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ABSTRACT

Incomplete multi-view clustering (IMVC), based on imputa-
tion and clustering unification, has received wide attention
due to its ability to exploit hidden information from missing
views. However, current methods mainly consider inter/intra-
view correlations, ignoring the structural information of sam-
ple features within views. In this paper, we propose a fea-
ture space recovery based IMVC method, where low-rank
feature space recovery and consensus representation learn-
ing of inter/intra-views are considered into a unified frame-
work. Moreover, low-rank tensor ring approximation is used
to capture the correlations of self-representation tensor. In
an iterative way, the learned inter/intra-view correlations will
guide the recovery of missing features, while the explored
low-rank information from feature spaces will in turn facil-
itate self-representation learning, eventually achieving out-
standing clustering performance. Experimental results show
our method has a very significant improvement over known
state-of-the-art algorithms in terms of ACC, NMI and Purity.

Index Terms— Incomplete multi-view clustering, Low-
rank tensor ring approximation, Subspace clustering, Feature
space recovery, Low-rank matrix learning

1. INTRODUCTION

Multi-view data which provides consensual and complemen-
tary information has sparked much interest in multi-view
clustering (MVC) [1–3]. In practice, some views may suffer
from missing samples during data acquisition or transmission
[4]. The traditional MVC approaches may not perform well
enough on incomplete data for some applications due to the
ignorance of hidden information of missing samples.

To tackle the above problem, many incomplete multi-
view clustering (IMVC) algorithms have been proposed [5,6].
Among them, graph-based IMVC ones have attracted much
attention since they can better extract different graphs indi-
cating the memberships among samples. For instance, Wen
et al. [7] simultaneously consider graph learning and spectral
clustering into one unified framework to learn the consen-
sus representation for IMVC. However, the work in [7]
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has two limitations: 1) Only relationships between observed
samples are involved in consensus representation learning.
2) The learning of each view is separate and does not take
inter-view similarity structure, which greatly reduces the
advantages of multi-view data. Based on this observation,
a series of tensor-based multi-view subspace representation
methods have emerged to infer missing samples while cluster-
ing [8–12], which all consider tensor singular value decom-
position (t-SVD) [13] to explore the high-order correlations
among different views.

The aforementioned tensor-based IMVC methods may
suffer from the following two limitations: 1) The t-SVD can-
not well explore inter/intra-view correlations simultaneously
since matrix SVDs are only performed in the first two modes
while linear transformations are taken in the third mode.
2) For IMVC, the sample features from missing views are
crucial, but the existing approaches only consider the correla-
tions across/within views to infer missing features, ignoring
the structural correlations of features. In fact, the feature
space within views is highly redundant [14].

In this paper, we consider such redundant information of
feature space as a low-rank prior. In addition, tensor ring
(TR) decomposition [15–18] is used to capture the high-order
relatedness in multi-view data due to its highly expressive
and powerful representation ability. Building on them, we
propose a feature space recovery based incomplete multi-
view clustering framework (FSR-IMVC), as shown in Fig. 1.
FSR-IMVC considers low-rank matrix learning based feature
space recovery and low-rank TR approximation based self-
representations exploration into a unified framework. Specifi-
cally, the latent feature subspace Hv can simultaneously learn
the correlations of inter/intra-view and sample features by the
updated Zv and the low-rank structure of Xv , for recovering
feature space Xv . In turn, the self-representation tensor Z
adaptively updates from Hv, v = 1, · · · , V and low-rank
TR approximation to obtain better consensus representation.
Finally, the self-representation tensor is used to construct the
affinity matrix for the spectral clustering algorithm.

To validate that the low-rank prior of features can uncover
more hidden information about missing samples, we give the
feature recovery results in Fig. 2. We can see the facial
features of the proposed method are well recovered, which
will be beneficial to achieve better clustering results. Exper-
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Fig. 1: The framework of FSR-IMVC. The observed data Tv can be firstly reconstructed by assuming its feature space is
low-rank, e.g. Xv = PvHv , where PT

v Pv = I and ‖Hv‖F minimization are applied to make Xv low-rank. Then, the self-
representation tensor is adaptively updated from Hv, v = 1, · · · , V and low-rank TR approximation. In turn, Hv learns from
the updated Zv and low rank prior of feature space to recover Xv , eventually improving the clustering performance.

