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This is for the most part a survey paper, in which we present some results related to the construction of universal linear dynamical systems, i.e. of operators on Banach spaces which can represent, in various senses, certain classes of (nonlinear) dynamical systems. We first describe and generalize a result of Feldman proving the existence of universal linear systems in the topological sense. We then present the first example, due to Glasner and Weiss, of a universal linear system in the measurable framework. After this we report on a recent generalization of the Glasner-Weiss universality result, giving a simple and general criterion for an operator on a separable Banach space to be universal. The main ideas of the proof of this criterion are also presented.

Introduction

We present here some results concerning universality properties of linear dynamical systems, both from the topological and the measurable points of view. Precise definitions will be given below, but the intuitive definition of a universal system is that it "represents" all systems from a natural class. Topologically universal systems represent all homeomorphisms, or all self-maps, of compact spaces, while universal systems in the measurable framework represent all (invertible) ergodic systems on a standard probability space.

The first example of a topologically universal linear system was given by Feldman in [START_REF] Feldman | Linear chaos?[END_REF]. After a very brief introduction to linear dynamical systems (Section 2), we present this result in Section 3 below, using a slightly different approach from the one of [START_REF] Feldman | Linear chaos?[END_REF]. This allows us to obtain new classes of topologically universal linear systems (Theorem 3.3): these classes consist of all finite p -or c 0 -sums of operators on separable Banach spaces satisfying certain Properties (P) or (P') (see Definition 3.2 below), which stipulate the existence of a vector whose orbit has suitable summability properties. We also remark (Theorem 3.8) that universal operators in the sense of Rota and Caradus are, when suitably renormalized, universal for all self-maps of compact spaces.

We then move over to the measurable framework, and present in Section 4 a result of Glasner and Weiss, who obtained in [START_REF] Glasner | A universal hypercyclic representation[END_REF] the first example of a universal linear system in this setting. Their example actually fits into a more general picture, since they constructed, for a large class of topological groups, universal representations for all free ergodic actions of the group. The approach of [START_REF] Glasner | A universal hypercyclic representation[END_REF] is taken up in [START_REF] Grivaux | Some new examples of universal hypercyclic operators in the sense of Glasner and Weiss[END_REF], where a simple criterion is obtained for an operator on a separable Banach space to induce a universal linear dynamical system. We present this criterion in Section 5, as Theorem 5.2: it states that operators satisfying a reinforced version of Property (P), called Property (Q) (see Definition 5.1 below), are universal for invertible ergodic systems on a standard probability space, while operators satisfying Property (Q'), which is a reinforced version of Property (P'), are universal for all ergodic systems. Thanks to this criterion, many classical hypercyclic operators can be shown to be universal. We also give in Section 5 some key ideas for the proof of the universality criterion of [START_REF] Grivaux | Some new examples of universal hypercyclic operators in the sense of Glasner and Weiss[END_REF]. We propose along the way some challenging questions on universal systems, which concern in particular the possible links between topological and measurable universality.

Linear dynamical systems?

The study of linear dynamics is the study of dynamical systems of the form (Z, A), where Z is a real or complex infinite-dimensional separable Banach space and A ∈ B(Z) is a bounded linear operator on Z. One investigates the behavior of the iterates A n , n ≥ 0, of A, and the properties of the orbits Orb(z, A) = {A n z; n ≥ 0} of vectors z of Z are of special interest. Roughly speaking, one may look at these dynamical systems from two different points of view:

-from the topological point of view: if U is a non-empty open subset of Z, what can be said about the iterates A n (U ) of this open set? A basic notion in this setting is that of topological transitivity: A is topologically transitive if, whenever U and V are two non-empty open subsets of Z, there exists an integer n ≥ 0 such that A n (U ) ∩ V is non-empty. Topological transitivity of A is equivalent to the fact that A is hypercyclic, i.e. that it admits a vector z ∈ Z whose orbit under the action of A is dense in Z. Such vectors with dense orbits are called hypercyclic vectors for A, and the set of these vectors is usually denoted by HC(A).

-from the measure theoretic point of view: if B denotes the σ-algebra of Borel subsets of Z and m is a Borel probability measure on Z, one may consider A as a measurable transformation from (Z, B, m) into itself. The game is then the following: given an operator A ∈ B(Z), when is it possible to construct such a measure m which is invariant by A (i.e. such that m(A -1 B) = m(B) for every B ∈ B), and with respect to which A defines an ergodic transformation? Recall that A is said to be ergodic if whenever B, C ∈ B are two sets such that m(B) > 0 and m(C) > 0, there exists an integer n ≥ 0 such that

m(A -n B ∩ C) > 0.
Of course, topological and measurable dynamics are not two independent branches of dynamics, and there is a strong interplay between them. Here is a typical instance of such a phenomenon: suppose that A ∈ B(Z) is such that it admits an invariant measure with respect to which it is ergodic, and that this measure m has full support in the sense that m(U ) > 0 for every non-empty open subset U of Z. Birkhoff's ergodic theorem then implies that for every non-empty open subset U ,

