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Homogeneous Sobolev global-in-time maximal regularity and
related trace estimates ∗†

Anatole Gaudin‡

February 16, 2023

Abstract
In this paper, we prove global-in-time Ḣα,q -maximal regularity for a class of injective, but

not invertible, sectorial operators on a UMD Banach space X , provided q ∈ (1, +∞) , α ∈
(−1 + 1/q, 1/q) . We also prove the corresponding trace estimate, so that the solution to the
canonical abstract Cauchy problem is continuous with values in a not necessarily complete trace
space.

In order to put our result in perspective, we also provide a short review on Lq -maximal
regularity which includes some recent advances such as the revisited homogeneous operator
and interpolation theory by Danchin, Hieber, Mucha and Tolksdorf. This theory will be used
to build the appropriate trace space, from which we want to choose the initial data, and the
solution of our abstract Cauchy problem to fall in.
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1 Introduction
1.1 Motivations and interests
1.1.1 The example of the Laplacian on Rn

The Lq -maximal regularity is very powerful and fundamental tool for the study of a wide range
parabolic partial differential equations, that comes mainly from physics, geometry or chemistry.

The usual theory built for sectorial operators on UMD Banach have been widely investigated.
However, when it comes to look where the solution of the abstract Cauchy problem lies as a con-
tinuous function of time, we have to restrict ourselves either to control in finite time, or to ask the
operator to be invertible.

For instance, let us take a look at the scalar heat equation on Rn , for T ∈ (0, +∞] , u0 ∈ S′(Rn) ,
f ∈ L1

loc([0, T ], S′(Rn)) ,  ∂tu(t) − ∆u(t) = f(t) , 0 < t < T ,

u(0) = u0.
. (HE)

The standard theory, see e.g. [Ama95, Remark 4.10.9], [PS16, Theorem 3.5.5], tells us that provided
f ∈ Lq((0, T ), Lp(Rn)) , u0 ∈ B2−2/q

p,q (Rn) , T < +∞ , p, q ∈ (1, +∞) , the Cauchy problem (HE)
admits a unique solution u ∈ H1,q((0, T ), Lp(Rn)) ∩ Lq((0, T ), H2,p(Rn)) ⊂ C0([0, T ], B2−2/q

p,q (Rn))
which satisfies the estimates

∥u∥L∞([0,T ],B2−2/q
p,q ) ≲n,p,q,T ∥(u, ∂tu, ∆u)∥Lq((0,T ),Lp) ≲n,p,q,T ∥f∥Lq((0,T ),Lp) + ∥u0∥B2−2/q

p,q
.

In these estimates, implicit constants are dependent of T and blow up as T goes to infinity. It is in
fact even worse than that : one cannot expect a global-in-time estimate of this type. Indeed, such
a control on the term ∥u∥Lq([0,+∞),Lp) would imply that the Laplacian ∆ is invertible on Lp(Rn) ,
see for instance [CL86, Section 2] or [PS16, Corollary 3.5.3], which is known to be false.

However, when f ∈ Lq(R+, Lp(Rn)) , u0 ∈ Ḃ2−2/q
p,q (Rn) , there is still a unique solution u to (HE)

such that ∂tu, ∆u ∈ Lq(R+, Lp(Rn)) and u ∈ C0
b(R+, Ḃ2−2/q

p,q (Rn)) with the global-in-time estimate
∥u∥L∞(R+,Ḃ2−2/q

p,q ) ≲n,p,q ∥(∂tu, ∆u)∥Lq(R+,Lp) ≲n,p,q ∥f∥Lq(R+,Lp) + ∥u0∥Ḃ2−2/q
p,q

. (1.1)

This result is well known, but while the right hand side estimate of (1.1) arises from the usual theory
when u0 = 0 , see e.g. [Haa06, Proposition 8.3.4, Corollary 9.3.12], this is however not the case for
the left hand side trace estimate and to obtain the space from which we choose the initial data
u0 , see for instance [BCD11, Theorem 2.34]. A reason is that the usual theory for traces in maximal
regularity will only produce an inhomogeneous Besov space, which is not suitable: it makes us lose
again the uniform control with respect to time on the left hand side part of (1.1). The same kind of
issue would happen for other injective, but non-invertible, sectorial operators. We further hope we
have convinced the reader that the general theory cannot be applied for global-in-time estimate for
the very well-known Cauchy problem (HE) which is a sufficiently important issue.