(a) (b) (c) (d)

39th
sample

141st
sample

Fig. 2: The feature recovery performance for the 2nd view on
Yale data with 50% missing ratio;(a) original features;(b)-(d)
recovered features by HCPIMSC [10], IMVTSC-MVI [12]
and our method, respectively.
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Fig. 3: The graphical illustration for TR decomposition.

imental results on four multi-view data demonstrate that the
clustering performance of our method has a significant im-
provement against that of state-of-the-art algorithms in terms
of ACC, NMI, and Purity.

2. PRELIMINARIES

In this paper, a scalar, a vector, a matrix and a tensor are
written as x, x, X, and X , respectively. Indices typically
range from 1 to their capital version, e.g., i = 1, · · · , I .
TR Decomposition [16]. For a Dth-order tensor Z ∈
RI1×···×ID , its TR decomposition is defined as

Z(i1, i2, · · · , iD) = trace(G1(:, i1, :) · · · GD(:, iD, :)),

where Gd ∈ RRd×Id×Rd+1 , d = 1, · · · , D are TR core fac-
tors, and {Rd}Dd=1 are TR ranks, with RD+1 = R1. The TR
decomposition can be abbreviated as Z = R(G1, · · · ,GD)
and graphically illustrated in Fig. 3.

Lemma 1. [19] ‖X‖∗ = minX=PH
1
2 (‖P‖2F + ‖H‖2F).

‖X‖∗ denotes the nuclear norm of X, which is the sum of
its singular values.
Corollary 1. From Lemma 1, and because trace(I) is con-
stant, we obtain: ‖X‖∗= minX=PH

1
2‖H‖

2
F with PTP=I.

3. PROPOSED METHOD

3.1. Model Development

As shown in Fig. 1, feature space recovery (FSR) and self-
representation are learned in a unified framework. According
to Corollary 1, the low-rank properties of the recovered fea-
ture spaces Xv can be depicted by

min
{Hv,Pv}Vv=1

γ

2
‖Hv‖2F, s. t. Xv = PvHv + Ex

v ,P
T
v Pv = I,

PT
v Pv = I means the feature spaces are projected onto dis-

criminating subspaces [20]. Moreover, low-rank TR approxi-
mation is considered to explore the similarity structure of the
self-representation tensor, e.g., Z = R(G1, · · · ,GD). Bene-
fiting from TR approximation, the inter/intra-view informa-
tion in Z can be well captured simultaneously. Therefore,
for incomplete multi-view data Tv ∈ RDv×N , v = 1, · · ·V ,
where V and N are the numbers of views and instances, re-
spectively; and Dv represents the feature dimension in the
v-th view. The proposed modeling can be formulated as the
optimization problem:

min
{Ev,Zv,Pv,Hv,Xv}Vv=1

V∑
v=1

γ

2
‖Hv‖2F + λ‖Ev‖1

s. t. Xv = PvHv + Ex
v ,Hv = HvZv + Eh

v ,

PT
v Pv = I, (Xv)Ov

= (Tv)Ov
, v = 1, · · · , V,

Z = R(G1, · · · ,GD) (1)

where Ev = [Ex
v ;Eh

v ]; Z = Ω(Z1, · · · ,ZV ); Ω is an op-
erator which stacks all self-representation matrices Zv, v =
1, · · · , V to a 3-th order tensor Z ∈ RN×N×V ; `1 is em-
ployed on error matrix Ev to remove sparse noise or outliers;
and Ov is the index set of observed instances for v-th view.



3.2. Solution

The above optimization problem can be tackled using an
ADMM framework [21]. To make problem (1) separable, Y
is added as an auxiliary variable as follows:

min
{Ev,Zv,Pv,Hv,Xv}Vv=1,Y

V∑
v=1

γ

2
‖Hv‖2F + λ‖Ev‖1

s. t. Xv = PvHv + Ex
v ,Hv = HvZv + Eh

v ,

PT
v Pv = I, (Xv)Ov

= (Tv)Ov
, v = 1, · · · , V,

Z = Y,Y = R(G1, · · · ,GD) (2)

The corresponding augmented Lagrangian function is formu-
lated as:

L
(
{Zv,Ev,Q

v
1,Q

v
2,Xv,Pv,Hv}Vv=1,Y,Q3

)
=

V∑
v=1

(
γ

2
‖Hv‖2F + λ‖Ev‖1

+ 〈Qv
1,Xv −PvHv −Ex

v〉+ 〈Qv
2,Hv −HvZv −Eh

v 〉

+
ρ1
2
‖Xv −PvHv −Ex

v‖2F +
ρ2
2
‖Hv −HvZv −Eh

v‖2F)

+ 〈Q3,Z − Y〉+
ρ3
2
‖Z − Y‖2F,

(3)
under constraints Y = R(G1, · · · ,GD), (Xv)Ov

= (Tv)Ov

and PT
v Pv = I, v = 1, · · · , V , where {Qv

1,Q
v
2}Vv=1 and Q3

are Lagrange multipliers and ρ1, ρ2, ρ3 are penalty factors.
Using an ADMM framework, which alternately updates one
variable with others fixed, problem (3) is split into several
subproblems.

