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Mangrove zonation mapping in West Africa, at 10-meter 4 

resolution, optimized for inter-annual monitoring    5 

The surface area of mangrove ecosystems in Senegal have fluctuated substantially over 6 

several decades. Satellite data at 10 to 30-meter resolution, which has been available 7 

since the 1980s, has allowed the mapping and quantification of these dynamics. 8 

However, the plant formations have reorganized internally; this has not been well-9 

documented, possibly because there is no established method for detecting zonation of 10 

the Senegalese mangrove. This paper proposes a two-step method for mapping the 11 

zonation of the Saloum Delta mangrove. First, mangrove surfaces were detected using 12 

machine learning methods from an object-based time series. Finally, a typology was 13 

developed through object-based clustering using time-series metrics derived from the 14 

harmonic regression modelling of the vegetation fraction. A comparison with field data 15 

allowed us to determine the number of classes and discriminating variables. The results 16 

showed that the selected method resulted in an overall accuracy of 97.55% (Kappa = 17 

95.42) for the land cover at 4 classes (Water, Mangrove, Salt flats, Other land covers), 18 

with an F1-Score of 98.91% for the mangroves. Second, our results suggest that the 19 

annual trend of the vegetation fraction at the object scale is effective in differentiating 20 

mangrove zonation into three classes based on canopy density and stand height (HM: 21 

High mangrove; LDM: Low and dense mangrove; LOM: Low and open mangrove). 22 

Finally, the temporal stability of the classes and uncertainty around the magnitudes of 23 

the plant fraction values per class were assessed by Bayesian inference. An overall 24 

accuracy of 85.5% can be expected to identify the zonation typology on an inter-annual 25 

scale. This mapping technique can be used to characterize the rate of change in zonation 26 

in response to environmental changes and to guide management strategies. 27 

  28 
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Key policy highlights  29 

 30 

• There is currently no method for detecting the zonation of the Senegalese 31 

mangrove. 32 

 33 

• A typology of mangrove zonation was created based on canopy density and 34 

stand height. 35 

 36 

• Analyzed temporal stability/uncertainty by time series synthesis & Bayesian 37 

modeling. 38 

 39 

 40 

• Accurately identified typology (85.5% accuracy) in annual monitoring context 41 

 42 

• Reduced uncertainty margins for monitoring using temporal segmentation 43 

algorithms. 44 

 45 

 46 

 47 

Keywords: Mangrove; Sentinel-2; Sentinel-1; Times series; Machine Learning; OBIA 48 

 49 

 50 

 51 

 52 
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1. Introduction  54 

Mangrove mapping is an important aspect of ecosystem management strategies (Giri et al., 55 

2011). The availability of remotely sensed megadata at decametric spatial resolution allows the 56 

classification of different surface states over large continental areas (Mutanga and Kumar, 57 

2019), especially at a scale that can guide local and national environmental policies. Access to 58 

and processing of Landsat and Sentinel archives have been facilitated by freely available cloud 59 

platforms, such as the Google Earth Engine (GEE) (Alonso et al., 2016; Gorelick et al., 2017; 60 

Wang et al., 2019). Furthermore, the computational power allocated by these platforms 61 

provides an opportunity for tropical countries to set up complex processing chains with big 62 

data (Midekisa et al., 2017). However, their dimensionality remains an important issue with 63 

regards to reducing computation times, which decreases the redundancy of information from 64 

different sensors (Myint et al., 2011; Hu et al., 2019; Stromann et al., 2020) and ensures 65 

classification efficiency (Speiser et al., 2019). Moreover, the Sahelo-Sudanese coastal zone 66 

contains socio-ecosystems that generate a variety of landscapes (Temudo et al., 2015; Andrieu, 67 

2020) that can be difficult to map (Cabral and Costa, 2017; Asenso Barnieh et al., 2020) and 68 

which can cause spectral confusion between the mangrove and dense forests on dry land 69 

depending on the season. Therefore, extracting the most effective data and variables is essential 70 

(Schulz et al., 2021).  71 

Mangrove forests cover large areas (Cabral and Costa, 2017; Andrieu, 2018) and provide 72 

various ecosystem services (Cormier-Salem, 1999; Walters et al., 2008; Mukherjee et al., 2014; 73 

Arumugam et al., 2021). Global issues of climate change mitigation through carbon 74 

sequestration and preservation of mangrove biodiversity must be considered alongside local 75 

issues such as access to resources (Cormier-Salem et Panfili, 2016). Monitoring mangrove 76 

dynamics on a regular basis could help better reconcile resource management within changing 77 

environments.   78 

Mapping mangrove ecosystems in West Africa is crucial for developing effective 79 

ecosystem management strategies (Jia et al., 2018). With the help of high resolution satellite 80 

data from Landsat and Sentinel, as well as access to cloud platforms such as Google Earth 81 

Engine (GEE) (Alonso et al., 2016; Gorelick et al., 2017; Wang et al., 2019), it is now possible 82 

to use powerful computing resources and advanced processing methods to better understand 83 

the dynamics of mangroves in this region (Midekisa et al., 2017). These methods allow for the 84 

management of long and dense time series data, which can provide a comprehensive view of 85 

mangrove ecosystems. The mapping of mangroves in West Africa is particularly valuable due 86 

to the numerous ecosystem services they provide (Cormier-Salem, 1999; Walters et al., 2008; 87 

Mukherjee et al., 2014; Arumugam et al., 2021).  88 

Although databases of mangrove areas exist (GWM, 2010; USGS, 2014), they are 89 

highly inaccurate, particularly in West Africa due to persistent cloud cover (Bunting et al., 90 

2018). The authors also mention that fringing and fragmented mangroves are sometimes 91 

omitted, even though they are frequently encountered in West-Africa (Liu et al., 2021). 92 

Mapping the extent of mangroves has been the subject of many studies (Kuenzer et al., 2011; 93 

Wang et al., 2019), and various mapping methods have been developed to produce local data. 94 

SPOT data has successfully mapped the extent of mangroves in West Africa over several years 95 

with an object-based image analysis (OBIA) approach (Conchedda et al., 2008). Landsat data 96 

has also led to the production of accurate maps using a pixel approach combined with linear 97 

spectral unmixing (Han et al., 2018). These data are also advantageous due to the long time 98 
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series. Cloud cover has often been mentioned as an impediment to mapping mangroves in the 99 

tropics with passive sensors (Kuenzer et al., 2011); active sensors are therefore of interest for 100 

mapping mangrove surfaces. These data also present good precision scores, especially with 101 

OBIA approaches (Flores de Santiago et al., 2013), and most of these methods are fairly 102 

accurate, particularly with Sentinel-2 optical data (Mondal et al., 2019) and Sentinel-1 and 2 103 

radar-optical combinations (Liu et al., 2021). These data have the advantage of being freely 104 

accessible and easily available on GEE. Machine learning approaches, which typically combine 105 

a large volume of data to avoid the biases of single-date image-based mapping (Cardenas et 106 

al., 2017), are currently favored for map development (Chen et al., 2017; Mondal et al., 2019; 107 

Liu et al., 2021; Wang et al., 2018). Several studies have highlighted the contributions of cloud 108 

solutions, such as GEE, for processing time series and multi-source data (Cardenas et al., 2017; 109 

Chen et al., 2017; Liu et al., 2021; Xiao et al., 2021). Combining optical (Landat-8 and 110 

Sentinel-2) and radar (Sentinel-1) data was found to improve the discrimination of Land Use 111 

Land Cover and mangrove classes (Clerici et al., 2017; Zhao and Qin, 2020; Xiao et al., 2021). 112 

Decision trees, such as Classification And Regression Trees (CART) or Random Forests (RF) 113 

are commonly used for mangroves (Giri et al., 2015; Zhang et al., 2017; Mondal et al., 2019; 114 

Thomas et al., 2018; Chen et al., 2020; Xiao et al., 2021). Liu et al. (2021) combined three 115 

algorithms with a gradient boosting machine (GBM) and neural network (NN) to form a 116 

powerful machine learning package. They achieved accuracy scores above 95% using S2 and 117 

S1 images in West Africa, and developed the most accurate mapping for this area to date.  118 

Although the available mapping of mangrove areas seems reliable, differentiating 119 

between the mangrove plant formations using optical and radar data is challenging in West 120 

Africa (Flores de Santiago et al., 2013). Indeed, these can be characterized by the coverage and 121 

stand height, and by estimating the specific species compositions. Thus, plant formations 122 

roughly represent the zonation of mangroves and the resultant spatial organization of 123 

population dynamics at the local scale.  124 

Subdivision of mangroves into several facies at a decametric resolution is a complex 125 

process; although it has been performed in other mangrove areas, it has rarely been attempted 126 

in Senegal. Various approaches have been developed to subdivide mangroves. The OBIA 127 

method consistently achieves good scores (Wang et al., 2019). Myint et al. (2008) mapped 128 

mangroves at a specific level using Landsat images with an overall accuracy of 94.2% and a 129 

kappa coefficient of 0.91; the pixel classifiers had an overall accuracy of 62.8% and a kappa 130 

coefficient of 0.57. Wang et al. (2018) achieved an overall accuracy of 70.95% for species 131 

community discrimination using S2 images with a combination of the object approach and an 132 

