (PDFs) of input parameters62–64. The exact



infinite expansion is then truncated up to some degree 𝑝 as:

Ξ𝑃𝐶𝐸𝑝 (𝒙) =
𝑃−1
∑

𝑖=0
𝑎𝑖Ψ𝑖(𝜻) = 𝒂⊤𝚿(𝜻), (8)

in which 𝑃 =
(𝑝+3

3

)

polynomial basis functions 𝚿 and deterministic coefficients 𝒂 are used. An isoprobabilistic transformation
 links the standard random vector 𝜻 = (𝜁1, 𝜁2, 𝜁3) to the random input vector 𝑿, i.e. 𝑿 =  (𝜻). The type of polynomials is
determined based on the PDFs of the input random parameters. For instance, Legendre and Jacobi polynomials are used for
uniform and beta random variables. The basis functions are then constructed by multiplying the one dimensional bases. The
expansion coefficients are then calculated using a least squares approach via �̂� = (𝑮⊤𝑮)−1𝑮⊤�̃� wherein the 𝑁 × 𝑃 matrix 𝑮 is
defined as 𝐺𝑖𝑗 = Ψ𝑗(𝜻 𝑖). The mean and variance of the random wrapping degree at equilibrium are subsequently calculated in
terms of the expansion coefficients via 𝔼[Ξ𝑃𝐶𝐸𝑝 ] = 𝑎0 and Var[Ξ𝑃𝐶𝐸𝑝 ] =

∑𝑃−1
𝑖=1 𝑎

2
𝑖 , respectively. Similar to the previous case, a

LOO cross-validation error estimation will be calculated to assess the quality of the model. Finally, the Sobol sensitivity indices
are calculated for both types of metamodeling techniques as will be discussed in the next Section.

3.3 Sensitivity analysis
To calculate the sensitivity indices65, we use Quasi Monte Carlo (QMC) estimators for Kriging and direct estimations based on
the expansion coefficients for PCE (see66 for more details). A QMC-based estimator for the Sobol index of the random variable
𝑋𝑖 (𝑖 ∈ {1, 2, 3}) which describes the sensitivity of 𝐹 to 𝑋𝑖 writes:

𝑆𝑖 =
𝜎2𝑖
𝜎2̂̃𝐹

≃ 1
𝑁𝜎2̂̃𝐹

𝑁
∑

𝑗=1

̂̃𝐹𝑗(𝑆2)
(

̂̃𝐹𝑗(𝑆 𝑖1) −
̂̃𝐹𝑗(𝑆1)

)

, (9)

in which 𝑆1 and 𝑆2 are two independent QMC samples of size𝑁 ×3 of input random parameters and 𝑆 𝑖1 is the matrix 𝑆1 whose
𝑖-th column is replaced by the 𝑖-th column of 𝑆2. Note that in (9) 𝜎2̂̃𝐹 = Var[ ̂̃𝐹 ] is the estimate of the total variance of the random

wrapping degree at equilibrium 𝐹 and 𝜎2𝑖 = Var[𝔼[ ̂̃𝐹 |𝑋𝑖]] is the part of the variance of ̂̃𝐹 resulting from 𝑋𝑖. The sensitivity of
the wrapping degree to the interactions between input random variables 𝑋𝑖 and 𝑋𝑗 is described by the second order indices 𝑆𝑖𝑗
(1 ≤ 𝑖 ≠ 𝑗 ≤ 3) excluding the first order effects:

𝑆𝑖𝑗 =
𝜎2𝑖𝑗
𝜎2̂̃𝐹

=
Var[𝔼[ ̂̃𝐹 |𝑋𝑖𝑋𝑗]]

Var[ ̂̃𝐹 ]
− 𝑆𝑖 − 𝑆𝑗 , (10)

which could be similarly generalized to higher order interactions. Hence, there are 23 − 1 = 7 different Sobol indices for
different level of interactions. However, instead of calculating all these indices, total Sobol indices are used to estimate the total
contribution of each random variable 𝑋𝑖 (1 ≤ 𝑖 ≤ 3) to the variance of the wrapping degree at equilibium67:

𝑆𝑇𝑖 = 𝑆𝑖 +
∑

𝑖≠𝑗
𝑆𝑖𝑗 +

∑

(𝑗<𝑘)≠𝑖
𝑆𝑖𝑗𝑘 + ... (11)