Update {Hv}Vv=1: Fixing other variables, the solution of
Hv can be obtained by

Hv =(PT
v (Qv

1 + ρ1Xv − ρ1Ex
v) + (ρ2E

h
v −Qv

2)(I− ZT
v ))

((γ + ρ1)I + ρ2(I− Zv)(I− ZT
v ))−1

(4)Update {Pv}Vv=1: The subproblem of Pv is rewritten as:

max
Pv:PT

v Pv=I
trace(Pv(Hv(Qv

1 + ρ1Xv −Ex
v)T)). (5)

This subproblem is a well-known orthogonal Procrustes prob-
lem. Letting M = Hv(Qv

1 +ρ1Xv−Ex
v)T, and [S,V,D] =

svd(M), the solution of Pv is Pv = DST, where svd is the
singular values decomposition function.

Update {Xv}Vv=1:

Xv(:, n) =

{
X̂v(:, n), n 6∈ Ov

Tv(:, n), n ∈ Ov,
(6)

where X̂v = PvHv + Ex
v − (1/ρ1)Qv

1 .
Update {Zv}Vv=1: By setting the derivative of the objec-

tive function in (3) concerning Zv to zero, the solution of Zv

can be obtained via:

Zv =(ρ3I + ρ2H
T
v Hv)−1(HT

v (Qv
2 + ρ2Hv − ρ2Eh

v )

+ Ω−1v (ρ3Y +Q3)),
(7)

where Ω−1v is the inverse operator along v-th view, e.g.
Ω−1v (Z) = Zv .

Update {Ev}Vv=1: The solution of Ev can be split into
two parts and updated by{

Ex
v = sth(Xv −PvHv + (1/ρ1)Qv

1, λ/ρ1)

Eh
v = sth(Hv −HvZv + (1/ρ2)Qv

2, λ/ρ2),
(8)

where sth(x, τ) is the well-known soft thresholding operator,
denoted as:sth(x, τ) = sgn(x) max(|x| − τ, 0).

Update Y: For Y , the problem (3) can be transferred into
the following formulation:

min
Y

‖Y − (Z − (1/ρ3)Q3) ‖2F,

s. t. Y = R(G1, · · · ,GD). (9)

It can be solved by TR-ALS algorithm in [16] , where the
input tensor is Z − (1/ρ3)Q3.

Update Lagrangian multipliers:
Qv

1 = Qv
1 + ρ1(Xv −PvHv −Ex

v), v = 1, · · · , V
Qv

2 = Qv
2 + ρ2(Hv −HvZv −Eh

v ), v = 1, · · · , V
Q3 = Q3 + ρ3(Y − Z)

(10)
After finishing updating aforementioned variables, the

affinity matrix of multi-view data can be obtained by S =
1
V

∑V
v=1 |Zv|+

∣∣ZT
v

∣∣, which will be used in spectral cluster-
ing algorithm [22] for the final clustering result.

4. EXPERIMENTAL RESULTS

4.1. Experimental Settings

Datasets: Four well-known multi-view datasets, including
Coil20 [23], Yale1, Caltech72, and BDGP3, are chosen to
evaluate the effectiveness of FSR-IMVC, where sample fea-
tures are selected as suggested in [6, 10, 12]. To construct the
incomplete multiview data, we randomly remove M samples
for every view under the condition that all samples have at
least one view, and the missing ratio (MR, MR={10%, 30%,
50%, 70%}) is defined as MR = M/N for every view, where
N is the number of samples.
Evaluation Metrics: Normalized mutual information (NMI),
accuracy (ACC), and Purity are considered to evaluate the
performance in this experiment [6]. Larger values of these
metrics indicate better clustering performance.
Compared Clustering Algorithms: BSV, Concat, OPIMC [5],
HCPIMSC [10], TMBSD [11], IMVTSC-MVI [12], and
TCIMC [9], are selected to compare clustering performance.
Among them, BSV shows the best K-means clustering results
on all single views and Concat reports the clustering results
of stacking all views [6]. All Experiments are tested on a

1http://vision.ucsd.edu/content/yale-face-database
2https://data.caltech.edu/records/mzrjq-6wc02
3https://www.fruitfly.org



Table 1: The comparison results of ACC(%)/NMI(%)/Purity(%) on different datasets as MR ranges from 10% to 70%.

