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Abstract: The ability to build more robust clustering from many clustering models with different
solutions is relevant in scenarios with privacy-preserving constraints, where data features have a
different nature or where these features are not available in a single computation unit. Additionally,
with the booming number of multi-view data, but also of clustering algorithms capable of producing
a wide variety of representations for the same objects, merging clustering partitions to achieve a
single clustering result has become a complex problem with numerous applications. To tackle this
problem, we propose a clustering fusion algorithm that takes existing clustering partitions acquired
from multiple vector space models, sources, or views, and merges them into a single partition. Our
merging method relies on an information theory model based on Kolmogorov complexity that was
originally proposed for unsupervised multi-view learning. Our proposed algorithm features a stable
merging process and shows competitive results over several real and artificial datasets in comparison
with other state-of-the-art methods that have similar goals.

Keywords: clustering; Kolmogorov complexity; multi-view learning; information theory

1. Introduction

Multi-source data are a never-ending source of information produced almost in real
time by many real-life systems: personal data from social networks, medical data ac-
quired by multiple systems for the same patient, remote sensing images acquired under
various modalities, etc. All of these data somehow have to be processed by machine
learning algorithms.

However, in the last years, there has emerged a new phenomenon in which machine
learning methods themselves have started producing their own multiple representations of
the same data mainly due to the explosion in the number of algorithms and, in particular,
deep learning algorithms that extract features from data. For instance, in the field of natural
language processing, text and speech data can be analyzed and clustered from widely
different representations and features, and there is, therefore, a need to reconcile and
somehow merge these results [1,2]. The same problem exists in many other domains, such
as image processing, where different architectures of convolutional neural networks may
extract different features and representations. However, this is particularly problematic
in the context of unsupervised learning when there is no supervision to decide which
representations are the best, and when the only solution is often to produce clustering
based on the various possible representations, and thus to merge them all the while solving
conflicts. Furthermore, this unsupervised process also has to detect and discard low-quality
and noisy representations.

Whether the multiple representations are native to the data or produced artificially
by machine learning algorithms, the unsupervised exploration of multi-view data can
be regrouped under the terms of multi-view clustering [3] when dealing with multiple
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representations of the same objects or cluster ensembles [4] when dealing with several
partitions of the same objects by multiples algorithms. In this work, we deal with a multi-
view application where the data have multiples representations, but we use methods based
on the fusion of partitions that are very similar to ensemble learning problems. To tackle
such a multi-view clustering problem, two types of approaches exist: The first one consists
in attempting a global clustering of the multi-view system using an algorithm that has
access to all the views. The second one consists in running algorithms locally in each view
and then finding a solution to merge the partitions into a global result.

In this paper, we consider the second approach, which allows for the selection of local
algorithms better adapted to each view-specific data representation, and we propose a
novel merging method that aims at the fusion of various clustering partitions. Our method
uses information theory and the principle of minimum description length [5,6] to detect
points of agreements as well as conflicts between the local partitions, and features an
original method to reduce these conflicts as the partitions are merged. We call our method
KMC for “Kolmogorov-based multi-view clustering”.

This idea was successfully used in earlier work about multi-view clustering without
merging partitions [7] and for text corpus analysis [8]. This work brings the following novel
aspects and contributions:

1. Our main scientific contribution is the proposal of a new heuristic method relying
on Kolmogorov complexity to merge partition in an unsupervised ensemble learning
context applied to multiview clustering. Compared with earlier methods, we remove
the reliance on an arbitrary pivot to choose the merging order. Instead, we reinforce
the use of Kolmogorov complexity to make the choice of the merging order, thus
rendering our algorithm deterministic, while earlier versions and methods were not.
Our method also explores more of the solution space, thus leading to better results.

2. We propose a large comparison of unsupervised ensemble learning methods—including
four methods from the state of the art—in a context which is not restricted to text
corpus analysis, both in terms of state-of-the-art methods but also datasets.

3. While not a scientific or technical contribution (because our method relies on known
principles), our algorithm brings some novelty in the field of unsupervised ensemble
learning, where no other method relies on the same principle. We believe that such
diversity is useful to the field of clustering, where a wider choice of methods is a good
thing because of the unsupervised context.

Finally, while it is not a technical or scientific contribution, we analyze the effects of
various levels of noise in different number of views, and the effect of changing the number
of clusters. We assess how these parameters affect the performance of our proposed method
in terms of result quality. These results, while linked to our proposed methods, may shed
some light on the behavior of other methods in the same context.

This paper is organized as follows: In Section 2, we present some of the main methods
and approaches both for multi-view clustering and partition fusion methods based on
various principles. Section 3 introduces our proposed algorithms. Section 4 features our
experimental results and some comparisons with other methods. Finally, in Section 5, we
give some conclusions as well as some insights as to what future improvements and works
could be performed based on our proposal.

2. State of the Art

The problem of multi-view clustering is relatively common in unsupervised learning
and has been tackled from different angles depending on the intended application. The most
common method is to use a global function over all views and to merge all partitions.
Several such methods will be presented in this state of the art, where we will also discuss
their pros and cons.

Let us begin by presenting the different terminologies used for multi-view approaches
and what they entail [9]:
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• Multi-view clustering [2,3,10–21] is concerned with any kind of clustering, where the
data are split into different views. It does not matter whether the views are physically
stored in different places, and if the views are real or artificially created. In multi-view
clustering, the goal can either be to build a consensus from all the views, or to produce
clustering results specific to each view.

• Distributed data clustering [22] is a sub-case of multi-view clustering that deals with
any clustering scenario where the data are physically stored in different sites. In many
cases, clustering algorithms used for this kind of task will have to be distributed across
the different sites.

• Collaborative clustering [23–27] is a framework in which clustering algorithms work
together and exchange information with the goal of mutual improvement. In its
horizontal form, it involves clustering algorithms working on different representations
of the same data, and it is a sub-case of multi-view clustering with the particularity of
never seeking a consensus solution but rather aiming for an improvement in all views.
In its vertical form, it involves clustering algorithms working on different data samples
with similar distributions and underlying structures. In both forms, these algorithms
follow a two-step process: (1) A first clustering is built by local algorithms. (2) These
local results are then improved through collaboration. A better name for collaborative
clustering could be model collaboration, as one requirement for a framework to qualify
as collaborative is that the collaboration process must involve effects at the level of the
local models.

• Unsupervised ensemble learning, or cluster ensembles [28–36] is the unsupervised
equivalent of ensemble methods from supervised learning [37]: It is concerned with
either the selection of clustering methods, or the fusion of clustering results from a
large pool, with the goal of achieving a single best-quality result. partitions. This pool
of multiple algorithms or results may come from a multi-view clustering context [38],
or may just be the unsupervised equivalent of boosting methods, where one would
attempt to combine the results of several algorithms applied to the same data. Unlike
collaborative and multi-view clustering, ensemble clustering does not access the
original features, but only the crisp partitions.

In this paper, collaborative clustering and distributed clustering are not considered.
We focus solely on the problem of multi-view and ensemble clustering: we merge clustering
partitions no matter their origin and without accessing the original features. Our problem is
therefore similar to the one introduced by Strehl and Ghosh in their paper [28], where they
present the problem of combining multiple partitions of a set of objects without accessing
the original features.

We will now review some of the works that are the most closely related to our proposed
method. A more extensive survey of cluster ensemble methods can be found in [36].

In [2], the authors propose a multi-view clustering method applied to text clustering
when texts are available under multiple representations. Their method is very similar to [19]
in the way that they attempt at merging the different partitions: First, similarity matrices
are computed in three different ways, namely, two based on partition memberships and
another one based on feature similarity. Then, a combined similarity matrix is obtained
from those three previous ones, and a standard clustering technique is applied to produce
the consensus partition.

In [39], the authors address the problem of large-scale multi-view spectral clustering.
They do so using local manifolds fusion to integrate heterogeneous features based on
approximations of the similarity graphs.

In [40], a similar method is proposed for partition fusion in a multi-view clustering
context. It also relies on a graph-based approach, with the addition of a weight system to
account for the clustering capacity differences of the views.

In [41], the authors address partial multi-view clustering, a specific case of multi-view
clustering where not all data are in all views. They uses latent representations and seek the
closest available data when one is missing in a view.
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In [21], the authors address the issue of feature selection in multi-view clustering.
They propose a global objective function (quite similar to the ones found in collabo-
rative clustering) in which each feature of each view is automatically weighted to en-
sure smooth convergence. In the original paper, the authors adapted this method for
multi-view K-Means.

In [42], the authors propose a graph based multi-view clustering method which merges
the data graphs of all views. It weights the views and detects the number of clusters in an
automated manner.

In [43], the authors tackled the problem of multi-view clustering under the assumption
that each view or each partition can be seen as a perturbation of the consensus clustering,
and that it is possible to weight them so that the partitions closer to the consensus are more
important. They do so by using subspace clustering and graph learning in each view.

Another consensus generation strategy is proposed in [44], where a co-association
matrix is built from the ensemble partitions and then it is improved by removing low
coefficients called negative evidences. This removal procedure is performed in conjunction
with a N-Cut clustering in multiple rounds, and finally the best partition is reported.

Based on an initial cluster similarity graph, ref. [45] proposed an enhanced co-association
matrix that allows to simultaneously capture the object-wise co-occurrence relationships as
well as the multi-scale cluster-wise relationship in ensembles. Finally, two consensus criteria
are proposed, namely hierarchical and meta-cluster-based functions. Ref. [46] proposed a
randomized subspace generation mechanism to build multiple-base clusterings. From these
partial solutions, an entropy weighted combination strategy is applied in order to obtain
an enriched co-association matrix that serves as a summary of the ensemble. Finally, they
employed three independent consensus solutions over the co-association matrix, namely a
hierarchical clustering, a bipartite graph clustering and a spectral clustering.

Finally, we can mention the work of Yeh and Yang [47], which is very relevant to un-
derstanding the difficulty of properly evaluating ensemble clustering methods, and where
the authors propose a fuzzy generalized version of the Rand Index for ensemble clustering.

As one can see, all these recent algorithms for partitions fusion are actually built so that
they are not so much a merging method of existing partitions, but rather global clustering
frameworks that seek and merge partitions in all views at the same time. While the end
goal is the same as our proposed method—finding a consensus clustering partition—our
method is different in the sense that it starts from existing partitions and has no access to
the original data features. As depicted in the experimental section, this key difference can
make our method difficult to compare in a fair manner with the above described works
from the state of the art.

One of the strong points of our method is that it is ensemble clustering, in the sense
that it combines pre-existing clustering partitions, but it is also multi-view clustering since
these partitions come from different sets of features or multiple views. As a consequence,
the flexibility on the algorithms we can use over local data views is a distinctive character-
istic regarding classical multi-view clustering, where the same clustering method does it all
from the local views. However, it can be costly in terms of performance, especially if the
local algorithms are not state of the art.

3. The Proposed Method
3.1. Problem Definition and Notations

Let us consider a data space X, which can be decomposed into M views so that
X = X1 × . . . × XM, where the M spaces Xi, that may or may not overlap depending
on the application. The spaces Xi will therefore be the spaces associated to the views.
The interdependence between the views is not solely contained in the definition of the
different views Xj, but also in the probability distribution P over the whole space X.

Let X = {x1, x2 . . . , xN}, X ∈ X be a set of N objects split into the M views. We note
the local views of these data X1 to XM (∀i Xi ∈ Xi). As such, any view Xi—the realization
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of the dataset over Xi—is a matrix containing N lines and the columns (attributes) attached
with view Xi. From there, xi

n will denote the n-th line of view i, and is a vector.
Let Π = {Π1, Π2, . . . , ΠM} be a set of crisp partitions of objects in X computed over

the M views. Each local partition Πi is a vector of size N which to any data xi
n ∈ Xi asso-

ciates a hard cluster Ki
a, a ∈ [1 . . . Ki]. Since different views can have different numbers of

clusters, we note Ki (without lower index), the number of cluster in any view i. For simpli-
fication purposes, Ki

Ki , the last cluster of any view i, will simply be noted Ki. From there,
the association function Li(x) is defined as follows:

Li : Xi → [1 . . . Ki] (1)

In other words, the function Li maps any element of view i to a cluster of the same
view. It is the result of a clustering method applied to view i. From there, we have that
each local partition Πi can be written as follows: Πi = {Li(x1),Li(x2), . . . ,Li(xN)}. Please
note that we write Li(xn) to simplify the notations, as the view is implied in the mapping
function index, but the proper notation would be Li(xi

n).
Like many works in multi-view clustering, in order to measure the overlap between

clusters in different partitions, we use a confusion matrix [48]. For two views i and j, this
matrix which we note Ωij is of size Ki × K j and defined as follows:

Ωij =


ω

ij
1,1 · · · ω

ij
1,K j

...
. . .

...
ω

ij
Ki ,1 · · · ω

ij
Ki ,K j

 where ω
ij
a,b =

|Ki
a ∩ K j

b|
|Ki

a|
(2)

In other words, each ω
ij
a,b measures the percentage of elements that belong to cluster

Ki
a in view i that belong to cluster K j

b in view j. Please remember that Ωij maps from
view i to view j and that this mapping may be different from the mapping acquired from
Ωji, especially if the two views have different numbers of clusters: there is no symmetry
hypothesis here.

From there, for each cluster in each view, it is possible to find the maximum agreement
cluster in any other view simply by searching the maximum value in each of the lines of the
corresponding matrix Ωij. Let us note Φj(Ki

a), the maximum agreement cluster in partition
Πj for cluster Ki

a of partition Πi:

Φj(Ki
a) = argmax

b∈[1..K j ]

ω
ij
a,b (3)

Lastly,
Ki
·(x) = {x′ ∈ X|Li(x′) = Li(x)} (4)

Table with All Notations

Table 1 below contains all notations that will be used in the algorithm presented
in the next sections. Some of these notations have already been presented with details
and equations; others will be detailed more as the different concepts and algorithms
are presented.

3.2. Merging Partitions Using Kolmogorov Complexity

In the work of [5,6], the notion of minimum description length (MDL) is introduced,
with the description length being the minimal number of bits needed by a Turing machine to
describe an object. This measure of the minimal number of bits is also known under the
name Kolmogorov complexity.
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IfM is a fixed Turing machine, the complexity of an object x given another object
y using the machineM is defined as KM(x|y) = minp∈PM{l(p) : p(y) = x}, where PM
is the set of programs onM, p(y) designates the output of program p with argument y
and l measures the length (in bits) of a program. When the argument y is empty, we use
the notation KM(x) and call this quantity the complexity of x. The main problem with
this definition is that the complexity depends on a fixed Turing machineM. Furthermore,
the universal complexity is not computable since it is defined as a minimum over all
programs of all machines.

Table 1. Summary of all notations.

Notation Meaning

X = {x1, x2 . . . , xN} The dataset of N objects split into the M views
M The number of views
M Turing machine or a computational clustering method

Π(M) The partition built by methodM
Πi The partition in view i
Ki The number of clusters in view i
Ki

a The a-th cluster in view i
Li : Xi → [1 . . . Ki] The function mapping any element of view i to a cluster of this view

Ωij The mapping matrix from view i to view j

ω
ij
a,b

The percentage of elements from Ki
a in that also belong to K j

b
Φj(Ki

a) The maximum agreement cluster for Ki
a in view j

Ki
·(x) Objects belonging to the same max agreement cluster than x in Πi

K(Πi|Πj) Kolmogorov complexity of Πi knowing Πj, see Equation (5)
εi,j The error list when mapping Πi to Πj, see Equation (6)
ξk The exception set for any partition Πk (points marked in εi,k or εk,j)

µk
p(x) Membership weight of point x ∈ ξk to a cluster Kk

p, see Equation (7)
W list of weight for all partitions
Q List of all previous merge exception (ξk)

Ψ[Ki
p] consensus assignments made for each cluster Ki

p, see Algorithm 2

In relation to this work, in [7], the authors solved the aforementioned problem by
using a fixed Turing machine before applying this notion of Kolmogorov complexity to
collaborative clustering, which is a specific case of multi-view clustering, where several
clustering algorithms work together in a multi-view context but aim at improving each
other’s partitions rather than merging them [23]. While collaborative clustering does not
aim at a consensus, this application is still very close to what we try to achieve in this
paper, where we try to merge partitions of the same objects under multiple representations.
For these reasons, we decided to use the same tool.

In the rest of this paper, just as the authors did in [7], we will consider that the
Turing machineM is fixed, and to make the equations easier, we will denote by K(x) the
complexity of x on the chosen machine. Then, we adapt the equations used in their original
paper to our multi-view context for text mining and we use Kolmogorov complexity as a
tool to compute the complexity of one partition given another partition. The algorithm to
do so and how we use it is described in the next section.

3.3. The KMC Algorithm

Our goal is to combine several partitions in order to build a final consensus. To this
end, we perform successive pairwise fusion procedures between partitions following a
bottom-up strategy until we reach a single soft partition. Subsequently, the consensus is
generated by picking the cluster with the maximum weight for each data point. Figure 1
depicts an overall scheme of the proposed method, and Algorithms 1 and 2 show a detailed
description for the two procedures that make up the proposal.
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Figure 1. Overall scheme of the KMC method to produce the consensus partition Π∗.

Let us consider that for a set Π of initial partitions, there are O(|Π|2) candidate pairs
to merge. In order to overcome the combinatory explosion, we will use a greedy criteria to
pick a pair of partitions: the Kolmogorov complexity of partition Πi knowing partition Πj

is computed by following the procedure described in [7] as shown in Equation (5) below:

K(Πi|Πj) = K j × (log Ki + log K j) + |εi,j| × (log n + log Ki) (5)

In Equation (5), Ki still denotes the number of clusters in a given partition i as defined
earlier, and |εi,j| is the number of errors in the mapping from partition i to partition j. These
errors correspond to data that do not adhere to the maximum agreement partition mapping
Φ(j), increasing the overall complexity and are also likely to cause issues when merging
the partitions:

εi,j = {x ∈ X|∀p ∈ [1..Ki],Li(x) = Ki
p, Li(x) 6= Φj(Ki

p)} (6)

Please note that these errors as defined in Equation (6) can be computed simply by
browsing through the partitions and based on the majority rules, as shown in Figure 2.

3.3.1. Overall View of the Main Procedure

Algorithm 1 unfolds as follows for each round: First the pair of partitions with the least
complexity based on Equation (5) is selected as described in Line 5. The pair of partitions
with the least complexity value is selected as described in Line 5 of Algorithm 1. In Lines 9
and 11, the merge procedure is called. It is worth mentioning that since the commutative
property does not hold for this operation, in the original version of the algorithm, a
randomized criterion inspired by the farthest-first traversal approach presented in [49] was
employed in Line 8 to pick the first argument taken by this call. In the current version,
for each input partition, the Kolmogorov complexity is computed against several random
partitions, and the one with the highest average complexity among the two input partitions
is chosen as the first argument for this function. The rationale behind this decision is that a
more discordant input partition with respect to several random configurations has more
information contained than another one more agreeable. After all partitions have been
merged into a single one at Line 15, the last set of exceptions is processed and used in order
to compute the final label for each object (see Lines 17–19).
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Figure 2. Finding the mapping errors based on the majority rules for 2 partitions with 10 objects and
3 clusters per partition. Enclosed in a dashed red line are the objects identified as mapping errors for
the first partition, and in a dashed blue line those identified for the second partition.

Algorithm 1: Main procedure for building the consensus partition.
Input: A set Π of partitions over X,
r ∈ N the number of random partitions that will be employed
Output: Final labels for each data point representing the consensus partition over

X.
1 Q ← [] /* exceptions after each merge operation */
2 W ← []

3 R← {R(1), . . . , R(r)} /* r partitions with a random label for each data
point */

4 while |Π| > 1 do
5 i, j← argmin

i∗ ,j∗∈[1,m]

K(Πi∗ |Πj∗) +K(Πj∗ |Πi∗)

6 k← |Π|+ 1
7 Πk ← {} /* new empty partition */

/* merging existing partitions Πi and Πj into the new Πk */

8 if MEAN
({
K(Πi|R(q))

}r
q=1

)
> MEAN

({
K(Πj|R(q))

}r
q=1

)
then

9 merge(Πi, Πj, Πk,Q, W)
10 else
11 merge(Πj, Πi, Πk,Q, W)
12 end
13 add Πk into Π
14 remove Πi, Πj from Π
15 end

/* Solving points marked in last item from Q */
16 ξk ←last partition’s exceptions added to Q
17 foreach x ∈ ξk do
18 Lk(x)← argmax

p∈[1,Kk ]

Wk
p(x)

19 end
20 return Πk
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3.3.2. Merging Two Views/Partitions

Regarding the merge operation between two partitions described in Algorithm 2,
when it is performed between two partitions Πi and Πj, each cluster in Πi is combined
with its maximum agreement cluster in Πj (computed as shown in Figure 2). Let Πk denote
the new partition produced from the merging of these two clusters. First, for all clusters in
Πi, the majority clusters in Πj are listed for a posterior fusion. Additionally, clusters in Πj

are also added to the lists of their majority clusters in Πi. After that, in Lines 4–6, all the
objects with total agreement between each pair of merged clusters are put together in the
same cluster of the new partition Πk.

Since these successive partition fusions are performed by following the maximum
agreement criteria between clusters as stated in Equation (3), it is likely that some data
points—identified as mapping errors in their original partitions as per Equation (6)—will
not fit to this rule and hence be marked as exceptions that shall be dealt with at the final
stage and put in a specific subset during the execution of the subsequent merge operations.
As defined by Equation (6) the exception set ξk(= εi,j) for the newly created partition Πk is
made up by objects whose cluster in the first former partition does not match the majority
rule cluster in the second former partition. Algorithm 2 addresses this task in Lines 8–11.
Finally, we store a history of all previous exceptions in list Q.

Algorithm 2: Merge procedure that fuses two partitions into a new one identify-
ing also problematic points as exceptions.

Input: Partitions Πi, Πj, empty partition Πk, list with previous merge exceptions
Q and weight function for all partitions W

Output: New partition Πk and a set of marked points along with their scores
∀x ∈ Πk.

/* generating the list of marked points by the current fusion */
1 ξk ← ∅
2 Ψ←map with an entry for each cluster Ki

p ∈ Πi, p = 1 . . . Ki

3 foreach Ki
p ∈ Πi do

/* objects in clusters of Πj whose max.agreement cluster is Ki
p

plus its max.agreement cluster in Πj */

4 Ψ[Ki
p]←

⋃{K j
q ∈ Πj|Φi(K j

q) = Ki
p}

5 also add each object xn ∈ Φj(Ki
p) into Ψ[Ki

pKi
p]

6 Knew ← Ki
p ∩Ψ[Ki

p]

7 add Knew into Πk

/* Ki
p and Ψ[Ki

p] need to be updated to reflect the remaining
(non-matched) data points */

8 Ki
p ← Ki

p \ Knew

9 Ψ[Ki
p]← Ψ[Ki

p] \ Knew

10 add each remaining object xn ∈ Ki
p into ξk

11 add each remaining object xn ∈ Ψ[Ki
p] into ξk

12 end
13 add ξk into Q
14 foreach xn ∈ ξk and cluster Kk

q ∈ Πk do
15 compute µk

p(xn) as shown in Equation (7)
16 add µk

p(xn) into W
17 end
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3.3.3. Handling Mapping Errors through the Merge Process

The objects marked as exceptions have no crisp cluster membership within the new
partition. Therefore, these mapping errors generated after the fusion of Πi with Πj will
have an uncertain cluster membership in the newly generated Πk. These memberships
will be settled/decided at the final stage of the method when the last partition is produced.
As a means to counteract this ambiguity, we measure the support of a data object x in
each cluster p of Πk by a function of the similarity/closeness between this cluster and the
clusters Li(x) and Lj(x) within which this data object was grouped in the former partitions
Πi and Πj respectively. For each object previously contained either in ξi or ξ j, its support
is a function of the similarity/closeness between cluster p ∈ [1 . . . Kk] and its maximum
agreement cluster in Πi or Πj correspondingly.

Formally, for any merge operation and without loss of generality, let Πi and Πj be the
two partitions/views whose fusion produces Πk, and let J(U, V) be the classical Jaccard
similarity between two sets U and V. For every data point x ∈ ξk, its membership in a
cluster Kk

p (p ∈ [1 . . . Kk]) is denoted by µk
p(x) and defined as follows:

µk
p(x) =



1
2 [J(K

k
p,Li(x)) + J(Kk

p,Lj(x))] x /∈ ξi and x /∈ ξ j
1
2 [µ

i
Φi(Kk

p)
(x) · J(Kk

p, Φi(Kk
p)) + J(Kk

p,Lj(x))] x ∈ ξi and x /∈ ξ j

1
2 [J(K

k
p,Li(x)) + µ

j
Φj(Kk

p)
(x) · J(Kk

p, Φj(Kk
p))] x /∈ ξi and x ∈ ξ j

1
2 [µ

i
Φi(Kk

p)
(x) · J(Kk

p, Φi(Kk
p)) + µ

j
Φj(Kk

p)
(x) · J(Kk

p, Φj(Kk
p))] x ∈ ξi and x ∈ ξ j

(7)

Equation (7) states the four scenarios that may be found when computing the mem-
bership weights for the mapping errors:

• First, a data object could be identified as an exception to the majority rule of the current
merge operation as formalized in the first case of Equation (7).

• The next two cases show the scenarios in which the data object could come from
errors generated in prior merging stages in either of the two former partitions, but not
in both.

• The final case defined in Equation (7) is distinguished from previous definitions by
denoting the scenario where the data object has been dragged from mapping errors in
both input partitions.

The rationale behind Equation (7) is twofold: First, the higher the agreement between
a cluster in the new partition and the object cluster in the source partition, the higher the
weight value. Second, when no cluster information is available for the object in the source
partition, the maximum agreement information is employed, and its value is weighted by
the cluster support in the source partitions Πi and Πj. Finally, the overall support for object
x in cluster p is expressed by the mean value between the supports of both input partitions.

As a final remark about the operation of the proposed method, it is important to
indicate that once a point is marked as an exception, it remains so through all the subsequent
fusions and also that all the exceptions are solved only at the end of the complete merging
process. After all the views are subsequently fused into a single partition, every data point
has a score greater or equal than zero for each cluster. This carry-over strategy of weighted
membership coefficients enables the resolution of the cluster assignment problem for the
discordant data objects at the final stage of Algorithm 1 in Line 17. At this point, it is
possible to obtain a consensus by picking the cluster with the maximum weight for each
data point. The bottom right part of Figure 1 sketches this part of the process until the final
consensus is obtained.

3.4. Computational Complexity: Discussion

The overall complexity and computation time of an ensemble clustering method is
often difficult to assess, as it depends on both the complexity of the clustering methods
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used in the different views to create the original partitions (which may be paralleled or
not), and also on the ensemble process to merge the partitions.

In the case of our KMC algorithm, given M views with N elements and a maxi-
mum of K clusters per view, the cost to map all clusters and errors between views is in
O(M2KN). We can have a maximum of log(M) merges, which gives us a total complexity
in O(M2 log(M)KN) for the ensemble learning part. In most cases, K should be negligible
compared to N. Which quantity might be the most important between M2 log(M) and N
can be up for discussion depending on the number of views M. Still, we believe that in
most cases, the number of lines N is the dominant quantity. Furthermore, if the clustering
methods used to generate the original partitions have a complexity beyond linear—in
O(N2) or O(N2 log N) for instance, as can be possible with several clustering methods
other than K-means or a Gaussian mixture model—then the complexity of our multi-view
ensemble learning method KMC would be negligible anyways compared to that of the
original algorithms used to create the initial partitions.

4. Experimental Analysis

Throughout this and the following sections, the name of the proposed method is KMC.

4.1. Clustering Measures

To assess the quality of the clustering consensus, we employ the following external
measures: entropy, purity and normalized mutual information [28]. Given a methodM,
a partition ΠM built after its execution and the gold standard partition ΠT :

Following [50], entropy measures the amount of class confusion within a cluster.
The lower its value, the better the clustering solution. Thus, it is defined as

Entropy(ΠM, ΠT) =
KM

∑
p=1
−
|KMp |

N log KT

(
KT

∑
q=1

|KMp ∩ KT
q |

|KMp |
log

(
|KMp ∩ KT

q |
|KMp |

))
(8)

The purity of the partition proposed by the methodM is defined as the number of
correctly assigned objects, where the majority class is set as the label for each cluster. This
is as follows:

Purity(ΠM, ΠT) =
1
N

KM

∑
p=1

max
j
|KMp ∩ KT

j | (9)

Normalized mutual information measures the level of agreement between a partition
produced by a method and a ground truth partition also correcting the bias induced by
the non-normalized version of this measure when the number of clusters increases. It is
defined as follows:

NMI(ΠM, ΠT) =
∑KM

p=1 ∑KT

q=1
|KMp ∩KT

q |
N log

N|KMp ∩KT
q |

|KMp ||KT
q |

0.5
(
−∑KM

p=1(
|KMp |

N ) log(
|KMp |

N )−∑kT
q=1(

|KT
q |

N ) log(
|KT

q |
N )

) (10)

4.2. Analysis on Real Data and Comparison against Other Ensemble Methods

In order to further validate the performance of our proposed method, we assessed its
results against three state-of-the-art methods over the three above-mentioned clustering
measures. Additionally, we report the results on nine publicly available datasets generated
from 3Sources (Available from http://mlg.ucd.ie/datasets/3sources.html, accessed on
October 2022), BBC (3), BBCSports (3) (both available from http://mlg.ucd.ie/datasets/
segment.html, accessed on October 2022), Handwritten digits (Available from http://
archive.ics.uci.edu/ml/datasets/Multiple+Features, accessed on October 2022) and Caltech
(Available from https://github.com/yeqinglee/mvdata, accessed on October 2022). In
order to set a fair evaluation environment, for all datasets, a single set of base partitions

http://mlg.ucd.ie/datasets/3sources.html
http://mlg.ucd.ie/datasets/segment.html
http://mlg.ucd.ie/datasets/segment.html
http://archive.ics.uci.edu/ml/datasets/Multiple+Features
http://archive.ics.uci.edu/ml/datasets/Multiple+Features
https://github.com/yeqinglee/mvdata
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was generated for each data view by using the Cluto toolkit (Code available at http:
//glaros.dtc.umn.edu/gkhome/cluto/cluto/overview, accessed on August 2022).

The 3Sources dataset was collected from three well-known online news sources:
BBC, Reuters, and The Guardian. A total of 169 articles were manually annotated with
one or more of the six topical labels: business, entertainment, health, politics, sport,
and technology.

The BBC and BBCSports data were collected from BBC-news, and originally BBC
contained 2225 documents annotated into 5 topics, while BBC-Sports comprised 737 docu-
ments also with 5 annotated labels. Following [13], from each corpus 2–4 synthetic views
were constructed by segmenting the documents according to their paragraphs. Therefore,
for each one, 3 multi-view datasets are used, namely BBC-seg2, BBC-seg3 and BBC-seg4
with 2, 3 and 4 views, respectively. The same idea applies for BBCSports-seg2, BBCSports-
seg3 and BBCSports-seg4.

The Handwritten digits data contain 2000 instances for ten digit classes (0–9), and the
views are built from six subsets of features: 76 Fourier coefficients of the character shapes,
216 profile correlations, 64 Karhunen–Loeve coefficients, 240 pixel averages, 47 Zernike
moments and 6 morphological features.

Caltech is a dataset consisting of 2386 images grouped in 20 categories. We follow [39]
and use six groups of handcrafted features as views, namely Gabor features, wavelet
moments, CENTRIST features, HOG features, GIST features and LBP features.

For each dataset, only the documents with labels in all views are used. The details for
each collection are presented in Table 2.

Table 2. Overall description of the real data collections.

Dataset #Doc #Views

3Sources 169 3
BBC-seg2 2012 2
BBC-seg3 1268 3
BBC-seg4 685 4
BBCSports-seg2 544 2
BBCSports-seg3 282 3
BBCSports-seg4 116 4
Handwritten 2000 6
Caltech 2386 6

4.2.1. Baseline Methods

We compare the performance results of our KMC algorithm against eight baseline
methods: three approaches originally proposed by Strehl and Ghosh [28], namely cluster-
based similarity partitioning (CSPA), hyper graph partitioning (HGPA) and meta clustering
(MCLA) (Matlab code for these three methods available at http://strehl.com/soft.html,
accessed on July 2022). ECPCS (ensemble clustering via fast propagation of cluster-wise
similarities) with its two variants from [46] and MDEC (multidiversified ensemble cluster-
ing) with its three variants from [45]. For all these methods, their parameters were set as
suggested in their corresponding papers.

4.2.2. Operational Details of the Compared Methods

In order to run Algorithm 1, the number of random partitions was set to 80. Addition-
ally, KMC was executed 10 times over each dataset, and the average clustering quality of
the final consensus was reported. Considering that we used external performance crite-
ria and that the methods under evaluation need the number of final clusters as an input
parameter, the number of clusters was always set to the number of ground truth classes.

http://glaros.dtc.umn.edu/gkhome/cluto/cluto/overview
http://glaros.dtc.umn.edu/gkhome/cluto/cluto/overview
http://strehl.com/soft.html
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4.2.3. Discussion of the Experimental Results

Table 3 shows the results obtained by each method over each dataset. The best
result for each measure on each dataset is highlighted in bold font, and the second best
is underlined.

Overall, the proposed method attains competitive results over several datasets of varying
sizes: In seven out of nine datasets, the consensuses built by our KMC algorithm were of
higher quality than the baseline state-of-the-art methods. Additionally, KMC was capable
of obtaining results over larger and smaller datasets, especially for text data. It is also worth
mentioning that in most scenarios, KMC jointly achieves the lowest entropy, largest purity
and best normalized mutual information. Assuming a correct assignment of ground truth
labels, these results suggest that the exception managing mechanism introduced by our
proposal along with its accumulative instance-cluster weights succeed in the final assignment
of problematic data objects.

In addition to attaining comparable results over most datasets, it seems interesting
to notice that KMC achieves an entropy that is better by a half compared with the other
methods on the following datasets: BBC-seg3, BBCSports-seg2, and BBCSports-seg4. Further-
more, the performance values attained by KMC over BBC-seg2, BBC-seg4, BBCSports-seg2,
BBCSports-seg3 and BBCSports-seg4 either on Purity, normalized mutual information (or
both) presents a positive difference of over ten percent compared with the second best method.

Notwithstanding the promising results obtained by KMC , it is also important to
analyze particularly its performance on the Caltech dataset. In this scenario, our proposal
is relatively far behind the two best methods in every measure. The values presented
suggest that the extra refinements made over the co-association matrix by the winning
methods provide additional insights for the consensus procedure that our proposal is
unable to capture.

Along with the Caltech dataset, the Handwritten dataset also shows that KMC has
a lower performance when dealing with non-text data, more specifically image data.
A possible cause for this decrease in performance could be due to poor quality solutions
initially found by the base method. Nevertheless, these two datasets were presented as
unfavorable scenarios to KMC.

To conclude on the experimental section over real data, we can see that our proposed
method has shown to be very competitive compared with other state-of-the-art methods,
some of them corresponding to quite recently published works.

Table 3. Performance results of each method assessed through several external quality measures.
Best results are in bold, and second best are underlined.

Dataset Method Entropy Purity NMI

3Sources

CSPA [28] 0.4807 0.6864 0.4314
HGPA [28] 0.4362 0.6805 0.4789
MCLA [28] 0.4990 0.6746 0.4202

ECPCS-MC [46] 0.3465 0.8047 0.5047
ECPCS-HC [46] 0.4008 0.7456 0.5301
MDEC-BG [45] 0.3431 0.7929 0.4899
MDEC-HC [45] 0.3471 0.8047 0.5503
MDEC-SC [45] 0.3406 0.7929 0.4990

KMC 0.3776 0.6935 0.5512

BBC-seg2

CSPA 0.3472 0.8226 0.5350
HGPA 0.3957 0.7639 0.4968
MCLA 0.3481 0.8221 0.5404

ECPCS-MC 0.3413 0.8236 0.6072
ECPCS-HC 0.2914 0.8673 0.6522
MDEC-BG 0.3188 0.8405 0.5729
MDEC-HC 0.2785 0.8703 0.6229
MDEC-SC 0.2816 0.8743 0.5967

KMC 0.1525 0.9488 0.8468
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Table 3. Cont.

Dataset Method Entropy Purity NMI

BBC-seg3

CSPA 0.3430 0.8226 0.5290
HGPA 0.5489 0.6467 0.3603
MCLA 0.3995 0.7989 0.4852

ECPCS-MC 0.3647 0.7934 0.5336
ECPCS-HC 0.3715 0.8115 0.6088
MDEC-BG 0.3048 0.8573 0.5683
MDEC-HC 0.3497 0.8375 0.5996
MDEC-SC 0.3651 0.7997 0.5131

KMC 0.1517 0.9519 0.8453

BBC-seg4

CSPA 0.4327 0.7182 0.4308
HGPA 0.4689 0.6978 0.4024
MCLA 0.4643 0.7518 0.4100

ECPCS-MC 0.4145 0.7869 0.4639
ECPCS-HC 0.4708 0.7066 0.4646
MDEC-BG 0.3490 0.8321 0.5126
MDEC-HC 0.4324 0.7401 0.4719
MDEC-SC 0.3899 0.7825 0.4744

KMC 0.2657 0.8336 0.7016

BBCSports-seg2

CSPA 0.3897 0.7463 0.4647
HGPA 0.4729 0.6912 0.3954
MCLA 0.9406 0.3548 0.0000

ECPCS-MC 0.3302 0.8125 0.5931
ECPCS-HC 0.3290 0.8143 0.5984
MDEC-BG 0.3486 0.7831 0.5097
MDEC-HC 0.3263 0.8088 0.5452
MDEC-SC 0.3350 0.8070 0.5278

KMC 0.1237 0.9540 0.8674

BBCSports-seg3

CSPA 0.4983 0.6560 0.3434
HGPA 0.5507 0.6241 0.3000
MCLA 0.5247 0.6489 0.3327

ECPCS-MC 0.5336 0.6596 0.3682
ECPCS-HC 0.5184 0.6099 0.4122
MDEC-BG 0.4756 0.7021 0.3697
MDEC-HC 0.4821 0.7092 0.3806
MDEC-SC 0.4842 0.6986 0.3592

KMC 0.2595 0.8227 0.6802

BBCSports-seg4

CSPA 0.7382 0.4569 0.1458
HGPA 0.7915 0.4052 0.1004
MCLA 0.7284 0.4741 0.1608

ECPCS-MC 0.7668 0.4397 0.1249
ECPCS-HC 0.7682 0.3966 0.1488
MDEC-BG 0.7363 0.4828 0.1516
MDEC-HC 0.7499 0.4741 0.1413
MDEC-SC 0.7770 0.4655 0.1158

KMC 0.3087 0.7854 0.6427

Handwritten

CSPA 0.2040 0.8890 0.7960
HGPA 0.3216 0.7570 0.6807
MCLA 0.2811 0.7885 0.7196

ECPCS-MC 0.1838 0.8795 0.7376
ECPCS-HC 0.2031 0.8520 0.7870
MDEC-BG 0.1584 0.8915 0.7414
MDEC-HC 0.1471 0.8935 0.7708
MDEC-SC 0.1652 0.8890 0.7371

KMC 0.2470 0.8230 0.7250
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Table 3. Cont.

Dataset Method Entropy Purity NMI

Caltech

CSPA 0.4003 0.6639 0.4960
HGPA 0.4415 0.5985 0.4450
MCLA 0.3918 0.6601 0.5118

ECPCS-MC 0.2703 0.7531 0.5717
ECPCS-HC 0.2497 0.7695 0.6591
MDEC-BG 0.2166 0.8139 0.5914
MDEC-HC 0.2463 0.7930 0.6222
MDEC-SC 0.2229 0.7963 0.5989

KMC 0.4540 0.6500 0.4320

4.3. Empirical Analysis of the Stability of the Consensus Solution

The aim of this section is to empirically study how the quality of the consensus
solution built by KMC is affected by the degree of discrepancy among the data views. To
this end, we simulate several artificial multi-view datasets presenting different degrees
of disagreement between the views, and we apply our method to them. In this way, we
can sweep a range of discrepancy level values and assess the quality of the final ensemble
solution independently of the base method used to build the initial solutions.

Procedure

We consider artificial datasets made of several views over the same data instances.
Since we want to assess the influence of factors such as the number of clusters, the number
of views, and the quality of the local partitions on our methods, we used the follow-
ing methodology:

• Depending on the simulation, we generated multi-view data belonging to k clusters
spread across eight views, and the matching ground-truth partitions.

• In m views out of eight, the partitions were altered with a degree of noise ph that
corresponds to random changes in partition assignments to simulate varying qualities
of local solutions.

• In the other partitions (not part of the m out of 8 altered partitions), a ration of only
5% alteration was applied.

During our experiments, we tried several combinations of number of clusters (3, 7, 10,
and 14), number of altered views (1, 3 and 5 out of 8), and different ratios of alteration (10%,
25% and 40%). Finally, the average NMI was measured over all views, plus the consensus
solutions across all simulations as depicted in Figure 3.

Figure 3 presents the quality of the attained results in terms of the NMI measure
over several datasets generated under varying levels of agreement between the views.
From the figure, we can see several things. As expected, the better results are achieved
for configurations with less noisy views and a lower degree ph of noise alteration. When
focusing on the analysis in the central plot, we observe that 3 out of 8 views show a
larger level of disagreement regarding the ground truth partition (25%). However, we can
also see that in many cases where the number of noisy views remains reasonable, KMC
manages to achieve higher-quality consensus partitions in comparison to all the other views
(seven configurations out of nine), almost regardless of the number of clusters we tested.
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Figure 3. Average NMI values measured over all views plus the consensus solutions across
all simulations.

5. Conclusions and Future Works

In this paper, we presented KMC, a novel multi-view clustering fusion method relying
on the notion of Kolmogorov complexity. This method is able to detect discrepancies
and common points, and to merge partitions acquired from different algorithms or views.
While minimum description length and Kolmogorov complexity have already been used in
multi-view clustering contexts, the originality of our method lies in two points:

• Unlike in [7], which introduced the use of Kolmogorov complexity in a multi-view
setting, we aim at a full merging of the clusters, and not just optimizing things locally.

• Unlike in [51], which is multi-view with merging, the optimization process to reduce
these conflicts and merge partitions in a effective manner, we propose a new and
improved algorithm to choose the merging order of the partitions, thus making our
algorithm stable compared with earlier versions of the same technique.

Furthermore, our algorithm also uses techniques from unsupervised ensemble learning
(merging partitions from several algorithms), and is applied to a multi-view clustering
context (multiple representations of the same data objects).

We compared our method with algorithms from the field of unsupervised ensemble
learning and multi-view cluster on several datasets from the literature. Despite strong dif-
ferences in term of algorithm philosophies and original applications, we demonstrated that
KMC attains a competitive consensus quality in relation to the state-of-the-art techniques.
Its competitiveness coupled with the novelty it brings in terms of its core principle is an
important contribution to the field of unsupervised ensemble learning, as it increases the
variety of available methods, which is quite important in an unsupervised setting.

Finally, we also conducted an empirical study about how our method reacts under
different noise conditions in a varying number of views, and the influence of the number
of clusters. These results give a unique insight to the fine properties of the proposed
algorithm, which has proved to be resilient to noise and very adaptive. This part of the
study is very important, as it is unknown how other methods from the state of the art
behave in similar conditions.
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In our future works, we plan on focusing more on the theoretical properties of our
algorithm that may be extracted from the empirical study. In particular, it would be
interesting to have bounds based on levels of noises, but also to study the influence of
clustering stability in local partitions and the role it may play in the merge result after
our method.
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