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Diffusion Approximations of Markovian Solutions to Discontinuous ODEs

In a companion paper, the authors have characterized all deterministic semigroups, and all Markov semigroups, whose trajectories are Carathéodory solutions to a given ODE ẋ = f (x), where f is a possibly discontinuous, regulated function. The present paper establishes two approximation results. Namely, every deterministic semigroup can be obtained as the pointwise limit of the flows generated by a sequence of ODEs ẋ = f n (x) with smooth right hand sides. Moreover, every Markov semigroup can be obtained as limit of a sequence of diffusion processes with smooth drifts and with diffusion coefficients approaching zero.

Introduction

Weakly differentiable flows, generated by an ODE with possibly discontinuous right hand side:

ẋ = f (x), (1.1) 
are a subject of great current interest. After the seminal existence and uniqueness result by DiPerna and Lions [START_REF] Diperna | Ordinary differential equations, transport theory and Sobolev spaces[END_REF], extended by Ambrosio [START_REF] Ambrosio | Transport equation and Cauchy problem for BV vector fields[END_REF] to BV vector fields, several authors have studied the problem under weaker regularity assumptions [START_REF] Bianchini | A uniqueness result for the decomposition of vector fields in R d[END_REF][START_REF] Dovetta | Spinolo Initial-boundary value problems for merely bounded nearly incompressible vector fields in one space dimension[END_REF][START_REF] Gusev | On the one-dimensional continuity equation with a nearly incompressible vector field[END_REF]. Examples of vector fields generating multiple flows can be found in [START_REF] Aizenman | On vector fields as generators of flows: a counterexample to Nelson's conjecture[END_REF][START_REF] Alberti | A uniqueness result for the continuity equation in two dimensions[END_REF][START_REF] Crippa | Non-uniqueness and prescribed energy for the continuity equation[END_REF][START_REF] Ciampa | Smooth approximation is not a selection principle for the transport equation with rough vector field[END_REF][START_REF] Modena | Non-uniqueness for the transport equation with Sobolev vector fields[END_REF]. In particular, in [START_REF] Ciampa | Smooth approximation is not a selection principle for the transport equation with rough vector field[END_REF] an example was constructed of a rough vector field supporting two distinct flows, both of which can be obtained as limit of smooth approximations.

In the simple, one-dimensional case, more detailed results can be achieved. Assuming that f is a possibly discontinuous, regulated function, in the recent paper [START_REF] Bressan | Markovian solutions to discontinuous ODEs[END_REF] the authors provided a complete characterization of all deterministic semigroups, and all Markov semigroups, whose trajectories are Carathéodory solutions to (1.1). At this stage, a natural question is whether, among all these flows, one can select a subset of "physically admissible" ones, obtained as limit of smooth approximations.

The analysis in the present paper shows that this is not the case. Indeed, every deterministic semigroup can be obtained as limit of flows generated by ODE's with smooth right hand side. Moreover, every Markov semigroup can be obtained as limit of diffusion processes, with smooth drifts and with diffusion coefficients approaching zero. As in [START_REF] Ciampa | Smooth approximation is not a selection principle for the transport equation with rough vector field[END_REF], this indicates that smooth approximation is not a selection principle.

To explain our results more precisely, we recall that a map t → x(t) is a Carathéodory solution to the ODE (1.1), with initial datum

x(0) = x 0 , (1.2) 
provided that

x(t) = x 0 + t 0 f (x(s)) ds for all t ≥ 0 . (1.3)
When the function f is not Lipschitz continuous, it is well known that this Cauchy problem can admit multiple solutions. Because of this non-uniqueness, in [START_REF] Vanden-Eijnden | A note on generalized flows[END_REF][START_REF] Flandoli | Markov attractors: a probabilistic approach to multivalued flows[END_REF] it was proposed to study "generalized flows", described by a probability measure on the set of all Carathéodory solutions. This was a primary motivation for the analysis in [START_REF] Bressan | Markovian solutions to discontinuous ODEs[END_REF]. The first part of the present paper deals with deterministic flows: Definition 1.1 A deterministic semigroup compatible with the ODE (1.1) is a map S : R × R + → R, with the properties (i) S t (S s (x 0 )) = S t+s (x 0 ), S 0 (x 0 ) = x 0 .

(ii) For each x 0 ∈ R, the map t → S t x 0 is a solution to the Cauchy problem (1.1)- (1.2).

Notice that here we do not require any continuity w.r.t. the initial point x 0 . Of course, if f is Lipschitz continuous, then the solution t → x(t) = S t x 0 of (1.1)-(1.2) is unique, and this uniquely determines the semigroup.

Throughout this paper, as in [START_REF] Bressan | Markovian solutions to discontinuous ODEs[END_REF] we shall assume:

(A1) The function f : R → R is bounded and regulated. Namely, f admits left and right limits f (x-), f (x+) at every point x, while M . = sup x |f (x)| < +∞.

(A2) If y is a point where either f (y-) • f (y+) = 0 or else f (y-) > 0 > f (y+), then f (y) = 0.

As in [START_REF] Binding | The differential equation ẋ = f • x[END_REF], the "no jam" assumption (A2) guarantees that the Cauchy problem (1.1)-(1.2) has at least one solution. Indeed, in the present setting every solution in the sense of Filippov [START_REF] Filippov | Differential equations with discontinuous right-hand side[END_REF] is a Carathéodory solution as well. Under the above assumptions, the set of discontinuities

D f = x ∈ R ; f (x-) = f (x+) or f (x-) = f (x+) = f (x) (1.4)
is at most countable. Moreover, the set of zeroes

f -1 (0) = x ∈ R ; f (x) = 0 (1.5)
is closed. Given a regulated function f : R → R, we can complete its graph by adding a vertical segment at each point x where f has a jump. This yields a multifunction with closed graph and compact, convex values:

F (x) . = co f (x), f (x+), f (x-) , (1.6) 
where "co" denotes the convex closure. Throughout the sequel, B(V, r) = {x ; d(x, V ) < r} denotes the open neighborhood of radius r around the set V .

Definition 1.2 Let f be a regulated function and let F be the corresponding multifunction in (1.6). We say that a sequence of smooth functions f n converges f in the sense of the graph if, for every given ε > 0 and N > 0, one has

Graph f n [-N,N ] ⊂ B Graph(F ) , ε (1.7) 
for all n sufficiently large.

In other words, for all n sufficiently large, every point (x, f n (x)), with |x| ≤ N , is contained in an ε-neighborhood of the graph of F . We recall that this approach has been used in the literature, in the analysis of upper semicontinuous multifunctions with convex values [START_REF] Aubin | Differential inclusions. Set-valued maps and viability theory[END_REF][START_REF] Cellina | Approximation of set valued functions and fixed point theorems[END_REF], and to establish relations between ODEs and differential inclusions [START_REF] Cellina | Multivalued differential equations and ordinary differential equations[END_REF].

Our first main result shows that every deterministic semigroup S can be approximated by the semigroups S n generated by a sequence of smooth ODEs. ẋ = f n (x), x(0) = x 0 .

(1.8)

Theorem 1.1 Let f satisfy the assumptions (A1)-(A2). Let S : R×R + → R be a semigroup compatible with the ODE (1.1). Then there exists a sequence of smooth functions (f n ) n≥1 , converging to f in the sense of the graph, such that the following holds. For each x 0 ∈ R, calling t → S n t x 0 the unique solution to the Cauchy problem (1.8), one has the convergence lim n→∞ sup t≥0 S n t x 0 -S t x 0 = 0.

(1.9)

We remark that, since the map x 0 → S t x 0 can be discontinuous, one can only achieve the pointwise convergence for each fixed initial datum x 0 ∈ R. On the other hand, we can achieve uniform convergence w.r.t. the time variable t ∈ [0, +∞[ .

Example 1.1 Consider the discontinuous function f , and the corresponding multifunction F introduced at (1.6), defined by

f (x) =    -1 if x < 0, 0 if x = 0, 1 if x > 0, F (x) =    -1 if x < 0, [-1, 1] if x = 0, 1 if x > 0.
For any initial datum x(0) = x 0 = 0, the solution to (1.1) (forward in time) is unique. However, there are three deterministic semigroups compatible with the ODE (1.1), depending on how we choose the trajectory that starts at x(0) = 0. Namely, for all t ≥ 0, for k = 1, 2, 3, we must have

S (k) t x 0 = x 0 -t if x 0 < 0, x 0 + t if x 0 > 0.
On the other hand, when x 0 = 0 three definitions are possible: S

t x 0 = 0, S

t x 0 = t, S

t x 0 = -t.

Next, consider the three sequences of smooth nondecreasing functions f

(1)

n , f (2) 
n , f

n coinciding with f on ] -∞, -2[ ∪ ]2, +∞[ and satisfying for all x ∈ [-1, 1] f (1) n (x) = 2 π arctan(nx), f (2) n (x) = 2 π arctan(nx + 1), f (3) n (x) = 2 π arctan(nx -1).

Then, for every x 0 ∈ R and k = 1, 2, 3, the sequence of solutions to The second part of the paper is concerned with Markov semigroups. We consider a family of transition kernels P t (x 0 , A), denoting the probability that a solution starting at x 0 reaches a point in the Borel set A ⊂ R at time t. It is assumed that these transition kernels satisfy the Chapman-Kolmogorov equation P t+s (x 0 , A) = P t (z, A) P s (x 0 , dz).

ẋ = f (k) n (x), x ( 
(1.10)

Definition 1.3
We say that a family of transition kernels P t (•, •) defines a Markov semigroup compatible with the ODE (1.1) if the following holds. There exists a probability space W and a Markov process X(t, x 0 , ω), ω ∈ W, such that, for every x 0 ∈ R and every Borel set

A ⊂ R, Prob. X(t, x 0 , ω) ∈ A = P t (x 0 , A), (1.11) 
and moreover all sample paths t → X(t, x 0 , ω), ω ∈ W, are Carathéodory solutions to the Cauchy problem (1.1)-(1.2).

Our second main result shows that every one of these Markov semigroups can be obtained as a limit of a sequence of diffusion processes, of the form dX = f n (X) dt + σ n dW.

(1.12)

Here (f n ) n≥1 is a sequence of smooth functions, converging to f in the sense of the graph, while the diffusion coefficients σ n decrease to zero, as n → ∞. As usual, by W we denote the standard one-dimensional Wiener process.

It is well known that the transition probability kernel P (n) for (1.12) can be obtained as follows. Let Γ n (t, x; x 0 ) be the fundamental solution to the linear parabolic equation

v t + f n (x)v x = σ 2 n 2 v xx , (1.13) 
where the initial data is a unit mass at the point x 0 , namely

lim t→0+ Γ n (t, x; x 0 ) = δ x 0 (1.14)
in distributional sense. Then, for every t > 0 and every Borel set A ⊂ R,

P (n) t (x 0 , A) = A Γ n (t, y; x 0 ) dy. (1.15)
The next theorem shows that, by a suitable choice of the drifts f n , one can achieve the convergence P (n) → P in distribution.

