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Abstract

Given a graph G and k ∈ N, we introduce the following game played in G. Each round, Alice
colours an uncoloured vertex of G red, and then Bob colours one blue (if any remain). Once
every vertex is coloured, Alice wins if there is a connected red component of order at least k,
and otherwise, Bob wins. This is a Maker-Breaker version of the Largest Connected Subgraph
game introduced in [Bensmail et al. The Largest Connected Subgraph Game. Algorithmica,
84(9):2533–2555, 2022]. We want to compute cg(G), which is the maximum k such that Alice
wins in G, regardless of Bob’s strategy.

Given a graph G and k ∈ N, we prove that deciding whether cg(G) ≥ k is PSPACE-
complete, even if G is a bipartite, split, or planar graph. To better understand the Largest
Connected Subgraph game, we then focus on A-perfect graphs, which are the graphs G for
which cg(G) = d|V (G)|/2e, i.e., those in which Alice can ensure that the red subgraph is
connected. We give sufficient conditions, in terms of the minimum and maximum degrees or
the number of edges, for a graph to be A-perfect. Also, we show that, for any d ≥ 4, there
are arbitrarily large A-perfect d-regular graphs, but no cubic graph with order at least 18 is
A-perfect. Lastly, we show that cg(G) is computable in linear time when G is a P4-sparse
graph (a superclass of cographs).

1 Introduction

Maker-Breaker games have been vastly studied since the introduction of some of the famous Maker-
Breaker games like Hex, introduced independently by Hein and Nash in the 1940s [16], and the
Shannon switching game of Shannon from the 1950s [17]. Maker-Breaker games drew more at-
tention after the 1973 paper of Erdős and Selfridge on positional games [14], a superclass of
Maker-Breaker games (see [21] for more on positional games). They now form a major domain in
combinatorial game theory, and more largely, theoretical computer science.

In Maker-Breaker games, there are a set of elements X, and a family of winning sets F , which
is a family of subsets of X. The two players, Maker and Breaker, alternate selecting previously
unselected elements of X. Maker wins if she selects every element of a winning set in F , while
Breaker wins if he prevents this, i.e., by selecting at least one element of each winning set in F . One
of the first major results for Maker-Breaker games is the Erdős-Selfridge Theorem [14] from 1973,
which gives sufficient conditions for Breaker to win. In 1978, Schaefer proved that determining the
winner of a Maker-Breaker game is PSPACE-complete, even if each of the winning sets in F has
size at most 11 [27]. This was not improved upon until 2021, when Rahman and Watson proved
that the same holds even if each of the winning sets in F has size at most 6 (or exactly 6) [25]. The
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project managed by the National Research Agency (ANR-15-IDEX-01).
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latter results significantly impacted complexity theory, as the Maker-Breaker game (equivalently,
POS CNF) is a classic problem to reduce from in order to prove PSPACE-hardness, and the size
of the winning sets often has implications on the properties of the hard instances of the problem
being reduced to. In terms of applications, the study of such games has also often led to a priori
unrelated results. For example, the general method of the proof of the Erdős-Selfridge Theorem [14]
was the first instance of the method of conditional expectations, the first technique to efficiently
derandomise randomised algorithms [21]. Also, one of the cornerstone papers on Ramsey theory is
actually on positional games [20].

Apart from general results for Maker-Breaker games, many individual such games have been
considered. Some of the more notable ones were introduced by Chvátal and Erdős, and are
played on the complete graph Kn: the Hamiltonicity game, the Connectivity game, and the Clique
game [10]. In each of these games, X consists of the edges of Kn, while F consists of all Hamil-
tonian cycles for the former, all spanning trees for the second, and all cliques of a given size for
the latter. They notably also introduced biased Maker-Breaker games, in which Breaker selects
multiple elements of X on each of his turns, and the goal is to determine the least number he may
select, while still guaranteeing him a win [10].

Along the same lines, in this paper, we introduce the following Maker-Breaker game, which is
a natural game that has, surprisingly, not been considered in the literature to date. In the Maker-
Breaker Largest Connected Subgraph game played on a given graph G, there is a positive integer
k given as an input, and X consists of the vertices of G, while F consists of all the connected
subgraphs of order at least k in G. In particular, for a given graph G, we are interested in the
parameter cg(G), which is the largest integer k such that Maker has a winning strategy in the
Maker-Breaker Largest Connected Subgraph game in G.

Another motivation for introducing this game is that it is a Maker-Breaker version of the Largest
Connected Subgraph game of Bensmail et al. [6]. The Largest Connected Subgraph game is played
by two players, Alice and Bob1, through successive rounds played on a graph G. Initially, every
vertex of G is uncoloured. Each round, Alice colours an uncoloured vertex of G red, and then,
Bob colours an uncoloured vertex blue (if any remain). The game ends once all the vertices of G
have been coloured, resulting in a red subgraph of G (induced by the vertices coloured red) and
a blue subgraph of G (induced by the vertices coloured blue). Alice’s (Bob’s, resp.) score is the
order (number of vertices) of the largest connected component of the red subgraph (blue subgraph,
resp.). If the players have different scores, then the player with the largest score wins. Otherwise,
the game ends in a draw. In [6], it was proved, through standard strategy-stealing arguments, that
Alice always has a strategy to ensure at least a draw, and thus, that Bob can never win if Alice
plays optimally. It was also proved that determining the outcome of the game (i.e., determining
the winner of the game or if the game ends in a draw) on a given graph is PSPACE-complete, even
when restricted to bipartite graphs of diameter 5, but polynomial-time solvable for paths, cycles,
and cographs. This game was novel as it is natural, and there is also a rich background on these
types of games, i.e., it is a connection game (see [9] for a book on these games), since the players
seek to make connected structures, and a scoring game (see [23] for a survey on these games), as
the players’ scores determine the winner. Thus, our game is also a connection game, and is closely
related to a scoring game.

We now further corroborate the introduction of our game in relation to the Largest Connected
Subgraph game. In the Largest Connected Subgraph game, for some subgraphs of certain graphs,
Bob prefers to limit Alice’s score in them, rather than increase his score in them. In particular,
this can be true in disconnected graphs. Bob limiting Alice’s score in these subgraphs is equivalent
to playing the Maker-Breaker Largest Connected Subgraph game in them. Another motivation is
to understand the properties of graphs in which Alice can ensure a single connected red component
at the end of the Largest Connected Subgraph game (especially since Alice wins in these graphs
if they have odd order). Thus, we study A-perfect graphs, which are the graphs G for which
cg(G) = d|V (G)|/2e, i.e., the graphs in which Alice can ensure a single connected red component
at the end of the (Maker-Breaker) Largest Connected Subgraph game. Thus, some results in
this paper can be directly applied to the Largest Connected Subgraph game, but as many of our

1Although referring to the two players of a Maker-Breaker game as Maker and Breaker is standard, to preserve
the connection of this game with the Largest Connected Subgraph game, we instead refer to them as Alice and Bob.
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techniques are based on the structural properties of the graphs considered, our methods could be
applied to other Maker-Breaker games.

Indeed, other games that are relatively close to ours can also be found in the literature, such
as biased positional games [5] (where Maker aims to maximise the order of the largest connected
component of his graph through selecting edges of a complete graph), or variants of them played
on vertices similar to as in our game [1,13]. Specifically, there is a close relation between our game
and the Maker-Breaker Domination game [12] (see Section 3). In the Maker-Breaker Domination
game, X consists of the vertices of the graph, while F consists of all the dominating sets of the
graph [12]. Deciding the winner of the Maker-Breaker Domination game is PSPACE-complete,
even for bipartite graphs and split graphs, but can be determined in polynomial time for cographs
and trees [12]. Determining how fast Maker can win in this game has also been studied [19], as well
as a variant where F consists of all the total dominating sets of the graph [15, 18]. However, our
game is closer to a connected variant of the Maker-Breaker Domination game, where F consists of
all connected dominating sets instead, but, to the best of our knowledge, this variant has yet to be
studied (although there is a connected version of the Domination game [8]). Indeed, it is easy to see
that (see Lemma 2.3), given a graph G, if Maker wins the connected variant of the Maker-Breaker
Domination game, then G is A-perfect. However, the other direction of this statement does not
necessarily hold, as can be seen in the following example. Let G be a star of odd order, i.e., a graph
consisting of one universal vertex u adjacent to an even number of degree-1 vertices. Let G′ be the
graph obtained from G by subdividing exactly one of the edges of G. Then, G′ is A-perfect since
Alice will first colour the vertex u that is universal in G, and since G′ is of even order, then Bob
plays last, and so, Alice can never be forced to colour the degree-1 vertex that is at distance 2 from
u. It is clear that Maker does not win the connected variant of the Maker-Breaker Domination
game in G′. However, we do wonder if this relation holds for graphs of odd order. That is, does it
hold that, given a graph G of odd order, Maker wins the connected variant of the Maker-Breaker
Domination game if and only if G is A-perfect? Such a result would be a nice connection between
our game and this variant of the Maker-Breaker Domination game.

Our contributions In Section 2, the main terminology and early observations, to be used
throughout, are introduced. In Section 3, we show that, given a graph G and an integer k ≥ 1,
deciding whether cg(G) ≥ k is PSPACE-complete, even if G is restricted to be in the class of
bipartite graphs of diameter 4, split graphs, or planar graphs. In Section 4, we give two sufficient
conditions (in terms of the minimum and maximum degrees, and the number of edges) for a graph
to be A-perfect. We also prove that arbitrarily large A-perfect d-regular graphs exist if and only if
d ≥ 4. In particular, any A-perfect cubic (i.e., 3-regular) graph has order at most 16. In Section 5,
we show that cg can be determined in linear time for (q, q − 4)-graphs, a superclass of cographs.
We conclude in Section 6 with a discussion including perspectives for further work on the topic.

2 Preliminaries

2.1 Graph theory terminology and notation

Throughout this paper, all the graphs we consider are undirected and simple. For a graph G, we
denote by V (G) its set of vertices, and by E(G) its set of edges. For a vertex v of G, we denote
by NG(v) its neighbourhood, which is the set of vertices that are adjacent to v in G. The closed
neighbourhood of v, denoted by NG[v], is the set {v}∪NG(v). These two notions of neighbourhood
extend to sets S of vertices of G, with NG(S) referring to the subset of vertices of V (G) \ S that
have a neighbour in S, and NG[S] referring to the set S∪NG(S). For a vertex v of G, we denote by
dG(v) its degree, with dG(v) = |NG(v)|. When the graph G is clear from the context, we will drop
the subscript in the parameters NG and dG, and write them as N and d instead. The parameters
δ(G) and ∆(G) refer to the minimum degree and maximum degree, respectively, of a vertex in G.