Random Forest (RF) classifier. In addition, approaches using pixel-level mangrove phenology 133 

have been used to classify mangroves at specific levels (Bullock et al., 2017; Valderrama-134 

Landeros et al., 2021). Vegetation indices from dense S2 time series also made it possible to 135 

classify mangroves according to a three-class typology (Rhizophora mangle fringe, basin, and 136 

Avicennia germinans shrub) with overall accuracy scores between 92 and 95% (Vizcaya-137 

Martínez et al. 2022). The authors were able to map the evolution of this typology after 138 

disturbances and measured species recovery, which are similar to those of the mangroves in 139 

Senegal. Finally, linear spectral unmixing consistently shows good results for quantifying 140 

mangrove canopy cover (Monsef and Smith, 2017; Bullock et al., 2020; Lymburner et al., 141 

2020) and for establishing a forest composition typology (Gudex-Cross et al., 2017). For 142 

example, linear spectral unmixing was used to establish a 3-class typology in Australia 143 

(woodland, open forest, closed forest) based on the mangrove cover rate from Global Mangrove 144 
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Watch (GMW) data (Lymburner et al., 2020. Finally, several studies have used RADAR data 145 

to map mangrove species (Flores de Santiago et al., 2013; Ghazali et WIkantika, 2021). 146 

Although RADAR data has shown good accuracy in discriminating mangrove, the species 147 

classification remains more delicate and obtains low (OA = 26%) to moderate (OA ≈ 65%) 148 

scores. The best scores were obtained by optimizing the scale parameter with an OBIA 149 

approach (Flores de Santiago et al., 2013) or by deriving a dual-polarity RADAR vegetation 150 

index (DpRVI) with Sentinel-1 (Ghazali et WIkantika, 2021). 151 

Furthermore, significant fluctuation in mangrove forest area in West Africa has 152 

occurred in recent decades (Andrieu, 2018). Mangroves in Senegal have experienced surface 153 

regeneration since the mid-1990s (Conchedda et al., 2011; Dièye et al., 2013; Andrieu, 2018; 154 

Fent et al., 2019; Lombard and Andrieu, 2021). However, the respective shares of species in 155 

regeneration processes differ according to the hydrosystems (Andrieu et al., 2020; Lombard et 156 

al., 2020). Therefore, a map of plant formation is important to obtain an overview of mangrove 157 

composition and to understand mangrove resilience to environmental changes. Plant 158 

formations can estimate the specific composition of the environment, the density of the cover, 159 

and the size of the individuals making up the group. Moreover, as was pointed out by Wang et 160 

al. (2019), mapping mangrove communities is important for conservation strategies (Jia et al., 161 

2018). We assume that fine-scale processes participate in the spatial organization of mangrove 162 

zonation. The establishment of propagules of different species is constrained by environmental 163 

variables such as salinity and hydroperiod (Krauss et al., 2008) or sedimentary processes (Balke 164 

et al., 2013). In addition, propagule establishment has been reorganized in the face of recent 165 

environmental fluctuations in Senegal (Lombard et al, 2020). Therefore, our objective is to be 166 

able to map mangrove zonation, leading to an understanding of the arrangement of species 167 

zonation resulting from reproduction and growth, which are processes sensitive to 168 

environmental fluctuations. Therefore, our objective was to develop an optimized and robust 169 

multilevel mapping method for mangrove plant formations in the Sahelo-Sudanese delta.  170 

 171 

By utilizing the knowledge gained from the different approaches mentioned above, we 172 

developed a method for mapping mangroves at two levels. First, mangrove surfaces were 173 

detected by machine learning of objects and corrected by classification based on linear spectral 174 

unmixing. Second, linear spectral unmixing was reapplied to subdivide the mangroves into 175 

several plant formations using the OBIA method and classified based on a 1-year time series. 176 

2. Study areas and data 177 

2.1.Study site 178 

The study area (Fig. 1) covers the Saloum Delta hydrosystem. Located in the Sahelo-Sudanian 179 

domain, the north-south gradient is characterized by important inter-annual rainfall variations 180 

(Nicholson, 2013; Descroix et al., 2015); mangroves develop under a rainfall of 560 mm in the 181 

north and 800 mm in the south (Lombard et al., 2020). The forest comprises six species 182 

(Avicennia germinans, Conocarpus erectus, Laguncularia racemosa, Rhizophora racemosa, 183 

Rhizophora mangle, Rhizophora harisonnii) but three dominate almost the mangrove forest: 184 

Rhizophora racemosa, Rhizophora mangle, and Avicennia germinans (Sow et al., 1991; Ndour 185 

et al., 2012; Andrieu et al., 2020; Lombard et al., 2020). Species composition, in addition to 186 

vegetation cover and tree height, is spatially structured in zonation, and can be subdivided into 187 

plant formations. Mangroves in Senegal and Guinea-Bissau have the same zonation patterns 188 
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(Sow et al., 1991), but the studied hydrosystem showed unique features. In the Saloum Delta 189 

(and the Casamance Estuary), the salinity increases from downstream to upstream (Barusseau 190 

et al., 1985; Descroix et al., 2020), whereas the estuaries of Gambia and those located in 191 

Guinea-Bissau, for example, have a river input and upstream salinity levels closer to those of 192 

fresh water. For Saloum, this results in hypersalinity of the water even after the rainy season 193 

(Diop, 1997). The salinity of the water throughout the Saloum Delta was higher than that of 194 

the sea. For example, in Sine-Saloum in June, salinity is approximately 35‰ at the mouth of 195 

the delta and up to 100‰ in Fatick (82 km from the mouth) (Descroix, 2018). Mangrove 196 

ecosystems in coastal areas are affected by their interplay of soil, topography, and salinity, 197 

which bring complexity to the fine scale. (Marius, 1985; Diop, 1990). In such an ecological 198 

context, the vegetation shows two gradients, north–south and east–west, where the density and 199 

height of the stands differ without changing the specific composition. This makes detecting 200 

species and plant formations within the Saloum Delta challenging. Therefore, sixty fields 201 

surveys were conducted (Figure 1). Using transects following the protocol developed by 202 

Andrieu et al. (2020), the density of the vegetation cover, height of individuals, and rate of 203 

cover of each species were inventoried, which facilitated the evaluation of vegetation formation 204 

maps. 205 

 206 

 207 

 208 

Figure 1: Extent study site and field-based inventory for mangrove zonation.  209 

Sixty botanical surveys were performed and detailed the species, the extent of their relative abundance, and the 210 
height of the vegetation community. 211 

 212 
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2.2.Data collection and pre-processing 213 

Sentinel-1 and Sentinel-2 images were selected for this study (Table 1). These data have 214 

been proven to be effective for mangrove mapping (Wang et al., 2018; Mondal et al., 2019; 215 

Wang et al., 2019; Jia et al., 2021; Lu and Wang, 2021; Lui et al., 2021; Xiao et al., 2021). The 216 

Sentinel-2 Level-2A data is available through Google Earth Engine. This product offers 217 

orthorectified Bottom-Of-Atmosphere (BOA) reflectances for all 12 bands in a 16-bit unsigned 218 

integer format that has been scaled by a factor of 10,000. We selected all available images (n 219 

= 79) from both sensors between 01/05/2020 and 01/06/2021 on the GEE platform. For 220 

Sentinel-2, the images were filtered with a value of 20% cloud cover. All processing of the S2 221 

time series was performed on the unmasked pixels using ‘QA60’ quality layers. The range of 222 

the number of clear observations is from 47 to 65 cloud-free dates (Table 2). All spectral bands 223 

at 10 m and 20 m resolution of the Sentinel-2 sensor were retained. Bands at 20m were 224 

resampled at 10m. B1 and B9 were not included because they depict atmospheric traits, like 225 

aerosols, water vapor, and cirrus clouds, rather than reflecting surface characteristics of land-226 

based features. The annual median was calculated for the optical spectral bands. 227 

 228 

 229 

 230 

Table 1: Characteristics of Sentinel-1 and Sentinel-2 data 231 

Sensor Processing Levels Acquisition Period Relative orbit Tiles 

Sentinel 1 Level - GRD 
01/05/2020 - 01/06/2021 

(33 scenes) 
133 -  

Sentinel 2 Level – 2A 
01/05/2020 - 01/06/2021 

(79 scenes) 
-  

T28PBA, T28PCA, 
T28 PCAB, T28PBB, 

T28PDA, T28PDB 

 232 

Table : The dates of observation for Sentinel-2 pixels that cloud-free are presented. These dates may differ for each pixel, and 233 
the dates shown depict those pixels with the minimum and maximum number of cloud-free days within the analyzed region 234 

Year Month  Days  

(65 cloud-free dates ) 