1.1.2 On the choice of function spaces.

When it comes to the study of actual partial differential equations, it would be interesting to play with
integrability, decay-in-time, or even with some Sobolev regularity in-time of possible solutions for the
linear part of the problem. A wide development of the theory of power-weighted fractional Sobolev-
in-time maximal regularity is made and applied, and can be found in [PS16, Sections 3.2, 3.4 & 3.5].
Prüss and Simonett gave the complete construction of maximal regularity results for spaces of the
type Hα,q

µ,0(R+, X) , α ∈ [0, 1] , µ ∈ (1/q, 1] , which stands for the space of measurable functions u
such that

t 7→ t1−µu(t) ∈ Hα,q
1,0 (R+, X).

Here, Hα,q
1,0 coincides with the standard Sobolev space with zero boundary condition. The appli-

cations to general quasilinear parabolic partial differential equations of the Lq
µ -maximal regularity
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have also been extensively reviewed in [KPW10,LPW14].
We also mention [Pru02] which contains a treatment of fractional Sobolev in-time maximal

regularity theory as well as a review of mixed derivative estimates. It was recently used, for instance,
in [BM21] for the study of the Boussinesq system where mixed derivative estimates were their main
tool in combination with the usual Lq -maximal regularity setting.

However, both of previous treatments do not allow, again, global-in-time estimates for injective,
but not invertible, operators such as the Laplacian on Rn . This is where our idea comes from in
order to keep the possibility of playing the Sobolev in-time regularity: we want to show global-
in-time homogeneous Ḣα,q -maximal regularity for non-zero initial data, with a trace estimate
similar to the one in (1.1), q ∈ (1, +∞) , α ∈ (−1 + 1/q, 1/q) .

Danchin, Hieber, Mucha and Tolksdorf, in [DHMT21, Chapter 2], provide global-in-time esti-
mates for injective, but not invertible, operators in the framework of the Da Prato-Grisvard Lq -
maximal regularity. Let us motivate here their idea of homogeneous interpolation and operator
theory for injective sectorial operators from an other point of view. Indeed, in the previous example
for the heat equation, if we set Xp = Lp A = −∆ , Dp(A) = H2,p , the Besov space used as trace
space is given by the real interpolation space

B2−2/q
p,q = (Xp, Dp(A))1− 1

q ,q,

and this follows from the general trace theory. See e.g. [Lun18, Section 1.2], [PS16, Section 3.4]
or [MV14, Section 4] for even fancier and more general function spaces.

Our idea is to say that the homogeneous Besov space yielding the homogeneous estimate (1.1)
would be given by

Ḃ2−2/q
p,q = (Xp, Dp(Å))1− 1

q ,q,

where, here, Dp(Å) = Ḣ2,p which is also, at least morally, the closure of Dp(A) under the (semi-)
norm ∥A·∥Xp ∼p,n ∥∇2·∥Lp . And this is exactly the kind of construction achieved in [DHMT21,
Chapter 2] for abstract sectorial operators, in order to obtain a global-in-time Da Prato-Grisvard Lq -
maximal regularity theorem. Moreover, such a construction avoids the need of completeness for D(Å)
which is fundamental in the scope of the treatment of some non-linear partial differential equations
with global-in-time estimates. Indeed, realization of homogeneous functions spaces that are usually
employed are not necessarily complete on their whole scale, see for instance [BCD11,DM09,DM15,
DHMT21, Gau22] and the references therein. We notice that the possible lack of completeness of
D(Å) implies that the resulting real interpolation space (X, D(Å))θ,q is not necessarily complete
either, but this is somewhat mandatory to deal with actual non-linear or boundary value problems.

This is very important to emphasize the fact that in concrete applications involving non-linearities
or boundary values, one cannot avoid the completeness issue taking the completion instead. For in-
stance, if we work with the completion of Ḣ2,p , p ⩾ n/2 , one might end up with elements that are
no longer even distributions which is really inconvenient. If instead one chooses the realization up to
polynomials, then one ends up with products rules that depends on the choice of representation: it is
not clear how to choose properly the polynomial part in a canonical way. Moreover, point-wise com-
position with a global diffeomorphism, or bi-Lipschitz map, as done in [DHMT21, Chapters 5 & 7],
would be meaningless if one works with the setting "up to polynomials".