1 N #{1 ≤ n ≤ N ; A n z ∈ U } → m(U ) as N → +∞ for m-almost every z ∈ Z.
It follows immediately from this that A is hypercyclic, but also that it enjoys a stronger property: for m-almost every z ∈ Z,

dens{n ≥ 0 ; A n z ∈ U } = lim N →+∞ 1 N #{1 ≤ n ≤ N ; A n z ∈ U } > 0
for every non-empty open subset U of Z. Vectors z enjoying this property are called frequently hypercyclic vectors, and when such vectors exist, A itself is called a frequently hypercyclic operator. This is an extremely brief and partial introduction to some key concepts in linear dynamics, and for more information the reader is referred to one of the following texts: the survey [START_REF] Grosse-Erdmann | Universal families and hypercyclic operators[END_REF] presents a detailed picture of hypercyclicity and universality issues until the 90's. The two recent books [START_REF] Bayart | Dynamics of linear operators[END_REF] and [START_REF] Grosse-Erdmann | Linear Chaos[END_REF] are references in the subject and contain a lot of material. The book [START_REF] Grosse-Erdmann | Linear Chaos[END_REF] focuses on topological issues and contains a chapter on frequent hypercyclicity, where some results bearing on this subject are proved without having recourse to the measurable approach. The book [START_REF] Bayart | Dynamics of linear operators[END_REF] is more advanced, and the reader will find here in particular a presentation of linear dynamical systems from the measure-theoretic point of view.

The papers [START_REF] Bayart | Mixing operators and small subsets of the circle[END_REF], [START_REF] Murillo-Arcila | Strong mixing measures for linear operators and frequent hypercyclicity[END_REF], [START_REF] Grivaux | Invariant measures for frequently hypercyclic operators[END_REF] (among many other interesting references) present some even more recent results on the ergodic theory of linear dynamical systems, which are not included in either of the two books [START_REF] Grosse-Erdmann | Linear Chaos[END_REF], [START_REF] Bayart | Dynamics of linear operators[END_REF]. The paper [START_REF] Menet | Linear chaos and frequent hypercyclicity[END_REF] by Menet, which gives examples of chaotic operators which are not frequently hypercyclic, should definitely be mentioned too.

The reader wishing to know more about ergodic theory and dynamics in general can consult one of the books [START_REF] Walters | An Introduction to Ergodic Theory[END_REF], [START_REF] Petersen | Ergodic theory[END_REF], [START_REF] Kalikow | An outline of ergodic theory[END_REF], or [START_REF] Glasner | Ergodic theory via joinings[END_REF].

Unless stated otherwise, Banach spaces in this paper can be taken to be either real or complex.

3. Universal systems in the topological sense: the construction of Feldman 3.1. Topological universality. -We study in this section universality properties of operators in the topological sense. It makes sense to introduce two slightly different notions, depending on whether we wish the operator to represent all continuous self-maps of compact metrizable spaces, or simply all homeomorphisms of such spaces. Definition 3.1. -Let A be a bounded operator on a separable Banach space Z.

• We say that A is universal for homeomorphisms of compact spaces if, for every compact metrizable space K and every homeomorphism T of K, there exists a compact A-invariant subset L of Z such that T is topologically conjugate to the map induced by A on L (i.e. there exists an homeomorphism φ :

K / / L such that φ • T = A • φ).
• We say that A is universal for self-maps of compact spaces if the same property holds true for all continuous self-maps T : K / / K of compact metrizable spaces K.

Feldman proved in [START_REF] Feldman | Linear chaos?[END_REF] that there exists a universal operator for self-maps of compact spaces: if B denotes as usual the backward shift operator on the (real or complex) space 2 (N), the infinite direct sum 2B ∞ = 2 2B of the operator 2B on the Hilbert space H = 2 2 (N) is shown in [START_REF] Feldman | Linear chaos?[END_REF] to be universal for self-maps of compact spaces. Several other universality results of this kind are proved in [START_REF] Feldman | Linear chaos?[END_REF], among which we quote the following one: for any integer r ≥ 1, denote by B r the direct 2 -sum of r copies of B on the real (resp. complex) Hilbert space H r which is the direct 2 -sum of r copies of the real (resp. complex) space 2 (N). Then 2B r is universal for all self-maps of compact subsets of R r (resp. C r ).

3.2.

A generalization of Feldman's result. -Our aim is now to prove some more natural generalizations of the universality results mentioned above. These involve two properties which, for lack of a better terminology, we will call respectively Property (P) and Property (P'). These two properties will appear again in a reinforced form in our study of universality for ergodic systems (see Section 5 below). Definition 3.2. -Let A be a bounded operator on a separable Banach space Z.

• We say that A has Property (P) if there exists a sequence (z n ) n∈Z of vectors of Z such that Az n = z n+1 for every n ∈ Z (in which case we write z n = A n z 0 for every n ∈ Z, even when A is not invertible) and (a) the series n∈Z A -n z 0 is unconditionally convergent in Z; (b) the vector z 0 does not belong to the closed linear span in Z of the vectors A -n z 0 , n ∈ Z \ {0}. • We say that A has Property (P') if it satisfies the requirements of Property (P) above and, moreover, the sequence (z n ) n∈Z is such that A r z 0 = 0 for some r ∈ Z (or, equivalently, such that z 0 = 0).

It is not difficult to exhibit examples of operators with Property (P) or (P'), for instance among bilateral (resp. unilateral) backward shifts on p (Z), p ≥ 1, or c 0 (Z) (resp. p (N) or c 0 (N)). For instance the shift operator S defined on 2 (Z) by Se n = 2e n-1 for every n ≥ 1 and Se n = 1 2 e n-1 for every n ≤ 0 has Property (P), while all multiples λB with |λ| > 1 of the backward shift on 2 (N) have Property (P').