Days  

47 cloud-free dates  

2020 May 02, 07, 12, 17, 22, 27 02, 12, 17, 22, 27 

June 11, 16, 21, 26 11, 16, 21, 26 

July 01, 06, 21, 26, 31 01, 21 

August 05, 15, 20, 25, 30 15, 25 

September 09, 19, 24, 29                   19, 24, 29 

October 04, 09, 14, 19, 24, 29 09, 14, 19, 24, 29 

November 08, 13, 18, 23, 28 08, 13, 18, 28 

December 03, 08, 13, 28 03, 08, 13, 28 

2021 January 02, 07, 12, 27 02, 07, 27 

February 01, 06, 11, 16, 21, 26 21, 26 

March 08, 13, 18, 23, 28 03, 08, 13, 18, 28 
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April 02, 07, 12, 17, 22, 27 02, 07, 12, 17 

May 02, 07, 12, 22, 27 07, 12, 22, 27 

 235 

 Four spectral indices were calculated. The normalized differential vegetation index 236 

(NDVI; Rouse et al., 1974) measures the active photosynthesis of vegetation using reflectance 237 

differences in the red and near-infrared wavelengths; it can be used to distinguish vegetation 238 

from other types of land cover. The near infrared surface water index (NDWI, McFeeters, 239 

1996) measures the amount of water present on the surface of soils using reflectance 240 

differences in the near-infrared and mid-infrared wavelengths; it can be used to detect flooded 241 

areas and to distinguish mangroves from drier vegetation types (Gupta et al, 2018). The 242 

normalized difference moisture index (NDMI, Gao 1996), in particular the DBSI (Dry and Wet 243 

Soil Index) was designed to specifically identify bare areas in dry climates, according to Rasul 244 

et al. ( 2018). They were selected to identify the wet and dry areas constituting the sometimes 245 

semi-arid landscapes of the study area. The previously mentioned indices (NDVI, NDMI, 246 

NDWI, and DBSI) were used to calculate the GLCM textural indices introduced by Haralick 247 

et al. in 1973. Finally, time-series variables were used to complement reflectance and spectral 248 

indexes  dataset. The phase and amplitude of the harmonic model (Clinton, 2016) were 249 

extracted from the annual time series of four spectral indices in the GEE.  250 

The Sentinel-1 satellite imagery in the Earth Engine 'COPERNICUS/S1_GRD' image 251 

collection consists of Level-1 Ground Range Detected (GRD) scenes that have been processed 252 

to calculate the backscatter coefficient (σ°) in decibels (dB). The backscatter coefficient is a 253 

measure of how much microwave radiation is scattered back to the radar sensor by the target 254 

area and is expressed as the target backscattering area (radar cross-section) per unit of ground 255 

area. Since it can vary significantly, it is converted to dB by 10*log10σ°. The backscatter 256 

coefficient can be used to determine physical characteristics of the terrain, including the 257 

geometry and electromagnetic properties of the terrain elements. 258 

To calculate the backscatter coefficient, Earth Engine uses a series of preprocessing 259 

steps implemented with the Sentinel-1 Toolbox. These steps include applying orbit files to 260 

update metadata, removing low intensity noise and invalid data on the edges of the scenes, 261 

removing thermal noise in certain acquisition modes, applying radiometric calibration values, 262 

and correcting the terrain data using either the SRTM 30 meter or ASTER DEM. The terrain 263 

correction step converts the data from ground range geometry, which does not take terrain into 264 

account, to σ°, resulting in a more accurate representation of the terrain. 265 

In the absence of top-down data for this area, only bottom-up data were selected, and the two 266 

polarizations (VH and VV) were combined. A total of 33 images for the period from May 1st, 267 

2020 to June 1st, 2021 have been processed. For the SAR data, the ratio of VH to VV 268 

polarization (VH/VV) was calculated. Four variables were extracted from the VH, VV, and 269 

VH/VV bands over an annual time series: the median, minimum, maximum, and coefficient of 270 

variation (standard deviation divided by the mean). The dataset consisted of 102 predictor 271 

variables before being optimized through selection. (Table 3). 272 

 273 

Table 3: A list of initial variables for classification level-1 (mangrove and land cover) 274 

Sensor Description Bands name Wavelength range Resolution 
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Sentinel-2     

 Spectral bands    

  Band2 : Blue 458–523 nm 10 m 

  Band3 : Green 543–578 nm 10 m 

  Band4 : Red 650 – 680 nm 10 m 

  Band5 : Red Edge 1 698–713 nm 20 m 

  Band6 : Red Edge 2 733–748 nm 20 m 

  Band7 : Red Edge 3 773–793 nm 20 m 

  Band8 : NIR 785–900 nm 10 m 

  Band8A : Red Edge 4 855–875 nm 20 m 

  Band11 : SWIR 1 1565–1655 nm 20 m 

  Band12 : SWIR 2 2100–2280 nm 20 m 

 Spectral index  Formula Reference 

  NDVI (B8-B4)/ (B8+B4) Rouse et al. 
(1974) 

  NDWI (B3 – B8) / (B3 + B8) McFeeters 
(1996) 

  NDMI (B8 - B11) / (B8 + B11) Gao (1996) 

  DBSI B11 – B3)/(B11 + B3) − NDVI  

 Harmonic index 
(calculated on the 

spectral indices) 

   

  Phase displacement between the origin 

and the peak of the wave in the 
range of 0 to 2π 

Jakubauskas 

et al. (2002) 

  Magnitude half the value at which the 
function is maximized 

Jakubauskas 
et al. (2002) 

 Texture information 
(calculated on the 

spectral indices) 

  Haralick et 
al. (1973) 

  Angular Second 
Moment: measures the 

number of repeated 
pairs 

  

  Contrast: measures the 
local contrast of an 

image 

  

  Correlation: measures 
the correlation between 

pairs of pixels 

  

  Variance: measures 
how spread out the 
distribution of gray-

levels is 

  

  Inverse Difference 
Moment: measures the 

homogeneity 

  

  Sum Average   

  Sum Variance   

  Sum Entropy   
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  Entropy: Measures the 
randomness of a gray-

level distribution 

  

  Difference variance   

  Difference entropy   

  Information Measure of 
Corr. 1 

  

  Information Measure of 
Corr. 2 

  

  Dissimilarity   

  Inertia   

  Cluster Shade   

  Cluster prominence   

Sensor Description Bands name Centre frequency Resolution 

Sentinel-1 SAR    

  VH- ascending 5.405 GHz X: 10 m 
Y:10 m 

  VV- ascending 5.405 GHz X: 10 m 
Y:10 m 

  VH/VV   

 SAR statistics on the 
time series 

(calculated on VHasc, 

VVasc, VHasc/ VVasc) 

 

   

  Minimum   

  Maximum   

  Median   

  coefficient of variation   

 275 

3. Methods 276 

The complete methodological flowchart is shown in Figure 2. This method is divided into two 277 

levels:  278 

Level 1: Mapping the mangroves and land use required for linear spectral unmixing   279 

Level 2: Mapping vegetation formations by object-based spectral-temporal feature 280 

classification 281 
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 282 
Figure 2: Flowchart of the proposed approach. 283 

At white background: treatments allowing to obtain a cartography of the mangrove. 284 

At light green background, treatments allowed us to obtain a cartography of mangrove plant formations. 285 

 286 

 287 

3.1.Mangrove and land cover mapping (Level-1) 288 

First, the mangrove is mapped using a combination of OBIA and machine learning approaches, 289 

specifically Random Forest. Although the pixel approach has been extensively used for 290 

mangrove classification (Bunting et al., 2018; Mondal et al., 2019; Jia et al., 2021; Lu and 291 

Wang, 2021; Lui et al., 2021; Xiao et al., 2021), we chose an object approach (Myint et al, 292 

2008; Wang et al., 2018; Wang et al., 2021) to reduce spectral confusion by smoothing the 293 

dataset features within objects and reducing the statistical noise of the images (Blaschke et al., 294 

2008; Blaschke, 2010; Dronova, 2015; Hossain and Chen, 2019). This reduces the complexity 295 

of the images and the size and dimensionality of the dataset. In addition, the optimal features 296 

for classification were evaluated. With textural characteristics, objects appear as a privileged 297 

entity to evaluate the importance of texture indices (GLCM) in classifying inter-tidal areas.  298 

3.1.1. Segmentation  299 

Segmentation is the first classification process. The superpixel clustering approach based on 300 

simple non-iterative clustering (SNIC) using the GEE was chosen. Bands with the highest 301 

optical spatial resolution only (B2, B3, B4, and B8) were implemented. The SNIC algorithm 302 

(Achanta and Süsstrunk, 2017) uses a regular grid of ‘seeds’ as the initial centroid of the 303 

superpixel. The parameterization of the algorithm requires the specification of superpixel seed 304 

spacing (in pixels). The larger the spacing, the larger the object size. Therefore, it is critical to 305 

scale parameters. Several methods have been developed to determine the optimal threshold for 306 

the scale parameters (Ma et al., 2017). The scale parameter estimation (ESP) initially proposed 307 

by Drǎguţ et al. (2010) and modified for multispectral imagery (Drǎguţ et al. 2014) was chosen 308 

because of its low computational cost, and therefore, could be applied to large areas. For each 309 