For a set S of vertices or edges of G, we denote by G− S the subgraph of G resulting from the
deletion of the elements in S. If S = {x}, we will write G−x instead of G−S. Similarly, we denote
by G + S (or G + x, for short, if S = {x}) the supergraph of G obtained by adding the elements
(vertices or edges) of S. We denote by G[S] the subgraph of G induced by the elements in S.
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A vertex u of G dominates another vertex v if v ∈ NG(u). We say that u is universal if
NG[u] = V (G). A set S of vertices of G is dominating if NG[S] = V (G). This dominating set S is
connected if G[S] is connected. The distance between two vertices u and v of G is the length of a
shortest path from u to v. The diameter of G is the maximum distance between two vertices of G.
For any standard notion or terminology on graphs not defined in this work, see [11].

2.2 Additional terminology for the game

Due to the close ties of our game with the Largest Connected Subgraph game, we will refer to
Maker as Alice, and Breaker as Bob. To also make the distinction of who selected which vertices
easier, we will say that Alice colours a vertex red when she selects a vertex, and that Bob colours a
vertex blue when he selects a vertex. Furthermore, we will refer to the score of Alice as the largest
connected red component in the graph at the end of the game. Thus, for a given graph G, cg(G)
is the maximum score for which Alice has a strategy ensuring at least this score in G.

A strategy for a player P is a function S taking all the previous moves of both players (and the
order of these moves, hence, the history of the game) as an input, and outputting the next move
for player P . Given a graph G, an optimal strategy for Alice is one that ensures her a score of at
least cg(G), while an optimal strategy for Bob is one that ensures Alice’s score is at most cg(G).
Since our game is a parity game [22], optimal strategies can actually be determined from just the
current configuration of coloured vertices, rather than also knowing the order these vertices were
coloured in. Thus, for our game, there can also be an equivalent (in terms of optimality) second
definition of a strategy for a player P , which is a function S that takes the current configuration
of coloured vertices and outputs the next move for player P . We will interchangeably use both
definitions, depending on which one suits us best at the time.

Throughout this paper, several of our proofs rely on the fact that Alice or Bob can reach a
certain game configuration (i.e., have a certain set of vertices coloured with their colour) early on.
In such cases, to lighten the exposition, we will sometimes allow ourselves to expose only the most
important moves of the strategies that Alice or Bob must make in some rounds of the game. In
particular, the reader should keep in mind that, in each of the strategies we describe, 1) if Alice or
Bob cannot colour a given vertex in a given round because that vertex is already coloured, then
they must colour any other uncoloured vertex instead, and 2) if no vertex to colour for Alice or Bob
in a given round is specified, then they must colour any uncoloured vertex. Note that arbitrary
moves will never hinder the accomplishments of the main thread of a strategy for that player.

2.3 General results and observations

First, we show that the parameter cg is closed under taking subgraphs, and that when playing the
game on a disconnected graph, Alice should focus on the connected component which is the most
favourable for her.

Lemma 2.1. If H is a (not necessarily proper) subgraph of a graph G with connected components
H1, . . . ,Hk, then cg(H) = max {cg(H1), . . . , cg(Hk)} ≤ cg(G).

Proof. First, we show that the parameter cg is closed under taking subgraphs. We give a strategy
for Alice ensuring her a score of at least cg(H) in G. Alice first plays in H according to an optimal
strategy S in H. Then, whenever Bob plays in H, Alice responds in H according to S, and if this is
not possible (the vertex to be coloured by S is already coloured or there are no uncoloured vertices
in H) or Bob plays in G, then Alice colours an arbitrary uncoloured vertex in G. In particular,
whenever Alice is forced to colour an arbitrary uncoloured vertex in H, she ignores the fact that
vertex is coloured when considering her strategy S in H in the future. The result follows since
Alice will colour at least all the vertices in H that she would colour by S, ensuring her a score of
at least cg(H) in G since S is optimal in H.

Then, we show that when playing the game on a disconnected graph, Alice should focus on the
connected component which is the most favourable for her. That is, if G is a graph with connected
components H1, . . . ,Hk, then cg(G) = max {cg(H1), . . . , cg(Hk)} . The lower bound follows from
the paragraph above, and the upper bound holds since the k connected components are pairwise
disconnected, so Bob can just respond in the same connected component that Alice just played in
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each time (when this is not possible, he colours an arbitrary uncoloured vertex in G, which can
only be beneficial to him).

As can be seen in the following corollary, Lemma 2.1 implies that a disconnected A-perfect
graph must be of even order and have exactly two connected components, one of which consists of
a single vertex.

Corollary 2.2. If G is an A-perfect graph that is not connected, then G is of even order and
consists of two connected components, one of which consists of a single vertex.

Proof. Since G is not connected, it consists of connected components H1, . . . ,Hk for some k ≥ 2. If
k ≥ 3 and/or min {|V (H1)|, . . . , |V (Hk)|} ≥ 2, then max {|V (H1)|, . . . , |V (Hk)|} ≤ |V (G)|− 2, and

so,
⌈
|V (G)|−2

2

⌉
≥ max {cg(H1), . . . , cg(Hk)} = cg(G) by Lemma 2.1, i.e., G is not A-perfect. Hence,

k = 2 and min {|V (H1)|, |V (H2)|} = 1. If G is of odd order, then w.l.o.g., let |V (H1)| ≥ 2 be even

and |V (H2)| = 1. Then, by Lemma 2.1, cg(G) = max {cg(H1), cg(H2)} ≤ |V (H1)|
2 <

⌈
|V (G)|

2

⌉
.

As will be seen later on, Alice can exploit different types of strategies to achieve the best
possible score for her. One such strategy, that is particularly relevant in sufficiently dense graphs,
is through colouring the vertices of a connected dominating set.

Lemma 2.3. For a graph G, if, at any point in the game, Alice has coloured all the vertices of a

connected dominating set of G, then her score will be
⌈
|V (G)|

2

⌉
.

Proof. Assume Alice has coloured the vertices of a connected dominating set S at some point in
the game. By the connectivity property of S, there must be, once the game ends, a connected red
component containing the vertices of S. Also, by the dominating property of S, all the vertices of
G not in S have at least one neighbour in S. This implies that the red subgraph must be connected,

and thus, that Alice achieves a score of
⌈
|V (G)|

2

⌉
.

3 Computational complexity

Recall that in [6], the Largest Connected Subgraph game was shown to be PSPACE-complete, even
when restricted to bipartite graphs of diameter 5. In this section, using a similar reduction scheme,
we prove that the Maker-Breaker Largest Connected Subgraph game is also PSPACE-complete,
that is, given a graph G and an integer k ≥ 1, deciding whether cg(G) ≥ k is PSPACE-complete.
In fact, we prove that our game is PSPACE-complete, even when restricted to bipartite graphs of
diameter 4, split graphs, or planar graphs.

Similarly as in [6], we establish some of our PSPACE-completeness results via reductions from
POS CNF, a game for which deciding whether Alice or Bob has a winning strategy was shown to
be PSPACE-complete in [27]. This game is a 2-player game where the input (X,φ) consists of a
set of variables X = {x1, . . . , xn}, and of a formula φ in conjunctive normal form (CNF) made up
of clauses C1, . . . , Cm each containing variables of X in their positive forms. Each round, the first
player, Alice, sets a variable of φ (that is not yet set) to true, before the second player, Bob, sets a
variable of φ (that is not yet set) to false. Once all the variables of X have been assigned a truth
value, Alice wins if φ is true, and Bob wins if φ is false.

As mentioned earlier, our game is closely related to the Maker-Breaker Domination game [12].
For this reason, the PSPACE-hardness reduction we give for proving the upcoming Theorem 3.1
(Corollary 3.2, resp.) is very similar to (the same as, resp.) the one given in [12], for proving similar
complexity results. However, we include the full proofs for completeness. It should be noted that
these are rather standard reductions, but we later give a more clever one to prove our game is
PSPACE-complete in planar graphs.

Before we start, note first that when given a graph G and an integer k ≥ 1, the problem of
deciding whether cg(G) ≥ k is in PSPACE since, in the game, there are d|V (G)|/2e rounds and
the number of possible moves for a player in a round is at most |V (G)|. Thus, in the upcoming
proofs, we focus on proving the PSPACE-hardness of the game.
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Theorem 3.1. Given a graph G and an integer k ≥ 1, it is PSPACE-complete to decide whether
cg(G) ≥ k, even when G is restricted to be in the class of bipartite graphs of diameter 4.

Proof. We prove the PSPACE-hardness via a reduction from POS CNF. Let (X,φ) be an instance
of POS CNF. Set X = {x1, . . . , xn} and φ = C1 ∧ · · · ∧ Cm. By adding a dummy variable in X if
needed, we can suppose n is even.

Consider the graph G constructed as follows. For every variable xi ∈ X, we add a vertex vi
to G. For every clause Cj of φ, we add two vertices C1

j and C2
j to G. For every variable xi ∈ X

and clause Cj of φ, we add the edges viC
1
j and viC

2
j to G if xi appears in Cj . Finally, we add two

vertices u1 and u2 to G, that we make adjacent to all of the vi’s. Note that the resulting G, which
is constructed in polynomial time, is bipartite and has diameter at most 4.

Set k = |V (G)|/2, and note that |V (G)| is even. We will show that Alice wins in (X,φ) if
and only if cg(G) ≥ k. Let us assume first that Alice has a winning strategy in (X,φ). We give
a strategy for Alice that ensures a score of at least k when playing the Maker-Breaker Largest
Connected Subgraph game in G. In the first round, Alice colours the vertex vi that corresponds to
the variable xi ∈ X she would have set to true in the first round of her winning strategy in (X,φ).
From the second round on, in each round, if the last vertex coloured by Bob is

• some vi, then Alice colours the vertex vj corresponding to the variable xj she would set to
true in response to Bob setting xi to false in her winning strategy in (X,φ);

• u1 (u2, resp.), then Alice colours u2 (u1, resp.);

• some C1
j (C2

j , resp.), then Alice colours C2
j (C1

j , resp.).

Whenever Alice cannot follow the strategy above, she colours an arbitrary uncoloured vertex.
By Alice’s strategy, once the game in G ends, exactly one vertex in every pair {C1

j , C
2
j } is red,

exactly one vertex in {u1, u2} is red, and the vi’s corresponding to the xi’s she would have set
to true in her winning strategy for (X,φ) are also red. Because Alice wins in (X,φ) with that
strategy, every vertex C`

j of G coloured red must be adjacent to at least one vertex vk coloured red
corresponding to a variable she would have set to true when playing in (X,φ). Since all the vi’s
are dominated by u1 and u2, and one of these two vertices is red, we deduce that the red subgraph
must contain only one connected component. Thus, Alice achieves a score of k and cg(G) ≥ k.