A QMC-based estimator for the total Sobol index then reads:

𝑆𝑇𝑖 ≃
1

2𝑁𝜎2̂̃𝐹

𝑁
∑

𝑗=1

(

̂̃𝐹𝑗(Ξ𝑖1) −
̂̃𝐹𝑗(Ξ1)

)2
. (12)

As mentioned earlier, for the PCE response surface, the sensitivity indices could be analytically estimated in terms of the coef-
ficients of the expansion. The readers are referred to Sudret57 for more details. The numerical applications and the corresponding
results are discussed in Section 4.

4 RESULTS

4.1 Mechanical parameters �̄� and �̄�
The mechanical parameters �̄� and �̄� tend to alter the evolution of Δ𝐸 with respect to 𝑓 , as illustrated in Figure 5. Indeed, a larger
�̄� as well as a smaller �̄�, tend to decrease the values of Δ𝐸. The membrane tension does not influence Δ𝐸 for 𝑓 < 0.2, while



the effect of �̄� is significant for all values of 𝑓 . This matches with the decomposition of Δ𝐸 presented in Figure 3 in which one
can see that Δ𝐸𝑏 and Δ𝐸�̄� (the energy variations in which �̄� contributes) do not change for low values of 𝑓 , contrary to Δ𝐸�̄�
which decreases significantly.

FIGURE 5 Effect of adhesion (left) �̄� with �̄� = 2 and (right) membrane tension �̄� with �̄� = 10 on Δ𝐸(𝑓 ).

The conclusions from Figure 5 apply to the range of values of �̄� and �̄� tested and can be generalized to larger ranges of �̄� and
�̄�, as illustrated Figure 6, which reveals that larger values of �̄� and lower values of �̄� favor the occurrence of the phase 3. That
means that a NP is more likely to be uptaken by a cell whose membrane tension is low and which adheres well to the NP.

These results match some of the previous studies conducted by Yi and Gao1,15,18, Zhang4,68 and the ones presented in the
review from Ding21 leading to similar results as ours, being that the uptake of NP is enhanced by low 𝜎 and large 𝛾 . These
conclusions were also drawn experimentally in69 for instance, which showed that the adhesion between colloidal drug delivery
systems and macrophages tend to increase their uptake. Similar conclusions are also presented in70.

FIGURE 6 Phase diagram for a circular NP. Colors: values of 𝑓 , from 0 (lightest) to 1 (darkest).

An illustration of the effect of membrane tension and adhesion on the wrapping is given in Figure 7. In this figure, even though
the adhesion does not affect the shape of the membrane during the endocytosis, it is clear that for low membrane tension, the
two sides of the membrane tend to get in contact more easily, leading to full wrapping.



FIGURE 7 Effect of adhesion (top) �̄� with �̄� = 2 and membrane tension (bottom) �̄� with �̄� = 10 on the wrapping for 𝑓 = 0.8.
The 𝑟 axis was truncated to [−10; 10]. For the same value of 𝑓 , the NP is fully wrapped by the cell only for �̄� = 0.5.

4.2 Aspect ratio of the elliptic particle
The aspect ratio �̄� of the elliptic particle affects the evolution of Δ𝐸 with respect to 𝑓 , as depicted in Figure 8.

FIGURE 8 Δ𝐸(𝑓 ) for the aspect ratios introduced in the table 1. The mechanical parameters are (�̄� , �̄�) = (10, 2).

Except for the cases of circular and slightly vertical particle (�̄� ∈ [1∕2, 1]), an energy barrier occurs at low values of 𝑓 for
vertical ellipses and at 𝑓 ≈ 0.5 for horizontal ones. It is easy for the horizontal ellipse to reach 𝑓 = 0.5, since it is basically the
contact between the particle and the membrane, without even bending the latter. The vertical particle tends to stay at low values
of 𝑓 because a sharper bent on the cell membrane is necessary to increase 𝑓 with the same amount.

However, the energy barrier to overcome is lower for vertical than for horizontal particles. As illustrated in Figure 9, this
barrier for vertical ellipses is reduced for lower �̄� and higher �̄� , while the energy barrier for horizontal ellipses is only slightly
reduced by lowering �̄�.