Theorem 1.2 Let f satisfy the assumptions (A1)-(A2). Let P t (x 0 , A) be a family of transition kernels, defining a Markov semigroup compatible with the ODE (1.1). Then there exists a sequence of diffusion processes of the form (1.12) with f n ∈ C ∞ , such that

(i) f n → f in the sense of the graph, (ii) σ n → 0,
(iii) for every x 0 ∈ R and t > 0, the transition kernels converge in distribution. Namely, for every bounded continuous function ϕ ∈ C 0 (R), one has the convergence of the expected values lim

n→∞ ϕ(x)P (n) t (x 0 , dx) = ϕ(x)P t (x 0 , dx). (1.16) 
Here the heart of the matter is to construct a sequence of piecewise constant drifts f n ∈ L ∞ and diffusion coefficients σ n > 0 which satisfy (i)-(iii). The additional property f n ∈ C ∞ is then achieved by suitable mollifications. We again remark that, since in general the limit semigroup has no continuous dependence w.r.t. the initial point x 0 , the convergence P (n) t (x 0 , •) → P t (x 0 , •) can only be attained in a pointwise sense, for each initial point x 0 .

The remainder of the paper is organized as follows. Section 2 reviews some earlier results on discontinuous ODEs, while Section 3 contains a proof of Theorem 1.1. Finally, Theorem 1.2 is proved in Sections 4 to 6.

To explain the main ideas involved in these proofs we recall that, as proved in [START_REF] Bressan | Markovian solutions to discontinuous ODEs[END_REF], to single out a unique deterministic semigroup compatible with (1.1), three additional ingredients are needed:

(Q1) A continuum (i.e., atomless) positive measure µ supported on the set of zeroes (1.5) of f . Strictly increasing trajectories t → x(t) = S t (x 0 ) of the semigroup are then implicitly defined by the identity

t = x(t) x 0 dy f (y) + µ [x 0 , x(t)] ,
while a similar formula holds for decreasing ones. Notice that, if f -1 (0) is countable, then necessarily µ = 0. However, in [START_REF] Bressan | Markovian solutions to discontinuous ODEs[END_REF] an example was constructed where f -1 (0) ⊂ [0, 1] is the Cantor set, while f is Hölder continuous and strictly positive at all other points. In this case, different choices of the measure µ lead to infinitely many different semigroups, all compatible with the ODE.

(Q2) A countable set of points S ⊆ f -1 (0), where the dynamics is forced to stop. Among the (possibly many) solutions of (1.1) starting from x 0 ∈ S, this means that we are selecting the stationary one: S t (x 0 ) = x 0 for all t ≥ 0.

(Q3) A map Φ : Ω * → {-1, 1}, defined on a set Ω * ⊂ R of isolated points from where both an increasing and a decreasing solution of (1.1) can originate. For x 0 ∈ Ω * , setting Φ(x 0 ) = 1 selects the increasing solution, while Φ(x 0 ) = -1 selects the decreasing one.

To prove Theorem 1.1, we first identify maximal open intervals J k = ]x k-1 , x k [ where trajectories of the semigroup S are strictly increasing, or strictly decreasing. Then, to achieve the convergence (1.9), we construct a sequence of smooth functions f n with the following property.

For each interval J k where the dynamics is increasing and every two points a, b

∈ J k , if b = S τ a for some τ = τ (a, b), then lim n→∞ b a 1 f n (x) dx = τ.
(1.17)

Notice that (1.17) yields the convergence of the times needed for trajectories to move from a to b. We choose the f n so that the same property also holds on intervals where the dynamics is strictly decreasing.

Toward a proof of Theorem 1.2 we recall that, still by the results in [START_REF] Bressan | Markovian solutions to discontinuous ODEs[END_REF], a general Markov semigroup compatible with (1.1) is determined by adding two more items to the list (Q1)-(Q3). Namely:

(Q4) A countable set S * ⊂ f -1 (0) and a map Λ : S * → [0, +∞], describing the random waiting time of a trajectory which reaches a point x k ∈ S * . More precisely, a solution initially at x k ∈ S * remains at x k for a random time T k ≥ 0, then starts moving. All these random waiting times are mutually independent, with Poisson distribution:

Prob.{T k > s} = e -λ k s with λ k = Λ(x k ). (1.18) (Q5) A map Θ : Ω * → [0, 1]
, defined on the countable set Ω * ⊂ R of points from which both an increasing and a decreasing solution of (1.1) can originate. For x k ∈ Ω * , the value θ k = Θ(x k ) gives the probability that, when the solution starting from x k begins to move, it will be increasing. Of course, 1 -θ k is then the probability that the solution will be decreasing.

We remark that S * and Ω * can have a nonempty intersection.

After various approximations and reductions, discussed in Sections 4 and 5, we are led to study a discontinuous ODE having the basic form

ẋ = f (x) =    a if x < 0, 0 if x = 0, b if x > 0, (1.19) 
for some a, b = 0. For a Markov semigroup compatible with (1.19), three main cases must be considered, see Fig. 1.

CASE 1: a, b > 0 and all trajectories reaching the origin remain at the origin forever after.

x 0 x 0 x 0 For the above three cases, sequences of piecewise constant drifts g n achieving the desired convergence are constructed in (6.6), (6.10), and (6.23), respectively.

The approximation of a random waiting time (1.20) requires a more careful analysis. This is based on the preliminary construction of a family of eigenfunctions u n of a corresponding rescaled problem on the interval [0, 1], with eigenvalues λ n → λ. To help the reader, the distribution function for the limit Markov semigroup is shown in Fig. 7. In addition, a lower and an upper solution to the parabolic equation describing the approximating diffusion process are shown in Figures 8 and9, respectively.

The convergence of a sequence of stochastic processes to a diffusion process is a classical topic in probability theory. See for example [START_REF] Gihman | The Theory of Stochastic Processes, Vols. I, II, and III[END_REF][START_REF] Karlin | A Second Course in Stochastic Processes[END_REF] or Chapter 11 in [START_REF] Stroock | Multidimensional Diffusion Processes[END_REF]. The present result goes in the converse direction, approximating a Markov process with smooth diffusions. For a survey of results on solutions to generalized ODEs, the reader is refereed to [START_REF] Biles | A survey of recent results for the generalizations of ordinary differential equations[END_REF].

Review of scalar discontinuous ODEs

As a preliminary, we collect here some basic results on the existence and properties of solutions to a Cauchy problem with possibly discontinuous right hand side. In the following theorem, the first two statements are proved in somewhat greater generality in [START_REF] Binding | The differential equation ẋ = f • x[END_REF]. On the other hand, the closure of the solution set strongly relies on the assumption (A1) that the function f is regulated. See [START_REF] Bressan | Markovian solutions to discontinuous ODEs[END_REF] for a proof. 2), assuming that (A1)-(A2) hold. Then (i) For every x 0 ∈ R there exists at least one Carathéodory solution, defined for all times t ≥ 0.

(ii) Every solution is monotone (either increasing or decreasing).

(iii) If x n : [0, τ ] → R is a sequence of solutions of (1.1), and the pointwise convergence x n (t) → x(t) holds for every t ∈ [0, τ ], then x(•) is a solution as well.

The general form of a semigroup S compatible with the ODE (1.1) was described in [START_REF] Bressan | Markovian solutions to discontinuous ODEs[END_REF]. To uniquely determine one of these semigroups, together with the ODE one needs to assign a positive, atomless measure µ supported on f -1 (0), a countable set S ⊆ f -1 (0), and a map Φ : Ω * → {-1, 1}, as described at (Q1)-(Q3) in the Introduction.

We briefly review the construction in [START_REF] Bressan | Markovian solutions to discontinuous ODEs[END_REF]. Given f , consider the regulated functions • If α i / ∈ S and, for some ε > 0

f + (x) . = max{0, f (x)}, f -(x) . = min{0, f (x)}. (2.1) Definition 2.1 We say that an open interval ]a, b[ is a domain of increase if ]a, b[ ∩ S = ∅, µ([c, d]) + d c dx f + (x) < + ∞ for all [c, d] ⊂ ]a, b[ . (2.2) 
Similarly, we say that ]a, b[ is a domain of decrease if ]a, b[ ∩ S = ∅, µ([c, d]) - d c dx f -(x) < + ∞ for all [c, d] ⊂ ]a, b[ . ( 2 
µ([α i , α i + ε]) + α i +ε α i dx f + (x) < + ∞, (2.4) 
we then consider the half-open interval

I + i . = [α i , β i [ . Otherwise, we let I + i be an open interval: I + i . = ]α i , β i [ . • If δ i / ∈ S and, for some ε > 0 µ([δ i -ε, δ i ]) - δ i δ i -ε dx f -(x) < + ∞, (2.5) 
we then consider the half-open interval

I - i . = ]γ i , δ i ] .
Otherwise, we let I - i be an open interval:

I - i . = ]γ i , δ i [ .
For each i ∈ I + , we now describe the increasing dynamics on the intervals I + i . Given x 0 ∈ I + i , we consider the time

τ + (x 0 ) . = µ([x 0 , β i ]) + β i x 0 dy f + (y) ∈ ]0, +∞].
We then set

S + t (x 0 ) . = x(t), (2.6) 
where x(t) is implicitly defined by

     µ([x 0 , x(t)]) + x(t) x 0 dy f + (y) = t if t < τ + (x 0 ), x(t) = β i if t ≥ τ + (x 0 ).
(2.7)

The construction of the decreasing dynamics on the intervals I - i is entirely similar. Given x 0 ∈ I - i , we consider the time

τ -(x 0 ) . = µ([γ i , x 0 ]) - x 0 γ i dy f -(y) ∈ ]0, +∞].
We then set

S - t (x 0 ) . = x(t), (2.8) 
where x(t) is implicitly defined by

     µ([x(t), x 0 ]) - x 0 x(t) dy f -(y) = t if t < τ -(x 0 ), x(t) = β i if t ≥ τ -(x 0 ).
(2.9)

We can now combine together the above solutions, and define the semigroup S on the whole real line, as follows.

S t (x 0 ) =          x 0 if x 0 / ∈ i I + i ∪ i I - i , S + t (x 0 ) if x 0 ∈ i I + i \ i I - i , S - t (x 0 ) if x 0 ∈ i I - i \ i I + i .
(2.10)

To complete the definition, it remains to define S t (x 0 ) in the case x 0 ∈ I + i ∩ I - j , for some i ∈ I + , j ∈ I -. Notice that this can happen only if

x 0 = α i = δ j ,
where

I + i = [α i , β i [ and I - j = ]γ j , δ j ]
are half-open intervals where the dynamics is increasing and decreasing, respectively. By our definitions, this implies x 0 ∈ Ω * . Recalling (Q3), we thus define

S t (x 0 ) = S + t (x 0 ) if Φ(x 0 ) = 1, S - t (x 0 ) if Φ(x 0 ) = -1.
(2.11)

The first main result in [START_REF] Bressan | Markovian solutions to discontinuous ODEs[END_REF] shows that every semigroup compatible with the ODE (1.1) has the above form. (ii) There exist a positive atomless measure µ supported on the set f -1 (0), a countable set of points S ⊆ f -1 (0), and a map Φ : Ω * → {-1, 1} as in (Q1)-(Q3) such that S coincides with the corresponding semigroup constructed at (2.6)- (2.11).

Next, we consider a Markov semigroup whose sample paths satisfy the ODE (1.1) with probability one. To uniquely determine such a Markov process, in addition to (Q1)-(Q2) one needs to assign:

• A countable set S * = {y j ; j = 1, 2, . . .} ⊆ f -1 (0)
and, for each y j ∈ S * , a number λ j > 0 characterizing the Poisson waiting time, when trajectories reach the point y j ∈ S * , as in (Q4).

• A map Θ : Ω * → [0, 1] determining the probability of moving upwards or downwards, from an initial point z k ∈ Ω * , as in (Q5).