Assume now that Bob has a winning strategy in (X,φ). We give a strategy for Bob that
ensures that Alice’s score is strictly less than k when playing the Maker-Breaker Largest Connected
Subgraph game in G. In each round, if the last vertex coloured by Alice is

• some vi, then Bob colours the vertex vj corresponding to the variable xj he would set to false
in response to Alice setting xi to true in his winning strategy in (X,φ);

• u1 (u2, resp.), then Bob colours u2 (u1, resp.);

• some C1
j (C2

j , resp.), then Bob colours C2
j (C1

j , resp.).

Note that Bob can follow this strategy from start to end, as n is even. By Bob’s strategy, once
the game in G ends, exactly one vertex in every pair {C1

j , C
2
j } is red. Also, since Bob coloured all

the vi’s corresponding to xi’s he would set to false when following a winning strategy in (X,φ),
there exists a Cq that is not satisfied in (X,φ), meaning its variables were all set to false by Bob.
In G, this translates to exactly one of C1

q or C2
q being red while all of their neighbours (the vi’s

corresponding to the xi’s that Cq contains), are blue. Thus, the red subgraph contains at least two
connected components, and hence, Alice achieves a score of less than k, and cg(G) < k.

Corollary 3.2. Given a graph G and an integer k ≥ 1, it is PSPACE-complete to decide whether
cg(G) ≥ k, even when G is restricted to be in the class of split graphs.

Proof. The proof is similar to that of Theorem 3.1, with the slight difference being in the construc-
tion of G. Here, neither of the vertices u1 and u2 are added, while all the possible edges between
the vi’s are added so that they form a clique, thus making G a split graph. The same strategies
for Alice and Bob (omitting u1 and u2) from the proof of Theorem 3.1 remain applicable by the
same arguments, and the result follows.
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Figure 1: Illustration of the construction in the proof of Theorem 3.3.

From the proofs of Theorem 3.1 and Corollary 3.2, it follows that deciding if a bipartite graph
with diameter 4 (resp., a split graph) is A-perfect is PSPACE-complete. To prove that the game
is PSPACE-complete, even when restricted to planar graphs, we need a different reduction. This
time, we establish the result by a reduction from Planar Generalised Hex, which was proved to
be PSPACE-complete [26]. Planar Generalised Hex is played on a planar graph G, in which a
particular outside pair {s, t} of vertices, i.e., st 6∈ E(G) and G + st is planar, is set. Initially, s
and t are red. Then, in successive rounds, the first player, Alice, colours an uncoloured vertex red,
before the second player, Bob, then colours an uncoloured vertex blue. The game ends once all the
vertices of G have been coloured. If the red subgraph contains a path joining s and t, then Alice
wins. Otherwise, Bob wins. We can now prove our last result in this section.

Theorem 3.3. Given a graph G and an integer k ≥ 1, it is PSPACE-complete to decide whether
cg(G) ≥ k, even when G is restricted to be in the class of planar graphs.

Proof. We prove the PSPACE-hardness via a reduction from Planar Generalised Hex. Let (H, s, t)
be an instance of Planar Generalised Hex such that H is the planar graph with the outside pair
{s, t}, that the game is being played on. Set n = |V (H)|. By adding a degree-1 vertex (a leaf) in
H if needed, we can suppose n is even, as this will not change the outcome of (H, s, t). Let G be
the graph constructed as follows (see Figure 1). Start from G being the graph H. Then, add three
vertices s1

0, s
2
0, s

3
0 and make each of them adjacent to s, and add another three vertices t10, t

2
0, t

3
0,

and make each of those adjacent to t. Finally, to each of these six vertices we have just added,
attach n+ 4 new degree-1 vertices, so that a total of 6(n+ 4) degree-1 vertices (leaves) are added
to G. The construction is achieved in polynomial time, and since H is planar, G is too.

Set k = n+ 5. We will show that Alice wins in (H, s, t) if and only if cg(G) ≥ k. Let us assume
first that Alice has a winning strategy in (H, s, t). We give a strategy for Alice that ensures a
score of at least k when playing the Maker-Breaker Largest Connected Subgraph game in G. In
the first round, Alice colours s. In the second round, Alice colours s1

0 if possible, and if not, then
she colours s2

0. From the third round on,

• if Alice can colour a vertex in {s1
0, s

2
0, s

3
0} in the third round, then she does. If so, then, in each

of the next rounds, if possible, Alice colours an uncoloured neighbour of an si0 she coloured
earlier. At the end of the game, the red subgraph will contain a connected component of

order at least 3 +
⌈

2(n+4)−3
2

⌉
= n+ 6, and thus, Alice will have a score of at least k;

• otherwise, Bob coloured two vertices in {s1
0, s

2
0, s

3
0} in the first two rounds. Then, Alice

colours t in the third round, and she then colours one of t10 and t20 in the fourth round. At
this point, for the same reasons as earlier, if Bob has not coloured two vertices in {t10, t20, t30}
by the end of the fourth round, then Alice can colour a vertex in that set in the fifth round,
and, as above, guarantee herself a score of at least k.

Thus, we can suppose that, after four rounds, w.l.o.g., s, t, s1
0, and t10 are red, while s2

0, s3
0, t20,

and t30 are blue. From here, Alice’s strategy continues as follows. In the fifth round, Alice colours,
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in G, the vertex of H she would have coloured in the first round of her winning strategy in (H, s, t).
From the sixth round on, in each round, if the last vertex coloured by Bob in G is

• some vertex u ∈ V (H), then Alice colours, in G, the vertex of H she would have coloured in
her winning strategy in (H, s, t), as an answer to Bob colouring u;

• a leaf adjacent to some si0 or ti0, then Alice colours another uncoloured leaf adjacent to the
same vertex.

Whenever Alice cannot follow the strategy above, she colours an arbitrary uncoloured vertex.
By this strategy, at the end of the game in G, s and t are red, and all the vertices that Alice would
have coloured through her winning strategy in (H, s, t) are also red. Moreover, s1

0 and t10 are red,
and, for each of them, she coloured half of their adjacent leaves. Thus, the red subgraph contains
a connected component of order at least n + 8. Thus, Alice achieves a score of at least k, and
cg(G) ≥ k.

Assume now that Bob has a winning strategy in (H, s, t). We give a strategy for Bob that
ensures that Alice’s score is strictly less than k when playing the Maker-Breaker Largest Connected
Subgraph game in G. In each round, if the last vertex coloured by Alice is

• in {s, s1
0, s

2
0, s

3
0}, then Bob colours a vertex in {s, s1

0, s
2
0, s

3
0};

• in {t, t10, t20, t30}, then Bob colours a vertex in {t, t10, t20, t30};

• a vertex u of H − {s, t}, then Bob colours the vertex of H he would have coloured by his
winning strategy in (H, s, t), as an answer to Alice colouring u;

• a leaf adjacent to some si0 or ti0, then Bob colours another uncoloured leaf adjacent to the
same vertex.

Note that Bob always answers to one of Alice’s moves by colouring a vertex in a set with even
size since n is even. Thus, Bob can follow this strategy from start to end. At the end of the game
in G, the largest connected component of the red subgraph cannot contain both s and t, as the
moves made by Alice and Bob correspond exactly to the moves that would have been made if they
had played in (H, s, t). Moreover, there cannot be two si0’s belonging to the same connected red
component, as, by the strategy above, Bob must have coloured s in this case. The same holds for
the ti0’s. Also, for any of the si0’s and ti0’s, by Bob’s strategy above, Alice can have coloured at
most half of the leaves adjacent to it. Thus, because Alice coloured at most half of the vertices in
H−{s, t}, the largest connected red component in G must have order at most n−2

2 +2+ n+4
2 = n+3.

Thus, Alice achieves a score of less than k, and cg(G) < k.

4 A-perfect graphs and regular graphs

In this section, we study graphs G for which cg(G) equals one of the next bounds:

Lemma 4.1. For every graph G,
⌊

∆(G)
2

⌋
+ 1 ≤ cg(G) ≤

⌈
|V (G)|

2

⌉
.

Proof. The right-hand side of the inequality follows from the fact that Alice always colours exactly⌈
|V (G)|

2

⌉
vertices. We now give a strategy for Alice that ensures a score of at least

⌊
∆(G)

2

⌋
+ 1, to

prove the left-hand side of the inequality. In the first round, Alice colours a vertex v with degree
∆(G). Then, in each of the next rounds, if possible, Alice colours an uncoloured neighbour of v.
Once the game ends, by the strategy above, Alice must have coloured v and at least half of its
neighbours, and the result follows.

Both bounds in Lemma 4.1 can be reached for arbitrarily large graphs. For the upper bound,
recall that a graph G is A-perfect if cg(G) = d|V (G)|/2e. For example, there exist arbitrarily
large connected graphs that are A-perfect, since every graph with a universal vertex is A-perfect.
Regarding the lower bound, the graph G that is the disjoint union of m copies of the complete
graph Kd+1 (for any d ∈ N) is d-regular, and cg(G) =

⌊
d
2

⌋
+ 1, while G gets more and more
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distant from being A-perfect as m increases. In particular, since Alice wins the Largest Connected
Subgraph game in A-perfect graphs of odd order, we seek conditions for graphs to be A-perfect.
We give two sufficient conditions, one based on the minimum and maximum degrees, and the other
based on the number of edges.

Theorem 4.2. If G is a connected graph with ∆(G) + δ(G) ≥ |V (G)|, then G is A-perfect.

Proof. We give a strategy for Alice ensuring that, at the end of the game, the red subgraph is
connected, which implies that G is A-perfect. Let u be any vertex of degree ∆(G). In the first
round, Alice colours u. For every i ≥ 1, let Ci be the connected component of red vertices at
the end of the ith round (we will show that the red vertices always induce a connected subgraph,
and so, Ci is well-defined). Let Ri = V (G) \ N [Ci], i.e., Ri is the set of (non-red) vertices not
dominated by a red vertex at the end of the ith round, and let RU

i be the subset of uncoloured
vertices in Ri at the end of the ith round. Note that C1 = {u} is connected and that

|RU
1 | ≤ |R1| = |V (G)| − |N [C1]| = |V (G)| −∆(G)− 1 ≤ δ(G)− 1.

Let us show by induction on i ≥ 1 that, at the end of the ith round, Ci is connected and either
RU

i = ∅ (in which case we are done) or |RU
i | ≤ δ(G) − i. By the above paragraph, the induction

hypothesis holds for i = 1. Let i ≥ 1 and let us assume that the induction hypothesis holds for i.
We show it still holds for i+ 1.

If RU
i = ∅, then Ci is a connected red dominating set of the subgraph of G induced by the

vertices of Ci and the remaining uncoloured vertices of G. From now on, Alice may colour any
uncoloured vertex, and the induction hypothesis clearly holds for i + 1. In particular, the set of
red vertices induces a connected subgraph at the end of the game, proving the result.