For a better understanding of the influence of �̄� and to generalize these observations to a large range of values of �̄� and �̄�,
phase diagrams are generated for all aspect ratios (see 6 for the phase diagram generated for a circular NP). From the latter,
the proportion of each phase is computed and finally compared in Figure 10, which confirms the previous assumptions. Indeed,
the horizontal particles do not pass from phase 2 while the vertical ones remain in the phase 1. However, vertical particles
that overcome the phase 1 tend to reach the phase 3, contrary to horizontal particles. For highly elongated particles neither the
vertical nor the horizontal particles reach the phase 3.



FIGURE 9 Influence of (left) �̄� with �̄� = 2 and (right) �̄� with �̄� = 10 on Δ𝐸(𝑓 ) for elliptic particles. Dark lines: vertical particle
(�̄� = 1∕4); Light lines: horizontal particle (�̄� = 4).

FIGURE 10 Proportion of phase 1, 2, 3 (respectively denoted as 𝜓1, 𝜓2, and 𝜓3) in terms of �̄�.

These results match the ones obtained experimentally by Champion et al.13,14 who manufactured NPs with various aspect
ratios and shapes and observed that the circular and vertical NPs are engulfed faster by macrophages than the ones with other
shapes. However, their results show that the highly elongated vertical NPs could not be engulfed.

4.3 Probabilistic modeling of the random wrapping degree at equilibrium
4.3.1 Random input parameters
In this section the mechanical parameters of the NP �̄� and �̄�, along with its aspect ratio �̄� are modeled as random variables
(denoted by (Γ̄,Σ̄,�̄�)). The objective is to first model these parameters via some appropriate probability distributions and then
to investigate the probabilistic content of the random wrapping degree at equilibrium 𝐹 = Ξ(Γ̄, Σ̄, �̄�). Having recourse to the
maximum entropy principle71, since the only available information are the lower and upper bounds, the best candidate for
the Probability Density Function (PDF) (maximizing the entropy measure) is the uniform distribution. However, a uniform
distribution for the ratio �̄� will result in realizations that are biased towards more horizontal NPs since they are six times more
likely to be produced. To overcome this issue, we used a transformed beta distribution to model �̄�, i.e. �̄� ∼ 𝛽(0.5, 1.7; 1∕6, 6).
The particularity of this PDF is that its median is 1 so that 𝖯(�̄� < 1) = 𝖯(�̄� > 1) = 0.5 almost surely. As such, the input
parameters are modeled as three independent random variables Γ̄ ∼  (1, 8), Σ̄ ∼  (0.5, 5.5) and �̄� ∼ 𝛽(0.5, 1.7; 1∕6, 6), the



interval of definition of these variables being defined in Section 2.4. The coefficients of variation (CoV) of (Γ̄,Σ̄,�̄�)) being about
(45%, 48%, 92%), implies significant fluctuation levels of the input parameters.

4.3.2 Sampling of the random wrapping degree at equilibrium
Once the uncertainties related to each input parameter are characterized, 1000 realizations based on QMC sampling method
are generated. The corresponding values of the wrapping degree at equilibrium, i.e. 𝑓 , for each realization are then calculated.
Figure 11 depicts the convergence of the average and the CoV of the random wrapping degree at equilibrium in terms of the
number of samples along with the corresponding 95% two-sided confidence intervals (shaded zones in gray). The confidence
bounds for the CoV are calculated by using bootstrap resampling technique. The right plot of Figure 11 shows a considerable
fluctuation level of the wrapping degree at equilibrium (around 94%) which results from large variabilities of the input parame-
ters. It seems that one should use more than 1000 realizations to guarantee the convergence of the first and second order statistics
of 𝐹 . This highlights the importance of using surrogate models allowing us to approximate the probabilistic content of 𝐹 using
small sample sizes.

FIGURE 11 Convergence of the mean (left) and coefficient of variation (right) of the random wrapping degree at equilibrium in
terms of the sample size (thick solid black curves) along with 95% two-sided confidence intervals denoted by the gray regions.

4.3.3 Surrogate modeling
In this section, the PDF of the random wrapping degree at equilibrium 𝐹 is modeled using two different surrogate modeling
approaches.