Those issues concerning the completion also prevent the use of standard homogeneous operator
and interpolation theory started in [Haa06, Chapter 6, Sections 6.3 & 6.4], then extended in [HHK06],
requiring in the end to work with D(Å) as a complete space.

We notice that the recent work [ALV23] does not apply in our setting to obtain the desired trace
estimate. There are two reasons: D(Å) is not an actual completion, and their work do not take in
consideration homogeneous fractional Sobolev scale for the time variable.

1.2 Notations, definitions
For X a Banach space, (Ω, µ) a sigma finite measure space, and p ∈ [1, +∞] , Lp(Ω, µ, X) stands for
the space of (Bochner-)measurable functions u : Ω −→ X , such that t 7→ ∥u(t)∥X ∈ Lp(Ω, µ,R) .
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A Banach space X is said to have the Unconditionnal Martingale Difference property (or to
be UMD) if the Hilbert transform is bounded on Lq(R, X) for one (or equivalently all) q ∈ (1, +∞) .

For two real numbers A, B ∈ R , A ≲a,b,c B means that there exists a constant C > 0 depending
on a, b, c such that A ⩽ CB . When A ≲a,b,c B and B ≲a,b,c A are true, we simply write A ∼a,b,c B .

1.2.1 Sectorial operators on Banach spaces

We introduce the following subsets of the complex plane
Σµ := { z ∈ C∗ : |arg(z)| < µ }, if µ ∈ (0, π),

we also define Σ0 := (0, +∞) , and we are going to consider the closure Σµ .
An operator (D(A), A) on complex valued Banach space X is said to be ω -sectorial, if for a

fixed ω ∈ (0, π) , both conditions are satisfied

(i) σ(A) ⊂ Σω , where σ(A) stands for the spectrum of A ;

(ii) for all µ ∈ (ω, π) , supλ∈C\Σµ
∥λ(λI − A)−1∥X→X < +∞ .

For (D(A), A) injective and ω -sectorial with ω ∈ [0, π) , we say that A has bounded imaginary
powers (BIP) of type θA ⩾ 0 if for all x ∈ D(A) ∩ R(A) , for f(z) = zis ,

f(A)x := 1
2iπ

∫
∂Σθ

f(z)(zI − A)−1x dz,

for some θ ∈ (ω, π) , with ∂Σθ oriented counterclockwise, yields a bounded linear operator for all
s ∈ R , and

θA := inf
{

ν ⩾ 0
∣∣∣∣ sup

s∈R
e−ν|s|∥Ais∥X→X < +∞

}
.

The functional calculus of sectorial operators is widely reviewed in several references but we
mention here Haase’s book [Haa06]. For a treatment of operator theory in the scope of Lq -maximal
regularity, such as BIP, we refer to [DHP03, Chapters 1 & 2] and [PS16, Chapters 3 & 4].

1.3 Road map
In Section 3: we provide a short construction of the homogeneous Sobolev spaces we need. In
order to achieve this, we will need to assume that the Banach space X is still have the UMD
property. This is to ensure that we have a suitable definition of Ḣα,q(R+, X) , since we will need
some complex interpolation theory requiring bounded imaginary powers for the time derivative, see
e.g. [LMV18, Theorems 6.7 & 6.8].

Before that, in Section 2, we give a review of the current state of standard Lq -maximal regularity
with global-in-time estimates: the treatment will be made first on UMD Banach spaces X . A
second part is dedicated to a review of the homogeneous operator and interpolation theory revisited
by Danchin, Hieber, Mucha and Tolksdorf, with its application to Da Prato-Girsvard Lq -maximal
regularity.

Section 4 is devoted to our main result about Ḣα,q -maximal regularity for some injective sectorial
operators, with trace estimate in the possibly non-complete space (X, D(Å))1+α− 1

q ,q . Before proving
the main result Theorem 4.7, one has to prove that the quantities involved to solve the Cauchy
problem are in fact well-defined, which is the goal of the preceding subparts.