2–50-pixel spacing step, the local variance was calculated for each band and then averaged 310 
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(Drǎguţ et al. 2014) for fixed values of connectivity at 8 and compactness at 1. The rate of 311 

change (ROC) was then calculated for each scale change. The first break in the curve after 312 

continuous decay is the threshold at which significant objects emerge. In other words, the scale 313 

value showing for the first time a negative change (Figure 3) in the ROC curve was selected as 314 

the optimal seed spacing value.     315 

 316 

Figure 3: Estimate scale parameter. 317 

The graphs show the changes in local variance (LV) (black) and rate of change (ROC) (gray dots) with 318 
increasing scale parameters. Vertical lines in red indicate the optimal scaling parameters selected for Saloum 319 

 320 

3.1.2. Training and validation samples 321 

The training and validation of machine learning classifications require reference sample data 322 

for land cover. Four classes were referenced: Water, Mangrove, Salt flats, Other land covers 323 

(all continental surfaces, including bare soil, other vegetation, urban, and cropland). Reference 324 

data collection followed a labeling procedure using ESRI (2017) and Google Earth (2018, 325 

2021) high-resolution imagery, with a Sentinel-2 color composition check from 2021 to ensure 326 

the class stability spotted on slightly older THRS imagery.    327 

Stratified random sampling was applied to avoid bias during the validation (Olofsson 328 

et al., 2014). Therefore, a random draw was performed in the nine classes of the ESA 329 

WorldCover 10 m 2020 v100 map (Zanaga et al., 2021) with 400 points per class. This map 330 

had an overall accuracy of 74.4%; therefore, we removed or corrected erroneous data. After 331 

filtering, 2592 reference samples were collected, of which 75% and 25% of the samples were 332 

retained for training and mapping validation, respectively. For model training, 223, 312, 322, 333 

and 1,660 samples were retained for water, mangrove, salt flats, other land covers, respectively. 334 

The objective was to obtain a statistical representation of the different land cover types within 335 

the dry land class. For model validation, 74, 77, 80, and 414 samples from water, mangrove, 336 

salt flats, other land covers, respectively, were selected. 337 
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3.1.3. Classification processing and accuracy assessment 338 

The classification into water, mangrove, salt flats, other land covers was performed using the 339 

random forest algorithm (Breiman, 2001) on the GEE platform. Although the random forest 340 

model has the ability to handle many variables (Belgiu and Dragut, 2016), we chose to reduce 341 

the dimension of the dataset by retaining only the so-called optimal variables. To develop 342 

simple and parsimonious classification models, the use of a variable selection algorithm allows 343 

the maintenance of a small number of variables. This will allow for fewer data collection 344 

procedures in the future and a more efficient evaluation of the variable importance. Speiser et 345 

al. (2019) mentioned that reducing the number of variables in random forest models can also 346 

improve the efficiency of classification. To address these objectives, a backward elimination 347 

approach was used, based on model performance as a function of the rate of change in 348 

classification accuracy when adding or removing variables (Díaz-Uriarte and De Andres, 349 

2006). The VarSelRF package in R statistical software was used to select variables. The ‘Out 350 

of Bag’ (OOB) error was used as a minimization criterion and the least important variables 351 

were eliminated. In each iteration, 10% of the variables were eliminated. This procedure was 352 

repeated 20 times, as recommended by Li et al. (2016) and Wang et al. (2018), to select a subset 353 

of the most important features. To assess the stability of the classifications, a 10-fold repeated 354 

cross validation was undertaken. The accuracy scores for mangrove, inter-tidal, and upland 355 

classifications were obtained using a confusion matrix (Stehman 1997). Overall accuracy (OA), 356 

producer accuracy (PA), user accuracy (UA), and kappa coefficients were generated. Finally, 357 

an overall F1 score was used to obtain the accuracies for each land cover class. 358 

 359 

3.2.Mangrove zonation mapping (Level-2) 360 

We also used the OIBA approach to map mangrove zonation by discriminating its plant 361 

formations. Segmentation is a crucial step and is performed using a linear spectral unmixing 362 

image of the vegetation fraction. The first mapping allowed for the selection of the 363 

endmembers. Based on the model of Taureau et al. (2019), we decomposed the pixel intensity 364 

into three endmembers, each representing a component of the mangrove ecosystem.: water, 365 

mangrove and salt flats. The 10th decile of the mangrove NDVI was retained. Mudflats with 366 

the lowest coefficient of variation of NDWI were chosen for their spectral stability throughout 367 

the year. Non-turbid water spectral was obtained by unsupervised classification of the water 368 

mask into 30 classes and selection of the spectral signature with the lowest reflectance values 369 

in the Sentinel-2 optical bands. The spectral signatures of the endmembers are shown in Figure 370 

4.   371 

 372 
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 373 

Figure 4: Spectral reflectance curves for water, mangrove, and salt flats selected for linear spectral unmixing. 374 

 375 

Four images were generated to represent the contribution of each endmember to each 376 

pixel. Therefore, the pixels misclassified during the first step could be partially corrected by 377 

considering the most important contribution of the endmember to definitively assign the classes 378 

of mangrove, salt flats, and water. We preferred the OBIA approach in the first instance because 379 

the optimal object size avoids confusion between mangroves and dense dryland vegetation that 380 

was obtained using the pixel approach. Nevertheless, the optimal object size was calculated 381 

globally, not locally. Therefore, objects that are too large in areas of mangrove vegetation that 382 

combine water and salt flats may remain. Hence,  Linear Spectral UnmixingLSU allows the 383 

pixels to be reassigned to the right classes within the objects. 384 

3.2.1. Segmentation and spatial structure of the mangrove  385 

Intra-mangrove segmentation is a key step in determining homogeneous features that reflect 386 

mangrove distribution along environmental gradients. The SNIC algorithm under GEE was 387 

used again by varying the superpixel seed spacing in steps of 1 and up to a spacing of 20. We 388 

considered that the ‘optimal’ intra-mangrove objects could not be larger than 20, because the 389 

optimal scale parameter for land cover classification was 18. The choice of the segmentation 390 

scale parameter is crucial because it will have important consequences on the clustering and 391 

thus the typology of vegetation formations. To better detect transitions within the mangrove, 392 

the selection of the optimal scale parameter must meet the criteria of intra-segment 393 

homogeneity and inter-segment heterogeneity (Espindola et al., 2006; Johnson and Xie, 2011; 394 

Johnson et al., 2015). For this purpose, the most common method is to calculate the weighted 395 

variance (wVar) as an indicator of intra-segment spectral homogeneity (Eq. 1) and the Moran 396 

Index (MI) to measure the inter-segment spectral heterogeneity (Eq. 2).  397 

𝑤𝑉𝑎𝑟 =
∑ 𝑎𝑖

𝑛
𝑖=1 ×𝑣𝑖

∑ 𝑎𝑖
𝑛
𝑖=1

                     (1) 398 

where 𝑛  is the total number of objects 399 

𝑣𝑖and 𝑎𝑖  are the variance and area of the object i, respectively. Large objects have a greater 400 

impact on the overall variance than small ones. 401 
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 402 

 403 

𝑀𝐼 =
𝑛 ∑  𝑛

𝑖=1 ∑ 𝑤𝑖𝑗(𝑦𝑖−�̅�)(𝑦𝑖−�̅�) 𝑛
𝑗=1  

∑  𝑛
𝑖=1 (𝑦𝑖−�̅�)2(∑  ∑ 𝑤𝑖𝑗𝑖≠𝑗 )

       (2) 404 

 405 

where 𝑛  is the total number of objects 406 

𝑦𝑖  and �̅� are the average spectral values of the object i and the whole image 407 

𝑤𝑖𝑗  is a measure of the spatial proximity between object i and j. 408 

For the calculation, the objects were in a vector format. We considered the adjacency 409 

of the segments as spatial proximity; if a single vertex of an entity is adjacent to another entity, 410 

these two segments are neighbors. Therefore, we constructed a matrix of spatial weights. 411 

Several studies (Johnson and Xie, 2011; Wang et al., 2021) have set the values of 𝑤𝑖𝑗  to zero 412 

(non-neighbor) or one (neighbor). Binary matrices can induce statistical bias, generating 413 

different weights for individuals depending on their neighbor numbers. To overcome this 414 

problem, in-line standardization of the matrix was performed. Thus, the sum of the weights in 415 

each row is equal to one. This operation was performed with the package ‘spdep’ in R (Bivand 416 

et al., 2015).  417 

The values of wVar and MI were normalized for comparison according to the following 418 

normalization formula (eq. 3): 419 

𝑋𝑛𝑜𝑟𝑚 =  
(𝑋−𝑋𝑚𝑖𝑛)

(𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛)
          (3) 420 

  421 

Where 𝑋𝑛𝑜𝑟𝑚 is the normalization of the values of wVar or MI. 422 

 𝑋𝑚𝑖𝑛 is the minimum value of wVar or MI. 423 

𝑋𝑚𝑎𝑥 is the maximum value of wVar or MI. 424 

 425 

Finally, the F-measure was calculated (eq. 4) to capture the best compromise between 426 

intra-homogenous and inter-heterogenous segmentation (; Johnson et al., 2015; Wang et al., 427 

2019). 428 

F =
1

𝛼
1

𝑤𝑉𝑎𝑟
+(1−𝛼)

1

𝑀𝐼

         (4) 429 

where α (between 0 and 1) is the relative weight of the normalized values of wVar and MI. 430 

Thus, intra-segmental homogeneity or inter-segmental heterogeneity can be assigned higher 431 

importance. In this study, the weights of the two indices are considered the same. Therefore, 432 

the weight was set as α = 0.5. A large F-value indicates high-quality segmentation. 433 

3.2.2. Clustering of mangrove zonation  434 

To capture this cycle, the time series of the plant fraction was modelled using harmonic 435 

regression in GEE (Clinton, 2016). This method has been shown to be relatively effective in 436 

describing mangrove zonation patterns in semi-arid areas with Sentinel-2 images (Valderrama-437 
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Landeros et al., 2021). Therefore, regression models with harmonics were used. We fitted and 438 

calculated the harmonic coefficients and extracted the amplitude (seasonal variability), annual 439 

trend (annual average), and RMSE (non-seasonal variability) to characterize the phenological 440 

patterns of the different objects (Pasquarella et al., 2018). Model fit was better for harmonic 441 

regressions based on fractional components from linear unmixing than for spectral indices, 442 

justifying the use of the vegetation fraction instead of NDVI. The objective here is to 443 

discriminate these zonations on an annual basis rather than revealing the variation itself. The 444 

annual average is indeed a feature that mostly influences classification.  445 

The small sample size from the field made the training and validation process of a 446 

supervised classification difficult; therefore, unsupervised classification with the K-means 447 

algorithm was preferred. The objective was to obtain a typology aimed at maximizing the 448 

contrasts between classes while reflecting the zonation and physiognomy of the vegetation. 449 

Field data were used to interpret the clusters. To ensure the overall significance of the classes, 450 

the Kruskal-Wallis test was performed. In addition, pairwise multiple comparisons between 451 

groups were used to evaluate the significance between classes using the Wilcoxon test. These 452 

tests were performed with field-derived variables, such as cover rate, stand height, and species 453 

dominance. These tests were performed with all variables of the harmonic model describing 454 

seasonality and with different numbers of classes from two to six. To evaluate the significance 455 

of the differences between classes, the threshold p-value of 0.01 was retained. 456 

3.2.3. Stability assessment of the typology 457 

The detection of mangrove zonation typology must be reproducible over time to ensure its 458 

monitoring and reliably interpret its changes. Indeed, a typology in which the classes do not 459 

have enough contrast at certain times of the year could lead to errors in detecting changes.  460 

To evaluate typology and temporal stability, we used a three-step process. First, the 461 

methodological chaining presented so far was repeated on the data from 01/11/2019 and 462 

01/11/2020. An intersection between the two classifications allowed us to isolate the objects 463 

assigned to the same class on both dates, which did not undergo any major changes. Finally, 464 

these were used as a basis for training (70% of the objects) and validation (30% of the objects) 465 

of the Bayesian model. For this stage, the probabilities of membership were calculated using 466 

Bayes' theorem.   467 

p (h | 𝑒) =
𝑝(𝑒 | ℎ)×𝑝(ℎ)

∑ 𝑝(𝑒 |ℎ𝑖)×𝑝(ℎ𝑖)𝑖
      (5) 468 

where p(h | e) is the probability that hypothesis (h) is true, given the proof (a posteriori 469 

probability noted e). 470 

p(e | h) is the probability of finding that the evidence provided by hypothesis (h) is true (from 471 

the training data). 472 

p(h) is the probability that the hypothesis is true, regardless of the evidence (a priori 473 

probability). 474 

A series of images expressing the a posteriori probability of belonging to a set of plant 475 

formation classes were generated. The objective of this study was to evaluate the degree of 476 

belonging of an object to a class according to the vegetation fraction on both dates. Hard 477 
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classification was used to obtain a thematic map. For each object, the class with the highest 478 

probability was assigned.   479 

Finally, the probable confusion over time was evaluated for each class by noting the 480 

frequency of false predictions of the Bayesian model for each value of the vegetation fraction. 481 

The objective of this experiment was to quantify the amplitude of the fluctuations in plant 482 

fractions that can be interpreted as a change in the spatial structure of mangrove zonation. 483 

4. Results 484 

4.1.Mangrove mapping 485 

At the end of the RF classification of the objects, the Saloum mangrove map (Figure 5a) 486 

presented relatively high accuracy scores (Table 4) using a reduced dataset of 11 discriminating 487 

variables. After ten cross-validations, the optical bands in the NIR and SWIR wavelengths 488 

proved to be the most effective for mapping the mangrove in this environment, followed by the 489 

SAR data (Figure 5b). From then on, the SAR data constituted more than 50% of the selected 490 

variables. Texture variables and time-series harmonic model coefficients were negligible for 491 

the desired land cover discrimination. Finally, 11 variables were selected: VHmin, VHmed, 492 

VHmax, VVmin, VVmed, VVmax for SAR data  and B8, B8A, B11, B12, NDWI for optical 493 

data. The consistent appearance of SAR data in the group of optimal variables suggests that it 494 

is a valuable source of information for understanding and predicting the distribution and 495 

behavior of the studied system. In contrast, when optical bands like B8 or B8A were present in 496 

the group of variables, they tended to contribute more to the discrimination of the surface states 497 

of the selected typology. 498 
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 499 

Figure 5a: Random Forest classifications using Sentinel-1 and Sentinel-2 data (left) from an optimal dataset. 500 

Locations refer to the following figures that focus on mangrove zonation 501 

Figure 5b: Optimal dataset and variables importance. 502 

The importance of the variables was measured by the average decrease in the Gini index of the nodes and leaves 503 
in the resulting random forest. This expresses the degree of precision that the model loses by excluding each 504 

variable. 505 

 506 
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Table 4 shows that the average overall accuracy is 97.12% and the Kappa index is 507 

94.6%. Within the Sine-Saloum region, mangroves obtain the highest average relative accuracy 508 

scores (F1-score = 98.55%) among the land cover types. Drylands has similar scores, and salt 509 

flats had the lowest average accuracy with an F1-score of 88.31. On the other hand, the 510 

classifications are relatively stable. Indeed, the standard deviation for the global accuracies and 511 

Kappa index are 0.008 and 0.015, respectively. The surfaces and their fluctuations were 512 

quantified according to the classifications. The water and mangrove areas varied respectively 513 

by an average of 0.37% and 0.47%, that is, 721 ha and 317 ha. Variations of 0.1%, that is 756 514 

ha, were observed on average for the drylands. Finally, the salt flats showed more important 515 

fluctuations in the estimation of their surfaces, of the order of 2% or 1029 ha.  516 

 517 

Table 4 shows that the contribution of post-classification linear spectral unmixing 518 

brings a slight gain in overall precision (+ 0.99%) and (+ 1.88%) on the Kappa index. We also 519 

observed a significant gain in relative precision class by class. Nevertheless, the LSU 520 

contribution is sometimes better at the pixel level than at the object level, notably for water (F1 521 

score = + 1.95 against 1.39 for RF-OBIA + LSU-OBIA) and mangroves (F1 score = + 0.36% 522 

against -1.33 for RF-OBIA + LSU-OBIA). Given the scores and the purpose of this paper, the 523 

mangrove areas from the RF-OBIA + LSU method were retained for mapping the vegetation 524 

formations. 525 

 526 

Table 4: Scores assessing the accuracy of the classifications and their impact on the quantification of Land 527 
Cover types  528 
Accuracy OA % Kappa % F1 - Score % 

 Mean Std Mean Std Water Mangrove Salt flats Drylands 

(RF-OBIA) 97.12 0.8 94.6 1.5 96.30 98.55 88.31 98.53 

(RF-OBIA 

+ LSU-

OBIA) 
98.11 0.8 96.48 1.5 97.69 97.22 92.16 99.46 

(RF-OBIA 

+ LSU) 97.55 0.9 
95.42 

 
1.7 98.25 98.91 90.10 99.35 

Area 
Area (ha) 

 
Std Area (ha) 

 Water Mangrove Salt flats Drylands Water Mangrove Salt flats Drylands 

(RF-OBIA) 193 214 67 762 50 380 750 382 721 317 1 029 756 

(RF-OBIA 

+ LSU-

OBIA) 
192 843 65 341 53 188 749 373 - - - - 

 

(RF-OBIA 

+ LSU) 
193 578 63 124 54 762 750 272 - - - - 

 529 

The linear spectral unmixing measuring, within a pixel, the fraction of each land cover 530 

showed that the initial (object-based random forest) classification overestimated the mangrove 531 

areas by an average of 4638 ha or 6.84%. The consequent decrease in mangrove surfaces with 532 

the RF-OBIA + LSU approach coincided with the increase in salt flats surfaces. Therefore, the 533 

main confusion concerns the mangroves and salt flats. Of the mangrove surfaces, 6.43% were 534 
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classified as salt flats using the RF-OBIA + LSU approach, and 0.42% as water. Therefore, 535 

93.5% of the classification differences between the two approaches concerned mangroves and 536 

saltflats (Figure 6). 537 

 538 

 539 

 540 

 541 

 542 

Figure 6: Example of correction of the RF-OBIA +LSU approach. Red contours represent areas classified as 543 
mangrove before correction and as salt flats after correction. Most of the confusion concerns the mangrove-salt 544 

flats interface. 545 

 546 

4.2. Mangrove zonation mapping 547 

4.2.1. Optimal scale 548 

Figure 7 shows the optimal scale obtained by maximizing inter-segment heterogeneity and 549 

intra-segment homogeneity. A spacing of nine pixels allows the SNIC approach to achieve an 550 

optimal global trade-off. The spacing from 2 to 11 pixels generated objects with a very different 551 

internal variance from one spacing to the other, increasing faster before the slope of the curve 552 

became smoother. The Moran index decreased consistently over the same interval, meaning 553 

that the objects diverge increasingly from their neighborhood. The F-metric allows the best 554 

global compromise to be synthesized. Therefore, the tested spacings from 2 to 8 induced a 555 

satisfactory internal homogeneity of the objects, but an extremely low global inter-object 556 

heterogeneity. A spacing of 2–8 induced over-segmentation; thus, the tested spacings from 10 557 
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to 20 induced extremely low intra-object homogeneity, but acceptable global inter-object 558 

heterogeneity. Therefore, we concluded that a spacing of 10–20 induces under-segmentation.     559 

Figure 7 shows the consequences of the chosen scale on vegetation fraction index segmentation 560 

(Figures 7b and 7c). A THRS Google Earth image (Figure 7a) allows for apprehending the 561 

grain of the vegetation, its retranscription by the vegetation fraction index (Figure 7b), and the 562 

consideration of its spatial structure by segmentation (Figure 7c). Visually, the strong values 563 

of the index (in red) synonymous with a high and dense mangrove, often at the edge of banks, 564 

seem well-captured as a single object by the OBIA approach. On the other hand, some places 565 

where the index is lower and where the vegetation cover appears less dense on the THRS image 566 

appear oversegmented. 567 

 568 

 569 

Figure 7: Optimal segmentation scale for detecting homogeneous plant formations. 570 

a) High resolution Google Earth image of South Saloum 571 

b) The vegetation fraction index from linear unmixing (Red values represent the largest vegetation 572 
fraction and can be equated with dense, high shoreline mangroves. The green gradient can be 573 
assimilated into the decrease in the density and height of the mangrove along the foreshore) 574 

c) Optimal object segmentation 575 

d) Results of optimal scale parameter detection. The 9 pixels spacing for SNIC segmentation is the best 576 
compromise between intra-homogenous and inter-heterogeneous segmentation. 577 

 578 

 579 

4.2.2.  Spectral Seasonality-Based Mangrove Zonation Classification Using Spatial Objects  580 
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The vegetation indices of these mangroves followed a seasonal pattern that could be captured 581 

by the vegetation fraction of a pixel. High values of the vegetation fraction index were 582 

observed during the rainy season, mainly from August onwards. A decrease in these values 583 

was observed at the end of the rainy season in November. 584 

The discrimination of mangrove plant formations by time-series analysis meets the objective 585 

of developing a reliable and robust typology over time. Figure 8 shows that during the course 586 

of the year, the values of the indices do not always capture contrasts in the spatial structure of 587 

the vegetation. Indeed, at the end of the dry season, there were sometimes no differences in 588 

plant fraction index values between the two plant formations. The values obtained for 589 

18/06/2020 and 02/04/2021 (fig. 8) were similar between the high bank mangrove (HM) and 590 

the low and dense mangrove (LDM), and between the latter and the low and open mangrove 591 

(LOM). Therefore, single-date images and classifications based on the values alone may be 592 

inoperable. 593 
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 594 

Figure 8: Annual phenological patterns of mangrove zonation. 595 

On the x-axis, the time axis ranges from 2020-05-01 to 2021-06-01. On the y-axis, the vegetation fraction values 596 
from the linear spectral unmixing are shown. 597 

The points represent the values within the time series for each class. 598 

The solid lines represent the harmonic regression model for each class. 599 
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Solid line ellipses show the likely confusion between thematically different classes. The dashed ellipse 600 
represents the date when spectral sparsity is maximized. 601 

HM : High mangrove – LDM : Low and dense mangrove - LOM : Low and open mangrove 602 

Figure 9 shows the mangrove zonation clustering for 2021 and a visual comparison with 603 

Google Earth © images. The number of classes was determined from field data. The Kruskal-604 

Wallis test was used to ensure the overall significance of the classes. The Wilcoxon test was 605 

used to determine whether the typology presented significant differences between classes with 606 

the parameters found in the field. The results of the different tests show that clustering based 607 

only on the annual average of the values modelled by harmonic regression and with three 608 

classes made the most thematic sense. These results indicate that the density of vegetation cover 609 

contributes significantly (p-value = 0.00057) to the discrimination of facies using the proposed 610 

approach. The three-class typology based on canopy height, canopy openness, and color 611 

appeared to fit well with the spatial resolution of the Sentinel-2 images (Figure 9). The 612 

differences in height between the second and third classes were not statistically significant (p-613 

value = 0.102). Therefore, these two classes were denoted as low mangroves. Nevertheless, the 614 

proposed approach does not allow for the differentiation of mangroves at a specific level. It 615 

also does not allow for a significant determination of the abundance of species within the 616 

classes (Supplemental material). Therefore, a typology based on height, density of vegetation 617 

cover, and the presence/absence of plant species was adopted (Figure 9, Supplemental 618 

material). Finally, the morphology of the classes and their locations (Figure 9)  seem to agree 619 

with the high-resolution data and with theoretical and empirical knowledge of the field (Sow 620 

et al., 1991; Ndour et al., 2012; Andrieu et al., 2020 ).  621 
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 622 

Figure 9: Mangrove zonation clustering 623 

(1: High riverine mangrove dominated by Rhizophora racemosa; 2: Low et dense mangrove with mixed 624 
Rhizophora mangle and Avicennia germinans; 3: Low and open mangrove with mixed Rhizophora mangle and 625 

Avicennia germinans) 626 

a) Significance of the differences between classes for the overlap rate. 627 

(The results of the Kruskal-Wallis test are available at the top of the figures) 628 

b) Significance of the differences between classes for the average height of the individuals 629 

(Only the results of the significance tests appear in this figure). 630 

c) Map of the mangrove zonation for the year 2021 631 

The high mangrove facies have patches with rather long morphologies and are located at the 632 

edge of the channel. Patches of this class located in the middle of a mangrove area may indicate 633 

the presence of a small channel that is completely covered by a closed canopy. The low and 634 
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open mangrove facies showed a less elongated morphology and were consistently found at the 635 

interface with the salt flats. Finally, the low and dense mangrove facies were generally located 636 

between the other two classes, representing the transition between high-density and open 637 

mangroves. The ground-truth data also confirmed that not all riverine mangrove facies were 638 

necessarily high. In most concave meanders of channel banks, mangrove forests were medium 639 

and dominated by the Rhizophora mangle. Conversely, in most convex meanders of banks, 640 

mangrove forests were abundant and dominated by Rhizophora racemosa. 641 

4.3.Temporal accuracy 642 

Figure 10 shows the confounding probabilities for each class as a function of the plant fraction 643 

values. These reflect the average values obtained by harmonic regression between 2019 and 644 

2021. The overall expected accuracy for classifying the mangrove plant formations in the 645 

Saloum Delta was 85.5% (Table 5). Confusion probabilities were the highest in classes that 646 

often have spatial contiguity in zonation. Consequently, the class ‘Low and dense mangrove 647 

with mixed Rhizophora mangle and Avicennia germinans’ had the highest prediction error rate. 648 

This class is likely to be confused with the ‘High riverine mangrove dominated by Rhizophora 649 

racemosa’ class with a probability of 5.8%, and with the ‘Low and open mangrove with mixed 650 

Rhizophora mangle and Avicennia germinans’ class with a probabbility of 8.3%. Table 5 651 

presents the confusion matrix from the Bayesian classification. Logically, the prediction errors 652 

between the two classes located at the lowest and highest positions of the foreshore were 653 

negligible. 654 

 655 

Table 5: The error matrix for the period (2019-2021) using a Naïve Bayes classification approach on stable 656 
objects (results are expressed as a proportion).  657 

 Reference data   

Class High riverine mangrove 
dominated by Rhizophora 
racemosa 

Low and dense mangrove 
with mixed Rhizophora 
mangle and Avicennia 
germinans 

Low and open mangrove 
with mixed Rhizophora 
mangle and Avicennia 
germinans  

High riverine mangrove 
dominated by Rhizophora 
racemose 

 

26.3 % 3 % 0.2 % 

Low and dense mangrove 

with mixed Rhizophora 
mangle and Avicennia 
germinans 

 

2.8 % 28.5 % 4.6 % 

Low and open  mangrove 
with mixed Rhizophora 
mangle and Avicennia 
germinans  

0.1% 3.7 % 30.7 % 

 

Overall accuracy (%) 85.5 % 
  

 658 

 659 
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To evaluate the probability of confusion between real change in vegetation cover and seasonal 660 

fluctuation observed by remote sensing, uncertainty bounds were calculated for each class of 661 

zonation. Figure 10 shows the probability of confusion between classes as a function of the 662 

vegetation fraction from linear spectral unmixing. The cumulative frequency curve quantifies 663 

the proportion of the class subject to probable errors as a function of the plant fraction value.  664 

 665 

Figure 10: Probability of confusion between classes according to the values of plant fraction from the linear 666 
spectral unmixing. 667 

Red represents ‘High riverine mangrove dominated by Rhizophora racemosa’ 668 

Dark green represents ‘Low and dense mangrove with mixed Rhizophora mangle and Avicennia germinans’ 669 

Light green represents ‘Low and open mangrove with mixed Rhizophora mangle and Avicennia germinans’ 670 

 671 

Probable confusion between «High riverine mangrove dominated by Rhizophora racemosa» and «Low and 672 
dense mangrove with mixed Rhizophora mangle and Avicennia germinans» 673 

a) Probable confusion between “Low and dense mangroves with mixed Rhizophora mangle and Avicennia 674 
germinans" et "High riverine mangrove dominated by Rhizophora racemosa". 675 

b) Probable confusion between "Low and dense mangrove with mixed Rhizophora mangle and Avicennia 676 
germinans" et "Low and open mangrove with mixed Rhizophora mangle and Avicennia germinans". 677 

c) Probable confusion between "Low and open mangrove with mixed Rhizophora mangle and Avicennia 678 
germinans" et "Low and dense mangrove with mixed Rhizophora mangle and Avicennia germinans” 679 

 680 

Plant fraction values ranging from 61% to 100% were reliable for assigning to the class ‘High 681 

riverine mangrove dominated by Rhizophora racemosa’. Next, the class ‘Low and dense 682 

mangrove with mixed Rhizophora mangle and Avicennia germinans’ had a plant fraction range 683 

between 38% and 52%, which does not seem to suffer from uncertainties. Finally, values below 684 

33% seem to be reliably assigned to the class ‘Low and open mangrove with mixed Rhizophora 685 

mangle and Avicennia germinans’. For clarity, Table 6 summarizes the uncertainty bounds of 686 

the classes. 687 
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 688 

Table 6: Uncertainty intervals for assigning classes over time according to the plant fraction values.  689 
The vegetation fraction is expressed here as a percentage.   690 

 Class   

 
High riverine mangrove 

dominated by Rhizophora 
racemosa 

Low and dense mangrove 
with mixed Rhizophora 
mangle and Avicennia 

germinans 

Low and open mangrove 
with mixed Rhizophora 
mangle and Avicennia 

germinans 

1st Quartile 58 42 29 

Median 61 46 33 

3rd Quartile 65 50 36 

Incertitude 52 % < VF < 61 % 38 % > VF > 51 % 33 % < VF < 38 % 

 691 

 692 

According to these results, the densification of the low mangroves can be reliably interpreted 693 

only if the class values cross the threshold of a vegetation fraction higher than 38% (or more). 694 

Conversely, the opening of the low mangrove can be reliably interpreted at a threshold of 33% 695 

(and below) vegetation fraction. A disturbance in the high shoreline mangrove can be credibly 696 

detected only if the values of this class fall below the threshold plant fraction of 52%. 697 

Conversely, a recovery can be reliably detected if the values of the low dense mangroves cross 698 

the 61% vegetation fraction threshold. 699 

5. Discussion 700 

5.1.Extraction of significant objects for mangrove monitoring 701 

The databases on mangroves in West Africa cover only the surface area. Zonation maps are 702 

desirable for guiding conservation strategies (Jia et al., 2018; Wang et al., 2019). However, 703 

global or continental databases contain inaccuracies that bias the mapping of plant formations. 704 

Here, the differentiation of the mangroves approaches an accuracy of 98.91%, in line with those 705 

obtained by Andrieu et al., 2020 and Liu et al., 2021. We aimed to establish a map of mangroves 706 

because the quantifications of surfaces in the literature have significant discrepancies.  707 

Fent et al. (2019) reported areas of 86 426 ha in 2018 for the same spatial coverage of 30 m. 708 

Liu et al. (2021) made their data freely available. For the same spatial extent, in 2017, the extent 709 

of areas reached 70 140 ha at 20 m. Andrieu et al. (2020) mentioned a surface area of 63 189 710 

ha at 30 m, in 2015, for the mangrove of the Saloum and Joal hydrosystems, but without the 711 

mangrove of the Gambia River tributary, which is within the administrative boundaries of 712 

Senegal. In this study, we obtained a surface area of 60 988 ha in 2021 at a spatial resolution 713 

of 10 m. A cartographic comparison showed that the areas mapped by Liu et al. (2021) were 714 

overestimated (Supplementary material). The mapping had inconsistencies; for example, some 715 

water channels were mapped as mangroves. However, this mapping was carried out over the 716 

entire West Africa, and currently, it is the most accurate database for all West African 717 

mangroves at this scale. Furthermore, the areas were likely overestimated by Fent et al. (2019) 718 

because the values were widely higher than those estimated by other studies (Andrieu et al., 719 

2020; Liu et al., 2021).  720 
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Plant formations were mapped on a mangrove mask using the OBIA approach. The vegetation 721 

fraction was segmented by linear spectral unmixing. The OBIA approach is preferable for 722 

many reasons. First, the vegetation facies of Senegalese mangroves comprise one or more 723 

species. Owing to the global biogeography of mangroves (species rich in Southeast Asia but 724 

poor in Africa) and the occasionally arid climate, Senegalese mangroves show poor species 725 

richness, and are often monospecific in patches larger than a 10m pixel. Li et al. (2019) 726 

achieved overall accuracy scores of 83% for species mapping in China. Nevertheless, the 727 

species differentiated in this study have their own phenological patterns, which is not the case 728 

in the Saloum Delta. Indeed, even in monospecific pixels or objects, spectral contrasts in the 729 

time series appear essentially in the average annual trend and phenological patterns. 730 

Valderrama-Landeros et al. (2018) achieved scores ranging from 75% to 78% at a specific level 731 

and 10 m resolution. Vizcaya-Martínez et al. (2022) achieved accuracy scores between 92 and 732 

95% for the classification of species with VIs from S2 images. Using the time series, the authors 733 

were able to follow the recovery trajectories of mangrove zoning after disturbance, similar to 734 

the zoning presented in this work in Senegal. However, in our case, the upper mangrove was 735 

mixed within a pixel, and we did not claim to classify the species. Therefore, working on a 736 

plant formation scale is preferable. Transitions between plant formations are noticeable through 737 

changes in the relative density of the genera Rhizophora and Avicennia, and changes in 738 

vegetation physiognomy. Therefore, our typology converges with that of Valderrama-Landeros 739 

et al. (2021). These authors obtained an overall accuracy of 79% for similar mangroves, both 740 

on their specific content and on canopy density variations. Through remote sensing, these 741 

transitions are identifiable, and these plant formations are detectable using object-oriented 742 

approaches, as demonstrated by Flores De Santiago et al. (2013) and Wang et al. (2018). Plant 743 

formations are relevant units for detailed assessment of the impacts of environmental changes 744 

on mangroves. Monitoring the fluctuation of zonation over time is challenging, and a typology 745 

based on an object-oriented approach would allow for monitoring of plant formations with 746 

similar ecological properties. A pixel-based approach could lead to a heterogeneous 747 

cartographic result without an ecological context and, therefore, is not interpretable. Moreover, 748 

the zoning of the mangrove was unsupervised. Field observations have shown that the species 749 

abundance may be heterogenous within an entity equivalent to a pixel. In addition, in most 750 

pixels and surveys, one of the three species that were abundant in Saloum was absent. This 751 

generates zero inflation, which requires the use of other statistical methods to obtain the 752 

relevant pixel-scale information. The OBIA approach circumvents this problem and allows us 753 

to work on a scale where a specific mixture constitutes detectable and interpretable facies. 754 

 755 

5.2.Relevance of typology 756 

The results show that the approach used in this work allows us to map the zonation of the 757 

mangrove only on spectral indices, acting as proxies of cover rate and stand height, but does 758 

not allow the extrapolation of information on species abundance for each class. These results 759 

are consistent with those of Lymburner et al. (2020), who obtained a three-class typology based 760 

on canopy openness (woodland (20-50%), open forest (50-80%), and closed forest (>80%)), 761 

using linear spectral unmixing. This typology allowed them to follow evolution over time, 762 

which is a future objective of this work. 763 

However, our results suggest that the vegetation fraction per LSU is sensitive to mangrove 764 

seasonality. Therefore, the index can fluctuate without any changes in the canopy openness. 765 
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Therefore, following the evolution of classes with a known value amplitude and a quantified 766 

uncertainty will allow us to follow the intra-mangrove reorganization by reducing the errors of 767 

omissions and commissions of the changes. 768 

Valderrama-Landeros et al. (2021) showed that typologies can be affected by mangrove 769 

phenology, and that certain dates of image acquisition are more conducive to the development 770 

of a reliable typology. In this study, we synthesized the phenological patterns of the classes and 771 

quantified the amplitude of their fluctuations over time, given the frequency of spectral 772 

similarities between classes during the year (Figure 8). Therefore, assessing changes in the 773 

future may be more appropriate, to apprehend signal breaks in the time series metrics of the 774 

mangrove rather than establishing a map with the same typology at each date. Indeed, the latter 775 

may be distorted by inter-annual climatic variability, which affects the spectral indices 776 

(Nicholson, 2013). In addition, Pastor-Guzman et al. (2018) showed that semi-arid mangroves 777 

with the same specific composition respond to the onset of the rainy season with a slight 778 

phenological delay that affects canopy reflectance values.  779 

As was mentioned by Valderrama-Landeros et al. (2021), this could bias the classification of 780 

mangrove cover in areas with lower vegetation density. However, these authors showed that 781 

the period between the end of the dry season and beginning of the rainy season was the most 782 

favorable for producing accurate estimates of mangrove cover in Mexico. Our results indicated 783 

a slightly different optimal period. The end of the rainy season and beginning of the dry season 784 

showed the strongest contrasts between the classes on raw values and values modelled by 785 

harmonic regression. The climatic contexts of the two studies are similar; however, the 786 

‘inverse’ character of Senegalese estuaries greatly influences salinity. A reduction in 787 

photosynthetic activity with increasing water salinity (George et al., 2020) or an impact on the 788 

seasonality of spectral indices (Celis-Hernandez et al., 2022) have been consistently observed. 789 

For Saloum, spectral contrasts appeared to be maximized when species faced lower salinities. 790 

Therefore, a typology based on objects that are more sensitive to spatial variations relative to 791 

neighboring pixels, rather than to fluctuations in pixel values, can partially overcome the 792 

constraints related to the phenology of mangroves mentioned above. Furthermore, the typology 793 

presented here and based on the annual phenological pattern allows us to follow the 794 

recommendations of Li et al. (2019) and Valderrama-Landeros et al. (2021) who advocate 795 

using images over a longer time series to potentially detect possible disturbances. For example, 796 

a similar typology has proven suitable for monitoring hurricane damage (Vizcaya-Martínez et 797 

al., 2022). Impacts of hydrological changes such as salinity could be monitored at least 798 

quarterly. This environmental parameter seems to be a major factor in the spatiotemporal 799 

dynamics of the Senegalese mangrove (Andrieu et al., 2020; Descroix et al., 2020; Lombard et 800 

al., 2020).    801 

  802 

5.3.Perspectives: distinguishing stresses from disturbances 803 

The choice of typology based on a 1-year time series is justified with a view to developing 804 

classes that are less sensitive to seasonal fluctuations. When mapping changes in mangrove 805 

zonation, we must distinguish between stress and disturbance, which both showed a lasting 806 

effect on zonation. The harmonic regression model allowed us to understand seasonal 807 

fluctuations and annual trends. Here, we used only the mean of the regression model values to 808 

classify the mangrove zonation. The amplitude (seasonal variability), phase (travel time from 809 
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the origin to the peak of the wave), and RMSE (non-seasonal variability) did not contribute to 810 

the robust detection of zonation. Nevertheless, these indicators could be of great importance 811 

for understanding the response of mangroves to environmental fluctuations. Celis-Hernandez 812 

et al. (2022) captured the impact of physicochemical variables on seasonal fluctuations of 813 

mangroves through phenological metrics. Nevertheless, as these authors pointed out, the long-814 

term effects of fluctuations in physicochemical parameters are still poorly understood. 815 

Therefore, we suggest that future applications should focus on the impact of climatic variables 816 

and salinity on the spatial organization of mangroves at several temporal scales. We also 817 

recommend characterizing the impact of these variables and their fluctuations at several scales 818 

(spatial and temporal) on the possible threshold effects inducing mangrove dynamics at decadal 819 

scales. The use of long-term time series such as Landsat (Bullock et al., 2017; Pirasteh et al., 820 

2021) could provide insights into mangrove responses with this typology over time. In this 821 

study, we quantified the uncertainty around plant fraction values to characterize potential 822 

changes in mangrove zonation. In the future, we recommend using change detection 823 

approaches from temporal segmentations, such as LandTrendR (Kennedy et al., 2010) or 824 

CCDC (Zhu and Woodcock, 2014). For example, LandTrendr has been successfully used for 825 

mangroves (de Jong et al., 2021). The uncertainty bounds identified in this work allow the 826 

parameters to be calibrated in a robust manner to effectively detect zonation changes. As was 827 

pointed out by Pasquarella et al. (2022), calibrating the sensitivity of these models to change 828 

detection is a key step in mapping land-cover changes. 829 

6. Conclusion  830 

Mapping mangrove zonation is challenging yet important in the management of this ecosystem. 831 

Plant formations are organized along environmental gradients, and therefore allow us to 832 

approximate the outcome of population dynamics processes that operate at a finer scale. Three 833 

homogeneous features were mapped at 10 m spatial resolution from Sentinel-1 and Sentinel-2 834 

data. SAR and optical data have proved to be paramount for effective mangrove mapping. The 835 

vegetation fraction resulting from a linear spectral unmixing on optical data only allowed us to 836 

establish the following clustering: ‘High riverine mangrove dominated by Rhizophora 837 

racemosa’, ‘Low and dense mangrove with mixed Rhizophora mangle and Avicennia 838 

germinans’, ‘Low and open mangrove with mixed Rhizophora mangle and Avicennia 839 

germinans’. The results of this study show that the average of the values of the plant fraction, 840 

obtained by harmonic regressions on each object, allows robust mapping of the zonation of the 841 

mangrove on the criteria of canopy cover and height of the stands. In addition, the temporal 842 

stability of the typology was assessed. The results indicated that an overall margin of error of 843 

14.5% is expected if the plant formations are discriminated against the annual trend of the plant 844 

fraction. These acceptable results do not obscure the likelihood of confusion between the 845 

classes over time. This leads to probable commission errors and omissions regarding inter-846 

annual zonation changes that must be addressed. Therefore, this study points out that low 847 

mangrove classes are most likely to be confused over time. Furthermore, from the perspective 848 

of mapping zonation changes on an inter-annual scale, the uncertainty bounds quantified in this 849 

study allowed us to estimate that the growth of dense mangrove stands can be reliably captured 850 

if the initial values of the low dense mangrove class increase between 16% and 45% for values 851 

between the 1st and 3rd quartiles. Conversely, a decrease in the height of the high mangrove 852 

stands while maintaining their density can be interpreted if a decrease of 10% to 20% of the 853 

vegetation fraction is observed. Second, a densification of the low mangrove canopy can be 854 
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interpreted if an increase of 13% to 28% in the vegetation fraction values was observed between 855 

the 1st and 3rd quartile. Finally, an opening of the low mangrove could be observed if the 856 

values of plant fraction of the initially dense mangrove decreased from 21% to 34% between 857 

the 1st and 3rd quartile of the class. Therefore, these limits were intended to reliably identify 858 

the response of mangrove zonation to environmental changes in the Saloum Delta. The 859 

amplitudes of each zonation class identified in this study could allow the characterization and 860 

distinction of stresses, disturbances, or recovery thresholds using temporal segmentation 861 

methods. 862 

  863 
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HM: High mangrove – LDM: Low and dense mangrove - LOM: Low and open mangrove 889 

a) 890 

Canopy Cover     

 Class p-value p-value adjusted significance 

 HM / LDM 0.011 0.021 * 

 HM / LOM 0.000456 0. 001 ** 

 LDM / LOM 0. 016 0.021 * 

 891 

b) 892 

Height canopy     

 Class p-value p-value adjusted significance 

 HM / LDM 0.002 0.005 ** 
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 HM / LOM 0.0000138 0.0000414 **** 

 LDM / LOM 0.102 0.102 ns 

 893 

c) 894 

Rhizophora 

racemosa 
    

 Class p-value p-value adjusted significance 

 HM / LDM 0.035 0.071 ns 

 HM / LOM 0.0000242 0.0000726 **** 

 LDM / LOM 0.096 0.096 ns 

 

d) 

 Rhizophora 

mangle 

    

 Class p-value p-value adjusted significance 

 HM / LDM 0.864 1 ns 

 HM / LOM 0.807 1 ns 

 LDM / LOM 0.077 0.231 ns 

     

e) 895 

Avicennia 

germinans 
    

 Class p-value p-value adjusted significance 

 HM / LDM 0.045 0.091 ns 

 HM / LOM 0.004 0.012 * 

 LDM / LOM 0.332 0.332 ns 
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