The main result of this section is Theorem 3.3 below. In its statement, infinite direct sums will be either p -sums for some p ≥ 1, or c 0 -sums.

Theorem 3.3. -Let K = R or K = C. For each k ≥ 1, let A k be a bounded operator on a separable Banach space Z k over K. (1) If all operators A k have Property (P), the infinite direct sum A = k≥1 A k on the space Z = k≥1 Z k is universal for homeomorphisms of compact spaces. (2) If all operators A k have Property (P'), the infinite direct sum A = k≥1 A k is universal for self-maps of compact spaces. (3) Let r ≥ 1 be an integer. If the operators A k , 1 ≤ k ≤ r, have Property (P) (resp.
Property (P')), the finite direct sum 1≤k≤r A k is universal for homeomorphisms (resp. self-maps) of compact subsets of K r .

The proof uses essentially the same arguments as those of [START_REF] Feldman | Linear chaos?[END_REF]; we present them in a slightly different way, so as to be coherent with our approach of universality questions in the measurable framework in Sections 4 and 5.

Proof. -We first give the proof of assertion (1) (the proof of assertion (2) is extremely similar, and we will not detail it). Let T be a homeomorphism of a compact metrizable space (K, d), and let (x k ) k≥1 be a dense subset of K. For each k ≥ 1, let z 0,k be a vector of Z k such that the sequence (A n k z 0,k ) n∈Z satisfies assumptions (a) and (b) of Property (P).

Since the series n∈Z A -n z 0,k is unconditionally convergent, there exists, for each k ≥ 1, a positive constant M k such that (1)

n∈Z θ n A -n k z 0,k Z k ≤ M k sup n∈Z |θ n |
for every bounded sequence (θ n ) n∈Z of scalars. Also, assumption (b) of Property (P) implies that there exists a functional z * k on Z k such that z * k , z 0,k = 1 and z * k , A -n k z 0,k = 0 for every n ∈ Z \ {0}. We now define a map φ : K / / Z by setting

φ(x) = k≥1 2 -k M k n∈Z d(T n x, x k )A -n k z 0,k for every x ∈ K.
Since the direct sum is either an l p -or a c 0 -sum, (1) implies that φ(x) is well-defined for every x ∈ K and that φ is a continuous map from K into Z. Let us now check that φ is injective: let x and y be two elements of K such that φ(x) = φ(y).

Then n∈Z d(T n x, x k )A -n k z 0,k = n∈Z d(T n y, x k )A -n k z 0,k
for every k ≥ 1. Applying the functional z * k on both sides, we obtain that d(x, x k ) = d(y, x k ). This being true for every k ≥ 1, and (x k ) k≥1 being dense in K, this implies that x = y. Thus φ is injective, and an homeomorphism from K onto its image L, which is a compact subset of Z. It is straightforward to check that φ(T x) = Aφ(x) for every x ∈ K, and it follows that T and A : L / / L are topologically conjugate.

Let us now prove assertion (3). Let r ≥ 1, and suppose that the operators A k , 1 ≤ k ≤ r, have Property (P). Let (e 1 , . . . e k ) denote the canonical basis of K r . Using the same notation as in the proof of assertion (1) above, we consider the map φ : K / / Z defined by setting

φ(x) = r k=1 n∈Z T n x, e k A -n k z 0,k for every x ∈ K.
This map is well-defined and continuous on K, and injective: if x and y are two elements of K such that φ(x) = φ(y), x, e k = y, e k for every 1 ≤ k ≤ r, so that x = y. Hence T is topologically conjugate to the map induced by A on L = φ(K).

As an application of assertion (3) of Theorem 3.3, we obtain for instance:

Corollary 3.4. -Operators with Property (P) are universal for homeomorphisms of the Cantor space.

In view of the proof of Theorem 3.3, the following observation is in order:

Remark 3.5. -Let A be a bounded operator on a separable Banach space Z over K with K = R or K = C. Suppose that A satisfies Property (P), and let z 0 ∈ Z be an associated vector satisfying properties (a) and (b) of Definition 3.2. Let T be a homeomorphism of a compact metric space (K, d), and let f : K / / K be a continuous scalar-valued function on K. The map φ f : K / / Z defined by setting

φ f (x) = n∈Z f (T n x)A -n z 0 for every x ∈ K
is well-defined and continuous on K. The image φ f (K) of K is a compact subset L of Z, and if we denote by A L the transformation induced by A on L, the map φ f intertwines T and A L in the sense that φ f • T = A L • φ f . So A L is a factor of T , with φ f a factor map (see for instance [23, p. 140] for the definition of topological factors). If the map f can be chosen in such a way that φ f is injective (which is for instance the case in the situation considered in Corollary 3.4 above), then φ f is a topological isomorphism between the two systems (K, T ) and (L, A L ), which are hence topologically conjugate. Thanks to this theorem, we can show that all operators with Property (C) are, after a suitable renormalization, universal for all self-maps of compact spaces: Theorem 3.8. -Let A be a bounded operator on a separable Hilbert space H which has Property (C). If || A -1 || > 1, A is universal for all self-maps of compact metric spaces.