Acknowledgment

The author would like to thank Sylvie Monniaux and Pascal Auscher for their useful remarks during
earlier presentations of the current work. The author would also like to thank Bernhard H. Haak
for pointing out the article [HHK06].
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2 Short state of the art for Lq -maximal regularity
We are going to recall here few facts about Lq -maximal regularity (q ∈ (1, +∞)) on UMD Banach
spaces. We will also deal with the Lq -maximal regularity provided by the Da Prato-Grisvard theory
in both versions: inhomogeneous and homogeneous, both allowing under appropriate circumstance
q = 1, +∞ , allowing also to get rid of the UMD property on X .

2.1 Review for the usual Lq -maximal regularity
First, let us consider (D(A), A) a densely defined closed operator on a Banach space X . It is known,
see [ABHN11, Theorem 3.7.11], that the two following assertions are equivalent:

(i) A is ω -sectorial on X , with ω ∈ [0, π
2 ) ;

(ii) −A generates a bounded holomorphic C0 -semigroup on X , denoted by (e−tA)t⩾0 .

Thus, provided that A is ω -sectorial on X for some ω ∈ [0, π
2 ) , for T ∈ (0, +∞] , we look at the

following abstract Cauchy problem, ∂tu(t) + Au(t) = f(t) , 0 < t < T ,

u(0) = u0.
, (ACP)

where f ∈ L1
loc([0, T ), X) , u0 ∈ Y , Y being some normed vector space depending on X and D(A) .

And it turns out, see [ABHN11, Proposition 3.1.16], that in our case for u0 ∈ X , f ∈ L1((0, T ), X) ,
integral solutions u ∈ C0([0, T ], X) for (ACP) is unique, also called the mild solution of (ACP)
and given by

u(t) = e−tAu0 +
∫ t

0
e−(t−s)Af(s) ds, 0 ⩽ t < T .

The question is: for a given q ∈ [1, +∞] , can we find an appropriate space Y (depending on
X , D(A) and possibly q ), such that if u0 ∈ Y and f ∈ Lq((0, T ), X) , then (ACP) admits a unique
solution u , satisfying ∂tu , Au ∈ Lq((0, T ), X) , with norm control

∥(∂tu, Au)∥Lq((0,T ),X) ≲q,A ∥f∥Lq((0,T ),X) + ∥u0∥Y ?
The problem (ACP) being linear, we introduce two related subproblems:

• (ACP0 ) stands for (ACP) with f = 0 ,

• (ACP0 ) stands for (ACP) with u0 = 0 ,

recalling that according to basic C0 -semigroup theory, u = 0 is the unique solution of (ACP0
0 ).

Hence, if (ACP) admits a solution, such solution is unique due to linearity so that it suffices to treat
separately both problem (ACP0 ) and (ACP0 ).

• For the (ACP0 ) problem, we introduce two quantities for v ∈ X + D(A) ,

∥v∥
D̊A(θ,q) :=

(∫ +∞

0
(t1−θ∥Ae−tAv∥X)q dt

t

) 1
q

, and ∥v∥DA(θ,q) := ∥v∥X + ∥v∥
D̊A(θ,q),

where θ ∈ (0, 1) , q ∈ [1, +∞] . This leads to the construction of the vector space
DA(θ, q) := {v ∈ X | ∥v∥

D̊A(θ,q) < +∞}.

The vector space DA(θ, q) is known to be a Banach space under the norm ∥·∥DA(θ,q) and moreover
it satisfies the following equality with equivalence of norms

DA(θ, q) = (X, D(A))θ,q, (2.1)
see [Haa06, Theorem 6.2.9]. If moreover, 0 ∈ ρ(A) it has been proved, [Haa06, Corollary 6.5.5], that
∥·∥

D̊A(θ,q) and ∥·∥DA(θ,q) are two equivalent norms on DA(θ, q) .
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By definition, for all u0 ∈ DA(1 − 1/q, q) , for t 7→ u(t) = e−tAu0 the solution of (ACP0 ), we
have

∥u∥L∞(R+,D̊A(1−1/q,q)) ≲q,A ∥∂tu∥Lq(R+,X) = ∥Au∥Lq(R+,X) = ∥u0∥
D̊A(1−1/q,q),

and we also have, for all T > 0 ,

∥u∥L∞(R+,DA(1−1/q,q)) ≲q,A ∥u0∥DA(1−1/q,q) and ∥u∥Lq((0,T ),X) ≲q,A T
1
q ∥u0∥X .

If moreover, 0 ∈ ρ(A) , then
∥u∥Lq(R+,X) ≲q,A ∥u0∥X .

• For the (ACP0 ) problem, the question is much more delicate. In fact, the solution u to
(ACP0 ) is formally given by the Duhamel formula

u(t) =
∫ t

0
e−(t−s)Af(s) ds, t > 0, (2.2)

and since, ∂tu = −Au + f , it suffices to know whether
∥Au∥Lq(R+,X) ≲q,A ∥f∥Lq(R+,X). (2.3)

This leads to the following definition:

Definition 2.1 The operator A is said to have the Lq -maximal regularity property on X if the
solution u given by (2.2) satisfies the above estimate (2.3).

Let us remark that the case of finite time T > 0 with the corresponding estimate can be easily
deduced by (2.3) applied to f̃ , the extension of f to R+ by 0 , and the uniqueness of (ACP0 ).

It has been proved by Coulhon and Lamberton [CL86], that the property of the Lq -maximal
regularity does not depends on q ∈ (1, ∞) . See also [dS64] for the first version of this result in the
hilbertian-valued case.

Coulhon and Lamberton also showed, see [CL86, Theorem 5.1], that the UMD property is a
necessary condition for the Poisson semigroup to have the Lq -maximal regularity property. The
canonical example, provided p ∈ (1, +∞) , is that X = Lp(Ω) is a UMD space and so are its closed
subspaces, see for instance [HvNVW16, Propositions 4.2.15 & 4.2.17].

The following fact proved by Kalton and Lancien [KL00]: for each non-hilbertian Banach lattice,
there exists a sectorial operator such that (2.3) fails.

However, for UMD Banach spaces, a full and definitive characterization of operators that satisfy
Lq -maximal regularity property has been proved by Weis [Wei01, Theorem 4.2]. One may also
check [KW04, Theorem 1.11], [DHP03, Theorem 4.4] for other proofs and more details about R -
boundedness and its equivalence with Lq -maximal regularity for sectorial operators on a UMD
Banach space.

In practice, we rather use other results such has the Dore-Venni Theorem, [DV87, Theorem 2.1],
which asserts that the boundedness of imaginary powers of A with type θA < π

2 is a sufficient
condition to recover Lq -maximal regularity for q ∈ (1, +∞) . We mention [Haa06, Corollary 9.3.12]
for the same result that does not require invertibility of A . In particular, the bounded holomorphic
functional calculus of A is a sufficient condition to recover Lq -maximal regularity with q ∈ (1, +∞) .

We may combine all results for (ACP0 ) and (ACP0 ) to state the following well-known Lq -
maximal regularity theorem, where we only state it with the sufficient condition of BIP for conve-
nience.

Theorem 2.2 Let ω ∈ [0, π
2 ) , (D(A), A) an ω -sectorial operator on a UMD Banach space X .

Assume that A has BIP of type θA < π
2 .

Let q ∈ (1, +∞) and T ∈ (0, +∞] . For f ∈ Lq((0, T ), X) , u0 ∈ DA(1 − 1/q, q) , the problem
(ACP) admits a unique solution u such that ∂tu , Au ∈ Lq((0, T ), X) with estimate

∥(∂tu, Au)∥Lq((0,T ),X) ≲A,q ∥f∥Lq((0,T ),X) + ∥u0∥
D̊A(1−1/q,q). (2.4)
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In addition, for all T∗ ⩽ T , T∗ < +∞ , we have u ∈ C0([0, T∗),DA(1−1/q, q))∩Lq((0, T∗), X) with
estimates

∥u∥L∞([0,T∗],DA(1−1/q,q)) ≲A,q,T∗ ∥f∥Lq((0,T∗),X) + ∥u0∥DA(1−1/q,q), (2.5)

∥u∥Lq((0,T∗),X) ≲A,q (T∗∥f∥Lq((0,T∗),X) + T
1
q

∗ ∥u0∥X). (2.6)
If moreover 0 ∈ ρ(A) , we have

∥u∥Lq((0,T ),X) ≲A,q ∥f∥Lq((0,T ),X) + ∥u0∥X . (2.7)
so that (2.5) holds with uniform constant with respect to T∗ , hence remains true for T∗ = +∞ .