We start by selecting an underlying probability space W and countably many independent random variables

Y j : W → R + and Z k : W → {-1, 1} whose distributions satisfy Prob.{Y j > s} = e -λ j s for all s > 0, Prob.{Z k = 1} = Θ(z k ). (2.12) 
Next, we recall that, given the measure µ and the countable set S, as above one can uniquely determine the sets

Ω + = i∈I + I + i , Ω -= i∈I - I - i (2.13)
consisting of countable unions of disjoint intervals where the dynamics can increase or decrease, respectively. For x 0 ∈ Ω + , a trajectory t → S + t (x 0 ) was defined at (2.6)-(2.7), while for x 0 ∈ Ω -, a trajectory t → S - t (x 0 ) was defined at (2.8)-(2.9).

To construct a Markov process with sample paths t → X(t, x 0 , ω) satisfying (1.1)-(1.2), for every t > 0 we need to define the transition probabilities

P t (x 0 , A) = Prob. X(t, x 0 , ω) ∈ A ,
for any initial point x 0 ∈ R and any Borel set A ⊂ R. Recalling our construction of a deterministic flow at (2.10)-(2.11), this can be done as follows.

(i) If x 0 / ∈ Ω + ∪ Ω -, then X(t, x 0 , ω) = x 0 for every t ≥ 0 and ω ∈ Ω. Hence

P t (x 0 , {x 0 }) = 1 for all t ≥ 0. (2.14)
In other words, all trajectories starting at x 0 remain constant.

(ii) If x 0 ∈ Ω + \ Ω -, a random trajectory starting at x 0 will have the form

X(t, x 0 , ω) = S + T + (t,x 0 ,ω) (x 0 ) , (2.15) 
where the time T + along the trajectory is a random variable with distribution

Prob. T + (t, x 0 , ω) < s = Prob.    s + y j ∈S * ∩[x 0 , S + s (x 0 )] Y j (ω) > t    . (2.16)
Note that (2.16) accounts for the (possibly countably many) waiting times when the trajectory crosses one of the points y j ∈ S * . The transition probabilities are thus given by

P t x 0 , ] -∞, x 0 [ = 0, P t x 0 , [x 0 , S + s (x 0 )] = Prob.    s + y j ∈S * ∩[x 0 , S + s (x 0 )] Y j (ω) ≥ t    .
(2.17) (iii) Similarly, for an initial state x 0 ∈ Ω -\ Ω + , a random trajectory starting at x 0 will have the form

X(t, x 0 , ω) = S - T -(t,x 0 ,ω) (x 0 ) , (2.18) 
where the time T -along the trajectory is a random variable with distribution

Prob. T -(t, x 0 , ω) < s = Prob.    s + y j ∈S * ∩[S - s (x 0 ), x 0 ] Y j (ω) > t    . (2.19)
The transition probabilities are thus given by

P t x 0 , ]x 0 , +∞[ = 0, P t x 0 , [S - s (x 0 ), x 0 ] = Prob.    s + y j ∈S * ∩[S - s (x 0 ), x 0 ] Y j (ω) ≥ t    . (2.20) 
(iv) To complete the definition, it remains to define the transition probabilities in the case

x 0 ∈ Ω + ∩ Ω -⊆ Ω * .
In this case, by construction we have x 0 = z k for some k. We then define the random variable X(t, x 0 , ω) by setting

X(t, x 0 , ω) =    S + T + (t,x 0 ,ω) (x 0 ) if Z k (ω) = 1 , S - T -(t,x 0 ,ω) (x 0 ) if Z k (ω) = -1 .
(2.21) By (2.12), its distribution satisfies

P t (x 0 , A) = Θ(x 0 )•Prob. S + T + (t,x 0 ,ω) (x 0 ) ∈ A +(1-Θ(x 0 ))•Prob. S - T -(t,x 0 ,ω) (x 0 ) ∈ A (2.22) for every Borel set A ⊆ R.
From the above construction it is clear that, in all cases (i)-(iv), every sample path t → X(t, x 0 , ω) is a Carathéodory solution of the Cauchy problem (1.1)-(1.2). Indeed, we are only adding a countable number of waiting times, when the random trajectories reach one of the points y j ∈ S * ⊆ f -1 (0). We conclude by stating the second main result proved in [START_REF] Bressan | Markovian solutions to discontinuous ODEs[END_REF].

Theorem 2.3 Let f be a function satisfying (A1)-(A2). The following statements are equivalent.

(I) The random variables X(t, x 0 , ω) yield a Markov process whose sample paths are solutions to the ODE (1.1)-(1.2).

(II) There exist: (i) a positive, atomless Borel measure µ supported on f -1 (0), (ii) a countable set S ⊆ f -1 (0) of stationary points, (iii) a countable set S * = {y j : j ≥ 1} ⊆ f -1 (0) and corresponding numbers λ j > 0 determining the Poisson waiting times, and (iv) a map Θ : Ω * → [0, 1], such that the transition kernels P t (x 0 , A) = Prob.{X(t, x 0 , ω) ∈ A} coincide with the corresponding ones constructed at (2.14), (2.17), (2.20), (2.22).

Approximating a deterministic semigroup by smooth flows

In this section we give a proof of Theorem 1.1, in several steps.

1.

In analogy with Definition 2.1, we introduce: Definition 3.1 Given the semigroup S : R × R + → R, we say that

• an interval J = [a, b[ or J = ]a, b[ (open to the right
) is a domain of increasing dynamics if, for every x 0 , x ∈ J with x 0 < x there exists t > 0 such that x = S t x 0 ;

• an interval J =]a, b] or J = ]a, b[ (open to the left
) is a domain of decreasing dynamics if, for every x 0 , x ∈ J with x < x 0 there exists t > 0 such that x = S t x 0 .

We observe that, if two domains of increasing (decreasing) dynamics J, J have nonempty intersection, then the union J ∪ J is also an interval of increasing (decreasing) dynamics. We can thus partition the real line as

R = Ω + S ∪ Ω - S ∪ Ω 0 S (3.1)
where

• Ω + S = i∈J + J + i is the union of countably many disjoint intervals J + i = [a i , b i [ or J + i = ]a i , b i [ open to the right
, where the dynamics is strictly increasing and b i cannot be crossed from the left, i.e.

S t (b i -ε) ≤ b i for all t ≥ 0, ε ∈]0, b i -a i [. • Ω - S = i∈J - J - i is the union of countably many disjoint intervals J - i = ]c i , d i ] or J - i = ]c i , d i [ open to the left
, where the dynamics is strictly decreasing and c i cannot be crossed from the right, i.e. S t

(c i + ε) ≥ c i for all t ≥ 0, ε ∈]0, d i -c i [. • Ω 0 S ⊆ f -1 (0)
is the set of points x 0 such that S t (x 0 ) = x 0 for all t > 0.

Let µ be the positive atomless measure supported on the set f -1 (0), described at (Q1). Recall that µ is finite in any compact subset of J + i or J - i .

2. Let ε > 0 be given. As an intermediate step, we shall approximate f with a piecewise constant function g ε . Consider the two sets of indices

J + ε . = i ∈ J + ; |J + i | = b i -a i ≥ ε , J - ε . = i ∈ J -; |J - i | = d i -c i ≥ ε , (3.2)
labelling the intervals with length ≥ ε. For each i ∈ J + ε , on the interval J + i where the dynamics is increasing we perform the following construction.

CASE 1: If J + i =]a i , b i [ is bounded and open, we insert points a i < x i,1 < • • • < x i,N i < b i so that ε 3 < x i,1 -a i < ε, ε 3 < b i -x i,N i < ε, x i,k -x i,k-1 < ε (3.3) τ i,k . = x i,k x i,k-1 dy f (y) + µ x i,k-1 , x i,k < ε for all k ∈ {2, . . . , N i }. (3.4)
We then define the piecewise constant function g ε :

a i + ε 3 , b i - ε 3 → R by setting g ε (x) = 0 for all x ∈ a i + ε 3 , x i,1 ∪ x i,N i , b i - ε 3 , g ε (x) = x i,k -x i,k-1 τ i,k if x ∈ x i,k-1 , x i,k for some k ∈ {2, . . . , N i } . CASE 2: If J + i = [a i , b i [ is bounded and half-open, we insert points a i = x i,0 < x i,1 < • • • < x i,N i < b i so that ε 3 < b i -x i,N i < ε, x i,k -x i,k-1 < ε (3.5) τ i,k . = x i,k x i,k-1 dy f (y) + µ x i,k-1 , x i,k < ε for all k ∈ {1, . . . , N i } . (3.6) 
We then define the piecewise constant function g ε :

a i - ε 3 , b i - ε 3 → R by setting g ε (x) = 0 for all x ∈ x i,N i , b i - ε 3 , g ε (x) = x i,k -x i,k-1 τ i,k if x ∈ x i,k-1 , x i,k for some k ∈ {2, . . . , N i } , g ε (x) = x i,1 -x i,0 τ i,1 if x ∈ a i - ε 3 , x i,1 .
If J + i is unbounded, we can perform the same construction as above by inserting countably many points. In this case, N i = ∞.

Next, for each i ∈ J - ε , we perform an entirely similar construction on the interval

J - i =]c i , d i [ or J - i =]c i , d i ]
where the dynamics is decreasing. Notice that the choice (3.3), (3.5) of the nodes x i,k of each partition imply that the domains where the functions g ε are defined are strictly disjoint.

We then extend the function g ε to the whole real line R, by defining g ε (x) = 0 on the remaining set.

3. In this step, we approximate g ε with a smooth function f ε : R → R, with the following properties.

(i) Introducing the convex valued multifunction

G ε (x) . = co{g ε (x+), g ε (x-)}, one has Graph(f ε ) ⊆ B (Graph(G ε ), ε). Moreover, f ε (x) = 0 for all x ∈ R \   i∈J + ε a i - ε 2 , b i ∪ i∈J - ε c i , d i + ε 2   . (3.7) (ii) For every i ∈ J + ε , if J + i = ]a i , b i [ is open then f ε (a i ) = 0 and x i,k x i,k-1 dy f + ε (y) = τ i,k for all k = 2, . . . , N i ; (3.8)
On the other hand, if

J + i = [a i , b i [ is half open, then (3.8 
) holds for all k = 1, . . . , N i . (iii) The analogous conditions hold for the intervals

J - i with i ∈ J - ε .
Notice that all the above properties can be achieved by a suitable mollification.

4. We claim that, as ε → 0+, the functions f ε converge to f in the sense of the graph. Since Graph(f ε ) ⊆ B (Graph(G ε ), ε), it will be sufficient to show that

(x, g ε (x)) ∈ B Graph(F ), 4ε 3 for all x ∈ R, (3.9) 
since this yields Graph(G ε ) ⊆ B Graph(F ), 4ε 3 . Let us prove (3.9) for g ε (x) = 0.

• If x ∈ a i - ε 3 , b i for some i ∈ J + ε then x ∈ a i - ε 3 , x i,1 or x ∈ x i,k-1 , x i,k for some k ∈ {2, . . . , N i }. Assume that x ∈ a i - ε 3 , x i,1 . Then g ε (x) = 1 τ i,1 • τ i,1 0 f (S s (x i,0 ))ds ∈ inf y∈[x i,0 ,x i,1 ] f (y), sup y∈[x i,0 ,x i,1 ]
f (y) .

Thus, since 0

< x i,1 -a i < ε, it follows that (x, g ε (x)) ∈ B Graph(F ), 4ε 3 . Otherwise, if x ∈ x i,k-1 , x i,k for some k ∈ {2, . . . , N i }, then g ε (x) = 1 τ i,k • τ i,k 0 f (S s (x i,k-1 ))ds ∈   inf y∈ x i,k-1 ,x i,k f (y), sup y∈ x i,k-1 ,x i,k f (y)   ,
and this implies that (x, g ε (x)) ∈ (Graph(F ), ε).

• Similarly, one can show that (3.9

) holds if x ∈ c i , d i + ε 3 for some i ∈ J - ε .
Let us now prove (3.9) in the case where g ε (x) = 0. This is trivial when

x ∈ Ω 0 S . On the other hand, if x / ∈ Ω 0 S ∪ i∈J + ε I + i ∪ i∈J - ε I - i , then |x -c i | < ε for some i / ∈ J + ε or |x -b i | < ε for some i / ∈ J - ε . Recalling that f (c i ) = f (b i ) = 0, we obtain (3.9). Now, assuming that x ∈ J + i for some i ∈ J + ε , we have |x -b i | ≤ 4 3 • ε or |x -a i | ≤ ε, a i / ∈ J + i . If |x-b i | ≤ 4 3 ε then (3.9) holds because f (b i ) = 0. Otherwise, since a i / ∈ J + i , one has f (a i ) = 0 or f (a i -) < 0 < f (a i +)
and this also implies (3.9).

Similarly, one can show that (3.9) holds if x ∈ J - i for some i ∈ J - ε .

5.

To complete the proof, it remains to show that, for each x 0 ∈ R, the unique solution t → S ε t x 0 to the Cauchy problem

ẋ = f ε (x), x(0) = x 0 , converges uniformly to t → S t x 0 , i.e. lim ε→0+ sup t≥0 S ε t (x 0 ) -S t (x 0 ) = 0. (3.10)
Several cases will be considered:

CASE 1: x 0 ∈ J + i , where i ∈ J + ε and J + i = ]a i , b i [ is open. For every ε such that 0 < ε < min x 0 -a i , b i -x 0 , 3 7 , 
one then has

f ε ∞ ≤ f ∞ + 7ε 3 ≤ M + 1 and x 0 ∈ x i,k-1 , x i,k for some k ∈ {2, . . . , N i }. Let τ 0 , τ ε 0 ∈ ]0, ε[ be such that S τ 0 (x 0 ) = S ε τ ε 0 (x 0 ) = x i,k . For any 0 < t < max{τ 0 , τ ε 0 } one has S ε t (x 0 ) -S t (x 0 ) ≤ (M + 1)ε.
On the other hand, if t ≥ max{τ 0 , τ ε 0 }, we have

S ε t (x 0 ) -S t (x 0 ) = S ε t-τ ε 0 x i,k -S t-τ 0 x i,k ≤ S ε t-τ ε 0 x i,k -S ε t-τ 0 x i,k + S ε t-τ 0 x i,k -S t-τ 0 x i,k ≤ (M + 1)ε + S ε t-τ 0 x i,k -S t-τ 0 x i,k .
To estimate the second term S ε t-τ 0 x i,k -S t-τ 0 x i,k , we consider two subcases:

• if S t-τ 0 x i,k ∈ x i,k 0 -1 , x i,k 0 for some k 0 ∈ {k + 1, . . . , N i }, then by (3.8) we have that 0 ≤ t -τ 0 - k 0 -1 k =k+1 τ i,k < τ i,k 0 and S ε t-τ 0 x i,k -S t-τ 0 x i,k = S ε t-τ 0 - k 0 -1 k =k+1 τ i,k x i,k 0 -1 -S t-τ 0 -k 0 -1 k =k+1 τ i,k x i,k 0 -1 ≤ x i,k 0 -x i,k 0 -1 ≤ ε ; • Otherwise, if S t-τ 0 x i,k ∈ x i,N i , b i then S ε t-τ 0 x i,k -S t-τ 0 x i,k = S ε t-τ 0 - N i k =k+1 τ i,k x i,N i -S t-τ 0 -N i k =k+1 τ i,k x i,N i ≤ b i -x i,N i < ε.
In all cases we conclude

S ε t (x 0 ) -S t (x 0 ) ≤ (M + 2)ε for all t ≥ 0 . (3.11) CASE 2: x 0 ∈ J + i , where i ∈ J + ε and J + i = [a i , b i [ is half-open. Choosing ε < b i -x 0 ,
we can obtain (3.11) in a similar way as in Case 1.

CASE 3: x 0 ∈ J - i , with i ∈ J - ε .
The estimates are analogous to the previous ones.

CASE 4: x 0 ∈ Ω 0 S i / ∈J + ε I + i i / ∈J - ε I - i .
In this case, we have that

|S t (x 0 ) -x 0 | < ε for all t ≥ 0.
(3.12)

If x 0 = a i for some i ∈ J + ε or x 0 = d i for some i ∈ J - ε , then S ε t (x 0 ) = x 0 = S t (x 0 ) for any t, ε > 0. Otherwise, choosing ε > 0 such that

x 0 / ∈ a i - ε 2 , a i for all i ∈ J + ε and x 0 / ∈ d i , d i + ε 2 for all i ∈ J - ε ,
we obtain S ε t (x 0 ) = x 0 for all t ≥ 0. Hence (3.12) yields (3.10).

Markov semigroups with a simpler dynamics

According to Theorem 2.3, a Markov semigroup compatible with the ODE (1.1) is uniquely determined by the positive, atomless measure µ supported on f -1 (0), the countable sets S, S * , and the maps Λ : S * → R + , Θ : Ω * → [0, 1], following the construction in Section 2.

The next lemma shows that this random dynamics can be approximated with a simpler one, where the function f is piecewise constant, the measure µ vanishes, and the sets S, S * , Ω * contain finitely many points. Here and throughout the following, on the set of Lipschitz functions ϕ : R → R, we use the norm

ϕ Lip = ϕ W 1,∞ = max sup x |ϕ(x)| , sup x =y |ϕ(x) -ϕ(y)| |x -y| . ( 4.1) 
Lemma 4.1 Let f satisfy the assumptions (A1)-(A2), and let P t = P t (x 0 , A) be the transition kernels for a Markov semigroup, compatible with (1.1). Then, for any given T, R > 0, there exists a sequence of transition kernels P n t = P n t (x 0 , A), such that

lim n→∞ sup t∈[0,T ],|x 0 |≤R sup ϕ Lip ≤1 ϕ(x)P n t (x 0 , dx) -ϕ(x)P t (x 0 , dx) = 0. (4.2)
For each n ≥ 1, the transition kernels

P n t (•, •) define a Markov semigroup compatible with an ODE ẋ = f n (x), (4.3) 
where f n is piecewise constant with compact support. The functions f n converge to f in the sense of the graph. Moreover, the corresponding sets S n , S * n , Ω * n are finite and disjoint, while all the measures µ n vanish.

Proof. For every fixed N ≥ 1, consider the Markov process X N obtained by stopping the motion as soon as it exits from the interval [-N, N ]. This is achieved by inserting a stopping time τ N :

X N (t, x 0 , ω) = X τ N , x 0 , ω , where τ N (x 0 , ω) . = min t ≥ 0 ; X(t, x 0 , ω) ≥ N .
The corresponding transition kernels P N t (x 0 , •) define a Markov semigroup compatible with the ODE ẋ = f N (x), where

f N (x) = f (x) if |x| < N, 0 if |x| ≥ N.
For every given x 0 ∈ R and t ≥ 0, as soon as N ≥ M t + |x 0 | we have the identity

P N t (x 0 , A) = P t (x 0 , A) for all Borel set A ⊆ R.
Here M is the upper bound on |f |, introduced in the assumption (A1). Each f N has a compact support, and moreover the functions f N converge to f in the sense of the graph.

By replacing f with f N , it thus suffices to consider the case where f has compact support. The proof will be given in several steps.

1. We begin by identifying the set of points where the dynamics stops forever:

Ω 0 X = x ∈ R ; Prob.{X(1, x, ω) = x} = 1 ⊆ f -1 (0).
We also introduce:

Definition 4.1 We say that a right-open interval J + = ]a, b[ or J + = [a, b[ is an interval of increase if lim t→∞ Prob.{X(t, x 1 , ω) > x 2 } = 1 for all x 1 , x 2 ∈ J + with x 1 < x 2 .
Similarly, a left-open interval

J -= ]c, d[ or J -=]c, d] is an interval of decrease if lim t→∞ Prob.{X(t, x 1 , ω) < x 2 } = 1 for all x 1 , x 2 ∈ J - k with x 1 > x 2 .
If J + 1 , J + 2 are two intervals of increase, with J + 1 ∩ J + 2 = ∅, then the union J + 1 ∪ J + 2 is also an interval of increase. The same of course is true for intervals of decrease. We can thus identify countably many maximal intervals of increase

J + k = ]a k , b k [ or [a k , b k [, k ∈ J + ,

and countably many maximal intervals of decrease J

- k =]c k , d k [ or ]c k , d k ], k ∈ J -.
As in Theorem 2.3, the set of points where the dynamics stops for a random waiting time is

S * = x ∈ R ; 0 < Prob.{X(1, x, ω) = x} < 1 .
We also consider the countable set of stationary points

S = {a k , b k ; k ∈ J + } ∪ {c k , d k ; k ∈ J -} ∩ Ω 0 X .
2. Next, given ε > 0, among all the maximal intervals of increase or decrease, we select a finite number, chosen as follows:

(i) All maximal intervals whose length satisfies b k -a k > ε, or d k -c k > ε. (ii) All maximal intervals to the left ]z - k , z k [ or to the right ]z k , z + k [ of a point z k ∈ Ω * ,
from where both a decreasing and an increasing trajectory can initiate, whose length satisfies

z + k -z - k > ε.
It is clear that the above rules select a finite set of intervals J k , k = 1, . . . , N . We now define a new dynamics, setting

f ε (x) = 0 for all x / ∈ Ω * ∪ J 1 ∪ • • • ∪ J N , f (x) otherwise. (4.4)
By construction, we have

X ε (t, x 0 , ω) = x 0 for all t ≥ 0, x 0 / ∈ Ω * ∪ J 1 ∪ • • • ∪ J N and X ε (t, x 0 , ω) -X(t, x 0 , ω) ≤ ε for all t ≥ 0, x 0 ∈ R. (4.5) 
Hence, calling P ε t the corresponding transition probability kernels, for every given (t, x 0 ) ∈ [0, ∞[×R and every continuous function ϕ, we have

E[ϕ(X ε (t, x 0 , ω))] -E[ϕ(X(t, x 0 , ω))] ≤ W |ϕ(X ε (t, x 0 , ω)) -ϕ(X(t, x 0 , ω))| d Prob.(ω) ≤ sup |ϕ(s 1 ) -ϕ(s 2 )| ; s 1 , s 2 ∈ [x 0 -tM, x 0 + tM ], |s 1 -s 2 | ≤ ε .
(4.6) Since ϕ is uniformly continuous on bounded intervals, as ε → 0 the right hand side of (4.6) approaches zero. This implies the convergence lim ε→0 ϕ(x)P ε t (x 0 , dx) = ϕ(x)P t (x 0 , dx). (4.7)

Thanks to the previous arguments, we can now assume that the dynamics is stationary outside a finite number of intervals of increase or decrease. As shown in Fig. 2, three cases must be considered: 

j a b a b k k j [ [ [ [ z k z k _ z k + ] ]
k . = ]a k , b k [ , of length b k -a k > ε.
In this case, we consider the smaller interval

J k,ε . =      ]a k , b k -ε/2[ if µ(]a k , a k + ε/2[) < ∞ ]a k + δ ε , b k -ε/2[ if µ(]a k , a k + ε/2[) = ∞ where 0 < δ ε < ε/2 sufficiently small such that µ([a k + δ ε , a k + ε]) > T and so X(T, x 0 , ω) < a k + ε for every x 0 ∈]a k , a k + δ ε [. Case 2: a half-open maximal interval of increase J j . = [a j , b j [ , of length b j -a j > ε.
In this case, we consider the smaller interval J j,ε . = [a j , b j -ε/2[ . Case 3: a point z k ∈ Ω * , from where both increasing and decreasing trajectories can originate, with probability θ ∈ [0, 1] and 1 -θ, respectively. We then call ]z - k , z k [ and ]z k , z + k [ the corresponding maximal intervals of decrease and of increase, to the left and to the right of

z k such that z + k -z - k > ε. In this case, we set J k . = ]z - k , z + k [ and consider the smaller interval J k,ε . = ]z - k + ε(z k -z - k ), z + k -ε(z + k -z k )[ .

3.

In all three cases, we modify the dynamics by setting

f ε (x) = 0 if x ∈ J k \ J k,ε . (4.8) 
In other words, the dynamics is stopped outside J k,ε . This implies

X ε (t, x 0 , ω) = x 0 for all x 0 ∈ J k \ J k,ε . (4.9) 
Moreover, for x 0 ∈ J k,ε , in Cases 1 and 2 we have

X ε (t, x 0 , ω) = min X(t, x 0 , ω), b k -ε/2 ,
while in Case 3:

X ε (t, x 0 , ω) =          X(t, x 0 , ω) if X(t, x 0 , ω) ∈ [z - k + ε(z k -z - k ) , z + k -ε(z + k -z k )] , z - k + ε(z k -z - k ) if X(t, x 0 , ω) ≤ z - k + ε(z k -z - k ), z + k -ε(z + k -z k ) if X(t, x 0 , ω) ≥ z + k -ε(z + k -z k ).
Since the new dynamics is stationary on each J k \ J k,ε , the set S * of points where a random waiting time occurs, as well as the measure µ, can now be replaced by S * ε and µ ε respectively. Here

S * ε . = S * ∩ k J k,ε , µ ε (A) . = µ A ∩ k J k,ε , (4.10) 
for every Borel set A.

We observe that, for a fixed x 0 , we have

X ε (t, x 0 , ω) -X(t, x 0 , ω) ≤ ε for all t ∈ [0, T ], ω ∈ W (4.11)
Therefore, the same argument used at (4.6) implies the convergence (4.7).

4.

For a fixed ε > 0, consider the approximate dynamics constructed in the previous step. We claim that the measure µ ε in (4.10) has finite total mass. Indeed, consider an interval

J k = ]a k , b k [ with µ(]a k , a k + ε/2[) = ∞, as in a subcase of Case 1.
Since J k is the interval of increase, by Definition 4.1 there are some random trajectories starting at a k + δ ε and reaching b k -ε/2 in finite time. But, for every trajectory, the time needed to cross the whole interval J k,ε is ≥ µ(J k,ε ). Hence this value must be finite. The other two cases are entirely similar.

Since the intervals J k,ε are finitely many, this implies

µ ε (R) = N k=1 µ(J k,ε ) < + ∞.

5.

Next, by a further approximation, we can modify the dynamics so that each interval J k,ε , k = 1, . . . , N , contains at most finitely many points y j ∈ S * and thus the set S * is finite. To justify this, let us consider a maximal interval of increase J k,ε , as in Case 1. By Definition 4.1, there is a positive probability of moving from a k + ε/2 to b k -ε/2 in finite time. Hence, for some t > 0 one has

η . = Prob. {X(t, a k + ε/2, ω) ≤ b k -ε/2} < 1 .
By the Markov property, we have

Prob. {X(mt, a k + ε/2, ω) < b k -ε/2} ≤ η m .
This implies that the sum of all random waiting times Y j ∈ J k,ε satisfies Prob.

   y j ∈[a k +ε/2,b k -ε/2] Y j ≥ mt    ≤ η m for all m ≥ 1.
In particular,

E   y j ∈[a k +ε/2,b k -ε/2[ Y j   = y j ∈[a k +ε/2,b k -ε/2[ 1 λ j < + ∞.
Given an auxiliary constant δ > 0, we can now

• remove all waiting times Y j with

y j ∈ [a k , a k + ε/2] ∪ [b k -ε/2, b k ],
• choose N k large enough so that

E   y j ∈J k,ε , j>N k Y j   = y j ∈J k,ε , j>N k 1 λ j < δ, (4.12) 
and remove all waiting times Y j with

y j ∈ ]a k + ε/2, b k -ε/2[ and j > N k .
This will produce a new family of random trajectories X ε (•, x 0 , ω). Since we are removing some of the waiting times, within the interval J k,ε the new trajectories will be shifted forward, by an amount

0 ≤ X ε (t, x 0 , ω) -X ε (t, x 0 , ω) ≤ M •   y j ∈J k,ε , j>N k Y j (ω)   , (4.13) 
where M is the upper bound on f , introduced in (A1).

For any given δ > 0, we now set

W δ . =    ω ∈ W ; M •   y j ∈J k,ε , j>N k Y j (ω)   ≥ √ δ    . By Chebyshev's inequality, it follows Prob.(W δ ) ≤ M √ δ • E     y j ∈J k,ε , j>N k Y j (ω)     ≤ M √ δ.
Therefore, given any x 0 ∈ J k,ε and t > 0, and any bounded continuous function ϕ, using (4.13) we estimate

E[ϕ( X ε (t, x 0 , ω))] -E[ϕ(X(t, x 0 , ω))] ≤ W ϕ( X ε (t, x 0 , ω)) -ϕ(X ε (t, x 0 , ω)) dProb.(ω) ≤ 2 ϕ ∞ • Prob.(W δ ) + W\W δ ϕ( X ε (t, x 0 , ω)) -ϕ(X ε (t, x 0 , ω)) dProb.(ω) ≤ 2M ϕ ∞ • √ δ + sup s 1 ,s 2 ∈J k,ε , |s 1 -s 2 |≤ √ δ ϕ(s 1 ) -ϕ(s 2 ) .
(4.14) By choosing δ > 0 in (4.12) sufficiently small, the difference of the expectations in (4.14) can be rendered as small as we like.

The same ideas apply to intervals such as

J k = [a k , b k [ or ]z - k , z + k [ ,
described in Cases 2 and 3 respectively. Of course, intervals of decrease can be handled in the same way.

6.

In general, the semigroup may contain an exponential waiting time also at points z k ∈ Ω * where trajectories can move both upward or downward, with given probabilities. However, we can construct an approximation so that the two sets S * and Ω * are disjoint. Indeed, consider a point in the intersection: z k = y j ∈ Ω * ∩ S * , for some indices k, j. Since S * is finite, we can choose ε > 0 small enough so that the interval

[y j , y j ] . = [y j -ε , y j + ε]
does not contain any other point of S * . We now redefine f at these two points, by setting f (y j ) = f (y j ) = 0. Moreover, we construct a new family of transition kernels P ε t (•, •) by removing the random waiting time Y j at the point y j = z k , and inserting two waiting times Y j = Y j = Y j defined on the same probability space W, at the two points y j and y j . In this case, for each random trajectory we have

X ε (t, z k , ω) -X(t, z k , ω) ≤ max |y j -y j |, |y j -y j | < ε and X ε (t, x, ω) = X(t, x, ω) for all x / ∈ [y j -ε, y j + ε],
for every t > 0, ω ∈ W. Therefore, as ε → 0, the same argument used at (4.6) implies the convergence in distribution.

Summarizing the previous analysis, we can approximate the original Markov semigroup with a new semigroup where:

(i) The dynamics is stationary outside finitely many intervals of increase or decrease.

(ii) The measure µ is finite.

(iii) The sets S, S * , Ω * are finite and disjoint.

7.

To achieve the proof, we still need to approximate the dynamics with another Markov semigroup where f is piecewise constant, and µ vanishes. To fix ideas, we will show how to modify f on a maximal interval of increase J j . The construction is entirely similar in the case of a maximal interval of decrease.

Given ε > 0 sufficiently small, two cases will be considered:

CASE 1: The interval J j =]a j , b j [ is open.
By the same technique used in Section 3, for the proof of Theorem 1.1, (step 2, CASE 1), we can approximate f by a function f ε such that

(i) f ε is piecewise constant and Graph(f ε ) ⊆ B(Graph(F ), ε), f ε (x) = f (x) for all x ∈ (R\J j ) ∪ S * ; (ii) For every [x 1 , x 2 ] ⊆ a j , b j -ε/2 , one has x 2 x 1 dy f (y) + µ([x 1 , x 2 ]) - x 2 x 1 dy f ε (y) ≤ ε. (4.15)
We then take µ ε to be the zero measure.

In view of (i)-(ii), for every x 0 ∈ R\J j one has

X(t, x 0 , ω) = X ε (t, x 0 , ω) for all (t, ω) ∈ [0, ∞[×W. (4.16)
On the other hand, for a fixed x 0 ∈ J j , if min{X(t, x 0 , ω), X ε (t, x 0 , ω)} ≥ b j -ε, we have

X ε (t, x 0 , ω) -X(t, x 0 , ω) ≤ |(b j -ε) -b j | = ε.
Otherwise, without loss of generality, assume that X(t, x 0 , ω) > X ε (t, x 0 , ω) and X ε (t, x 0 , ω) < b j -ε.

Let τ ε (ω), τ 1 (ω), τ (ω) be such that

S + τ (ω) (x 0 ) = X(t, x 0 , ω) and S + τ 1 (ω) (x 0 ) = S +,ε τ ε (ω) (x 0 ) = X ε (t,
x 0 , ω) where S + and S +,ε are defined as in (2.6). From (4.15), it holds

|τ 1 (ω) -τ ε (ω)| = S + τ 1 (ω) (x 0 ) x 0 dy f (y) + µ([x 0 , S + τ 1 (ω) (x 0 )]) - S + τ 1 (ω) (x 0 ) x 0 dy f ε (y) ≤ ε. Moreover, since S +,ε τ ε (ω) (x 0 ) = X ε (t, x 0 , ω), one has t ≤ y j ∈ x 0 ,S +,ε τ ε (ω) (x 0 ) Y j (ω) + τ ε (ω).
Thus,

0 < τ (ω) -τ 1 (ω) ≤     t - y j ∈ x 0 ,S + τ (ω) (x 0 ) Y j (ω)     -τ ε (ω) + ε ≤     t - y j ∈ x 0 ,S +,ε τ ε (ω) (x 0 ) Y j (ω) -τ ε (ω)     + ε ≤ ε and this implies |X ε (t, x 0 , ω) -X(t, x 0 , ω)| = S + τ (ω) (x 0 ) -S + τ 1 (ω) (x 0 ) ≤ M ε. (4.17) CASE 2: The interval J j = [a j , b j [ is half open.
By the same technique use in Section 3 (step 2, CASE 2), we can approximate f by a function f ε such that (i) f ε is piecewise constant, and

Graph(f ε ) ⊆ B(Graph(F ), ε), f ε (x) = f (x) for all x ∈ (R\J j ) ∪ S * ; (ii) For every [x 1 , x 2 ] ⊆ [a j , b j -ε/2], it holds x 2 x 1 dy f (y) + µ([x 1 , x 2 ]) - x 2 x 1 dy f ε (y) ≤ ε. (4.18)
Again, we take µ ε to be the zero measure.

For every x 0 ∈ R\J j , the identity (4.16) again holds. On the other hand, if x 0 ∈ J j , the same argument used in the previous case yields (4.17).

In both cases, given any x 0 ∈ R, for each random trajectory we have

X ε (t, x 0 , ω) -X(t, x 0 , ω) ≤ M ε for all t ∈ [0, T ], ω ∈ W.
Therefore, the same argument used at (4.6) implies the convergence (4.7).

An approximation lemma

The main goal of the next two sections is to prove Theorem 1.2, showing that every Markov semigroup whose trajectories are solutions to the ODE (1.1) can be approximated by a sequence of diffusion processes with smooth coefficients (1.12).

Thanks to Lemma 4.1, we can assume that the function f is piecewise constant, the sets S, S * , Ω * are finite, and the measure µ vanishes. To fix the ideas, let

x0 < x1 < x2 < • • • < xN (5.1)
be a list of all points in S, S * , Ω * , together with all points where f has a jump. Consider the midpoints

y 1 < y 2 < • • • < y N , y j = xj-1 + xj 2 . (5.2)
For any random trajectory starting at a point x, say s → X(s, x, ω) we define the stopping time τ (x, ω) = min s ≥ 0 ; X(s, x, ω) = y j for some y j = x .

(5.3)

In other words, if y j-1 < x < y j , then τ is the first time when the random trajectory hits either y j-1 or y j . In the special case where x = y k , then τ is the first time when the trajectory hits either y k-1 or y k+1 .

Similarly, given a sequence of Markov processes X n , n ≥ 1, we define Throughout the following, we adopt the notation a ∧ b . = min{a, b}. Using the above stopping times, given an initial point x, for every t > 0 we consider the probability measures µ t,x , µ t,x n on R + × R defined as the push-forward of the maps

τ n (x, ω) = min s ≥ 0 ; X n (s, x, ω) = y j for some y j = x . (5.4) 
ω → τ (x, ω) ∧ t, X(τ (x, ω) ∧ t, x, ω) , ω → τ n (x, ω) ∧ t, X n (τ n (x, ω) ∧ t, x, ω) .

More precisely, for every open set

V ⊂ R + × R, we define µ t,x (V ) = meas ω ; τ (x, ω) ∧ t, X(τ (x, ω) ∧ t, x, ω) ∈ V , (5.5) µ t,x n (V ) = meas ω ; τ n (x, ω) ∧ t, X n (τ n (x, ω) ∧ t, x, ω) ∈ V . (5.6)
As shown in Fig. 3, for every initial point x and time t > 0 the measures µ t,x and µ t,x n are supported within the set

Σ . = {t} × R ∪ [0, t] × {y 1 , y 2 , . . . , y N }.
(5.7)

The next lemma establishes a "local to global" result. If the random dynamics converge separately on each subinterval [y j-1 , y j ] (i.e., after introducing the stopping times at each point y j ), then the weak convergence of the transition kernels (1.16) holds as well, for every initial point x and every t > 0.

Lemma 5.1 Consider a Markov semigroup compatible with the ODE (1.1), where f is piecewise constant, the sets S, S * , Ω * are finite, and the measure µ vanishes. In addition, consider a sequence of diffusions processes X (n) = X (n) (s, x, ω) as in (1.12), with f n → f in the sense of the graph and σ n ↓ 0. Assume that, for every x ∈ R and t > 0, we have the weak convergence of the corresponding mesures:

µ t,x n µ t,x , (5.8) 
defined as in (5.5)- (5.6). Then the weak convergence of the transition kernels (1.16) holds.

Proof. 1. Given x ∈ R, for every p = 1, 2, 3, . . ., define the p-th random stopping time by induction, in the obvious way. Namely, τ 1 (x, ω) is the first time when the trajectory X(s, x, ω) starting from x hits one of the points y j . By induction, the p-th stopping time is τ p (x, ω) = min s > τ p-1 (x, ω) ; X(s, x, ω) = y j for some y j = X(τ p-1 (x, ω), x, ω) .

The corresponding measures µ t,x,p are defined as in (5.5), replacing τ with τ p , i.e.,

µ t,x,p (V ) = meas ω ; τ p (x, ω) ∧ t, X(τ p (x, ω) ∧ t, x, ω) ∈ V .
The same construction can of course be repeated for each of the Markov processes X n , thus defining a sequence of measures µ t,x,p n , n ≥ 1.

2. We observe that, for a sequence of probability measures µ n on the real line, the weak convergence µ n µ is equivalent to the convergence of the distribution functions

F n → F in L 1 loc (R)
, where

F n (x) = µ n ] -∞, x] , F (x) = µ ] -∞, x] for all x ∈ R.
In the case we are presently considering, since all of measures µ t,x,p n are supported on the 1-dimensional set Σ at (5.7), the weak convergence

µ t,x,p n µ t,x,p (5.9) 
is equivalent to the L 1 convergence of a finite family of distribution functions.

More precisely, for every j = 1, . . . , N , consider the nondecreasing functions

F t,x p,n,j (s) 
. = µ t,x,p n [0, s] × {y j } , F t,x p,j (s) 
. = µ t,x,p [0, s] × {y j } , s ∈ [0, t]. (5.10) 
We observe that all functions Γ n , Γ, F t,x p-1,n,j-1 , F t,x p-1,j-1 are non-decreasing with values in [0, 1]. Moreover Γ n (0) = Γ(0) = F t,x p-1,n,j-1 (0) = F t,x p-1,j-1 (0) = 0. By the convergence Γ n → Γ and F t,x p-1,n,j-1 → F t,x p-1,j-1 in L 1 [0, t] it thus follows the convergence of the integral functions in (5.16), namely F t,x p,n,j → F t,x p,j in L 1 [0, t] . restricted to the vertical segment [0, t] × {y j-1 }, by the formula (5.20) one can compute the probability that trajectories of the semigroups reach a point y ≤ z at time t.

It remains to prove the convergence

G t,x p,n → G t,x p in L 1 loc (R).
As a preliminary, we remark that in the diffusion semigroups some trajectories can move backward, from some y k to y k-1 . However, the probability that this happens goes to zero as n → ∞.

Next, we observe that our previous assumption y i ≤ x < y i+1 implies the identities

G t,x p (y) = G t,x p-1 (y) for y ≤ y j-1 , G t,x p,n (y) = G t,x p (y) = 1 for y ≥ y j , (5.17) 
where j = i + p.

To prove the convergence in L 1 [y j-1 , y j ] , for any point z ∈ ]y j-1 , y j [ and any ε > 0, we will show that lim sup

n→∞ G t,x p,n (z -ε) -ε ≤ G t,x p (z) ≤ lim inf n→∞ G t,x p,n (z + ε) + ε. (5.18) 
In analogy with (5.15), we now set

Λ n (τ ) . = µ τ,y j-1 ,1 n [0, τ ] × [z, y j ] , Λ(τ ) . = µ τ,y j-1 ,1 [0, τ ] × [z, y j ] . (5.19) 
In other words, Λ n (τ ) is the probability that a trajectory, starting at y j-1 , either stops at y j or reaches a point ≥ z at time τ .

We now have

G t,x p (z) = 1 - t 0 Λ(t -ζ) dF t,x p-1,j-1 (ζ), (5.20) 
and an entirely similar formula holds for G t,x p,n (z). For any ε > 0, the convergence F t,x p-1,n,j-1 (ζ) → F t,x p-1,j-1 (ζ) and Λ n → Λ implies (5.18). This proves the desired

L 1 convergence G t,x p,n → G t,x p in L 1 ([y j-1 , y j ] .
5. Finally we observe that, for a fixed t > 0, when p is sufficiently large one has τ p (x, ω) > t with probability 1, for all x ∈ R. Indeed, since trajectories of the semigroup are monotone, taking p = N would suffice. Hence µ t,x,N is supported on {t} × R, and the weak convergence

µ t,x,N n µ t,x,N implies that the map y → G t,x N,n (y) = µ t,x,N n {t}×] -∞, y] converges to the map y → G t,x N (y) = µ t,x,N {t}×] -∞, y] in L 1 loc (R)
. This yields the weak convergence (1.16).

Approximating a Markov semigroup with smooth diffusions

In this section we complete the proof of Theorem 1.2. This will require several steps.

1. It will suffice to construct diffusions of the form

dX t = g n (X t ) dt + σ n dW t (6.1) 
where g n is piecewise constant. Indeed, when this is done, for each n ≥ 1 we can then take a mollification: f n = φ δ * g n , where the mollifier satisfies

φ δ ∈ C ∞ c , Supp(φ δ ) = [-δ, δ], δ << σ n .
Without loss of generality we can assume that the Markov semigroup satisfies the properties listed in Lemma 4.1. Namely (P) The function f is piecewise constant with compact support, the sets S, S * , Ω * are finite and disjoint, and µ is the zero measure.

Indeed, assume that Theorem 1.2 holds true in this special case. To prove that the theorem remains valid for a general Markov semigroup, let (f n ) n≥1 be a sequence of piecewise constant functions with compact support, constructed as in Lemma 4.1. For each n ≥ 1, there exists a sequence of diffusion processes of the form

dX = f (k) n (X) dt + σ (k) n dW, with f (k) n ∈ C ∞ , such that f (k) n → f n in the sense of graph and σ (k) n → 0 as k → ∞. Moreover, for every bounded continuous function ϕ ∈ C 0 (R), lim k→∞ ϕ(x)P (n,k) t (x 0 , dx) = ϕ(x)P (n) t (x 0 , dx).
Consider the set of rational times T . = Q ∩ [0, T ], and observe that the product set T × Q ∪ S ∪ S * ∪ Ω * is countable. We can then select a sequence (k n ) n≥1 such that, setting

σ (n) . = σ (kn) n , P (n) t . = P (n,kn) t ,
we have σ (n) → 0. Moreover, for every bounded continuous function ϕ ∈ C 0 (R), we can achieve

lim n→∞ ϕ(x)P (n) t (x 0 , dx) = ϕ(x)P t (x 0 , dx) for all (t, x 0 ) ∈ T × Q∪S ∪S * ∪Ω * . (6.2)
Equivalently, for every (t, x 0 ) ∈ T × Q ∪ S ∪ S * ∪ Ω * , one has

lim n→∞ P (n) t x 0 , ] -∞, x] = P t x 0 , ] -∞, x] for a.e. x ∈ R. (6.3) 
We claim that the above convergence remains valid for all (t, x 0 ) ∈ [0, T ] × R. Indeed, for any t ∈ T , the functions

z 0 → P t z 0 , ] -∞, x] , z 0 → P (n) t z 0 , ] -∞, x]
are monotone increasing, and the map z 0 → P t z 0 , ] -∞, •] is continuous w.r.t. the L 1 distance, at every z 0 ∈ R\(S ∪ S * ∪ Ω * ). Using the fact that Q ∪ S ∪ S * ∪ Ω * is dense in R, an approximation argument shows that the limit (6.3) remains valid for every x 0 ∈ R. Therefore, (6.2) holds for every (t, x 0 ) ∈ T × R. Finally, to obtain (6.2) for every t ∈ [0, T ], we observe that by (A1) the speed of all trajectories is bounded by M . Hence sup

ϕ C 1 ≤1 ϕ(x) P t (x 0 , dx) -P s (x 0 , dx) ≤ M |t -s|. (6.4) 
sup

ϕ C 2 ≤1 ϕ(x) P (n) t (x 0 , dx) -P (n) s (x 0 , dx) ≤ M |t -s| + M 1 • σ (n) , (6.5) 
for a suitable constant M 1 . This establishes the convergence (1.16) for every (t, x 0 ) ∈ [0, T ]×R and every ϕ ∈ C 2 (R). By an approximation argument, the same holds for every ϕ ∈ C 0 (R).

2. It now remains to give the proof, in the case where the Markov semigroup satisfies the properties (P). As in (5.1), we call x0 < • • • < xN the points in S ∪ S * ∪ Ω * , together with all points where f has a jump. Thanks to Lemma 5.1, it suffices to show that, after inserting the stopping times at all points y j in (5.2), the corresponding transition kernels converge, for every initial point x and every t > 0. We are thus left with the task of constructing a sequence of diffusion approximations (6.1) on an interval J = [y j-1 , y j ] where the function f is piecewise constant, with a single jump at the interior point xj . In the easy case where xj / ∈ S ∪ S * ∪ Ω * , it suffices to choose g n (x) = f (x) for every x ∈ J and n ≥ 1. The three main remaining cases will be discussed in the following steps.

3. CASE 1: xj ∈ S. Without loss of generality, we assume xj = 0. Also, to fix ideas, assume that the restriction of f to the interval J is given by (1.19), with a, b > 0. See Fig. 1, left. Other cases can be treated similarly.

To make sure that the trajectories of the vanishing diffusion limit stop at the origin, for x ∈ J we then define

g n (x) =        a if x < - √ σ n 0 if |x| ≤ √ σ n , b if x > √ σ n . (6.6) 
To prove that this sequence of diffusions achieves the desired limit (1.16), let τ n be the first time when a random trajectory of (6.1) starting at the origin reaches one of the two points ± √ σ n . For every given t > 0, one has

Prob. τ n ≤ t ≤ Prob. sup s∈[0,t] |W (s)| ≥ 1 √ σ n ≤ 4 • 1 - 1 √ 2πt 1 √ σn 0 e -x 2
2t dx σn→0 ----→ 0.

(6.7)

In the case where the motion starts at x 0 = 0, this yields

lim n→∞ P (n) t 0 ; [- √ σ n , √ σ n ] = 1.
Therefore (1.16) holds for x 0 = 0.

Next, assume x 0 ∈ J but x 0 > 0. In this case, the result can be achieved by standard results in large deviation theory. Since we are assuming f (x) = b > 0 for x > 0, on the interval [ √ σ n , y j ] the diffusion process takes the form

dX t = b dt + σ n dW t , X 0 = x 0 . (6.8) 
For any δ ∈ ]0, x 0 ] and T > 0, as σ n → 0 the probability that a random trajectory X t (ω) starting at x 0 reaches a distance > δ from the limit solution x(t) = x 0 + bt satisfies Prob. |X t (ω) -x(t)| > δ for some t ∈ [0, T ] σn→0 ----→ 0.

This already implies (1.16).

Finally, consider the case where x 0 < 0. For any given 0 < δ < |x 0 |, consider the time

T = -δ -x 0 a .
As before, the probability that a random trajectory X t (ω) starting at x 0 reaches a distance > δ from the limit solution x(t) = x 0 + at satisfies

Prob. |X t (ω) -x(t)| > δ for some t ∈ [0, T ] σn→0 ----→ 0.
Next, for a random trajectory such that

X T (ω) -x(T ) = X T (ω) + δ < δ,
let τ n > T be the first time where X t (ω) touches a point in the set -3δ, δ . As soon as √ σ n < δ, the same argument used at (6.7) yields

Prob. τ n ≤ T + t σn→0 ----→ 0. (6.9)

Since δ > 0 was arbitrary, this again yields the weak convergence (1.16).

4. CASE 2: xj ∈ Ω * is a point from which both an increasing and a decreasing trajectory initiate. Again, we assume that xj = 0, and that the restriction of f to the interval J is given by (1.19), with a < 0 < b. Moreover, let θ ∈ [0, 1] be the probability that a random trajectory starting at the origin moves to the right. For each given σ n > 0, we consider the diffusion process (6.1), where

g n (x) = a if x < ξ n , b if x > ξ n , (6.10) 
for a suitable point ξ n , with ξ n → 0 as n → ∞.

To achieve the weak convergence (1.16) for the initial point x 0 = 0, the points ξ n must be carefully chosen. Toward this goal, consider again the piecewise constant function f in (1.19).

Performing the change of variables y = x/ √ σ n , the diffusion process

dX t = f (X t ) dt + σ n dW t (6.11) becomes d X t = f n ( X t )dt + √ σ n dW t , (6.12) 
where the new drift is

f n (y) =    a/ √ σ n if y < 0, b/ √ σ n if y > 0. (6.13) 
Let τ y n be the first time when a random trajectory of (6.12) starting from a point y ∈ [-1, 1] hits one of the two points in the set {-1, 1}. Consider the expected values

   v n (y) . = E ( τ y n ) u n (y) . = E X τ y n . (6.14) 
It is well known that the functions v n , u n provide the unique solutions to the boundary value problems

   f n (y)v y + σ n 2 v yy = -1 if y ∈ ] -1, 1[ , v = 0 if y ∈ {-1, 1}, (6.15) 
   f n (y)u y + σ n 2 u yy = 0 if y ∈ ] -1, 1[ , u(y) = y if y ∈ {-1, 1}. (6.16) 
For a proof, see for example Chapter 9 in [START_REF]Stochastic Differential Equations. An Introduction with Applications[END_REF].

The solutions of (6.15) and (6.16) have the form We observe that u n is strictly increasing in [-1, 1]. Moreover, as n → +∞ we have the limits

v n (y) =        - (y + 1) • √ σ n a + c 1,n • e -any -e an if -1 < y ≤ 0, (1 -y) • √ σ n b + c 2,n • e -bny -e -bn if 0 ≤ y < 1, (6.17 
sup u n (x) ; x ∈ -1, - 1 3 
√ σ n → -1, inf u n (x) ; x ∈ 1 3 √ σ n , 1 → 1. 
(6.20) Therefore, for any given 0 < θ < 1 and every n ≥ 1 large enough, we can uniquely choose an intermediate point Indeed, since the drifts in (6.12)-(6.13) become very large, the average time needed for a random trajectory to exit from the interval [-1, 1] approaches zero.

ζ n ∈ - √ σ n , √ σ n such that u n (ζ n ) = 2θ -1. ( 6 
Going back to the original space variable x, we now set ξ n = √ σ n ζ n . According to the previous analysis, for a random trajectory of (6.1), (6.10), starting at the origin, the following holds.

(i) The random time τ n (ω) at which this trajectory reaches one of the points ξ n ± √ σ n approaches zero as σ n ↓ 0.

(ii) The probabilities of reaching the right or the left point are given by Prob.

X τn (ω) = ξ n + √ σ n = θ, Prob. X τn (ω) = ξ n - √ σ n = 1 -θ.
Thanks to (6.20), for all n large enough we can assume |ξ n | ≤ 1 3 √ σ n . A computation entirely similar to (6.7) now shows that, as soon as a random trajectory has reached one of the points ξ n ± √ σ n , the probability that it goes back to the point ξ n , approaches zero as σ n ↓ 0.

To achieve the proof of weak convergence of the transition kernels starting at the origin, let δ > 0 be given. Consider any random trajectory X t (ω) of (6.1), with g n defined in (6.10), that starts at the point ξ n + √ σ n and then never touches the point ξ n . As an easy consequence of the theory of large deviations, for any T > 0 we have Prob. sup

t∈[0,T ] X t (ω) -(ξ n + √ σ n + bt) > δ X 0 (ω) = ξ n + √ σ n σn→0 ----→ 0.
Combining this fact with the above properties (i)-(ii), the weak convergence of the transitions kernels starting from x 0 = 0 is proved.

For every other initial point x 0 ∈ [y j-1 , y j ]\{0}, the weak convergence of the transition kernels is trivial. and then start moving again. As usual, we assume that x j = 0, while the drift f is piecewise constant, as in (1.19). To fix ideas, let a, b > 0. The case a, b < 0 is entirely similar.

We claim that this process can be approximated by a sequence of diffusions as in (6.1), where each g n has the form

g n (x) =        a if x < 0, -η n if x ∈ [0, ε n ], b if x > ε n , (6.23) 
for a suitable choice of the constants ε n , η n , with

0 < ε n << σ n << η n . (6.24) 
Introducing the rescaled space variable y = x ε n , the equation (6.1) becomes

dY t = gn (Y t )dt + σn dW t , (6.25) with gn (y) 
=        a/ε n if y < 0, -η n if y ∈ [0, 1], b/ε n if y > 1, (η n , σn ) = η n ε n , σ n ε n . (6.26) 
6. Toward the analysis of (6.25)-(6.26), in this step we perform a preliminary computation. Let Y t be the random solution to the diffusion process with constant coefficients, on the unit interval:

dY t = -η Y t dt + σ dW t (6.27)
starting at the origin, with the following boundary conditions.

• Reflecting at the point y = 0: when Y t (ω) = 0, the particle is reflected back inside the domain ]0, 1[;

• Absorbing at the point y = 1: when Y t (ω) = 1, its motion stops forever.

It is well known that in this case the distribution function u(t, y) = Prob.{Y t (ω) ≤ y} satisfies the parabolic equation

u t = ηu y + σ 2 2 u yy , (6.28) 
with initial and boundary conditions u(0, y) = 1, u(t, 0) = 0, u x (t, 1) = 0.

(6.29)

We do not have an explicit formula for the solution u = u(t, x) of (6.28)-(6.29). However, some information can be obtained by computing an upper and a lower solution, so that

w -(t, x) ≤ u(t, x) ≤ w + (t, x).
For the general theory of upper and lower solutions we refer to the classic monograph [START_REF] Protter | Maximum Principles in Differential Equations[END_REF] We will construct a lower and an upper solution of (6.28)-(6.29) by looking at eigenfunctions of the boundary value problem

σ 2 2 w (y) + ηw (y) = -λw(y), w(0) = 0, w (1) 
= 0 . (6.32)

Explicit solutions of (6.32) are found by solving

σ 2 2 r 2 + ηr + λ = 0, r = -η ± η 2 -2σ 2 λ σ 2 . = γ ± s.
For a given λ > 0, choose any s > 0 and let η, σ > 0, γ < 0 be the constants such that

σ 2 2 = (e 2s -1) 2 4s 2 e 2s • λ, η = s • e s + e -s e s -e -s • σ 2 and γ = -η σ 2 = -s • e 2s + 1 e 2s -1 . (6.33) 
In this case, an increasing solution to (6.32), normalized so that w(1) = 1, is explicitly found to be (see Fig. 6) w(y) = e (γ+s)y -e (γ-s)y e γ+s -e γ-s for all y ∈ [0, 1]. (6.34)

The function w -(t, y) = e -λt w(y)

thus provides a lower solution to the parabolic problem (6.28)-(6.29). Indeed, w -(0, x) ≤ 1, while all other relations in (6.31) are satisfied as equalities.