Proof. -Let λ be a scalar such that 1 < |λ| < || A -1 ||. By Theorem 3.3, the infinite direct sum operator A 0 = ⊕ 2 λB is universal for all self-maps of compact metric spaces. By Theorem 3.8, there exists a bounded operator W from H onto a closed subspace H 0 of H such that W A 0 = AW . It follows that the operator induced by A on H 0 is universal for all self-maps of compact spaces, and hence that A itself has the same property.

3.4

. Some open questions. -We conclude this section with some natural questions on topological universality. The first one concerns the possibility of characterizing topologically universal operators: Question 3.9. -Is it possible to characterize the operators on a separable Hilbert space which are universal for homeomorphisms, or for self-maps, of compact spaces? More concretely, it is a somewhat surprising fact that one has to take infinite direct sums of operators with Property (P) in Theorem 3.3 in order to obtain topologically universal systems for homeomorphisms or self-maps of compact spaces: Question 3.10. -Are operators with Property (P) (resp. Property (P')) universal for homeomorphisms (resp. self-maps) of compact spaces?

The proof of Theorem 3.3 seems to point to a negative answer to Question 3.10, but I am not aware of any argument showing, for instance, that the operator 2B on 2 (N) is not universal for self-maps of compact spaces. ). -A representation S = (S g ) g∈G of a topological group G on a Banach space Z is called universal if for every ergodic probability-preserving free action T = (T g ) g∈G of G on a standard Lebesgue probability space (X, B, µ), there exists a Borel probability measure ν on Z which is S-invariant, has full support, and is such that the actions of T and S of G on (X, B, ν) and (Z, B Z , ν) respectively are isomorphic.

A universal representation of G thus models every possible free ergodic action of G on a probability space. Recall that (T g ) g∈G is said to be free if for every element g ∈ G distinct from the identity, µ({x ∈ X; T g x = x}) = 0, and ergodic if the following property holds true: if

B ∈ B is such that T -1 g (B) = B for every g ∈ G, then µ(B) = 0 or µ(B) = 1.
The existence of a universal representation is shown in [START_REF] Glasner | A universal hypercyclic representation[END_REF] for a large class of groups: Theorem 4.2 ([9]). -Let G be a topological group which belongs to one of the following classes:

(1) countable discrete groups;

(2) locally compact, second countable, compactly generated groups;

(3) groups which can be written as the increasing union of a sequence of compact open subgroups. Then G admits a universal representation S = (S g ) g∈G on a separable Hilbert space.

Universal operators.

-When G = Z, the main result of [START_REF] Glasner | A universal hypercyclic representation[END_REF] states that there exists a bounded invertible operator on a separable Hilbert space which is universal in the sense of Definition 4.3 below. Recall (see for instance [START_REF] Walters | An Introduction to Ergodic Theory[END_REF]Def. 2.4]) that two probabilitypreserving systems (X 1 , B 1 , m 1 ; T 1 ) and (X 2 , B 2 , m 2 ; T 2 ) are isomorphic if there exist sets

M 1 ∈ B 1 , M 2 ∈ B 2 with m 1 (M 1 ) = m 2 (M 2 ) = 1, T 1 (M 1 ) ⊆ M 1 , T 2 (M 2 ) ⊆ M 2 ,

and an invertible transformation

Φ : M 1 / / M 2 such that Φ(T 1 x) = T 2 Φ(x) for every x ∈ M 1 .
Definition 4.3. -Let A be a bounded operator on a separable Banach space Z.

• We say that A universal for invertible ergodic systems if it satisfies the following property: for every invertible ergodic dynamical system (X, B, µ; T ) on a standard Lebesgue probability space, there exists a probability measure ν on Z with full support which is A-invariant, and such that the systems (X, B, µ; T ) and (Z, B Z , ν; A) are isomorphic. • We say that A is universal for ergodic systems if the same property holds true for all ergodic dynamical systems (X, B, µ; T ) on a standard Lebesgue probability space.

Let us stress here that an important feature of universality in the sense of Definition 4.3 above is that the A-invariant measures ν on Z which induce all ergodic systems are required to have full support. We will come back to this at the end of Section 5.

The universal operators constructed in [START_REF] Glasner | A universal hypercyclic representation[END_REF] are defined as shift operators on certain weighted two-sided p -spaces of sequences, for 1 < p < +∞. Equivalently, they are weighted shift operators on p (Z). The proof of [START_REF] Glasner | A universal hypercyclic representation[END_REF] involves an ergodic theorem for random walks on groups due to Jones, Rosenblatt, and Tempelman [START_REF] Jones | Ergodic theorems for convolutions of a measure on a group[END_REF]. This result states that if η is a symmetric strictly aperiodic probability measure on Z, the following property holds true: for any probability-preserving dynamical system (X, B, µ; T ) and for any function f ∈ L p (X, B, µ), with 1 < p < +∞, the powers A n η f of the random walk operator on Z defined by