The Kriging model is constructed based on the following parameters. For the trend part, a quadratic function as 𝒂⊤𝒈(𝒙) =
𝑎0 +

∑𝑀
𝑖=1 𝑎𝑖𝑥𝑖 +

∑𝑀
𝑖=1

∑𝑀
𝑗=1 𝑎𝑖𝑗𝑥𝑖𝑗 is used with coefficients to be determined. A von Kármán model with a shape parameter of

𝐻 = 1.5 is used for the ACF of the underlying Gaussian process. A hybrid genetic algorithm72 with upper and lower bounds of
[0.001, 10] for each 𝓁𝑖 (1 ≤ 𝑖 ≤ 3) is used to solve the optimization problem for the hyperparameter 𝓵.

On the other hand, to build the PCE response surface, the polynomial degree 𝑝 is chosen such that the corresponding LOO
error is minimized. For this purpose, the latter is calculated for different values of 𝑝 from 1 to 30. Figure 12 shows that 𝑝 = 23
minimizes the error (𝜖LOO = 0.045) and thus will be used to construct the PCE response surface. These metamodels could
now be evaluated with a near-zero computational cost. Using 105 realizations, the estimated PDFs of 𝐹 are compared to the
histogram of the simulated data in Figure 13 which shows a bimodal distribution of the wrapping degree. We can then estimate
the probability of occurrence of each phase. For instance, the probability of no wrapping 𝖯(𝐹 < 0.2) (phase 1) is 0.033, 0.032
and 0.036 based on the simulation data, Kriging and PCE, respectively, which shows the accuracy of the metamodels (with
relative errors of 3% and 9% for Kriging and PCE, respectively)

The Sobol sensitivity indices are finally estimated using both approaches. Kriging yields the following first-order indices
0.12, 0.06 and 0.41. On the other hand, based on the PCE method, we get the values of 0.15, 0.07 and 0.46 (for Γ̄, Σ̄ and �̄�,
respectively) which reveals that if we consider the effect of the variability of each single input random variables on the variance
of the random wrapping degree at equilibrium, the aspect ratio of the nanoparticle �̄� is the most influential. Then the adhesion �̄�



FIGURE 12 Variation of the LOO error estimate in terms of the degree 𝑝 of the PCE.

contributes twice as large as the membrane tension �̄�. The total sensitivity indices obtained with PCE method for Γ̄, Σ̄ and �̄� are
0.4, 0.24 and 0.74, respectively. The difference 𝑆𝑇𝑖−𝑆𝑖 shows the influence of the interactions of different orders on the variance
of 𝐹 . This difference is in the same order as for the first-order indices, i.e. the interactions of �̄� with other inputs contribute
the most on the variability of the wrapping degree at equilibrium. The readers can use open-source software like OpenTURNS
(openturns.org) and UQLab (uqlab.com) to reproduce the results.

FIGURE 13 Estimations of the PDF of the random wrapping degree at equilibrium obtained by Kriging (dashed line) and PCE
(solid curve) metamodels. The histogram corresponds to the PDF of the output data.

5 DISCUSSION

5.1 Cell membrane reorganization during endocytosis
This paper only considers constant values of �̄� and �̄� during endocytosis, while they are actually variable with respect to 𝑓 , as
explained in27,38,73–80. Indeed, the cell tends to adapt to the phenomenon by simultaneously increasing the amount of interactions
at the contact region (and consequently increasing the adhesion) and reorganizing its actin network, helping the membrane
deformation (and consequently reducing the tension). It may explain why the in vivo observations13,14 concluded that vertical
elliptic NPs are more likely to enter the cell than horizontal ones in almost all cases. Indeed, the variation of the mechanical
properties leads to vanish the energy barrier in most cases.