We now work toward the construction of an upper solution. We claim that, for every δ > 0 small, one can define a function w = w δ (x) such that (see Fig. 6) To construct the upper solution w δ , let λ, s > 0 be given, and let σ, η, γ be as in (6.33). For any small δ > 0, define the constants s δ , λ δ > 0 in terms of the two equations

w(-δ) = 0, w(0) = 1, w(1) ≤ 1 + δ, w (1) 
γ = -s δ • e 2s δ (1+2δ) + 1 e 2s δ (1+2δ) -1 and λ δ = γ 2 -s 2 δ 2σ 2 . (6.37)
Then, on the larger interval [-δ, 1], the problem

σ 2 2 w (y) + ηw (y) = -λ δ w(y), w(-δ) = 0, w(0) = 1, (6.38) 
has a unique increasing solution (see Fig. 6), namely w δ (y) = e (γ+s δ )(y+δ) -e (γ-s δ )(y+δ) e (γ+s δ )δ -e (γ-s δ )δ , y ∈ [-δ, 1]. (6.39) Using (6.37), we compute

w δ (1) = e (γ+s δ )(1+δ) -e (γ-s δ )(1+δ) e (γ+s δ )δ -e (γ-s δ )δ ≤ e γ+s δ 1 -e -2s δ δ , w δ (1) = e (γ-s δ )(1+δ) e (γ+s δ )δ -e (γ-s δ )δ • (γ -s δ ) • e -2s δ δ -1 > 0. (6.40) Since s • e 2s + 1 e 2s -1 = s δ • e 2s δ (1+2δ) + 1 e 2s δ (1+2δ) -1 , one has s • e 2s + 1 e 2s -1 ≤ s δ • e 2s δ + 1 e 2s δ -1 , s δ ≤ s • 1 + 2 e 2s -1 ≤ s + 1.
In particular, for s ≥ 1 and 0 < δ ≤ 1/2, we have

s ≤ s δ ≤ 2s, γ + s δ = - 2s δ e 2s δ (1+2δ) -1 ≤ -2se -8s ,
and hence

w δ (1) ≤ e -2se -8s 1 -e -2sδ , -3s 4 e 2s (e 2s -1) 2 λ ≤ s 2 -s 2 δ 2σ 2 = λ δ -λ ≤ 0.
Therefore, by choosing s = δ -2 , so that δ = 1/ √ s, one obtains

w δ (1) ≤ 1 + δ, λ -δ ≤ λ δ ≤ λ, (6.41) 
provided that s > 0 is sufficiently large.

7.

We are now ready to construct a sequence of diffusion processes with piecewise constant drift, which approximate a Poisson waiting time at x 0 = 0. For each t > 0, the transition kernel we need to approximate is (see Fig. 7) To achieve a proof of Theorem 1.2, we need to construct a sequence of drift functions (g n ) n≥1 and diffusion coefficients σ n → 0 such that the following holds. Calling u = u n (t, x) the solutions to the parabolic problem

U (t, x) = Prob.{X t (ω) ≤ x} =        0 if x ≤ 0, exp -λ t - x b if x ∈ [0, bt], 1 if x ≥ bt. ( 6 
u t + g n (x)u x = σ 2 n 2 u xx , x ∈ R, (6.43) 
with initial data u(0, x) = 0 if x < 0 , 1 if x ≥ 0 , (6.44) one has the convergence u n (t, •) → U (t, •) in L 1 loc (R), for every t > 0. Indeed, this will show the weak convergence of the transition kernels generated by the diffusion processes dX = g n (X)dt + σ n dW to the transition kernel at (6.42).

As drift functions, we take the piecewise constant functions g n defined as in (6.23), for a suitable choice of the sequences, σ n , ε n , η n → 0. As remarked in the previous step, even with this simple choice of g n the solution to (6.43)-(6.44) cannot be expressed by an explicit formula. Yet, based on the analysis in step 6, we shall be able to construct lower and upper solutions u - n (t, x) ≤ u(t, x) ≤ u + (t, x) and prove the convergence u ± n (t, •) → U (t, •). By comparison, this will establish the desired convergence u(t, •) → U (t, •) for all t > 0.

The sequences ε n , η n → 0, are chosen as follows. First, we take a sequence s n → +∞. Then, in view of (6.26) and (6.33), we define Notice that here σ n , η n → +∞. Therefore, we need to choose a sequence ε n → 0 converging to zero fast enough so that η n , σ n → 0. Let w - n be the solution to (6.32) with σ = σn , η = ηn and w - n (1) = 1. We now set δ n = 1/ √ s n .

For suitable sequences κ n → +∞ and b n ↓ b, we define

u - n (t, x) =                    0 if x < 0, (1 -δ n )e -λt w - n (x/ε n ) if x ∈ [0, ε n ], (1 -δ n ) exp -λ t - x -ε n b n if x ∈ ε n , ε n + b n t , 1 -δ n exp -κ n x -ε n -b n t if x ≥ ε n + b n t. (6.47)
This lower solution is illustrated in Fig. 8. Here we choose κ n → +∞ fast enough so that δ n κ n → +∞. Finally, we choose the decreasing sequence b n ↓ b converging slowly enough so that the traveling profile v(t, x) = 1 -δ n e -κn(x-εn-bnt) is a lower solution. This will be the case if

v t ≤ σ 2 n 2 v xx + b n v x .
That is, iff

-b n κ n ≤ - σ 2 n 2 κ 2 n -bκ n .
We thus need b n -b ≥ σ 2 n κ n 2 . Notice that, since the product δ n κ n → +∞, this ensures that the derivative of the solution at the matching point x = ε n + b n t jumps upward. The fact that this derivative also jumps upward at x = 0 and at x = ε n is obvious.

Next, an upper solution is constructed as follows. As before, set δ n = 1/ √ s n . Let w n = w δn be a sequence of functions satisfying (6.35)-(6.36).

We then consider the rescaled functions x → w n (ε -1 n x), choosing a sequence ε n ↓ 0 fast enough so that ε -1 n w n (1) → +∞.

Next, we take a sequence κ n → +∞. For each n ≥ 1, we choose the values x n and ξ n ∈ [-δ n ε n , 0] so that at x = ξ n the two functions

x → w n (ε -1 n x) and

x → e κn(x-xn) are tangent:

w n (ε -1 n ξ n ) = e κn(ξn-xn) , ε -1 n w n (ε -1 n ξ n ) = κ n e κn(ξn-xn) .

Finally, we choose an increasing sequence of speeds b - n ↑ b and define (see Fig. 9)

u + n (t, x) =                  e -λnt e κn(x-xn) if x < ξ n , e -λnt w n (x/ε n ) if x ∈ [ξ n , ε n ], w n (1) • exp -λ n t - x -ε n b - n if x ∈ ε n , ε n + b - n t , w n (1) if x ≥ ε n + b - n t.
(6.48)

The condition ε -1 n w n (1) → +∞ guarantees that at the point x = ε n the derivative ∂ x u + n has a downward jump. On the other hand, this derivative is continuous at the matching point x = ξ n , and has a downward jump at x = ε n + b - n t. We thus conclude that u + n is an upper solution.

Since the sequences u - n and u + n at (6.47) and (6.48) both converge to the distribution function U at (6.42), for all t ≥ 0, this proves the weak convergence of the transition kernels, starting at the origin.

For a starting point x 0 = 0, the convergence of the corresponding transition kernels is a straightforward.

8.

To cover the set of all possibities, one should also consider a dynamics of the form (1.19) in two additional cases: CASE 4: a, b > 0, and there is no stopping time at x = 0. CASE 5: b < 0 < a, so that all trajectories stop forever, as they reach the origin.

In both of these cases, the approximation of the Markov semigroup with a diffusion process is trivial. Indeed, taking g n (x) = f (x) for all n ≥ 1, as the coefficients σ n ↓ 0, the transition kernels for the diffusion process converge to the corresponding transition kernels of the Markov semigroup. 9. To help the reader, we review the main steps in the proof of Theorem 1.2, and conclude.

(i) Thanks to Lemma 4.1, it suffices to prove the theorem in the special case of a Markov semigroup where f is piecewise constant, the sets S, S * and Ω * are finite and disjoint, and the measure µ vanishes.

(ii) In the setting described at (i), let a sequence of drift functions f n and diffusion coefficients σ n → 0 be given. Thanks to Lemma 5.1, to prove the convergence of the corresponding transition kernels it suffices to check the weak convergence (5.8) of the measures µ t,x n . Since these measures correspond to a dynamics with stopping times, this achieves a "global-to-local" reduction. Namely, it now suffices to construct suitable diffusion approximations (1.12), proving the convergence of the transition kernels restricted to an interval which contains one single point xj ∈ S ∪ S * ∪ Ω * .

(iii) After the previous reductions, w.l.o.g. we can assume that xj = 0. The cases xj ∈ S and xj ∈ Ω * are covered in steps 3 and 4, respectively. The most difficult case occurs when xj = 0 ∈ S * and the semigroup has a Poisson waiting time (1.20) at the origin. This case is studied in steps 5-7, showing that the dynamics of the Markov semigroup can again be approximated by a sequence of diffusion processes having piecewise constant drifts g n and diffusion coefficients σ n → 0. As mentioned in step 8, the remaining cases are much easier to handle.

(iv) Finally, as shown in step 1, a diffusion process with piecewise constant drift can in turn be approximated by a process with smooth drift. By this observation, the proof of Theorem 1.2 is complete.
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Theorem 2 . 1

 21 Consider the Cauchy problem (1.1)-(1.

. 3 )

 3 If ]a, b[ and ]a , b [ are two intervals of increase having non-empty intersection, then their union ]a, b[ ∪ ]a , b [ is also an interval of increase. We can thus identify countably many, disjoint maximal intervals of increase ]α i , β i [, i ∈ I + . Similarly, we can identify countably many disjoint maximal intervals of decrease ]γ i , δ i [, i ∈ I -. It remains to analyze what happens at the endpoints of these intervals.
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 7 Figure 7: The transition kernel (6.42), corresponding to a random Poisson waiting time at x = 0, followed by motion with constant speed b > 0.
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Figure 8 :

 8 Figure 8: The lower solution defined at (6.47).
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 9 Figure 9: The upper solution defined at (6.48).
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Moreover, for y ∈ R, consider the nondecreasing functions G t,x p,n (y) . = µ t,x,p n {t}×] -∞, y] + y j ≤y µ t,x,p n [0, t] × {y j } , G t,x p (y) . = µ t,x,p {t}×] -∞, y] + y j ≤y µ t,x,p [0, t] × {y j } .

(5.11)

Then the weak convergence (5.9) is then equivalent to the convergence

(5.12)

x y j x i t _ x y y y ~F igure 4: The thick lines describe the set Σ in (5.7). In this picture, trajectories of the Markov semigroup start at x and move with positive speed, with random waiting times at the points xi+1 , xi+2 , . . .. The p-th stopping time occurs when a trajectory reaches the point y j with j = i + p.

By induction, assuming the weak convergence

we need to prove the weak convergence (5.9).

To fix ideas, assume that all trajectories of the Markov semigroup starting from x are nondecreasing. Moreover, assume y i ≤ x < y i+1 . Setting j = i + p, this implies

(5.14)

We start by proving the convergence F t,x p,n,j → F t,x p,j in L 1 [0, t]). Let ε > 0 be given. By the inductive assumption, we have the convergence

(5.15)

the probability that a random trajectory starting at y j-1 reaches y j within time τ (without ever touching y j-2 , in the case of a diffusion). The function F t,x p,n,j can now be computed by the Stieltjes integral F t,x p,n,j (τ ) = τ 0 Γ n (τ -ζ) dF t,x p-1,n,j-1 (ζ). (5.16)