A η f (x) = k∈Z f (T k x) η(k)
converge, for almost every x ∈ X, to the projection of f onto the subspace of L p (X, B, µ) consisting of T -invariant functions. This ergodic theorem can be applied for instance to the measure η = (δ -1 + δ 0 + δ 1 )/3 on Z. The shift operator constructed in [START_REF] Glasner | A universal hypercyclic representation[END_REF] is defined using the weights w k , k ∈ Z, defined by w k = n≥1 p n η * n (k) for every k ∈ Z, where (p n ) n≥1 is a sequence of positive real numbers such that n≥1 p n = 1 and sup (p n /p n+1 ) < +∞. The shift operator S is defined on

p (Z, w) := {ξ = (ξ k ) k∈Z ; k∈Z |ξ k | p w k < +∞}
by the formula Sξ = (ξ k+1 ) k∈Z for every ξ ∈ p (Z, w). It is shown in [START_REF] Glasner | A universal hypercyclic representation[END_REF] that S is bounded, and the ergodic theorem of [START_REF] Jones | Ergodic theorems for convolutions of a measure on a group[END_REF] implies then that for any function f ∈ L 2p (X, B, µ) the sequence (f (T k x)) k∈Z belongs to p (Z, w) for µ-almost every x ∈ X. Setting Φ f : (X, B, µ) -→ ( p (Z, w), B p(Z,w) , ν f )

x -→ (f (T k x)) k∈Z
where ν f is the image measure of µ by the map Φ f on p (Z, w) (i.e. ν f (B) = µ(Φ -1 f (B)) for any Borel subset B of p (Z, w)), one easily checks that Φ f intertwines the actions of T on (X, B, µ) and of S on p (Z, w). The map Φ f is thus a factor map, whatever the choice of the function f . The last, and most difficult, steps of the proof of [START_REF] Glasner | A universal hypercyclic representation[END_REF] are then to ensure that Φ f is a conjugacy of dynamical systems, and that the measure ν f on p (Z, w) has full support (if the systems (X, B, µ ; T ) and ( p (Z, w), B p(Z,w) , ν f ; S) are conjugate, they are isomorphic -see the beginning of Chapter 2 in [START_REF] Walters | An Introduction to Ergodic Theory[END_REF] for more details on conjugacy of measure-preserving systems). The map Φ f needs thus to be constructed in such a way that, for every C ∈ B, there exists B ∈ B p(Z,w) such that µ(Φ -1 f (B) C) = 0, and µ({x ∈ X ; Φ f (x) ∈ U }) > 0 for every non-empty open subset U of p (Z, w).

5. Some more universal operators in the measurable framework 5.1. A general criterion for universality. -Our aim in the paper [START_REF] Grivaux | Some new examples of universal hypercyclic operators in the sense of Glasner and Weiss[END_REF] was to present an alternative construction of universal operators, which is elementary in the sense that it avoids the use of an ergodic theorem such as the one of [START_REF] Jones | Ergodic theorems for convolutions of a measure on a group[END_REF]. The construction given there is also more flexible than that of [START_REF] Glasner | A universal hypercyclic representation[END_REF], yields some rather simple criteria for universality, and allows us to show the existence of universal operators on a large class of Banach spaces. Moreover, this construction makes it possible to exhibit operators which are universal for all ergodic dynamical systems, not only for invertible ones. In order to emphasize the parallel between the topological and the measurable contexts in universality questions, we introduce the following reinforcements of Properties (P) and (P'): Definition 5.1. -Let A be a bounded operator on a separable Banach space Z.

• We say that A has Property (Q) if there exists a sequence (z n ) n∈Z of vectors of Z such that Az n = z n+1 for every n ∈ Z (in which case we write z n = A n z 0 for every n ∈ Z) and (a) the series n∈Z A -n z 0 is unconditionally convergent in Z;

(b) z 0 does not belong to the closed linear span of the vectors A -n z 0 , n ∈ Z \ {0};

(c) the linear span of the vectors A -n z 0 , n ∈ Z, is dense in Z. • We say that A has Property (Q') if it satisfies the requirements of Property (Q) above and, moreover, the sequence (z n ) n∈Z is such that A r z 0 = 0 for some r ∈ Z (or, equivalently, such that z 0 = 0).

It is not difficult to see that operators satisfying either Property (Q) or Property (Q') satisfy the so-called Frequent Hypercyclicity Criterion (see [START_REF] Bayart | Dynamics of linear operators[END_REF] or [START_REF] Grosse-Erdmann | Linear Chaos[END_REF]), and are thus frequently hypercyclic. Many of the classical operators satisfying the Frequent Hypercyclicity Criterion have Property (Q) or Property (Q'). The main result of [START_REF] Grivaux | Some new examples of universal hypercyclic operators in the sense of Glasner and Weiss[END_REF] can be stated as follows:

Theorem 5.2 ( [START_REF] Grivaux | Some new examples of universal hypercyclic operators in the sense of Glasner and Weiss[END_REF]). -Let A be a bounded operator on a real or complex separable Banach space Z.

• If A has Property (Q), A is universal for invertible ergodic systems.

• If A has Property (Q'), A is universal for all ergodic systems. Theorem 5.2 allows us to characterize in [START_REF] Grivaux | Some new examples of universal hypercyclic operators in the sense of Glasner and Weiss[END_REF] universal operators among unilateral or bilateral weighted shifts on p or c 0 , to show the existence of universal operators on Banach spaces containing a complemented subspace with a symmetric basis, and to give a criterion for universality of operators on complex Banach spaces in terms of unimodular eigenvectors. We quote here one of the most useful results along these lines, thanks to which it is possible for example to study the universality of adjoints of multipliers on H 2 (D), or that of a classic Kalish-type operator on L 2 (T) (see [START_REF] Grivaux | Some new examples of universal hypercyclic operators in the sense of Glasner and Weiss[END_REF] or [START_REF] Bayart | Dynamics of linear operators[END_REF] for unexplained terms).