openturns.org
uqlab.com


5.2 Heterogeneity and composition of the cell membrane
In this study, the NP was considered about 100 times smaller than the cell and the system was set at the NP’s scale (around 100
nm). However, membrane’s thickness is around 4 nm and is, among other things, composed of several trans-membrane proteins
whose lengths can reach 16 nm41. Consequently, they could play a role in this process and directly interact with the particle.
Moreover, the membrane is highly heterogeneous and is composed of various components (mainly carbohydrates, proteins and
lipids)47,81. The outer part of the membrane is also covered by a sugar layer called glycocalyx or fuzzy coat82,83, which alters
the interaction with the extra-cellular middle by reducing the adhesion. The presence of glycocalyx is usually more important
in cancer cells than in healthy cells26, meaning that it is a parameter to take into account to model the adhesion between the
cell and the NP. In addition, the composition of the cell membrane may change alongside its circumference. For instance, the
presence of lipid rafts48,84 will locally increase the bending rigidity of the membrane. These observations about the structure
of the cell membrane challenge the modeling of the region 3 as homogeneous alongside the cell. However, since the study was
performed for a range of �̄� and �̄�, our results remain valid as they account for the variability of the membrane’s properties.

5.3 Rigidity of the NP
Our model was built considering a rigid NP. As explained in the hypotheses section, this choice was made for simplification
purposes and it appeared to fit with many of the existing NPs. However, NPs with low bending rigidity (in the same order of
magnitude as the membrane) exist as well20. Moreover, previous studies demonstrated that the rigidity of the NP is a prominent
parameter of endocytosis1,18. Consequently, additional investigations should be done accounting for the rigidity of the NP to
provide results adapted to a larger range of NPs.

5.4 Rotation of the elliptic NP during endocytosis
It was also found experimentally9 and numerically18,85,86 that if an elliptic particle touches the membrane by its horizontal
side, it will tend to rotate to be engulfed vertically. However, this phenomenon appears to depend on the membrane tension, as
demonstrated in15: the NP is wrapped in its vertical configuration if the tension is lower than a threshold value of �̄� and in its
horizontal configuration otherwise.

5.5 2D model
Zhou et al.30 suppose that a 2D model suits for the study of the adhesion of a vesicle to a substrate. However, Yi1 performed
both 2D and 3D axisymmetric models of the cellular uptake of a NP and found the same results for circular NPs but different
behavior of Δ𝐸(𝑓 ) for other shapes. Indeed, for non-circular particles, studying only one section of the NP is not enough to
have a full picture of the wrapping since it would not appropriately account for the whole bending of the membrane.

5.6 Steps of drug delivery
NPs are used for many medical purposes. Indeed, they can be used as markers for radiotherapy or even for imaging to diagnose
cancers87,88. They may also be used to deliver drugs as in chemotherapy for instance89. For the NPs to achieve their goal, they
first need to reach the target cell. However, depending on their physico-chemical properties, these NPs may be cleared by defense
mechanisms, as immunity cells, or by the liver or the kidneys for example90. Supposing that the NP avoids these clearance
processes, it still has to be internalized by the cell, as it has been detailed in this paper. However, the cellular wrapping of the
NP is actually the very first step of endocytosis6. Indeed, it is not sure that the NP will not be rejected (via exocytosis) before
reaching its target48. Finally, the NP being a foreign object in the body, it remains essential to be aware of the potential hazards
and toxicity it could cause91.

6 CONCLUSIONS AND PERSPECTIVES

This work presented a 2D model of the cellular uptake of a rigid elliptic NP at the scale of the NP. Investigations have been
conducted to evaluate the influence of the mechanical properties of the cell membrane coupled with the aspect ratio of the particle



on the cellular uptake of NP. Afterwards, a sensitivity analysis highlighted that the wrapping degree is twice more sensitive to
the NP’s aspect ratio than to the adhesion, which itself influences twice more than the membrane tension. Thus, slightly vertical
NPs with large adhesion are the ones that are the most likely to be fully wrapped. Whenever these two features are difficult to be
implemented in the manufacturing process of the NPs, we recommend manufacturers to focus mainly on the NP’s aspect ratio
since it is, according to our study, the parameter that influences the most the predictions of endocytosis.

As suggestions for future research, the influence of the deformability of the particle and the variation of the mechanical
properties of the cell during wrapping should be investigated. One could also model the bending rigidity of the membrane as a
random field in order to take into account the membrane’s heterogeneity.
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SUPPORTING INFORMATION

The Python code used to display the wrapping configuration, to compute Δ𝐸(𝑓 ) and to identify the wrapping phases is available
at: https://github.com/SarahIaquinta/uptake_of_random_rigid_elliptic_particle

https://github.com/SarahIaquinta/uptake_of_random_rigid_elliptic_particle
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