Datasets MR (%) BSV Concat OPIMC TMBSD HCPIMSC IMVTSC-MVI TCIMC Ours

10.0 39.39/ 45.51/ 43.03 38.79/ 46.94/ 43.64 40.61/ 42.99/ 41.21 81.82/ 82.03/ 81.82 77.58/ 76.67/ 77.58 70.91/ 73.63/ 70.91 61.21/ 65.97/ 62.42 100.00/100.00/100.00
Yale 30.0 29.70/ 30.02/ 33.33 27.88/ 31.07/ 29.70 32.73/ 36.27/ 33.33 69.09/ 74.47/ 71.52 67.88/ 69.88/ 68.48 69.70/ 70.27/ 69.70 56.97/ 63.13/ 58.79 100.00/100.00/100.00

50.0 27.27/ 26.39/ 30.30 21.82/ 18.70/ 24.24 24.85/ 22.22/ 26.67 60.60/ 65.57/ 61.21 49.09/ 52.38/ 50.30 68.48/ 66.76/ 69.09 55.76/ 58.20/ 55.76 99.76/99.69/99.75
70.0 19.39/ 15.72/ 20.61 13.94/ 11.10/ 16.97 21.82/ 21.38/ 23.64 36.36/ 37.11/ 36.36 35.15/ 38.33/ 35.76 32.73/ 36.48/ 35.15 35.15/ 32.91/ 36.36 79.81/84.29/80.42

10.0 57.85/ 66.08/ 59.10 59.65/ 75.26/ 64.79 49.17/ 68.74/ 52.92 89.03/ 93.18/ 89.03 68.12/ 78.60/ 71.18 86.81/ 90.39/ 86.88 77.57/ 91.82/ 84.72 89.58/ 93.28/ 89.58
Coil20 30.0 42.29/ 48.22/ 44.03 48.33/ 58.81/ 51.39 44.03/ 56.83/ 46.18 81.67/ 88.54/ 81.81 68.47/ 77.38/ 72.15 82.43/ 89.06/ 84.72 75.28/ 85.41/ 81.88 92.50/ 94.41/ 92.64

50.0 33.96/ 36.97/ 34.86 30.76/ 40.01/ 36.11 39.44/ 54.94/ 43.26 75.97/ 85.73/ 77.57 54.79/ 64.30/ 57.01 83.12/ 88.18/ 83.26 41.39/ 59.72/ 53.19 87.92/ 93.93/ 90.42
70.0 20.14/ 19.81/ 22.43 22.71/ 24.66/ 24.51 23.33/ 27.75/ 23.75 77.99/ 86.28/ 78.89 33.54/ 36.76/ 34.44 51.18/ 56.85/ 51.94 31.11/ 38.21/ 39.44 86.18/ 91.93/ 88.68

10.0 48.40/ 32.61/ 48.40 53.28/ 43.56/ 58.48 81.48/ 65.30/ 81.48 78.00/ 51.43/ 78.00 78.92/ 67.49/ 78.92 99.68/ 98.68/ 99.68 44.36/ 23.21/ 44.88 100.00/100.00/100.00
BDGP 30.0 45.40/ 27.42/ 46.56 36.24/ 17.99/ 36.88 79.64/ 54.96/ 79.64 54.16/ 23.51/ 54.16 76.04/ 57.55/ 76.04 98.84/ 95.59/ 98.84 29.84/ 11.21/ 33.76 100.00/100.00/100.00

50.0 29.96/ 13.61/ 32.80 30.40/ 10.83/ 31.48 55.00/ 29.92/ 55.00 53.36/ 22.13/ 53.36 68.96/ 38.13/ 68.96 96.52/ 89.05/ 96.52 38.24/ 13.84/ 39.68 100.00/100.00/100.00
70.0 28.24/ 9.30/ 29.08 28.00/ 8.37/ 28.04 41.76/ 13.00/ 41.76 39.16/ 11.88/ 39.20 32.12/ 7.98/ 33.32 81.72/ 59.72/ 81.72 25.20/ 3.23/ 25.24 78.60/ 71.08/78.60