Theorem 5.4 ([11]

). -Let A be a bounded operator on a separable complex Banach space Z.

• Suppose that A admits an eigenvector field E which is analytic in a neighborhood of the unit circle T, and that span E(λ); λ ∈ T = Z. Then A is universal for invertible ergodic systems. • If the eigenvector field E is analytic in a neighborhood of the closed unit disk D and span E(λ); λ ∈ T = Z, then A is universal for ergodic systems.

Our aim in the rest of this section is to help the reader of [START_REF] Glasner | A universal hypercyclic representation[END_REF] or [START_REF] Grivaux | Some new examples of universal hypercyclic operators in the sense of Glasner and Weiss[END_REF] to develop an intuition of the proofs of such universality results as those of Theorem 4.2 or Theorem 5.2. In the rest of this section, all probability-preserving systems will be assumed to be invertible.

Symbolic dynamics. -

The basic intuition comes from symbolic dynamics, and the coding of a probability-preserving system thanks to partitions of the space X. Let (X, B, µ ; T ) be a probability-preserving system, and let P = {P i ; i ∈ I} be a partition of X indexed by a certain set I. Denote by Y the space I Z of two-sided sequences of elements of I, endowed with the product topology associated to the discrete topology on I. Let also σ : Y / / Y be the shift homeomorphism defined by σ((y n ) n∈Z ) = (y n+1 ) n∈Z for every y = (y n ) n∈Z ∈ Y . Define a map φ P : X / / Y by letting, for each x ∈ X and each n ∈ Z, the n-th coordinate (φ P (x)) n of φ P (x) be the unique index i ∈ I such that T n x belongs to P i . It is straightforward to check that φ P : (X, B, µ ; T ) / / (Y, B Y , φ P µ ; σ) is a factor map, where φ P µ is the image of the measure µ by the map φ P . This map φ P is not necessarily a conjugacy of dynamical systems, but it is so when the partition P is a generator for T , i.e. when the infinite join n∈Z T n P of the partitions T n P, n ∈ Z, is equal to B up to sets of measure 0 (i.e. for every B ∈ B there exists C ∈ n∈Z T n P such that µ(B C) = 0): Proposition 5.5. -Let (X, B, µ ; T ) be a probability-preserving system, and let P be a partition of X. The following assertions are equivalent:

(a) φ P is a conjugacy between the two systems (X, B, µ ; T ) and (Y, B Y , φ P µ ; σ); (b) there exists a subset M ∈ B of X with µ(M ) = 1 such that φ P is injective on M ; (c) P is a generator for T .

We refer the reader to [START_REF] Walters | An Introduction to Ergodic Theory[END_REF]Ch. 4] for a presentation of basic facts concerning partitions. Proposition 5.5 is proved for instance on pages 97-98 of [START_REF] Walters | An Introduction to Ergodic Theory[END_REF].

The coding of a system via a partition which is a generator for the system thus appears as a most natural tool to exhibit universal models (of course, outside the linear setting). We quote here a few important results along these lines, and refer the reader to the fundamental paper [START_REF] Weiss | Countable Generators in Dynamics -Universal Minimal Models[END_REF] by Weiss, and its sequel [START_REF] Shilon | Universal minimal topological dynamical systems[END_REF] by Shilon and Weiss, for more on this topic. The statement of some of these results involve the entropy of the initial system. We will not define entropy here (see for instance [START_REF] Walters | An Introduction to Ergodic Theory[END_REF]Ch. 4]), and the reader not familiar with entropy can understand it simply as a measure of the complexity of the system. A first result concerning the construction of universal models goes back to Rokhlin [START_REF] Rokhlin | Lectures on ergodic theory[END_REF]: Theorem 5.6 ([20]). -Let (X, B, µ ; T ) be an ergodic system on a standard probability space. If its entropy h(T ) is finite, there exists a countable generator P for T . It follows that the shift σ on N Z is a universal model for all ergodic systems of finite entropy.

This result was strengthened by Krieger [START_REF] Krieger | On entropy and generators of measure-preserving transformations[END_REF], who showed that systems with finite entropy admit finite generators: Theorem 5.7 ( [START_REF] Krieger | On entropy and generators of measure-preserving transformations[END_REF]). -Let (X, B, µ ; T ) be an ergodic system on a standard probability space. If its entropy h(T ) is finite, T admits a finite generator P. The number p of elements of P can be chosen in such a way that e h(T ) ≤ p ≤ e h(T )+1 .

It follows that for every positive integer a, the shift σ on {0, 1, . . . , a -1} Z is a universal model for ergodic systems of entropy strictly less that ln a. In particular, the shift on {0, 1} Z is a universal model for ergodic systems of zero entropy.

5.

3. An attempt at a proof of Theorem 5.2. -With these results at hand, let us try to see how we could represent ergodic systems of finite entropy as linear dynamical systems. Let A be a bounded operator on a Banach space Z over K with K = R or K = C, satisfying Property (Q), and let z 0 ∈ Z be a vector for which assumptions (a) to (c) of Definition 3.1 hold true. For simplicity's sake, we will suppose here that A is invertible.