Otherwise, let v ∈ RU
i . Since v has at least δ(G) neighbours (none of which are red since

N [Ri]∩Ci = ∅) and Bob has coloured i vertices, v has at least δ(G)− i uncoloured neighbours, and
δ(G)− i > 0 since RU

i 6= ∅ and |RU
i | ≤ δ(G)− i. Moreover, |RU

i \ {v}| < δ(G)− i, so v has at least
one uncoloured neighbour w not in Ri, which implies that w ∈ N(Ri) = N(Ci). In the (i + 1)th

round, Alice colours w. Then, Ci+1 = Ci ∪ {w} is clearly connected, and RU
i+1 ⊆ Ri+1 ⊆ Ri \ {v}

(since v ∈ N(Ci+1)), and hence, |RU
i+1| ≤ |Ri+1| ≤ |Ri| − 1 ≤ δ(G)− (i+ 1).

We note that the bound in the statement of Theorem 4.2 is sharp, in the sense that there exists
a graph G with ∆(G) + δ(G) = |V (G)| − 1 that is not A-perfect. For example, consider the graph
G consisting of two complete graphs on d ≥ 3 vertices joined by a single edge e. Then, ∆(G) = d,
δ(G) = d − 1, |V (G)| = 2d, and thus, ∆(G) + δ(G) = 2d − 1 = |V (G)| − 1. However, Bob can
guarantee that Alice achieves a score of about |V (G)|/4, by colouring an uncoloured vertex incident
to e in the first round, and then, in each subsequent round, colouring an uncoloured vertex in the
same clique that Alice just coloured a vertex in. Thus, G is not A-perfect.

The next result shows that if G has sufficiently many edges, then G is A-perfect.

Theorem 4.3. If G is a connected graph with |E(G)| > (|V (G)|−2)(|V (G)|−3)
2 +2, then G is A-perfect.

Proof. Set n = |V (G)|, m = |E(G)|, and

x =
(n− 2)(n− 3)

2
+ 2 =

n2 − 5n+ 10

2
.

Note first that ∆(G) ≥ n − 4. Indeed, if we had ∆(G) ≤ n − 5, then we would deduce that

m ≤ n(n−5)
2 < x, which contradicts that m > x. Furthermore, if ∆(G) = n − 4, then δ(G) ≥ 7.

Indeed, if there is a degree-6 vertex, then we have a contradiction since

m ≤ (n− 1)(n− 4) + 6

2
=
n2 − 5n+ 10

2
= x.

Thus, if ∆(G) = n−4, then G is A-perfect by Theorem 4.2 since δ(G) ≥ 7. Lastly, if ∆(G) = n−1,
then δ(G) ≥ 1, and thus, G is A-perfect by Theorem 4.2. Hence, in what follows, we assume that
n − 3 ≤ ∆(G) ≤ n − 2. We give a strategy for Alice that allows her to colour the vertices of a
connected dominating set of G within the first four rounds, and so, by Lemma 2.3, G is A-perfect.
We treat the two possible values for ∆(G) independently.

9



r

G′
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u′

u

r′

G′′

n− 3 edges

(a) The state of the game in G after Alice’s
first two turns in Case 1.(a), where

G′′ = G′[N(r′)].

r

G′

n− 2 edges

u′

u

r′

G′′

n− 4 edges

r′′

v

v′

n − 5 edges

(b) The state of the game in G after Alice’s
first three turns in Case 1.(b)i.

Figure 2: Cases 1.(a) and 1.(b)i. in the proof of Theorem 4.3.

1. ∆(G) = n− 2.

Let r ∈ V (G) be such that d(r) = n− 2, and let G′ = G[N(r)]. Then, |V (G′)| = n− 2. Since
d(r) = n − 2, there is exactly one additional vertex u ∈ V (G) \ V (G′) (u 6= r). If d(u) ≥ 2,
then Alice colours r in the first round, and then, in the second round, she colours a neighbour
of u (this is possible since d(u) ≥ 2), and these vertices form a connected dominating set of
G. Thus, we may assume that d(u) = 1, and let N(u) = {u′}. We have that ∆(G′) ≥ n− 4.
Indeed, if ∆(G′) ≤ n− 5, then we have a contradiction since

m ≤ (n− 2)(n− 5)

2
+ n− 2 + 1 =

n2 − 5n+ 8

2
< x.

We distinguish the following subcases:

(a) ∆(G′) = n− 3 (see Figure 2(a) for an illustration).

Let r′ ∈ V (G′) be such that dG′(r
′) = n − 3. Alice’s strategy is as follows. She starts

by colouring u′. Now, if Bob does not colour r, then Alice continues by colouring r,
at which point she has coloured the vertices of the connected dominating set {u′, r} of
G. So, we may assume that Bob colours r in the first round. In the second round,
Alice colours r′. Observe that {u′, r′} also forms a connected dominating set of G since
dG′(r

′) = n− 3, and thus, u′r′ ∈ E(G).

(b) ∆(G′) = n− 4.

Let r′ ∈ V (G′) be such that dG′(r
′) = n − 4, and let G′′ = G′[N(r′)]. We distinguish

cases according to whether u′ ∈ V (G′′) or not.

i. u′ ∈ V (G′′).
Since dG′(r

′) = n − 4, there is exactly one additional vertex v ∈ V (G′) \ V (G′′)
(v 6= r′). Note that dG′(v) ≥ 1 because if dG′(v) = 0, i.e., N(v) = r, then we have
a contradiction since

m ≤ (n− 3)(n− 4)

2
+ n− 2 + 1 =

n2 − 5n+ 10

2
= x.

If dG′(v) ≥ 2, then Alice’s strategy is as follows. She starts by colouring u′. As
before, Bob is forced to colour r in the first round. In the second round, Alice colours
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r′. In the third round, if u′ /∈ N(v), then Alice colours a neighbour v′ ∈ V (G′) (this
is possible since dG′(v) ≥ 2). After three rounds, Alice’s vertices form a connected
dominating set of G.
Assume now that dG′(v) = 1, and let NG′(v) = {v′} (see Figure 2(b) for an illus-
tration). Then, ∆(G′′) = n− 5. Indeed, if ∆(G′′) ≤ n− 6 (and so, n ≥ 6), then we
have a contradiction since

m ≤ (n− 4)(n− 6)

2
+ n− 4 + n− 2 + 1 + 1 =

n2 − 6n+ 16

2
≤ x.

Let r′′ ∈ V (G′′) be such that dG′′(r
′′) = n−5, and observe that v′ ∈ N(r′′). Alice’s

strategy is as follows. She starts by colouring u′, forcing Bob to colour r. Then, she
colours v′ forcing Bob to colour r′ (similarly to earlier, if Bob does not colour r′,
then Alice colours r′, and thus, has coloured the vertices of a connected dominating
set of G). Finally, Alice colours r′′. Observe that the vertices u′, v′, and r′′ form a
connected dominating set of G.

ii. u′ /∈ V (G′′).
Observe that u′ is the only vertex of G′ that is not a neighbour of r′, and that
d(u′) ≥ 3. Indeed, if d(u′) ≤ 2, then we have a contradiction since

m ≤ (n− 3)(n− 4)

2
+ n− 2 + 1 =

n2 − 5n+ 10

2
= x.

Thus, there is at least one edge u′u′′ with u′′ ∈ V (G′′). If d(u′) ≥ 4, then Alice’s
strategy is as follows. She starts by colouring u′, forcing Bob to colour r. Then,
she colours r′, and, in the third round, she colours one of the remaining uncoloured
neighbours of u′ in G′′ (which exists since d(u′) ≥ 4). These three vertices form a
connected dominating set of G.
Otherwise, d(u′) = 3, and, as in Case 1.(b)i, there exists r′′ ∈ V (G′′) such that
dG′′(r

′′) = n − 5. Alice’s strategy is as follows. She starts by colouring u′, forcing
Bob to colour r. Then, she colours u′′, forcing Bob to colour r′. Finally, Alice
colours r′′. Note that u′, u′′, and r′′ form a connected dominating set of G.

2. ∆(G) = n− 3.

Observe that G cannot contain two vertices u, v such that d(u) + d(v) ≤ 5. Indeed, if there

are two such vertices, then we have a contradiction since m ≤ (n−2)(n−3)+5
2 , but this is not

an integer since (n− 2)(n− 3) + 5 is odd, and thus,

m ≤ (n− 2)(n− 3) + 5− 1

2
=
n2 − 5n+ 10

2
= x.

Let r be a vertex of G such that d(r) = n − 3, and let G′ = G[N(r)]. Since d(r) = n − 3,
there are exactly two additional vertices u, v ∈ V (G)\V (G′) (u, v 6= r). We distinguish cases
according to the degrees of u and v, and note that d(u) +d(v) ≥ 6. In what follows, when we
say that Alice colours a vertex if needed, it means that if it is not necessary (in the sense that
such a vertex has already been coloured), then she either colours the vertex she is supposed
to colour in the next round, or she colours an arbitrary uncoloured vertex in that round.

(a) d(u), d(v) ≥ 3.

Alice’s strategy is as follows. She starts by colouring r. In the second round, she colours
an uncoloured vertex in N(v) in G′ (this is possible since d(v) ≥ 3). In the third round,
if needed, i.e., if Alice has not coloured a vertex in N(u) yet, Alice colours an uncoloured
vertex in N(u) in G′ if possible, and if not, then uv ∈ E(G) and Bob coloured N(u)\{v}
in the first two rounds, and so, she colours v. Then, by the end of the third round, Alice
has coloured r, at least one vertex in N(v) in G′, and at least one vertex in N(u), and
these vertices form a connected dominating set of G.
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(b) d(u) = 2 and d(v) ≥ 4.

Alice’s strategy is as follows. She starts by colouring r. In the second round, she colours
an uncoloured vertex in N(u) in G′ if possible, and if not, then uv ∈ E(G) and Bob
coloured N(u) \ {u} in the first round, and so, she colours v. In the third round, Alice
colours an uncoloured vertex in N(v) in G′ (this is possible since d(v) ≥ 4). Then, by
the end of the third round, Alice has coloured r, at least one vertex in N(v) in G′, and
at least one vertex in N(u), and these vertices form a connected dominating set of G.

(c) d(u) = 1 and d(v) ≥ 5.

Let u′ ∈ N(u) be a fixed neighbour of u in N(u). In this case, there exists at least one
vertex r′ ∈ G′ with dG′(r

′) ≥ n− 5, as otherwise, we have a contradiction since

m ≤ (n− 3)(n− 6)

2
+ 2(n− 3) + 1 =

n2 − 5n+ 8

2
< x.