10.0 52.72/ 45.98/ 84.56 42.11/ 41.58/ 84.35 62.04/ 52.95/ 81.84 36.46/ 39.75/ 83.54 60.68/ 53.66/ 88.91 62.31/ 52.22/ 85.58 61.70/ 44.35/ 83.54 61.56/ 60.66/ 92.38
Caltech7 30.0 44.15/ 36.02/ 75.24 45.44/ 37.61/ 82.38 64.42/ 45.57/ 83.81 36.80/ 33.47/ 80.48 50.75/ 47.73/ 86.94 50.48/ 48.87/ 85.78 62.45/ 48.80/ 83.61 64.08/ 62.33/ 91.73

50.0 53.88/ 30.83/ 71.90 45.58/ 32.91/ 73.47 60.68/ 35.01/ 80.68 35.37/ 24.15/ 76.33 56.39/ 43.05/ 85.65 52.18/ 45.52/ 85.51 63.67/ 46.40/ 84.29 62.82/ 60.69/ 90.71
70.0 48.91/ 13.22/ 61.36 49.80/ 22.83/ 72.04 53.40/ 21.30/ 74.01 30.41/ 13.52/ 68.37 50.00/ 34.36/ 80.48 31.84/ 16.37/ 67.55 55.99/ 36.77/ 79.73 62.48/ 61.10/ 93.06

desktop computer with a 3.30GHz Intel(R) Xeon(R)(TM)
CPU and 256GB RAM.
Parameter settings: In our model, each self-representation
tensor is balancely reshaped into a 4th-order tensor to use
low-rank TR approximation. Therefore, there are two groups
of free parameters with penalty factors ρ1=ρ2=ρ3=10−3, one
is TR ranks, e.g., Rd,d=1, · · · , 4, and the other is trade-off
parameters λ and γ. We fix one group’s parameters and
tune the other via brute force search. For example, we first
fix Rd = 8 and tune parameters λ and γ on Yale dataset,
where λ and γ vary from {10−4, 10−3, 10−2, 10−1, 1}. The
clustering results are reported in Fig.4a , where the ACC
almost approaches 1 and performs stable when λ ranges in
[0.1, 1] and γ ranges in [10−4, 10−3, 10−2, 10−1]. In addi-
tion, we fix λ=1 and γ=10−4 to choose the parameter Rd

from {2,4,6,8,10,12}. From Fig. 4b, we can observe the
clustering performance is good and stable when Rd ranges in
[6, 10] with small MRs. According to this strategy, we choose
Rd=8, λ=1, γ=10−4 for Yale; Rd=4, λ=10−4, γ=10−3 for
Coil20; Rd=4, λ=10−3,γ=10−3 for BDGP; Rd=6, λ=10−1,
γ=10−1 for Caltech7 in the following experiments.

(a) The performance on λ and γ
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Fig. 4: The change of ACC as parameters λ, γ and Rd vary.

4.2. Clustering Performance Analysis

Table 1 shows the clustering performance of different meth-
ods on four multi-view datasets with MR ranging from {10%,
30%, 50%, 70%} in terms of ACC, NMI, and Purity, where
the best and the second best results are highlighted in bold
and underlined, respectively. It can be observed that the clus-

tering performance of our method is superior to the state-of-
art in terms of NMI and Purity for all multiview datasets and
MRs. Especially, the proposed method achieved a 18.18%,
30.30% and 31.28% improvement in terms of ACC on the
Yale dataset when MR=10%, 30% and 50%, respectively.
When the MR reaches 70%, the clustering accuracy of our
algorithm remains at a high level (ACC=79.81%) while the
performance of other algorithms is extremely degraded.

4.3. Ablation Study

To investigate the usefulness of FSR in the FSR-IMVC, the
low-rank completion part in equation (1) is removed and the
clustering result on Yale and Caltech7 is reported in Fig. 5.
Each one is tuned the best. We can see that ACC decreases
significantly without FSR, especially when MR=50%, 70%.
This may imply that FSR can explore more useful information
for IMVC from incomplete multi-view data.
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Fig. 5: The clustering performance on incomplete multiview
data with/without completion procedure.

5. CONCLUSION

In this paper, we incorporate low-rank matrix learning of
original feature space and low-rank TR approximation-based
high-order self-representation learning into a unified frame-
work for incomplete multi-view clustering. The two pro-
cesses fully exploit inter/intra-view and feature space corre-
lations linked by the latent feature spaces, which ultimately
improves the clustering performance. Numerical experiments
on four well-known multiview datasets with different MRs
show that our method outperforms all state-of-the-art meth-
ods on clustering performance.
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