Let (X, B, µ ; T ) be a system of finite entropy. By Theorem 5.7 above, there exists a finite generator P = {P 1 , . . . , P p } of T . Let a 1 , . . . , a p be distinct scalars, and let f : X / / K be the function defined by f (x) = a i for every x ∈ P i , i = 1, . . . , p. The map Φ f associated to f by setting

Φ f (x) = k∈Z f (T k x)A -k z 0 for every x ∈ X
is well-defined. It is a factor map between the systems (X, B, µ ; T ) and (Z, B Z , ν f ; A), where ν f is the probability measure on Z defined as the image measure of µ by the map Φ f . Let us now show that Φ f is a conjugacy between these two systems: since the partition P is a generator for T , it suffices to prove that for any integer r and any indices i -r , . . . , i r belonging to {1, . . . , p}, there exists B ∈ B Z such that, up to a set of µ-measure zero,

Φ -1 f (B) = {x ∈ X ; ∀ k ∈ {-r, . . . , r}, T k x ∈ P i k }.
It is here that assumption (b) on the sequence (A -k z 0 ) k∈Z comes into play: since A is invertible, it implies that there exists for every k ∈ Z a functional z * k ∈ Z * such that z * k , A -k z 0 = 1 and z * k , A -j z 0 = 0 for every j ∈ Z, j = k. Hence z * k , Φ f (x) = f (T k x) for every k ∈ Z and every x ∈ X. Consider now the Borel subset B of Z defined by

B = {z ∈ Z ; ∀ k ∈ {-r, . . . , r}, z * k , z = a i k }. Then Φ -1 f (B) = {x ∈ X ; ∀ k ∈ {-r, .
. . , r}, f (T k x) = a i k }, and since the scalars a 1 , . . . , a p are distinct, the definition of f implies that Φ -1 f (B) = {x ∈ X ; ∀ k ∈ {-r, . . . , r}, T k x ∈ P i k } up to a set of µ-measure zero. It thus follows that the two systems (X, B, µ ; T ) and (Z, B Z , ν f ; A) are conjugate via the map Φ f , and are hence isomorphic. So all ergodic systems with finite entropy are represented, in a certain sense, by the operator A. But the measures ν f constructed above never have full support (the map Φ f is essentially bounded on X), and it is not easy to get an intuition of how the supports of these measures ν f might look. In order to force the measures ν f to have full support, one needs to exploit the bicyclicity assumption (c) on the vector z 0 . Let U be a non-empty open subset of Z. By assumption (c), there exists a vector v 0 ∈ Z of the form

v 0 = |k|≤r α k A -k z 0 ,
where the scalars α k are all distinct, such that the open ball B(v 0 , 2ε) is contained in U for some ε > 0. Let α = max |k|≤r |α k | > 0. There exists r 0 ≥ 0 such that (2)

|k|>r 0 β k A -k z 0 ≤ ε α sup |k|>r 0 |β k |
for every bounded sequence (β k ) k∈Z of scalars. Adding if necessary some terms α k A -k z 0 of extremely small norm to the vector v 0 , we can suppose without loss of generality that r ≥ r 0 .

Suppose now that the partition P considered above has been constructed in such a way that it contains a Rokhlin tower of height 2r + 1, i.e. that there exists a subset E of B with µ(E) > 0 such that the sets E, T (E), . . . , T 2r (E) are pairwise disjoint and belong to P. For instance we number the elements of the partition P in such a way that P i = T -r+i-1 E for every 1 ≤ i ≤ 2r + 1 (and p ≥ 2r + 1). Let now (a i ) 1≤i≤p be a sequence of distinct scalars with the following properties: a i = α -r+i-1 for every 1 ≤ i ≤ 2r + 1; |a i | ≤ α for every 2r + 1 < i ≤ p. Just as before, let f : X / / K be the function defined by f (x) = a i for every x ∈ P i , 1 ≤ i ≤ p. For every x ∈ E we have

Φ f (x) = |k|≤r α k A -k z 0 + |k|>r f (T k x)A -k z 0 so that ||Φ f (x) -v 0 || = || |k|>r f (T k x)A -k z 0 ||.
Since f is essentially bounded by α on E and r > r 0 , (2) implies that