Note that v has at least 4 neighbours in G′ since d(v) ≥ 5 and rv /∈ E(G). We distinguish
the following subcases:

i. ∆(G′) = n− 4.
Let r′ ∈ V (G′) be such that dG′(r

′) = n− 4, then Alice’s strategy is as follows. She
starts by colouring u′ (it may be that u′ = v). If Bob colours a vertex in {r, r′}
(a neighbour v′ ∈ V (G′) of v, resp.) in the first round, then, in the second round,
Alice colours the other vertex in {r, r′} (another neighbour v∗ ∈ V (G′) of v, resp.).
If Alice coloured a vertex in {r, r′} (v∗, resp.) in the second round, then she colours
a vertex in {v′, v∗} ({r, r′}, resp.) in the third round. After three rounds, Alice’s
vertices form a connected dominating set of G.

ii. ∆(G′) = n− 5.
Let r′ ∈ V (G′) be such that dG′(r

′) = n−5, and let G′′ = G′[N(r′)]. We distinguish
cases according to whether u′ ∈ V (G′′) or not.

A. u′ ∈ V (G′′).
As u′ ∈ V (G′′), uv /∈ E(G). Since d(r′) = n− 5, there is exactly one additional
vertex w ∈ V (G′)\V (G′′) (w 6= r′). Note that dG′(w) ≥ 1 because if dG′(w) = 0,
i.e., N(w) = r, then we have a contradiction since

m ≤ (n− 4)(n− 5)

2
+ 2(n− 3) + 1 =

n2 − 5n+ 10

2
= x.

If dG′(w) ≥ 2, then Alice’s strategy is as follows. She starts by colouring u′. As
before, Bob is forced to colour r in the first round. Indeed, if he does not, then
Alice will colour r in the second round, and then she will colour an uncoloured
neighbour v′ ∈ V (G′) of v in the third round (this is possible since d(v) ≥ 5),
and her vertices form a connected dominating set of G. In the second round,
Alice colours r′. In the third round, if needed, i.e., if u′ /∈ N(w), Alice colours
an uncoloured neighbour w′ ∈ V (G′) of w (this is possible since dG′(w) ≥ 2). In
the fourth round, Alice colours an uncoloured neighbour v′ ∈ V (G′) of v (this
is possible since v has at least 5 neighbours in G′ as uv /∈ E(G) and d(v) ≥ 5).
At the end of the fourth round, Alice’s vertices form a connected dominating
set of G.
Assume now that dG′(w) = 1, and let NG′(w) = {w′}. Then, ∆(G′′) = n − 6.
Indeed, if ∆(G′′) ≤ n− 7 (and so, n ≥ 7), then we have a contradiction since

m ≤ (n− 5)(n− 7)

2
+ n− 5 + 2(n− 3) + 1 + 1 =

n2 − 6n+ 17

2
≤ x.

Let r′′ ∈ V (G′′) be such that dG′′(r
′′) = n − 6, and observe that w′ ∈ N(r′′).

Alice’s strategy is as follows. She starts by colouring u′. As before (when
dG′(w) ≥ 2), Bob is forced to colour r in the first round. In the second round,
Alice colours w′. Analogously to why Bob was forced to colour r in the first
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round, Bob is forced to colour r′ in the second round. In the third round,
Alice colours r′′. In the fourth round, Alice colours an uncoloured neighbour
v′ ∈ V (G′) of v (this is possible since v has at least 5 neighbours in G′). At the
end of the fourth round, Alice’s vertices form a connected dominating set of G.

B. u′ /∈ V (G′′).
First, assume that uv /∈ E(G). Then, u′ is the only vertex of G′ that is not a
neighbour of r′, and d(u′) ≥ 3. Indeed, if d(u′) ≤ 2, then we have a contradiction
since

m ≤ (n− 4)(n− 5)

2
+ 2(n− 3) + 1 =

n2 − 5n+ 10

2
= x.

Thus, there is at least one edge u′u′′ with u′′ ∈ V (G′′)∪ {v}. If d(u′) ≥ 4, then
Alice’s strategy is as follows. She starts by colouring u′, forcing Bob to colour
r, as before. Then, she colours r′, and in the third round, she colours one of the
remaining uncoloured neighbours of u′ in G′′ (which exists since d(u′) ≥ 4). In
the fourth round, Alice colours an uncoloured neighbour v′ ∈ V (G′) of v (this
is possible since v has at least 5 neighbours in G′). At the end of the fourth
round, Alice’s vertices form a connected dominating set of G.
Otherwise, d(u′) = 3, and, as in Case 2.(c)iiA, there exists r′′ ∈ V (G′′) such that
dG′′(r

′′) = n−6. Let r′′ ∈ V (G′′) be such that dG′′(r
′′) = n−6. Alice’s strategy

is as follows. She starts by colouring u′, forcing Bob to colour r, as before.
Then, she colours u′′, forcing Bob to colour r′, as before. In the third round,
Alice colours r′′. In the fourth round, Alice colours an uncoloured neighbour
v′ ∈ V (G′) of v (this is possible since v has at least 5 neighbours in G′). At the
end of the fourth round, Alice’s vertices form a connected dominating set of G.
Now, assume that uv ∈ E(G). Then, u′ = v and there is exactly one additional
vertex w ∈ V (G′)\V (G′′) (w 6= r′). Note that dG′(w) ≥ 2 because if dG′(w) = 1,
then we have a contradiction since

m ≤ (n− 4)(n− 5)

2
+ 2(n− 3) + 1 =

n2 − 5n+ 10

2
= x.

Alice’s strategy is as follows. She starts by colouring u′ = v, forcing Bob to
colour r, as before. In the second round, she colours r′. In the third round,
Alice colours an uncoloured neighbour w′ ∈ V (G′) of w (this is possible since
dG′(w) ≥ 2). In the fourth round, if needed, i.e., if Alice has not yet coloured a
vertex in N(v) that is not u, Alice colours an uncoloured neighbour v′ ∈ V (G′)
of v (this is possible since d(v) ≥ 5). At the end of the fourth round, Alice’s
vertices form a connected dominating set of G.

We note that the bound in the statement of Theorem 4.3 is sharp, in the sense that there exists

a graph G with (|V (G)|−2)(|V (G)|−3)
2 + 2 edges that is not A-perfect. For example, consider, as G,

any graph obtained from a complete graph on an odd number N ≥ 3 of vertices, by taking any of
its vertices u, and attaching at u a pending path (u, v, w) of length 2. Note that |V (G)| = N + 2
and that

|E(G)| = N(N − 1)

2
+ 2 =

(|V (G)| − 2)(|V (G)| − 3)

2
+ 2.

Now, to see that G is not A-perfect, consider the following strategy for Bob. Bob colours a vertex
in {u, v} in the first round, and then, in each of the subsequent rounds, he colours any uncoloured
vertex different from w. Since |V (G)| is odd, Alice is forced to colour w at some point, which,
by the end of the game, cannot be part of a single connected red component due to Bob having
coloured u or v in the first round. Thus, G is not A-perfect.

Since the vertices’ degrees influence a graph being A-perfect or not, we study regular graphs
next, as they are a special case since all of their vertices have the same degree. We prove that there
exist arbitrarily large connected d-regular graphs G, with d ≥ 3, for which cg(G) is close to the
lower bound (Lemma 4.4), while, for every d ≥ 4, there exist arbitrarily large connected d-regular
graphs G that are A-perfect (Lemma 4.5). However, the latter result does not hold for every d ≥ 3
since we prove that any sufficiently large cubic graph is not A-perfect (Theorem 4.7).
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(a) d = 4 (b) d = 5

Figure 3: Examples of d-regular A-perfect graphs constructed in the proof of Lemma 4.5.

Before starting, let us mention the case of 2-regular graphs, i.e., cycles. From a result for paths
in [6], it follows that, for every n ≥ 3, cg(Cn) = 2 (the lower bound is trivial, and for the upper
bound, Bob’s strategy is to colour a vertex adjacent to the red vertex in the first round, and now,
the game is equivalent to one on a path Pn−1, with one of its ends initially coloured red). We now
show that the lower bound in Lemma 4.1 is almost tight for arbitrarily large connected d-regular
graphs, for every d ≥ 3.

Lemma 4.4. For every d ≥ 3, there exist arbitrarily large connected d-regular graphs G such that
cg(G) ≤

⌈
d+3

2

⌉
.

Proof. Let G be the graph constructed as follows. Start from N ≥ 2 disjoint copies H0, . . . ,HN−1

of the complete graph on d + 1 vertices. Now, for every i ∈ {0, . . . , N − 1}, remove the edge
uivi, where ui and vi are any two distinct vertices of Hi. Finally, add the edge viui+1 for every
i ∈ {0, . . . , N − 1} (where, here and further, operations are understood modulo N). Note that the
resulting graph G is d-regular, and, free to consider large values of N , can be as large as desired.
For every i ∈ {0, . . . , N−1}, every vertex of Hi that is different from ui and vi is said to be internal
(to Hi). Since d ≥ 3, every Hi has at least two internal vertices.

We give a strategy for Bob that ensures that Alice’s score in G is at most
⌈
d+3

2

⌉
. In each round,

if the last vertex coloured by Alice is

• some vertex ui, then Bob colours vi−1;

• some vertex vi, then Bob colours ui+1;

• a vertex internal to some Hi, then Bob colours an uncoloured vertex internal to the same Hi.

By this strategy, once the game ends, every connected red component must be completely
contained inside some Hi. This is because this strategy guarantees that any two vertices vi and
ui+1 end up coloured either by different players, or by Bob only. It thus follows that the largest
connected red component contains, in the worst-case scenario, some ui, vi, and half of the other
vertices of Hi. In other words, the largest connected red component is of order at most

⌈
d+3

2

⌉
.

Regarding the upper bound from Lemma 4.1 in the context of arbitrarily large connected d-
regular graphs, we prove the following:

Lemma 4.5. For every d ≥ 4, there exist arbitrarily large d-regular A-perfect graphs.

Proof. Let N > 2, and let d ≥ 4 be fixed. To prove the claim, we construct a d-regular graph G,

whose order is a function of N , such that cg(G) =
⌈
|V (G)|

2

⌉
. We give two possible constructions for

G, depending on whether d = 4 or d ≥ 5 (see Figure 3 for an illustration of both constructions).
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• For the case d = 4, G is the 4-regular graph having two vertices ui1 and ui2 for every i ∈
{0, . . . , N−1}, and the four edges ui1u

i+1
1 , ui1u

i+1
2 , ui2u

i+1
1 , ui2u

i+1
2 for every i ∈ {0, . . . , N−1}

(where, here and further, operations over the superscripts are modulo N).

To prove that G is A-perfect, we give a strategy for Alice that ensures that, at the end of the
game in G, the red subgraph is connected. In the first round, Alice colours u0

1. Then, in the
subsequent rounds, if the last vertex Bob coloured is uj1 (uj2, resp.) for some j ∈ {1, . . . , N−1},
Alice responds by colouring uj2 (uj1, resp.). Otherwise, Alice colours an arbitrary uncoloured
vertex. By Alice’s strategy, at the end of the game, for every 0 ≤ i ≤ N − 1, exactly one of
ui1 and ui2 is red, and thus, the red subgraph is connected, and G is A-perfect.

• We now consider the case where d ≥ 5. Here, G is constructed as follows. Start from
N disjoint copies H0, . . . ,HN−1 of the complete graph on d + 1 vertices, where, for every
i ∈ {0, . . . , N −1}, we denote by vi1, . . . , v

i
d+1 the vertices of Hi. For every i ∈ {0, . . . , N −1},

we remove the edges vi1v
i
3, vi1v

i
4, vi2v

i
3 and vi2v

i
4 from Hi. To finish the construction of G and

make it d-regular, we then join the Hi’s by adding the edges vi3v
i+1
1 , vi3v

i+1
2 , vi4v

i+1
1 , and

vi4v
i+1
2 for every i ∈ {0, . . . , N − 1} (again, operations are understood modulo N).

To prove that G is A-perfect, we give a strategy for Alice that ensures her a score of
d|V (G)|/2e. In the first round, Alice colours any vertex. In each of the subsequent rounds, if
the last vertex Bob coloured is

– in some pair {vi1, vi2} or {vi3, vi4}, then Alice colours the other vertex in that pair;

– some vertex vij with 5 ≤ j ≤ d+1, then Alice colours another vertex vi` with 5 ≤ ` ≤ d+1
and j 6= `.

Whenever Alice cannot follow the strategy above, she colours an arbitrary uncoloured vertex.
By Alice’s strategy, at the end of the game, for every i ∈ {0, . . . , N−1}, at least one vertex in
{vi1, vi2} is red, at least one vertex in {vi3, vi4} is red, and at least one vertex in {vi5, . . . , vid+1}
is red. These vertices form a connected dominating set of G, from which we deduce that
cg(G) = d|V (G)|/2e, by Lemma 2.3. Thus, G is A-perfect.

As mentioned earlier, the bound on d in the statement of Lemma 4.5 cannot be lowered, as we
prove that A-perfect cubic graphs have bounded order. This can actually be established through
previous results on the existence of particular cuts in sufficiently large connected cubic graphs,
such as ones from [24] relying on the following terminology.

A supercycle is a connected graph with minimum degree at least 2 where not all vertices are of
degree 2. For a graph G, a matching M is said suitable if G−M consists of exactly two connected
components, each of which is a supercycle. Note that if G is cubic, then, in G −M , every vertex
incident to an edge of M has degree precisely 2, while, by the definition of a supercycle, each of
the two connected components contains a degree-3 vertex.

In [24], Mukkamala and Pálvölgyi proved the following result on the existence of suitable
matchings in sufficiently large connected cubic graphs.

Theorem 4.6 (Mukkamala and Pálvölgyi, Corollary 1 of [24]). Every connected cubic graph with
order at least 18 admits a suitable matching.

We are now ready to prove the aforementioned result on cubic graphs.

Theorem 4.7. Every A-perfect cubic graph has order at most 16.

Proof. Let G be an A-perfect cubic graph. Since G is cubic, each of its connected components has
order at least 4. Thus, by Corollary 2.2, G is connected. Towards proving the claim, assume that
G has order at least 18. Then, by Theorem 4.6, G admits a suitable matching M . As mentioned
earlier, G − M consists of exactly two connected components C1 and C2, in each of which all
vertices incident to an edge of M have degree exactly 2 while the other vertices (there is at least
one such) have degree exactly 3. Since, by the handshaking lemma, in every graph the number
of odd-degree vertices is even, we deduce that, in each of C1 and C2, there are actually at least
two degree-3 vertices. In what follows, the degree-2 vertices of the Ci’s are called interior vertices,
while their other (degree-3) vertices are called exterior vertices.
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Consider now the strategy for Bob where, each turn during a game on G, he answers to Alice’s
moves as follows:

• if Alice colours an interior vertex incident to an edge e ∈ M , then Bob colours the second
interior vertex incident to e;

• if Alice colours an exterior vertex v, then Bob plays as follows:

– if v is the first exterior vertex coloured by Alice during the whole game, then, denoting,
for the rest of the game, by C∗ the one of C1 and C2 that contains v, Bob colours any
uncoloured exterior vertex of C∗ (one such exists, since C∗ contains at least two exterior
vertices);

– if v is not the first exterior vertex that Alice colours, then C∗ was defined during
an earlier turn, and Bob colours any uncoloured exterior vertex of C∗. If C∗ does
not contain any such uncoloured vertex, then Bob colours any uncoloured vertex of G
instead.

Note that Bob can clearly follow the strategy above from start to end. Once the game ends,
note also that for every edge of M the two incident vertices are coloured with distinct colours.
Furthermore, since C1 and C2 have at least two exterior vertices each, each Ci must contain an
exterior vertex ui coloured red. From all these arguments, we deduce that the red subgraph cannot
contain a path joining u1 and u2, and thus the red subgraph is not connected. Thus, an A-perfect
cubic graph must have order strictly less than 18.

5 Graphs with few P4’s

In this section, we give a linear-time algorithm determining cg for (q, q − 4)-graphs, which are
graphs containing few P4’s [2]. For a fixed q ≥ 0, a graph G is a (q, q − 4)-graph if every subset
S ⊆ V (G) of at most q vertices induces at most q − 4 paths on 4 vertices. Note that a cograph is
a (q, q − 4)-graph when q = 4.

A better understanding of our game in these graphs would allow to establish a similar result
for the Largest Connected Subgraph game, for which a linear-time algorithm is only known for
cographs [6]. Recall that, for two graphs G and H, G+H is the disjoint union of G and H, where
V (G+H) = V (G)∪V (H) and E(G+H) = E(G)∪E(H), and G⊕H is the join of G and H, where
V (G⊕H) = V (G)∪ V (H) and E(G⊕H) = E(G)∪E(H)∪ {uv : (u, v) ∈ V (G)× V (H)}. Let us
give a characterisation of (q, q−4) graphs. Let G = (S,K,R,E) be a graph with V (G) = S∪K∪R
and E(G) = E. Consider the following properties:

1. S ∪K ∪R is a partition of V (G), where R can be empty.

2. G[K ∪R] = K⊕R (i.e., uv ∈ E for all u, v ∈ V (G) with u ∈ K and v ∈ R), and K separates
S from R (i.e., uv /∈ E for all u ∈ S and v ∈ R).

3. S is an independent set, K is a clique, |S| = |K| ≥ 2, and there exists a bijection f : S → K
such that, for all s ∈ S, either N(s) ∩K = K \ {f(s)} or N(s) ∩K = {f(s)}. In the former
case, we say that f is an antimatching, with the vertices s and f(s) being antimatched, and
in the latter case, we say that f is a matching, with the vertices s and f(s) being matched.

If G = (S,K,R,E) verifies all the properties above, it is called a spider. In that case, if f is a
matching (antimatching, resp.), then G is a matched spider (antimatched spider, resp.). Also, if G
only verifies Properties 1 and 2 above, it is called a pseudo-spider. In this case, for any fixed q ≥ 0
such that |V (S ∪K)| ≤ q, G is a q-pseudo-spider. A graph G is a (q, q− 4)-graph if G is the graph
K1 or one of the following is satisfied [3]:

1. G = G1 +G2, where G1 and G2 are (q, q − 4)-graphs.

2. G = G1 ⊕G2, where G1 and G2 are (q, q − 4)-graphs.
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3. G is the spider (S,K,R,E), where G[R] (if R is not empty) is a (q, q − 4)-graph. By the
definition of a spider, G[S ∪K] induces a (q, q − 4)-graph.

4. G is the q-pseudo-spider (S,K,R,E), where G[R] (if R is not empty) is a (q, q − 4)-graph.

The above definition is a recursive one, in that, for every (q, q− 4)-graph G, there exists a (not
necessarily unique) decomposition-tree representing G. The internal nodes of such a tree correspond
to subgraphs of G that are (q, q − 4)-graphs, and its leaves either correspond to a single vertex or
to a subgraph with at most q vertices. The root corresponds to G, and every internal node has
two children (describing cases 1 to 4 above). Such a decomposition-tree can be computed in linear
time [4]. We can now prove the main result in this section:

Theorem 5.1. Let q ≥ 0. For a (q, q − 4)-graph G, determining cg(G) and an optimal strategy
for Alice can be done in linear time.

Proof. Let us first compute (in linear time) a decomposition-tree T of G. Now, let us describe the
algorithm that proceeds bottom-up from the leaves to the root of T . Every leaf of T corresponds to
a subgraph G′ with a bounded number of vertices, and therefore, cg(G′) and an optimal strategy
for Alice can be computed in time O(1). For every internal node v (corresponding to a subgraph
G′ of G) of T , cg(G′) and a corresponding strategy for Alice are computed from what has already
been computed for the two subgraphs corresponding to the children of v. Precisely, let G1 and G2

be the two subgraphs of G corresponding to the children of the root of T , and assume by induction
that cg(G1), cg(G2), and optimal strategies for Alice in G1 and G2 have been computed in linear
time. We now describe how the algorithm proceeds for G, and we set |V (G)| = n. There are 4
cases depending on how G is obtained from G1 and G2.

1. G = G1 +G2. Then, cg(G) = max{cg(G1), cg(G2)} by Lemma 2.1. W.l.o.g., cg(G) = cg(G1).
By induction, cg(G1) and a strategy for Alice have already been computed.

2. G = G1 ⊕G2. Then, cg(G) =
⌈
n
2

⌉
. Indeed, w.l.o.g., |V (G1)| ≤ |V (G2)|, and Alice obtains a

connected dominating set by first colouring a vertex in G1, and then one in G2 (unless G is
an edge). The result follows by Lemma 2.3.

3. G = (S,K,R,E) is a spider with G1 = G[S ∪K] and G2 = G[R]. Note that |R| and n have
the same parity since |S| = |K|. There are two subcases:

(a) G is an antimatched spider. Assume that |K| ≥ 3 since G is a matched spider if |K| = 2.
Then, cg(G) =

⌈
n
2

⌉
. Indeed, Alice’s strategy is to colour any two uncoloured vertices

v1, v2 ∈ K in the first two rounds (this is possible since |K| ≥ 3). Since G is an
antimatched spider, for every vertex v ∈ S, at least one of the edges in {vv1, vv2} is
in E. Thus, since K is also a clique and G[K ∪ R] = K ⊕ R, the set {v1, v2} forms a
connected dominating set of G, and we get the result by Lemma 2.3.

(b) G is a matched spider. Let us show that

cg(G) =


⌈
n
2

⌉
−
⌈
b |K|2 c

2

⌉
if n and

⌊
|K|
2

⌋
are odd.

⌈
n
2

⌉
−
⌊
b |K|2 c

2

⌋
otherwise.

Bob’s strategy. We give a strategy for Bob to prove the upper bound on cg(G) in both
cases. Bob first plays exhaustively in K (i.e., until every vertex in K is coloured), then,
while possible, he colours vertices that are not vertices of S matched to blue vertices
in K, and finally, he colours the vertices of S matched to blue vertices of K. At the
end of the game, any red vertex in S that is matched to a blue vertex of K forms a
one-vertex connected red component. Let r∗S be the number of such red vertices. Then,
cg(G) ≤

⌈
n
2

⌉
− r∗S .

We first show that r∗S ≥
⌊
b |K|2 c

2

⌋
. Let bK be the number of blue vertices in K once

every vertex in K is coloured. Since Bob first exhaustively colours the vertices in K,
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then bK ≥
⌊
|K|
2

⌋
. Then, while it is possible, Bob colours vertices that are not vertices

of S matched to blue vertices in K. Consider the first point of the game where no such
vertex exists (this can occur after any player’s move). Let rS ≥ 0 be the number of
vertices in S that, at this point, are red and matched to a blue vertex in K. Now, Bob
colours the uncoloured vertices of S matched to blue vertices, and so, Bob colours at
most

⌈
bK−rS

2

⌉
such vertices. Thus, Alice colours at least

⌊
bK−rS

2

⌋
such vertices. Then,

r∗S ≥ rS +
⌊
bK−rS

2

⌋
≥
⌊
bK
2

⌋
≥
⌊
b |K|2 c

2

⌋
.

Now, consider the case where n and
⌊
|K|
2

⌋
are odd. We refine the above analysis to

show that, in this case, r∗S ≥
⌈
b |K|2 c

2

⌉
. If bK >

⌊
|K|
2

⌋
, then

⌊
bK
2

⌋
>

⌊
b |K|2 c

2

⌋
(as

⌊
|K|
2

⌋
is odd), and so,

⌊
bK
2

⌋
≥
⌈
b |K|2 c

2

⌉
, implying that r∗S ≥

⌈
b |K|2 c

2

⌉
. Thus, assume that

bK =
⌊
|K|
2

⌋
, and so, bK is odd. As n is odd, Alice plays last in G. Hence, just before

Bob colours his first vertex of S matched to a blue vertex in K, there are an even
number of such uncoloured vertices remaining. Since bK is odd, then rS ≥ 1. Hence,

r∗S ≥ 1 +
⌊
bK−1

2

⌋
= 1 +

⌊
b |K|2 c−1

2

⌋
≥
⌈
b |K|2 c

2

⌉
. Thus, we have proved the upper bound

on cg(G) in both cases.

Alice’s strategy. Now, we give a strategy for Alice to prove the lower bound on cg(G)
in both cases. Alice follows the same strategy as Bob above. Let rK be the number of red
vertices inK once all the vertices ofK are coloured. Since Alice first exhaustively colours

the vertices in K, we have that rK ≥
⌈
|K|
2

⌉
. Let bK = |K|− rK ≤

⌊
|K|
2

⌋
be the number

of blue vertices in K once all the vertices of K are coloured. Let uS be the number
of vertices of S that are matched to blue vertices in K. Obviously, uS ≤ bK . Alice’s
strategy ensures that, at the end of the game, the red vertices induce one connected
component X and (if Bob plays optimally) some isolated vertices in S that are matched
to blue vertices in K. By Alice’s strategy, there are at most

⌈
uS

2

⌉
such isolated red

vertices. Hence, |X| ≥
⌈
n
2

⌉
−
⌈
uS

2

⌉
≥
⌈
n
2

⌉
−
⌈
bK
2

⌉
. Thus, |X| ≥

⌈
n
2

⌉
−
⌈
b |K|2 c

2

⌉
, which

matches the upper bound when n and
⌊
|K|
2

⌋
are odd. Also, if

⌊
|K|
2

⌋
is even, then⌈

b |K|2 c
2

⌉
=

⌊
b |K|2 c

2

⌋
, and so, |X| ≥

⌈
n
2

⌉
−
⌊
b |K|2 c

2

⌋
.

The last case to consider is when n is even. Then, Bob plays last in G. This implies
that Alice colours at most

⌊
uS

2

⌋
vertices of S matched to blue vertices in K. So, |X| ≥⌈

n
2

⌉
−
⌊
uS

2

⌋
≥
⌈
n
2

⌉
−
⌊
bK
2

⌋
≥
⌈
n
2

⌉
−
⌊
b |K|2 c

2

⌋
.

4. Finally, let us assume that G = (S,K,R,E) is a q-pseudo-spider with G1 = G[S ∪K] (with
|V (G1)| ≤ q) and G2 = G[R]. By Lemma 2.1, we may assume that G is connected.

First, let us consider the case where |V (G2)| ≤ 2q, and so, |V (G)| ≤ 3q. An exhaustive search
allows to compute cg(G) and a corresponding strategy for Alice in time O(1). Roughly, the
set of all games in G can be described by one rooted tree with maximum degree at most
3q and depth 3q. A classical dynamic-programming algorithm on this execution-tree can be
used to compute the result in time O(1).

From now on, let us assume that |V (G2)| > 2q. Note that, in this setting, as soon as
Alice colours a vertex of G2 (and she will always be able to do that in the strategies below
because |V (G2)| > 2q), all the red vertices of K will belong to the same connected red
component (since G[K ∪ R] = K ⊕ R). Moreover, in what follows, Alice will always colour

at least
⌊
|V (G2)|

2

⌋
≥ q vertices in G2, connected by a vertex of K, ensuring that the largest

connected red component is always this one (the one containing all the red vertices of G2)
since |V (G1)| ≤ q.
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In what follows, we use the following variation of the Maker-Breaker Largest Connected
Subgraph game. Consider the following game that takes a graph H and X ⊆ V (H) as
inputs. The game proceeds as the Maker-Breaker Largest Connected Subgraph game does,
i.e., Alice and Bob take turns colouring vertices of G starting with Alice and with all the
vertices being initially uncoloured. The difference lies in the objective of Alice. At the end
of the game, the score achieved by Alice is the total number of red vertices that belong to
the connected red components containing vertices of X. Intuitively, we see all the connected
red components with at least one vertex in X as a single connected red component. Let
cg(H,X) be the largest integer k such that Alice has a strategy to ensure a score of at least
k with input (H,X), regardless of how Bob plays. Note that, by similar arguments as in the
paragraph above, if |V (H)| = O(1), then cg(H,X) (and a corresponding strategy for Alice)
can be computed in time O(1) for all X ⊆ V (H).

By the previous remark, cg(G1,K) (and a corresponding strategy S1
a for Alice) can be com-

puted in time O(1). By an exhaustive computation in constant time (since |V (G1)| = O(1)),
it is actually possible to consider all the strategies for Alice and Bob, including the ones where
they may each skip at most one of their turns. If (in the variant game with input (G1,K))
there exists a strategy for Alice guaranteeing her a score of at least cg(G1,K), in which she
skips one of her turns, and such that, if Bob skips a turn before Alice, then Alice can score
at least cg(G1,K) + 1 without skipping any of her turns, then let S2

a be such a strategy for
Alice. On the other hand, if (in the variant game with input (G1,K)) there exists a strategy
for Bob guaranteeing that Alice cannot score more than cg(G1,K), in which he skips one of
his turns, and such that, if Alice skips a turn before Bob, then Bob can guarantee that Alice
scores at most cg(G1,K)−1 without skipping any of his turns, then let S2

b be such a strategy
for Bob. Note that, by definition, S2

a and S2
b cannot both exist simultaneously.

Now, let us consider the following strategy Sb for Bob in G. Whenever Alice colours a
vertex in G1, Bob plays in G1 following a strategy that ensures that Alice scores at most
cg(G1,K) in the variant game with input (G1,K). Whenever Alice colours a vertex in
G2, Bob colours any vertex of G2 (if no such move is possible, Bob colours an arbitrary
uncoloured vertex in G). This ensures that the largest connected red component is of order

at most cg(G1,K) +
⌈
|V (G2)|

2

⌉
. That is, cg(G) ≤ cg(G1,K) +

⌈
|V (G2)|

2

⌉
.

Let us also define the following strategy Sa for Alice in G. First, Alice colours the first
vertex in G1 that ensures her a score of at least cg(G1,K) in the variant game with input
(G1,K) (following strategy S1

a). Then, whenever Bob colours a vertex in G1, Alice colours
the vertex of G1 following her strategy S1

a to ensure a score cg(G1,K) in the variant game
with input (G1,K). Whenever Bob colours a vertex in G2, Alice colours any vertex in G2. If
no such move is possible, Alice colours an arbitrary uncoloured vertex. This ensures that the

largest connected red component is of order at least cg(G1,K) +
⌊
|V (G2)|

2

⌋
(recall that, since

|V (G2)| ≥ 2, Alice colours at least one vertex in G2). That is, cg(G) ≥ cg(G1,K)+
⌊
|V (G2)|

2

⌋
.

Note that the upper and lower bounds above match when |V (G2)| is even. Assume now that
|V (G2)| is odd. We distinguish three cases. In all of the strategies below, the first player to

colour a vertex in G2 will colour at least
⌈
|V (G2)|

2

⌉
vertices in G2.

• First, let us assume that the strategy S2
a for Alice in G1 defined above exists. We define

Alice’s strategy for G as follows. Alice plays her first turns in G1 following S2
a until

she can skip a turn in G1 (i.e., the first time she can skip a turn in G1 while still
guaranteeing a score of at least cg(G1,K) in the variant game with input (G1,K)).

– If, in one of these rounds, Bob plays in G2, then Alice first plays an extra turn in
G1 (following S2

a that ensures her a score of at least cg(G1,K) + 1 in the variant
game with input (G1,K)), and then, each time Bob plays in G1, she plays in G1

according to S2
a in the variant game with input (G1,K), and each time Bob plays

in G2, she plays in G2.

– Otherwise, Bob also plays in G1 until Alice can skip a turn in G1. Then, once
she can skip a turn in G1 according to S2

a , Alice colours a vertex in G2. From
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then, whenever Bob colours a vertex in G1, she colours a vertex in G1 following S2
a .

Otherwise, she colours an arbitrary uncoloured vertex in G2.

In both cases, Alice scores at least cg(G1,K) +
⌈
|V (G2)|

2

⌉
, matching the upper bound.

• Second, let us assume that the strategy S2
b for Bob in G1 defined above exists. Note

that S2
a does not exist, so Alice cannot skip one turn in G1 without decreasing her score

in the variant game with input (G1,K). Bob plays his first turns in G1 following S2
b

until he can skip a turn in G1.

– If, in one of these rounds, Alice plays in G2, then Bob first plays an extra turn in
G1 (following S2

b that ensures him that Alice will score at most cg(G1,K)−1 in the
variant game with input (G1,K)). Then, whenever Alice plays in G1, he continues
to follow S2

b , and when Alice plays in G2, Bob plays in G2.

– Otherwise, Alice also plays in G1 until Bob can skip a turn in G1. Then, once he can
skip a turn in G1 according to S2

b , Bob colours a vertex in G2. From then, whenever
Alice colours a vertex in G1, he colours a vertex in G1 following S2

b . Otherwise, he
colours an arbitrary uncoloured vertex in G2.

In both cases, Alice scores at most cg(G1,K) +
⌊
|V (G2)|

2

⌋
, matching the lower bound.

• Finally, if none of the strategies S2
a and S2

b exist, the result depends on the parity of
|V (G1)|. Indeed, if Alice skips one turn in G1, then Bob can ensure she scores at most
cg(G1,K)− 1 in the variant game with input (G1,K). On the other hand, if Bob skips
one turn in G1, Alice can score at least cg(G1,K) + 1 in the variant game with input
(G1,K). For Alice to ensure her upper bound and for Bob to ensure the lower bound,
both of them will play in priority in G1. That is, the first vertex of G2 is coloured after
all the vertices of G1 have been coloured (and Alice has achieved a score of cg(G1,K)
in the variant game with input (G1,K)). If |V (G1)| is even, Alice is the first player to

colour a vertex in G2, which allows her to score the upper bound cg(G1,K) +
⌈
|V (G2)|

2

⌉
.

Otherwise, Bob is the first player to colour a vertex in G2, which implies that Alice can

score at most the lower bound cg(G1,K) +
⌊
|V (G2)|

2

⌋
.

6 Discussion and directions for further work

A certain number of directions for further work on the Maker-Breaker Largest Connected Subgraph
game seem particularly appealing to us. While some of the ones we mention are about tightening
some of our results from the previous sections, others are original ones that are discussed only in
this section.

6.1 Differences between the two versions of the Largest Connected Sub-
graph game

One direction for research could be to try to establish the significant differences between the Maker-
Breaker Largest Connected Subgraph game and the Largest Connected Subgraph game. Some of
our results in this work are already a step in that direction. For instance, in Section 3, we showed
that the Maker-Breaker version remains PSPACE-complete when restricted to various classes of
graphs, but we do not know whether the same holds for the Largest Connected Subgraph game in
those classes of graphs. Lemma 2.1 draws another neat difference between the two versions of the
game, as the outcome of the Largest Connected Subgraph game in a disconnected graph cannot be
established as simply as in the Maker-Breaker version. This is because, in the latter version, Bob
does not care about the structure induced by the blue vertices. However, in the Largest Connected
Subgraph game, there are scenarios in which it is more favourable for Bob to play in a connected
component G2 different from the one G1 that Alice just played in. This would be like skipping a
turn in G1, but playing an extra turn in G2 (or playing first in G2). Thus, to establish a result
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similar to Lemma 2.1 for the Largest Connected Subgraph game, one has to deal with the effects
of skipping and playing extra turns, as well as Bob playing first, which seems like a tricky, yet
interesting, aspect to study.

6.2 Types of strategies for the Maker-Breaker Largest Connected Sub-
graph game

As we have seen in some graphs, notably in Section 4, some optimal strategies for Alice ensure that
the red subgraph is connected at all times. We believe it would be interesting to study a connected
variant of the Maker-Breaker Largest Connected Subgraph game, in which Alice is always (except
on her first turn) constrained to colour a neighbour of another red vertex, and the game ends when
she cannot. Consequently, we could define ccg(G) as the maximum score Alice can achieve in G
when obliged to play in such a connected way. Clearly, ccg(G) ≤ cg(G). We were able to observe
that it is far from true that these two parameters are equal in general, even sometimes in quite
simple graphs. As an illustration, the difference between both parameters is arbitrarily large for
king’s grids (strong products of two paths) with only two rows (denoted by P2 � Pm).

Lemma 6.1. For any m ≥ 1, ccg(P2 � Pm) = O(1) and cg(P2 � Pm) = m.

Proof. In the connected case, it is sufficient for Bob to colour the four vertices at distance 4 from
the first vertex coloured by Alice. In the non-connected case, each time Bob colours a vertex
v, Alice colours the neighbour of v in the other row (we say that P2 � Pm has two rows and m
columns). At the end of the game, the red subgraph is connected, and so, Alice achieves a score
of m.

6.3 Other classes of graphs

Some of our results on particular classes of graphs leave open questions. Since the Maker-Breaker
Largest Connected Subgraph game is PSPACE-complete in split graphs by Corollary 3.2, and split
graphs have diameter at most 3, there is the question of whether it is hard to compute cg for graphs
of diameter 2. Regarding the results from Section 5, recall that [6] provides a linear-time algorithm
for the Largest Connected Subgraph game in cographs. One question is whether this result can be
extended to (q, q − 4)-graphs, as we did in Theorem 5.1 for the Maker-Breaker version.

Regarding determining cg for other graph classes, an appealing direction could be to consider
standard graph classes such as trees. From [6], we have that cg(Pn) = 2 for any path Pn of order
n ≥ 3, and we believe that understanding the game in larger subclasses of trees such as caterpillars
and subdivided stars is not so difficult, but requires a lot of work to prove, for a not so substantial
result. Thus, we think it would be most interesting to study the class of trees rather than its
subclasses. Other natural graph classes to be investigated are graph products. For instance, we
wonder whether cg(Qn) can be easily determined for a hypercube Qn (where, recall, Q2 is the
cycle C4 of length 4, and, for every n > 2, the hypercube Qn is the Cartesian product Qn−1�P2

of Qn−1 and the path P2 of order 2). We also wonder about different types of grids, which, in the
Largest Connected Subgraph game, seem hard to comprehend [6]. Another point for considering
such graphs is that grids are natural structures to play on in several types of games, as illustrated
by Hex. To give some insight into what can be done in the Maker-Breaker version, we finish off
with some partial results on grids in the rest of this section. We first consider hexagonal grids.

Proposition 6.2. If G is a finite subgraph of the infinite hexagonal grid, then cg(G) ≤ 6.

Proof. Let H∞ be the infinite hexagonal grid as partially shown in Fig. 4. Let (Ci)i∈N be the set
of vertex-disjoint subgraphs of H∞ depicted in red in Fig. 4. For any i ∈ N, Ci induces a cycle of
order 6 and (V (Ci))i∈N is a partition of V (H∞). Furthermore, M = E(H∞) \ (

⋃
i∈NE(Ci)) (black

edges in Fig. 4) is a matching of H∞. Note also that, for any i 6= j, every path from a vertex of
Ci to a vertex of Cj contains an edge in M (since, for every subgraph Ci, the edges adjacent to a
vertex of V (Ci), but not in E(Ci), are by definition in M).

Let G be any finite subgraph of H∞, and let M ′ and (V (C ′i))i∈N be the restrictions of M and
(V (Ci))i∈N to G, respectively. Consider the following strategy for Bob in G. First, note that, for
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Figure 4: Illustration of the infinite Hexagonal grid H∞ in the proof of Proposition 6.2. The
connected red subgraphs are vertex-disjoint 6-cycles covering the vertices of H∞. The black edges
induce a matching of H∞.

any vertex v ∈ V (G), there is at most one edge uv ∈ M ′ incident to v since M is a matching of
H∞. Thus, each time Alice colours a vertex v, Bob colours the vertex u such that uv ∈ M ′, if it
exists and it is uncoloured, and if not, then he colours an arbitrary uncoloured vertex in G. Let
us show that Bob’s strategy ensures that Alice cannot create a connected red component of order
more than 6. Towards a contradiction, let us assume that Alice creates a connected red component
S of order at least 7. Then, there exist u, v ∈ S and i 6= j such that u ∈ V (C ′i) and v ∈ V (C ′j)
(because the Ck’s partition the vertex-set of H∞ and each Ck has order 6). As mentioned above,
every path between u and v contains an edge of M ′, and so, by Bob’s strategy, a vertex of this path
was coloured by Bob, contradicting that u and v belong to the same connected red component.

Through a tedious case analysis, it might be possible to prove that Proposition 6.2 is sharp, that
is, that there exists a finite subgraph G of H∞ such that cg(G) = 6. We also consider Cartesian
grids, which are the Cartesian product Pn�Pm of Pn and Pm. For these grids, we provide the
following upper bound.

Proposition 6.3. For n ≤ m, cg(Pn�Pm) ≤ 2n.

Proof. Consider an n ×m grid Pn�Pm with n rows and m columns (with left, right, higher, and
lower being defined naturally). Consider the following strategy for Bob. When Alice colours a
vertex v, if the right neighbour u of v exists and is uncoloured, then Bob colours u, otherwise,
Bob colours the left neighbour of v if it exists and is uncoloured, and otherwise, Bob colours an
arbitrary uncoloured vertex.

The above strategy for Bob is well-defined and ensures that no three consecutive vertices in
a row are ever red (see the case of paths in [6] for more details). This ensures that, for any
strategy of Alice, any connected red component has at most 2 vertices in each row, hence, proving
the proposition. Indeed, consider a largest connected red component S at the end of the game.
Towards a contradiction, assume that there exists a row whose intersection with S contains strictly
more than 2 vertices. Then, the restriction of S to this row r induces at least two connected red
components since there cannot be three consecutive red vertices in a same row.

Let x, y ∈ V (Pn�Pm) be two vertices of S in a same row r such that they are in different
components of the intersection of r and S. Let P be any shortest red path from x to y (it exists
since S is connected). By the definitions of x and y, P contains a vertex in a row above or below
r. W.l.o.g., suppose P contains a vertex in a row above r. Let w be a highest vertex of P , i.e., no
vertex of P is in a higher row than w. Let r′ be the row of w. Then, r′ is higher than r. Thus,
w /∈ {x, y}, and so, w has degree two in P . Then, since w is the highest vertex of P , there exists a
red neighbour z of w in V (P )∩ r′. W.l.o.g., say that z is to the right of w. Then, z /∈ {x, y} either,
and so, z has degree two in P . Note that there can be no vertex of P directly to the right of z nor
directly to the left of w, since otherwise, there would be 3 consecutive red vertices. Furthermore,
there can be no vertex of P above w or z since w is a highest vertex of P . Hence, since w and z
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have degree two in P , the vertex directly below w, and the one directly below z, must also be in
P . Then, the fact that w and z belong to P contradicts that P is a shortest path.

Regarding Proposition 6.3, we would be interested in knowing the precise value of cg(Pn�Pm)
in general. One issue we ran into is the fact that Alice can play in a non-connected way (recall
the notion of connected moves discussed earlier), and it is not clear how Bob should anticipate to
prevent connected red components to merge later on. Let us mention, however, that if Alice plays
in a connected way in a Cartesian or king’s grid, then the game becomes quite similar to the Angel
and Devil Problem of Conway [7]. Optimal strategies for the devil in that game [7] allow to prove
that ccg(Pn�Pm) is bounded above by an absolute constant.
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