We comment the appearance of (2.5) : it is a consequence of the trace theory for initial data in
Lq -maximal regularity which is itself a consequence of interpolation theory, see [Ama95, Chapter 4,
Theorem 4.10.2], see also [Lun18, Corollary 1.14]. The appearance of (2.7) comes from invertibility
of A , so that it suffices to apply (2.3).

However, the approach used to obtain Theorem 2.2 prevents L1 and L∞ -maximal regularity on
X . Indeed, the UMD property requires the space X to be at least reflexive, which is not the case
for all spaces that are of use in partial differential equations (one may think about endpoint Besov
spaces like Bs

p,1 and Bs
p,∞ , or even the space of continuous bounded functions C0

b ).

2.2 Revisited homogeneous operator and interpolation theory and global-
in-time estimate for the Da Prato-Grisvard Lq -maximal regularity

To overcome such difficulties, we present a theorem due to Da Prato and Grisvard [DPG75], where
the idea was to replace X by DA(θ, q) , and look for Lq -maximal regularity property on it instead
of X , allowing q = 1 .

Theorem 2.3 ( [DPG75, Theorem 4.15] ) Let ω ∈ [0, π
2 ) , (D(A), A) an ω -sectorial operator

on a Banach space X . Let q ∈ [1, +∞) , θ ∈ (0, 1
q ) , θq := θ + 1 − 1/q , and let T ∈ (0, +∞) .

For f ∈ Lq((0, T ),DA(θ, q)) and u0 ∈ DA(θq, q) , the problem (ACP) admits a unique mild
solution

u ∈ C0
b([0, T ],DA(θq, q)),

such that ∂tu , Au ∈ Lq((0, T ),DA(θ, q)) with estimate
∥u∥L∞([0,T ],DA(θq,q)) ≲A,θ,q,T ∥(∂tu, Au)∥Lq((0,T ),DA(θ,q)) ≲A,θ,q,T ∥f∥Lq((0,T ),DA(θ,q)) + ∥u0∥DA(θq,q).

(2.8)
If moreover 0 ∈ ρ(A) , (2.8) still holds with uniform constant with respect to T , allowing T = +∞ .

This Da Prato-Grisvard theorem does not have global in time estimate if 0 /∈ ρ(A) , as was the case
for the estimate (2.4) of Theorem 2.2. The estimate (2.4) is uniform in time : this is due to the fact
that the estimate is homogeneous. This keypoint was captured in the work of Danchin, Hieber,
Mucha and Tolksdorf [DHMT21, Chapter 2] to build an homogeneous version of the Da Prato-
Grivard theorem for injective sectorial operators under some additional assumptions on A . We are
going to present briefly their construction.

Assumption 2.4 The operator (D(A), A) is injective on X , and there exists a normed vector space
(Y, ∥·∥Y ) , such that for all x ∈ D(A) ,

∥Ax∥X ∼ ∥x∥Y . (2.9)

The idea is to construct an homogeneous version of A denoted Å , defining first its domain
D(Å) := { y ∈ Y | ∃(xn)n∈N ⊂ D(A), ∥y − xn∥Y −→

n→+∞
0 }.

Then, for all y ∈ D(Å) ,
Åy := lim

n→+∞
Axn.
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Constructed this way, the operator Å is then injective on D(Å) . We notice that D(Å) is a normed
vector space, but not necessarily complete. We also need the existence of a Hausdorff topological
vector space Z , such that X, Y ⊂ Z , and to consider the following assumption

Assumption 2.5 The operator (D(A), A) and the normed vector space Y are such that
X ∩ D(Å) = D(A). (2.10)

As a consequence of all above assumptions, we can extend naturally, see [DHMT21, Remark 2.7],
(e−tA)t⩾0 to a C0 -semigroup,

e−tA : X + D(Å) −→ X + D(Å) , t ⩾ 0,

by the mean of the following formula for all (x0, a0) ∈ X × D(Å) , t ⩾ 0 ,

e−tA(x0 + a0) := e−tAx0 +
(

a0 −
∫ t

0
e−τAÅa0 dτ

)
. (2.11)

and so that for u0 ∈ X + D(Å) , and fixed t , the value above does not depend on the choice of
decomposition u0 = x0 + a0 , see [DHMT21, Proposition 2.6].