||Φ f (x) -v 0 || ≤ ε for µ-almost every x ∈ E. It follows that ν f (U ) > 0.
The measure ν f constructed via this argument thus gives positive measure to a fixed non-empty open subset of Z. Since we want ν f to have full support, we need to ensure that ν f (U n ) > 0 for every n ≥ 1, where (U n ) n≥1 is a countable basis of open subsets of Z. The natural idea is to construct by induction a sequence (f n ) n≥1 of finite-valued functions from X into K such that, for every n ≥ 1, ν fn (U n ) > 0, and ν fn (U k ) is essentially equal to ν f k (U k ) for every 1 ≤ k ≤ n -1. If each function f n is a suitably small perturbation of the previous function f n-1 (i.e. if for instance the norm ||f n -f n-1 || in L 2 (X, B, µ) is extremely small), the functions Φ fn will converge, in L 2 (X, B, µ ; Z), to a certain function Φ ∈ L 2 (X, B, µ ; Z) as n tends to infinity. This map Φ will easily be seen to be a factor map between the systems (X, B, µ ; T ) and (Z, B Z , ν ; A), where ν is the image measure of µ by Φ. Observe that Φ will never be of the form Φ f for some essentially bounded function f on (X, B, µ). If a proper control is kept of the quantities ν fn (U p ), n ≥ p, the measure ν will have full support. The main difficulty will be to construct the successive functions f n (i.e. the successive partitions P n of the space X) in such a way that Φ is a conjugacy between the two systems (X, B, µ ; T ) and (Z, B Z , ν ; A). This relies on a careful construction of Rokhlin towers at each step, combined with technical modifications and precise estimates. We also have to take into account the fact that, when proving Theorem 5.2, we cannot in general suppose that (X, B, µ ; T ) has finite entropy. 5.4. Weiss' universal model. -Some constructions of this type are carried out in [START_REF] Weiss | Countable Generators in Dynamics -Universal Minimal Models[END_REF] and [START_REF] Shilon | Universal minimal topological dynamical systems[END_REF], where universal models for various classes of systems are constructed using this approach. We quote in particular the following remarkable result of Weiss, which shows that minimal universal models for ergodic systems (whatever their entropy) exist. The universal model of Weiss is a subshift of N Z , where N = {1, 2, . . . , ∞} is endowed with the usual topology (the point ∞ is the limit of the integers n, n ∈ N, as n goes to infinity).

Theorem 5.8. -There exists a closed subset Y of N Z which is invariant under the action of the shift σ : N Z / / N Z , such that (Y σ) is a minimal system, and, for every ergodic system (X, B, µ ; T ) on a standard probability space, there exists a countable generator P for T such that φ P (x) belongs to Y for µ-almost every x ∈ X. The shift σ on Y is thus a universal model for all ergodic systems.

5.5

. Some open questions. -In view of the approach presented above, and the results of [START_REF] Glasner | A universal hypercyclic representation[END_REF], it seems rather likely that Theorem 5.2 above can be extended to obtain a general criterion for representations of certain topological groups G to be universal in the sense of Definition 4.1:

Question 5.9. -For which topological groups G does there exist a general criterion, in the flavor of Theorem 5.2, for a representation of G to be universal for all free ergodic actions of G on a standard probability space?

We next recall the following open question from [START_REF] Glasner | A universal hypercyclic representation[END_REF]:

Question 5.10 ( [START_REF] Glasner | A universal hypercyclic representation[END_REF]). -Does every locally compact second countable group admit a universal representation?

In another direction, it would be very interesting to obtain other examples of universal operators exhibiting different features from the ones presented here. Several questions in this direction are proposed in [START_REF] Grivaux | Some new examples of universal hypercyclic operators in the sense of Glasner and Weiss[END_REF]; we single out the following one: Question 5.11. -Does there exist a universal operator for (invertible) ergodic systems which has no unimodular eigenvalue?

The last problem we would like to propose here concerns the possible links between topological and measurable universality. As we have seen in the previous sections, infinite direct sums of operators with Property (P) are universal in the topological sense for homeomorphisms of compact spaces, while operators with Property (Q) are universal in the measurable sense for the class of invertible ergodic systems. Now, Property (P) and (Q) are very close to each other, and the proofs of Theorem 3.3 and Theorem 5.2 present some obvious similarities. It is thus natural to wonder whether this is more than a mere coincidence: Question 5.12. -Are there links between universality in the topological framework and in the measurable framework?
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 53 -The operators λB, |λ| > 1, acting on p (N), 1 ≤ p < +∞, or c 0 (N), are universal for all ergodic systems.

  3.3. Universal operators in the sense ofRota and Caradus. -It is interesting to observe that, as a simple corollary of the existence of topologically universal operators, one can exhibit another class of universal operators, which originally appeared in quite another context. Rota in[START_REF] Rota | On models for linear operators[END_REF], and after him Caradus in[START_REF] Caradus | Universal operators and invariant subspaces[END_REF], call a bounded operator A on a separable Banach space universal if it enjoys the following property: for any bounded operator T ∈ B(Z), there exists a non-zero scalar λ, a closed A-invariant subspace Z 0 of Z, and a linear isomorphism W from Z onto Z 0 , such that W (λT ) = AW . In other words, some non-zero multiple of T is similar to a part of A. The first example of an operator with this universality property (the infinite direct sum B Theorem 3.7 ([START_REF] Caradus | Universal operators and invariant subspaces[END_REF]). -Let A be a bounded operator on a separable Hilbert space H which has Property (C). For any bounded operator T on H, and any non-zero scalar λ such that |λ|.||T ||.|| A -1 || < 1, λT is similar to a part of A.

∞ = ⊕ 2 B of the backward shift B on 2 (N)) was given by Rota in

[START_REF] Rota | On models for linear operators[END_REF]

. Caradus then provided in

[START_REF] Caradus | Universal operators and invariant subspaces[END_REF] 

a simple condition for an operator on a Hilbert space to be universal in the sense above. Definition 3.6. -We say that a bounded operator A on a separable Hilbert space H has Property (C) if its kernel ker A is infinite dimensional and A is surjective.

If A is a bounded operator on a separable Hilbert space H which has Property (C), we denote by A the restriction of A to (ker A) ⊥ . It is an isomorphism from (ker A) ⊥ onto H. Caradus' universality result runs as follows: