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IP-DIRICHLET MEASURES AND IP-RIGID DYNAMICAL
SYSTEMS: AN APPROACH VIA GENERALIZED RIESZ
PRODUCTS

by

Sophie Grivaux

Abstract. — If (ng)r>1 is a strictly increasing sequence of integers, a continuous proba-
bility measure o on the unit circle T is said to be IP-Dirichlet with respect to (ng)r>1 if
(> germx) — 1 as F runs over all non-empty finite subsets F' of N and the minimum of
I tends to infinity. IP-Dirichlet measures and their connections with IP-rigid dynamical
systems have been investigated recently by Aaronson, Hosseini and Lemariczyk. We simplify
and generalize some of their results, using an approach involving generalized Riesz products.

1. Introduction

We will be interested in this paper in IP-Dirichlet probability measures on the unit circle
T = {A € C; |\| = 1} with respect to a strictly increasing sequence (ny)i>1 of positive
integers. Recall that a probability measure p on T is said to be a Dirichlet measure when
there exists a strictly increasing sequence (py)i>1 of integers such that the monomials 2P+
tend to 1 on T as k tends to infinity with respect to the norm of LP(u), where 1 < p < +o0.
This is equivalent to requiring that the Fourier coefficients fi(pg) of the measure p tend
to 1 as k tends to infinity. If (ng)x>1 is a (fixed) strictly increasing sequence of integers,
we say that p is a Dirichlet measure with respect to the sequence (ng)g>1 if fi(ng) — 1 as
k — 4o00. Let F denote the set of all non-empty finite subsets of N. The measure p is
said to be IP-Dirichlet with respect to the sequence (ny)g>1 if

,&(Z ng) — 1 as min(F) — +oo, F € F.
keF
In other words: for all ¢ > 0 there exists a kg > 0 such that whenever F' is a finite subset
of {ko, ko+1,.. .},
A ) — 1] <.
keF

Our starting point for this paper is the work [1] by Aaronson, Hosseini and Lemaniczyk,
where IP-Dirichlet measures are studied in connection with rigidity phenomena for dy-
namical systems. Let (X, B, m) denote a standard non-atomic probability space and let
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T be a measure-preserving transformation of (X, B, m). Let again (ng)r>1 be a strictly
increasing sequence of integers.

Definition 1.1. — The transformation T' is said to be rigid with respect to (ny)g>1 if
m(T~"* AANA) — 0 as np — +oo for all sets A € B, or, equivalently, if for all functions
feL3(X,B,m),||foT™ — fHL2(X,B,m) — 0 as k — +oo.

Denote by o7 the restricted spectral type of T, i.e. the spectral type of the Koopman
operator Ur of T restricted to the space L3(X, B, m) of functions of L?(X, B, m) of mean
zero (recall that Urf = f o T for every f € L?(X,B,m)). Then it is not difficult to see
that T is rigid with respect to (ng)g>1 if and only if o is a Dirichlet measure with respect
to the sequence (ng)g>1.

Rigidity phenomena for weakly mixing transformations have been investigated recently
in the papers [3] and [5], where in particular the following question was considered: given
a sequence (ny)i>1 of integers, when is it true that there exists a weakly mixing trans-
formation T" of some probability space (X, B, m) which is rigid with respect to (ng)g>17
When this is true, we say that (ng)g>1 is a rigidity sequence. It was proved in [3] and
[5] that (ng)r>1 is a rigidity sequence if and only if there exists a continuous probability
measure o on T which is Dirichlet with respect to (ng)g>1.

It is then natural to consider IP-rigidity for (weakly mixing) dynamical systems. This
study was initiated in [3] and continued in [1].

Definition 1.2. — The system (X,B,m;T) is said to be IP-rigid with respect to the
sequence (ny),>1 if for every A € B,

m(T2=rer™ ANA) — 0 as min(F) — 400, F € F.

Just as with the notion of rigidity, T" is IP-rigid with respect to (nj)r>1 if and only if
or is an IP-Dirichlet measure with respect to (ng)r>1. Moreover, if we say that (ng)r>1 is
an IP-rigidity sequence when there exists a weakly mixing dynamical system (X, B, m;T)
which is IP-rigid with respect to (ng)g>1, then IP-rigidity sequences can be characterized
in a similar fashion as rigidity sequences ([1, Prop. 1.2]): (ng)g>1 is an IP-rigidity sequence
if and only if there exists a continuous probability measure ¢ on T which is IP-Dirichlet
with respect to (ng)g>1.

IP-Dirichlet measures are studied in detail in the paper [1], and one of the important
features which is highlighted there is the connection between the existence of a measure
which is IP-Dirichlet with respect to a certain sequence (ny)x>1 of integers, and the prop-
erties of the subgroups G),((ny)) of the unit circle associated to (ng)g>1: for 1 < p < 400,

Gp((ni)) ={AeT; D [\™ —1]P < +o0}
k>1
and for p = 400
Goo((ng)) ={AeT; [N —1| - 0 as k — +oo}.

The main result of [1] runs as follows:
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Theorem 1.3. — [1, Th. 2] Let (ng)r>1 be a strictly increasing sequence of integers.
If i is a probability measure on T which is IP-Dirichlet with respect to (ng)k>1, then

u(G2((n))) = 1.

The converse of Theorem 1.3 is false [1, Ex. 4.2], as one can construct a sequence (ny)g>1
and a probability measure p on T which is continuous, supported on Ga((ng)) (which is
uncountable), and not IP-Dirichlet with respect to (ng)g>1. On the other hand, if p is
a continuous probability measure such that u(Gi((ng))) = 1, then p is IP-Dirichlet with
respect to (ng)r>1 [1, Prop. 1]. Again, this is not a necessary and sufficient condition for
being IP-Dirichlet with respect to (ng)r>1 [1]: if (ng)g>1 is the sequence of integers defined
by n1 = 1 and ng41 = kng + 1 for each k£ > 1, then there exists a continuous probability
measure o on T which is IP-Dirichlet with respect to (ng)r>1, although Gy ((ng)) = {1}.
Numerous examples of sequences (ny)g>1 with respect to which there exist IP-Dirichlet
continuous probability measures are given in [1] as well. For instance, such sequences are
characterized among sequences (ny);>1 such that nj divides ny4, for each k, and among
sequences which are denominators of the best rational approximants Z—: of an irrational
number « € (0,1), obtained via the continued fraction expansion. It is also proved in
[1] that sequences (nj)r>1 such that the series >~ (ng/nk11)? is convergent admit a
continuous IP-Dirichlet probability measure. -

Our aim in this paper is to simplify and generalize some of the results and examples
of [1]. We first present an alternative proof of Theorem 1.3 above, which is completely
elementary and much simpler than the proof of [1] which involves Mackey ranges over the
dyadic adding machine. We then present a rather general way to construct IP-Dirichlet
measures via generalized Riesz products. The argument which we use is inspired by results
from [10] and [8, Section 4.2], where generalized Riesz products concentrated on some Ha-
subgroups of the unit circle are constructed. Proposition 3.1 gives a bound from below on
the Fourier coefficients of these Riesz products, and this enables us to obtain in Proposition
4.1 a sufficient condition on sets {ny} of the form

(1) {ni} = Ak @1 prs - oy D1}
E>1

where the gjr, j = 1,...7y, are positive integers and the sequence (py)r>1 is such that
DPk+1 > qr kPx for each k > 1, for the existence of an associated continuous generalized
Riesz product which is IP-Dirichlet with respect to (ng)r>1. This condition is best possible
(Proposition 4.2). As a consequence of Proposition 4.1, we retrieve and improve a result
of [1] which runs as follows: if (ny)r>1 is such that there exists an infinite subset S of N
such that

n
Z F <400 and ng|ngy1 for each k & S,
kes k1

then there exists a continuous probability measure ¢ on T which is IP-Dirichlet with

respect to (ny)g>1. This result is proved in [1] by constructing a rank-one weakly mixing
system which is IP-rigid with respect to (ng)r>1. Here we get a direct proof of this
statement, where the condition ), g(nx/nk11) < +o0 is replaced by the weaker condition

> kes(k/nis1)? < +oo.
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Theorem 1.4. — Let (ng)r>1 be a strictly increasing sequence of integers for which there
exists an infinite subset S of N such that

2
Z ( 1tk ) < 400 and ng|ngy1 for each k & S.
kes Nk+1

Then there exists a continuous generalized Riesz product o on T which is IP-Dirichlet with

respect to (ng)g>1-

Using again sets of the form (1), we then show that the converse of Theorem 1.3 is false
in the strongest possible sense, thus strengthening Example 4.2 of [1]:

Theorem 1.5. — There exists a strictly increasing sequence (ny)i>1 of integers such that
Ga((ng)) is uncountable, but no continuous probability measure is IP-Dirichlet with respect
to (nk)k21 .

The last section of the paper gathers some observations concerning the Erdos-Taylor
sequence (ng),>1 defined by n; = 1 and ng41 = kng+1, which is of interest in this context,
as well as a generalization of Proposition 3.1 which shows that under the assumptions on
the sequence (ng)g>1 of either Corollary 3.2 or Theorem 1.4, there exist uncountably
many dynamical systems which are weakly mixing and IP-rigid with respect to (ng)r>1,
and which have pairwise disjoint restricted maximal spectral types (Corollary 6.2).

Notation: In the whole paper, we will denote by {x} the distance of the real number
x to the nearest integer, by |z] the integer which is closest to x (if there are two such
integers, we take the smallest one), and by (x) the quantity  — |x]. Lastly, we denote by
[z] the integer part of x.

Acknowledgements: I am grateful to the referee for suggesting the statement of
Corollary 6.2, and to Pascal Lefevre for pointing out several inaccuracies and misprints in
a first version of this paper.

2. An alternative proof of Theorem 1.3

Let (ng)k>1 be a strictly increasing sequence of integers. Suppose that the measure p
on T is IP-Dirichlet with respect to (ng)g>1. For every € > 0 there exists an integer ko
such that for all sets F' € F with min(F) > ko, |2 (X pep k) — 1‘ < e. For every integer
N > kg, consider the quantities

N
] Laam) =@kt 5™ \Sicem
k=ko 2 FC{ko,...,N}

The notation on the righthand side of this display means that the sum is taken over all
(possibly empty) finite subsets F of {ko,..., N}. Integrating with respect to p yields that

N
/ 11 %(Hvk)dﬂ(x):z*w*ko“) S A ),

T f—ko FC{ko,..,N} kEF
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so that

I8 HERUTIOR EER D SN ) SN

FClko,...N}  keF

Let now

+oo
1
C = {/\ € T ; the infinite product H §|1 + A"k| converges to a non-zero limit}.
k=1

Observe that the set C' does not depend on € nor on ky. For every A € T\ C, the quantity
Hg:ko %\1 + A\ tends to 0 as N — 400, and so by the dominated convergence theorem
we get that

/ (I+A")du(A) -0 as N — 4o0.
TG

It then follows from (2) that

limsup’/ H + A") du(A —1‘ <e
CL

N—+o0
so that N

st [ 1 30+ a1
But

’/C 1+W)du(k)\ < u(C),
k=ko

hence p(C) > 1 —e. This being true for any choice of € in (0,1), u(C) = 1, and so the
product [[~, %]1 + A™| converges to a non-zero limit almost everywhere with respect to
the measure . If we now write elements A € C as A = %™ 0 € [0,1), we have

1
11 ST+ A" = I | cos(xbn)].

k>1 k>1
Since 0 < | cos(mfny)| < 1 for all & > 1, this means that the series ), -, 1 —|cos(mOny)| is
convergent. In particular {#ny} — 0 as k — +oo. As the quantities 1 — | cos(mfny)| and
%Q{an}Q are equivalent as k — 400, we obtain that the series Y, <, {0n}? is convergent.
But -
1= A% = |1 — 20 |? < 4n?{0n, )2,

and it follows from this that the series > k>1 ‘ 1— A" ’2 is convergent as soon as A belongs
to C. This proves our claim.
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3. IP-Dirichlet generalized Riesz products

Our aim is now to give conditions on the sequence (ny)x>1 which imply the existence of
a generalized Riesz product which is continuous and IP-Dirichlet with respect to (ng)g>1.
For information about classical and generalized Riesz products, we refer for instance the
reader to the papers [10] and [8] and to the books [7] and [12].

Proposition 3.1. — Let (ny)>1 be a strictly increasing sequence of integers. Suppose
that there exists a sequence (my)k>1 of integers with my > 3 such that

k
(3) Npt1 — 2ijnj >1 foreachk>1,
j=1
and
k
(4) Ngy1 — 2 ijnj — +o0  as k — +oo.
j=1

For each k > 1, let qp > 1 be an integer such that qk7r\/§ < my +2. There exists a
continuous generalized Riesz product o on T such that for every finite subset F' € F and

every integers ji in {1,...,qx}, k € F, one has
. . & 2
g (X ) = T (1 -2*(505) )
® oS = TL (122 (, %
keF keF
and
. s
(6) O'(an) = Hcos(mk+2>.
keF keF
Proof. — For any integer k > 1, consider the polynomial Py defined on T by
2 il gm 2
P (27t — ‘ ( >2i7rjt te 0.1,
k(e ) mk+2 ;Sln mk+2 € ) [a]
Each Py is a nonnegative trigonometric polynomial. Its spectrum is the set {—my, ..., my}

and a straightforward computation shows that Py(0) = 1. Condition (3), which is a
dissociation condition, implies that the probability measures H,]g\;l P, (62””’9’5) dA(t) (where
A denotes here the normalized Lebesgue measure on T) converge in the w* topology as
N — 400 to a probability measure ¢ on T, and that for each F' € F and each integers

jk S {—mk,...,mk}, kGF,
U(Z jknk> = I 2:G),

kEF kEF
while 6(n) = 0 when n is not of this form. In particular

&(Z nk) =[] B

kel keF
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Before getting into precise computation of these Fourier coefficients, let us prove that o is
a continuous measure: this follows from condition (4). If

k k
ijnj <n < Ngg1 — E m;ng,
Jj=1 Jj=1

then 6(n) = 0. So the Fourier transform of ¢ vanishes on successive intervals Ij, of length
lp = g1 — 2 Z?:l mjn; — 1. Since I}, tends to infinity with k by (4), it follows from the
Wiener theorem that o is continuous.
Let us now go back to the computation of the Fourier coefficients &(Z keF jknk). For
each ¢ € {1,...,my}, we have
) 2 mp+1—q

(7) Pk(‘]):m ; Sin(%)sm(m,ﬁfz)‘

Standard computations yield the following expression for Pj, (q):

5 1 qm . qm COS(mﬂ—FQ)
8) P = (m +2— COS( )-FSII]( ) k )
( ) k(Q) mk+2 ( k Q) mk+2 mk+2 Sin(m:+2)
1 qm (g—Dm
= 2= qpeos( ) +eos(T—5 ) - eos(o )
mk+2<(mk+ q) cos 2 + cos R cos 2
2 L
1 cos
—I—sin<(q )7T) i (m:-i—Z)
mk+2 Sln(m)
1 qm
- = 9 _ ( )
mk+2<(mk+ q) €08 my + 2

q .
(q—J)W) j( 7r ))
+;COS( P— cos p—
Observe now that for every x € [0,1], cosz > 1 — 2% > 0. For each k > 1, ¢ > 1 is an
integer such that gxmv/2 < my+2, and ¢ belongs to the set {1,...,qr}. So (¢—j)m < my+2

for every j € {0,...,q — 1}. Thus

2

cos(— Y2 1-m L ang COS(M)N_HLJ)Q.
my + 2 (mk+2) my + 2 (mk—|—2)

Moreover, cos’ z > (1 — 22)/ > 1 — jz? for every = € [0,1] and every j > 1, so that

>12j

cosj( ) > T
my + 2 (my + 2)2
Putting things together, we obtain the estimate

2

pk(Q) > mkl—i— 2 ((mk +2-4q) <1 B WQW:W)

+3 (1= (gk_jg)?) (1 (mki 2)2))'
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Now, for every j € {1,...,q— 1},

(1_7T2 (q—j)Q)( s >: 2= +i 4 ila—))
(mk + 2)2 (mk + 2)2 (mk + 2)2 (mk + 2)4
q—3)+3J s ¢
>1—7T2<7>1—27T —_—
- (my, + 2)2 - (my + 2)2
Summing over j and putting together terms, we eventually obtain that
Pi(q) > ! ((mk +2—9q) (1 - 772(12) +q- 27r2q3)
~ mg + 2 (mk + 2)2 (mk + 2)2

2 3
(mk+2—q)7r2( a )—27r2< q ),
my + 2 mi + 2 my + 2
i.e. that

. 2 3
Ao z1-7(05) 7 (0)

dk 2 2 dk 3
(Y (Y eage
- " my + 2 " my + 2 or each ¢ € { Ok}

21—279( I )220

my + 2

since qpmV/2 < my, + 2. Assertion (5) follows directly from the fact that (3(ZkeF jknk) =
[Licr Py(ji). Assertion (6) is straightforward: the expression in the first line of the
display (8) applied to ¢ = 1 yields that pk(l) = cos(m/(my + 2)). This finishes the proof
of Proposition 3.1. O

Proposition 3.1 may appear a bit technical at first sight, but it turns out to be quite
easy to apply. As a first example, we use it to obtain another proof of a result of [1, Prop.
3.2]:

Corollary 3.2. — Let (ng)r>1 be a strictly increasing sequence of integers such that the
series Zk21(nk/nk+1)2 is convergent. There exists a continuous generalized Riesz product
o on T which is IP-Dirichlet with respect to (ng)g>1.

Proof. — Without loss of generality we can assume that >~ (ng/ng+1)? < 1/200. Let
(ek)k>1 be a sequence of real numbers with 0 < ¢ < 1/2 for each k > 2, with £y = 0,
going to zero as k tends to infinity, and such that

> (o) <50

& n
=1 Ekt Tt

Then ex1ngy1/ng > 7 > 6 + e, so that if we define my, = [(exr1nkr1 — exng)/2ny) for
each k > 1, each my, is greater or equal to 3. Moreover
k
et =2 myng > npr — (Eppanisr — e1n1) = (1= epg1)nepa
j=1
which tends to infinity as k tends to infinity, and is always greater than 1 because €11 <
1/2 and ngy1 > 2 for each k > 1. Proposition 3.1 applies with this choice of the sequence
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(my)k>1 and yields a continuous generalized Riesz product ¢ which satisfies

(T(Z nk) = H COS<m:—i— 2) for each F € F.
keF keF

Now my, is equivalent as k tends to infinity to the quantity epi1nki1/2nk, so that the
series Y ;- 1/(my + 2)? is convergent. Hence the infinite product [~ cos(m/(my + 2))
is convergent. For any & > 0, let ko be such that [Tk, cos(m/ (my, +2); >1l-e IfFeF
is such that min(F') > ko,

™ T
5 = > >1-—
o(5o0) - (i) = ol ) 21
eFr k>ko

keF

and this proves that o is IP-Dirichlet with respect to (ng)g>1. d

4. An application to a special class of sets {n;}

Proposition 3.1 applies especially well to a particular class of sequences (ny)g>1, which
we now proceed to investigate.

Proposition 4.1. — Let (p;);>1 be a strictly increasing sequence of integers. For each
1 >1, let (¢1)j=o0,..r, be a strictly increasing finite sequence of integers with qo; = 1, and
set q = qog + qui + -+ 1. Suppose that pi1 > qr i for each I > 1, and that the

series )
Z (CII Db >

51 DPi+1

is convergent. Let (ny)r>1 be the strictly increasing sequence defined by

{np} = U{pl,fh,lph s Qi)
I>1
There exists a continuous generalized Riesz product o on T which is IP-Dirichlet with
respect to the sequence (ng)g>1-

Proof. — As in the proof of Corollary 3.2, we can suppose that >~ (qpi/pi+1)? < 1/400,
and consider a sequence (g;);>1 going to zero as [ tends to infinity with e; = 0 and
0 < & < 1/2 for each [ > 2, such that

(o) <o

1 ciAl Pi+1
The same argument as in the proof of Corollary 3.2 shows that for [ > 1 the integers
my = [(e1r1pi+1 — €1p1)/(2p1)] are greater or equal to 3, and that assumptions (3) and (4)
of Proposition 3.1 are satisfied. As m; is equivalent as [ tends to infinity to (e;411p141)/(2p1),
we have that ¢;/(m; + 2) is equivalent to (2¢;p;)/(€1+1p1+1). Our assumption implies then
that the series

(9) Z(mlqi 2)2

>1
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is convergent. Moreover, V2 < 5q < %%. But % — & < my + 1, so that
6”;}% < 2(my 4 2). Hence gmv/2 < my + 2 for each [ > 2. Applying Proposition 3.1 to

the sequence (p;);>1, we get a continuous generalized Riesz product o, and the estimates

(5) yield that ,
7S wa)r) 2 T1( -2 (575) )

leF jeG;
for each set F' € F and each subsets G; of {0,...,r}, [ € F. In order to show that the
measure o is IP-Dirichlet with respect to (ny)g>1, it remains to observe that the product
on the right-hand side is convergent by (9). We then conclude as in the proof of Corollary
3.2. O

The proof of Theorem 1.4 is now a straightforward corollary of Proposition 4.1. Recall
that we wish to prove that if (ng)r>1 is a sequence of integers for which there exists an
infinite subset S of N such that

ne \2
Z ( i ) < 400 and ng|ngyq for each k & S,
i k41
es
then there exists a continuous generalized Riesz product o on T which is IP-Dirichlet with
respect to (ng)k>1.

Proof of Theorem 1.4. — Let ® : N — N be a strictly increasing function such that S =
{®(1), 1 > 1}. Set p; = ng()41 for I > 1 and write for each k € {®(I) +1,..., (I +1)}
Nk = 80,1 $1,0 - -+ Sk—((1)+1),l Pls
with sg; = 1 and sj; > 2 for each j =1,...,®(l + 1) — (®(I) + 1). With the notation of
Proposition 4.1 we have r = ®(I + 1) — (®(I) + 1) and
Ai—(®(1)4+1),0 = S0,I 81l - - - Sk—(®(1)+1),l
Hence q; = qo; + -+ + qr,0 = Soq + 800510 + -+ 801510 ---5r,,. We have
qQ 1 1 1 1

- ¢ 1+ + .
50,0 S1,0 - - - Syl Sry,l Sr—1,1 Sry,l 82,0 ---8pyl S1,0---Sryl

1 1 1 . )
§1+§+Z+.“+% since s;; > 2 for each j =1,...,7

<2

This yields that ¢ < 2sg;s1;...5,,; = 2¢,,; for each [ > 1. Our assumption that the
series Y cg(n/nik11)? is convergent means that the series Y- (g, 1 p1/pi+1)? is conver-
gent. Hence the series > ;o (q pi/pi+1)? is convergent and the conclusion follows from
Proposition 4.1. - O

Our next result shows the optimality of the assumption of Proposition 4.1 that the
series > ;s (@ip1/pi+1)? is convergent.

Proposition 4.2. — Let (v,);>1 be any sequence of positive real numbers, going to zero
as | goes to infinity, such that the series Y <4 712 is divergent, with 0 < vy < 1 for each
I > 2. Let (1);>1 be a sequence of integers growing to infinity so slowly that the series
S 5172/ is divergent, with r; > 2 for each | > 1. Define a sequence (p;);>1 of integers
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by setting p1 = 1 and pi1 = [r?/v]p + 1. For each | > 1, we have piy1 > 71 p;. Define a
strictly increasing sequence (ng)k>1 of integers by setting
{niy = Ui 21, mimi}
I>1
Then no continuous measure o on the unit circle can be IP-Dirichlet with respect to the
sequence (Ng)g>1-

Proof. — We are going to show that Ga((ng)) = {1}. It will then follow from Theorem
1.3 that no continuous probability measure on T can be IP-Dirichlet with respect to the
sequence (ny)r>1. Suppose that A € T\ {1} is such that

(10) > —112:Zi|wl —1]? < +c0.

k>1 1>1 j=1
Let C be a positive constant such that for each § € R, 5{6} > [e*™ —1| > C{6}. Writing
Aas A= €2 9 c0,1), we have that
(11) AP 1] > C{jpf} foreachl>1andj=1,...,7.

Now {0p;} < 1/r for sufficiently large [. Else the set {{jfp;},7 = 1,...,r;} would form
a {fp;}-dense net of [0, 1], and this would contradict the fact, implied by (10) and (11),
that the quantity Z;l: 1{70p,}? tends to zero as | tends to infinity. Hence, for sufficiently
large I, {jOpi} = j{0p} for every j =1,..., 7, and thus the series ) -, 2?:1 G — 1)
is convergent. As r; tends to infinity with [, this means that the series
(12) > oA —1p?
1>1

is convergent.

Let now (&;);>1 be a sequence of real numbers going to zero so slowly that the series
> %’yf 67 is divergent. Suppose that [AP! — 1| < Z—lé 0; for infinitely many [. Then,

7‘2
|/\[“Tll] P 1‘ < ¢; for all these I,

and by definition of p;11, |[A\P+1 — A| < §;. Letting [ tend to infinity along this set of

integers, and remembering that [\P+1 — 1| — 0 as [ tends to infinity, we get that A = 1,

which is contrary to our assumption. Hence [AP! — 1| > :—é 0; for all integers [ sufficiently
l

large. Combining this with (12), this implies that the series
2
3 2 L 2o
Zrl 50 = Z*% o
1 1 1>1
is convergent, which is again a contradiction. So Ga((ny)) = {1} and we are done. O
Consider the sets {nj} given by Proposition 4.2. With the notation of Proposition 4.1,
q is equivalent to r7/2 as k tends to infinity, and the series Y~ (qpi/pi+1)? is divergent

because (qip;/pi+1)? is equivalent to fyl2 /4. This shows the optimality of the condition
given in Proposition 4.1.
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Looking at the construction of Proposition 4.2 from a different angle yields an example
of a sequence (ny)g>1 such that Ga((nx)) is uncountable, but still no continuous probability
measure on T can be IP-Dirichlet with respect to (n)r>1. This is Theorem 1.5.

5. Proof of Theorem 1.5

Recall that we aim to construct a strictly increasing sequence (ny)i>1 of integers such
that Ga2((ng)) is uncountable, but no continuous probability measure on T is IP-Dirichlet
with respect to the sequence (ny)x>1. This sequence (ny),>1 will be of the kind considered
in the previous section. Consider first the sequence (p;);>1 defined by py =1 and p;4; =

ZZ(ZQTH)M for all [ > 1. We then define the sequence (ny)x>1 by setting
{nk ; k> 1} = U{p172p17 v 7l2pl}'
1>2
As I?’p; < piyq for all [ > 2, the sets {p;,2p,...,[°p;} are consecutive sets of inte-
gers. Let (M;);>1 be the unique sequence of integers such that {nn;_,+1,...,na,} =

{p1,2p1, ..., 1%p;} for each | > 2. We now know (see for instance [2] or [5] for a proof) that
there exists a perfect uncountable subset K of T (which is actually a generalized Cantor
set) such that

w1 <o forall e K and [ > 2,

P+
where C is a positive universal constant. Hence for A € K, > 2 and j € {1,...,1%} we
have
AP 1] ngﬂ < 2012l = E
Pi+1 12
Thus

- 107 AC?
j 2 12
Z‘)\Jpz_u <1 ZTZZT.
j=1
i 12 JpL 2y ; :

Hence the series » 59>,y [MP' — 1]° is convergent for all A € K, that is the series
Doks1 A — 1)? is convergent for all A € K. We have thus proved the first part of our
statement, namely that Ga2((ny)) is uncountable.

Let now o be a continuous probability measure on T. The proof that o cannot be
IP-Dirichlet with respect to the sequence (ny)g>1 relies on the following lemma:

Lemma 5.1. — For alll > 2 and all s > 1, sp; belongs to the set

{Z ng ; F€F, min(F) > M;_1 + 1}.
keF

Proof of Lemma 5.1. — 1t is clear that for all n > 1,

{Zj;Fg{l,...,n},F#Q}:{l,...,n(n;l)}.
jJeEF
Hence 20241
{ijl?Fg{la---vﬂ}aF7é®}_{pz,2pl---,(;)pz},

JEF
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ie.
{an ) Fg {lel—’—la"'le}v F%Q} = {pla2pl"'7pl+l}'
keF

This proves Lemma 5.1 for s € {1,..., 12(12%1)} Then since

I+ +1)2+1)

{Z ng ; F c {Ml + ]-7 .. '7Ml+1}7 F 7& @} = {pl+172pl+1 ) pl+1}7

keF 2
we get that
{an ; Fg{Ml—1+]-a"'7Ml+1}7F$é®}
kel
= {pl72plv"'7pl+17pl+l+pl7pl+1+2pla"'72pl+17"'
I+1D2((1+1)2+1 I+ 1D2((1+1)2+1
( )(<2 ) )pl+17"'7( )((2 ) )pl+1+pl+1}
P2 +1 I+ D21+ 1)2+1
= {o,2p1,- ., (2 >-<( )((2 ) )+1)pl}-

In particular {} ", cpnp s F C{M;_1 +1,..., M1}, F # O} contains the set

272 2 2
{pl,sz,---,l ( 2+ 1) (+1) ((l2+ 1) +1)pz}-

Continuing in this fashion we obtain that for all ¢ > 1,

{an ) Fg{lel—i_la"wMH*q}?F?é@}
keF

contains the set

q . .
2 [ L+ +4) + Do

, 2
7=0

The conclusion of Lemma 5.1 follows from this. O

Suppose now that o is IP-Dirichlet with respect to (ny)r>1. Let lp > 2 be such that for
every ' € F with min(F') > Mj,_1 + 1, |6(D_pep k)| > 1/2. Then Lemma 5.1 implies
that for all s > 1, |6(spy,)| > 1/2. This contradicts the continuity of the measure o.

6. Additional results and comments

6.1. A remark about the Erdés-Taylor sequence. — Let (ny)>1 be the sequence
of integers defined by n; = 1 and ngy1 = kng + 1 for every k > 1. This sequence is
interesting in our context because G1((ng)) = {1} while G2((ng)) is uncountable ([6], see
also [1]): if A € T\ {1}, there exists a positive constant e such that [A™ — 1| > ¢ for all
k > 1. Indeed, if for some k we have [\" —1| < £ with e = $|A—1], then [A\*" —1| < ¢, so
that [A"+1 —1| > [A—1| —& > $|]A—1| > 0. Hence if A € T\ {1} the series }_,~; [\ —1]
is divergent. On the other hand, since the series Y, (ng/ng41)? is convergent, Ga((ny))
is uncountable. It is proved in [1] that there exists a continuous probability measure o
on T which is IP-Dirichlet with respect to (ny)r>1. This statement can also be seen as
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a consequence of Theorem 2.2 of [9]: it is shown there that there exists a continuous
generalized Riesz product o on T and a > 0 such that

6(Y )l =6
keF

for every F' € F such that min(F) > 4. It is not difficult to see that this measure o is in
fact IP-Dirichlet with respect to (ny)g>1. We briefly give the argument below. It can be
generalized to all sequences (ny)r>1 such that the series Y, (ng/ng+1)? is convergent,
thus yielding another proof of Corollary 3.2. -

The measure o of [9] is constructed in the following way: let A be the function defined
for t € R by A(t) = max(1 — 6]t[,0). If K is the function R given by the expression

N 2
K(t) = (Sm2> . teR

=5 i
2 3

and K, is defined for each oo > 0 by K, (t) = aK(at), t € R, then A(x) = K

1 (z) for every
[

z € R. The function A x A is a C? function on R which is supported on —%, %], takes
positive values on | — %, %[, and attains its maximum at the point 0. Hence its derivative

vanishes at the point 0. Let @ > 0 be such that the function ¢ = aA A satisfies p(0) = 1.
We have also ¢'(0) = 0, and so there exists a constant ¢ > 0 and a v € (0, %) such

that for all z with |z| < v, ¢(z) > 1 — cx®. Lastly, recall that ¢(z) = af(\i(a:) for all
6

x € R. Consider now the sequence (P});>1 of trigonometric polynomials defined on T in
the following way: for j > 1 and t € R,
. S .
Pi(e") = p(5)e".
SEZL J
This is indeed a polynomial of degree at most L%J, since ¢(%) = 0 as soon as 52 1. We now
claim that P; takes only nonnegative values on T: indeed, consider for each j > 1 andt € R
the function ®;; defined by ®;;(x) = jK?(j(z +1t)), x € R. Its Fourier transform is then
6
given by ®;.(§) = eifth(g) = A % A(%) Thus Pj(e") = a Y o7 ®j(s). Applying
6 .
the Poisson formula to the function ®;;, we get that Pj(e") = 2ma} oy Pji(27s) =
21a’y o7 JK3(j(2ms + 1)) > 0. Hence P;(e™) is nonnegative for all ¢ € R, P;(0) =1 and
6

Pi(1) = go(%) >1- ]% as soon as j > jg, where jy = L%J + 1. Consider then for m > jg
the nonnegative polynomials @Q,, defined by

m
Qu(e®) = [[ Pie™t), teRr
J=Jo
Since the degree of Pj is less than L%J and njq1 > %, Qm(0) = 1 for each m > 1 and the
polynomials @, converge in the w*-topology to a generalized Riesz product ¢ on T which
is continuous and such that for every set F' € F with min(F') > jo,

(Y ne) > [J- )
keF keF

It follows that o is an IP-Dirichlet measure with respect to the sequence (ng)g>1.
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6.2. A sequence (ny);>1 with respect to which there exists a continuous Dirich-
let measure, but such that G.((n;)) = {1}. — The examples of sequences (ny)r>1
given in [3] and [5] for which there exists a continuous probability measure ¢ on T
such that 6(ng) — 1 as k — +oo all share the property that |\ — 1| — 0 for some
A € T\ {1}. One may thus wonder whether there exists a sequence (nj)g>1 with re-
spect to which there exists a continuous Dirichlet probability measure o, and such that
Goo((ng)) ={A € T ;|\ — 1] — 0} = {1}. The answer is yes, and an ad hoc sequence
(ng)k>1 can be constructed from the Erdos-Taylor sequence above. Changing notations,
let us denote by (pg)r>1 this sequence defined by p; = 1 and pg41 = kpy + 1 for each
k > 1. For each integer ¢ > 1, consider the finite set

Po=1{> pei F#0, FC{20+1,...,2971}}.
keF
The set (J,>1 Py can be written as {ng ; k > 1}, where (ny)r>1 is a strictly increasing
sequence of integers. Let now ¢ be a continuous probability measure which is IP-Dirichlet
with respect to the Erdés-Taylor sequence (pg)g>1:

&(Zpk) —1 as min(F) — oo, F € F.
keF
This implies that 6(nx) — 1 as k — 4o0o. Indeed, let ¢ > 0 and ko be such that
16(> perpr) — 1] < e for all F € F with min(F) > ko. Let go be such that 29 + 1 > k.
Then |6(n;) — 1| < € for all k such that n; belongs to the union |J -, Py Since all the
sets P, are finite, |6(n;) — 1| < € for all but finitely many k.

It remains to prove that G ((nr)) = {1}, and the argument for this is very close to
one employed in [1]. Let € € (0,1/16) for instance, and suppose that A € T is such that
|\ —1| < e for all k larger than some kg. We claim then that if gg is such that 29041 > kg,
then we have for all ¢ larger than ¢q

4>490

2q+1
(13) > AP —1] < 2C%,
k=24+41
where C' > 0 is a constant such that {t}/C < |e?™ — 1| < C{t} for all t € R. Indeed, our
assumption that |\ — 1| < ¢ for all k& > k¢ implies that for all ¢ > gy and all disjoint
finite subsets I’ and G of the set Py,

D mb}<Ce, {D mb}<Ce and { >  ppb} <Ce
keF keG ke FUG
where A\ = %™ with § € [0,1) and F UG denotes the disjoint union of F' and G. Now
the same argument as in [1, Prop. 1.1] yields that
(D wet) = O pet) + O pib).
ke FUG kel keG
Setting
Agp ={ke{204+1,...2971) ; (pr0) > 0}
and
Ay- ={ke{294+1,...297} ; (p0) < 0},
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this implies that

Z {prf} < Ce and Z {prf} < Ce.

k€Aq + keAq —
Hence
2q+1 24+1
> {pef} <2Ce sothat Y | —1] <2C% forall g > q.
k=29+41 k=24+1

Suppose now that A # 1, and set ¢ = |\ — 1|/(4C?). Then (13) above implies that there
exists an infinite subset E of N such that |\Pk — 1| < (2C2%¢)/k for all k € E. If it were
not the case, we would have [\P* — 1| > (202¢)/k for all k large enough, so that
2q+1 2q+1 1

14 APE — 1] > 20% Ly 2022 oen,

( ) k—%l:—l-l‘ ’ k—;—i—l ko 2 -
for all ¢ large enough, which is a contradiction with (13). This proves the existence of the
set E. Now for all k €

AP 1] > A — 1] — [AFPE — 1] > | A — 1] — E[APF — 1] > 4C%e — 20% = 20%%.

But this stands again in contradiction with (13), and we infer from this that A is necessarily
equal to 1. Thus G ((ng)) = {1}, and we are done.

6.3. IP-Dirichlet systems with disjoint spectral measures. — We gave in Propo-
sition 3.1 a condition on a sequence (ny)r>1 implying the existence of a generalized Riesz
product on T which is IP-Dirichlet with respect to (ng)r>1. Actually, the flexibility of
the construction allows us to show that there are uncountably many disjoint such Riesz
products. Recall that two probability measures o and ¢’ on T are said to be disjoint if
there exist two disjoint Borel subsets A and B of T such that o(A) = ¢/(B) = 1 and
o(B) = o’'(A) = 0. When this is the case, we write o L o’

Proposition 6.1. — Let (ny)p>1 be a strictly increasing sequence of integers. Suppose
that there exists a sequence (my)i>1 of integers with my > 3 such that

k
(15) Nkt1 — 4ijnj >1 foreach k> 1,
j=1
and
k
(16) Ngt1 — 4ijnj — +o0  as k — +oo.
j=1

Let © be the set of all sequences (0x)i>1 of real numbers such that 0, € {1,\/7} for each
k>1.
For each k > 1, let g, > 1 be an integer such that qumv/2 < my, + 2. For each sequence
0 € O, the continuous generalized Riesz product
N (O] +1
%

2 jﬂ' . 2
— — i ’ : ( ) 2imgngt d\(t
g =w — JAm Pt [Opmy] + 2 ; sin B 12 e (t)




IP-DIRICHLET MEASURES VIA GENERALIZED RIESZ PRODUCTS 17

is such that for every finite subset F' € F and every integers ji in {1,...,qx}, k € F, one
has

(1) o3 o) = [T (1 -2 (rmr3))

kel
and
(18) g <k€ank) = lgcos<mz]_i_2).

Moreover, if 0 and §' are two elements of © such that 0y, # 0. for infinitely many integers
k > 1, then for all integers n,p > 1 the two measures oy and U;,p are disjoint.

As a consequence of Proposition 6.1, we obtain:

Corollary 6.2. — If the sequence (ny),>1 satisfies the assumptions of either Corollary
3.2, Proposition 4.1 or Theorem 1.4, there exist uncountably many dynamical systems
which are weakly mizing and IP-rigid with respect to (ng)k>1, and which have reduced
maximal spectral types which are pairwise disjoint.

Proof. — Let oy, 6§ € ©, be one of the measures associated to the sequence (ng)i>1
obtained in the proof of Proposition 6.1. Observe that oy is a continuous symmetric
measure. Following the proof of [1, Prop. 1.2], let (Xy, By, mg, Ty) be the Gauss dynamical
system with spectral measure og. This system is weakly mixing and IP-rigid with respect
to (ng)g>1. It is well-known (see for instance [4, Ch. 14, Sec. 3, Th. 1]) that the reduced
maximal spectral type of this system (i.e. the maximal spectral type of the Koopman
operator Ur, acting on the set L3(Xy, Bg, my) of functions of L?(Xy, By, my) of mean 0) is

equal to
1 O.*n
0
TH = .
] Z nl
n>1

We claim that if § and ¢’ are two elements of © with infinitely many distinct coordinates,
then the two measures 7y and 7y are disjoint.

For each n,p > 1, there exist by Proposition 6.1 two disjoint Borel subsets Ag,,, and
Agr np of T such that 05" (Agnp) =1, 0' P(Agnp) =0, 0'9, P(Ag np) =1 and o™ (Ag 1 p) =
0. For each n > 1, let Bg,n = ﬂsziAe,n,s and By, = Ny>1A4¢ rp. For each n,p > 1, the
sets By, and By ,, are disjoint since Ag,, p, N Agr pp, = . Also O';?(Bg,n) =0, (By p) =0
while O‘ (Bg n) = 0‘0, (Bg/ ) = 1. Set Fy = UnZl By, and Ey = Ule By . The two
sets Fy and Fyg are disjoint. Also

1 U;n(Eg) 1 JZ”(B@ n) 1 1
g > 2 —= _— = .
7o(Ep) e—lz n! _e—lz n! e—lzn! 1

n>1 ’ n>1 ’ n>1

Hence y(Fy) = 1. Moreover,

1 U*/p E9 . *
19/ (Ep) = c_1 Z 0 ;! ) =0 since 0,/ (Bgn) =0 for cach n > 1.

p=1
In the same way we prove that 74/ (Ey ) = 1 while 79(Ey ) = 0. We have thus proved that

79 and Ty are disjoint measures, and this yields Corollary 6.2. O
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Proof of Proposition 6.1. — Let 8 € ©. Since [0;m;] < 8;m; +1 < mm; +1 < (V7 +
1/3)m; < 4m; for every j > 1, conditions (15) and (16) of Proposition 6.1 imply that
conditions (3) and (4) of Proposition 3.1 are true for the sequence ([fxmy])r>1. So all
of Proposition 6.1 but the last statement follows from Proposition 3.1. Denote for each
0 € © by Py, the polynomial on T defined by

9 [Orme]+1

P (207 — : 4 ) 2imjt

Let 6 and 0’ be two elements of © which have infinitely many distinct coordinates. Without
loss of generality we can suppose that there is an infinite subset I of the integers such that
0 = /7 and 0, = 1 for each k € I. Let n,p > 1 be two integers. The following lemma,
whose proof essentially follows from that of Th. 1.2 in the paper [11] of Peyriére (see also
[7]), gives a criterion for the two measures ;" and o, to be disjoint:

Lemma 6.3. — Let 0,0 € © and n,p > 1. Suppose that there exists a sequence (ji)k>1
of integers with |ji| < my for each k > 1 such that

~ . n a . 2
(19) Z’Pe,k(]k> — Py o (Jk)?| = +oo.
k>1

Then the measures o™ and a;,p are disjoint.
We postpone the proof for the moment, and show that the assumption of Lemma 6.3
is satisfied.

Let (jr)r>1 be a sequence of integers such that jk = o(my) as k tends to infinity. Then
2

D\ T Jk k
Por(jr) =1 - ?92 + O(m—%) as k — +o0.
Indeed we have from (8) that
5 ¢ Jk Jk™
P = 1 - —2r IR
e’k(jk) ( [kak} + 2) COS([kak] + 2)

Hkmk 2 = ( Hljn_k j—i— 2) s’ < [kaZ] + 2)
(

w2 G2 2

B (1 B kak] ) 1- 9 kalj_’_ 22 + 0(%))

1 Jk 2 G — ])2 Jg 2 ; j2
: O] +2 Jz;<1 2 ([Oemu] +2)? * O(%)) (1 2 ([Bemy] +2) + 0(;2 ))

Jk 72 j2 ;3

- O] +2 2 ([Hkka +2)2 + O(,nfg)

] 2 Jk

Jk 1
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Now ?ilj = Ljk(jx + 1) while >7%, Gk — 4)* = £k — 1)je(2jjk — 1). It follows that
. 7T2 j2 j3 71_2 j2 j3
Por(p)=1— —— 2k 4 O(Zk)y=1-"_2F O(=£).

bk (k) 2 (Grmn] 22 T (mg) 2 62m2 * (mg>

In the same way

R 2 j2 k
Py k(i) =1 — 5 H/ka + O(m—i) as k — 4o0.
It follows that
P ()n P (.)p’ _ nm? ]]3 pTr ’—FO%)
0,k\Jk 0" k\Jk = B Hka D) H/ka 2
- m? ]k ‘ Pl »7716 .
2 mk 02 k2 + (m%)

Remember now that for each k € I, 6, = /7 and ¢, = 1, and that I is an infinite set.
Hence for every k € I,

‘2 ’2
0 k

sl
So

) 4

Py (k)" — Py 1o ‘ ‘—— ‘ <—) as k — +oo, ke I.

If the sequence (ji)r>1 is chosen in such a way that ji = o(my) as k tends to infinity and
Ezlcel(rjn—’ck)4 = +o00, condition (19) is satisfied for all integers n,p > 1. The conclusion
then follows from Lemma 6.3. O

Proof of Lemma 6.3. — As mentioned already above, this proof is extremely close to that
of [11, Th. 1.2], but we include it for completeness’s sake. Denote by jZ the measure o}",
and by g the measure . For every k # | we have fig(jrng) = P97k(]k) , fo(img) =

]—:’971(]'1)" and
fio(Jknw — jina) = Po (k)" Poy ()™ = fro(Gkn) fio (Gima).
Also figr (jknk) = Py k()P fior (jine) = Py y(j1)P and
fuor (Jknw — Jina) = Po ()P Por 1 (G0 = frer (Genie) e (i)
All the Fourier coefficients of the measures pp and pg are real. Consider the functions fy
and fy r defined on T by fyx(e?™) = ekt — fiy(jrng) and for p(e*™) = e2mirnit —

fgr (Geng), t 6 [0,1). Then the functions (fpx)k>1 form an orthogonal family in L?(ug),
)= 1 — |fo(jkng)|? < 1. Tt follows that if (by)x>1 is any square-summable

sequence of complex numbers, the series ;- by fyr converges in L?(pg). In the same
way, the series ) < by for ), converges in Lz(/lQT). Suppose that py and pg are not disjoint.
Then we can write_ug = lg,a + Ho,s, Where pig , is absolutely continuous with respect to pugr
and 19 and g are disjoint. Write dug o = @dug, where ¢ € L(ug). Let € > 0 and let
A be a Borel subset of T such that ug(A) > 0 and ¢ > ¢ on A. Consider the measure v
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on T defined by dv = €1 gadpg. Then v < g and v < py, and the two series 2@1 bi. fo.k
and 2@1 b for ), converge in L?(v). Hence the series

> belfor = forw) =D br(io(irnk) — fior (Gkne)) = > be(Pos(ie)™ = Por i (ji))

k>1 k>1 k>1

is convergent. This being true for any square-summable sequence (by)r>1, it follows that
the series )
Z‘Pﬁ,k(jk)" - PH’,k(jk)p‘
E>1
is convergent, which contradicts our assumption (19). The two measures py and pg are

hence disjoint. 0
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