Moreover, for all u0 = x0+a0 ∈ X+D(Å) , it is straight forward to see from (2.11) and [DHMT21,
Proposition 2.6], that t 7→ e−tAu0 is strongly differentiable at any order with continuous derivatives
on (0, +∞) taking its values in X . For k ∈ J1, +∞J , t > 0 , by analyticity of the semigroup

(−∂t)k(e−(·)Au0)(t) = Ake−tAx0 + Ak−1e−tAÅa0 = Ak−1Åe−tAu0 ∈ D(A) ⊂ X.
From there, one can fully make sense of the following vector space,

D̊A(θ, q) :=
{

v ∈ X + D(Å)
∣∣ ∥v∥

D̊A(θ,q) < +∞
}

.

Similarly to what happens for DA(θ, q) in (2.1), it has been proved in [DHMT21, Proposition 2.12],
that the following equality holds with equivalence of norms,

D̊A(θ, q) = (X, D(Å))θ,q. (2.12)

However, the lack of completeness for D(Å) implies that D̊A(θ, q) is not necessarily complete. This
has consequences on how to consider the forcing term f in (ACP), choosing f ∈ Lq((0, T ),DA(θ, q))
instead of f ∈ Lq((0, T ), D̊A(θ, q)) to avoid definition issues, the latter choice being possible when
D̊A(θ, q) is a Banach space.

Theorem 2.6 ( [DHMT21, Theorem 2.20]) Let ω ∈ [0, π
2 ) , (D(A), A) an ω -sectorial operator

on a Banach space X such that Assumptions (2.4) and (2.5) are satisfied. Let q ∈ [1, +∞) , θ ∈
(0, 1

q ) , θq := θ + 1 − 1/q , and let T ∈ (0, +∞] .
For f ∈ Lq((0, T ),DA(θ, q)) and u0 ∈ D̊A(θq, q) , the problem (ACP) admits a unique mild

solution
u ∈ C0

b([0, T ], D̊A(θq, q)),

such that ∂tu , Au ∈ Lq((0, T ), D̊A(θ, q)) with estimates,
∥u∥L∞([0,T ],D̊A(θq,q)) + ∥(∂tu, Au)∥Lq((0,T ),D̊A(θ,q)) ≲q,A ∥f∥Lq((0,T ),D̊A(θ,q)) + ∥u0∥

D̊A(θq,q). (2.13)

In case q = +∞ , we assume in addition that u0 ∈ D(A2) and then for each θ ∈ (0, 1) ,
∥(∂tu, Au)∥L∞([0,T ],D̊A(θ,∞)) ≲q,A ∥f∥L∞((0,T ),DA(θ,∞)) + ∥Au0∥

D̊A(θ,∞). (2.14)
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3 Vector-valued Sobolev spaces in a UMD Banach space and
the time derivative

3.1 Banach valued Bessel and Riesz potential Sobolev spaces
This subsection is devoted to few reminders on Bessel potential spaces on the whole line with values
in a Banach space X which is known to be UMD. This will be based on the constructions provided
by [MV12, LMV18] and [HvNVW16, Chapter 5, Section 5.6], see also the references therein. From
the properties we are going to gather about Bessel potential Sobolev spaces, we will be able give a
simple construction of homogeneous (Riesz potential) Sobolev spaces with values in X , for regularity
index near 0 . Namely, we will focus on the regularity index α ∈ (−1 + 1/q, 1/q) when q ∈ (1, +∞) .

We chose to investigate the Sobolev space on the one the half-line for which we won’t have
additional compatibility conditions at 0 . Notice that the condition on the regularity index is also
here in order to avoid troubles of definition. Indeed, the definition of homogeneous function spaces
for regularity exponents beyond 1/q is not clear and a choice of realization have to be done, even in
the scalar case. Such choice implies generally the loss of one, or more, usual and useful properties,
like either the loss of distribution theory, the loss of completeness on the whole scale, or the loss
of pointwise/meaningful (para-)products (in the scalar case, X = C). See for instance [BCD11,
DHMT21,Gau22,Saw18] and reference therein for various constructions and addressed issues in the
scalar-valued case.

From there and until the end of this article, we assume that X has the UMD property. We recall
that such space X is necessarily reflexive.

Definition 3.1 For q ∈ (1, +∞) , α ∈ R , we define the vector space
Hα,q(R, X) :=

{
u ∈ S′(R, X)

∣∣ (I − ∂2
x) α

2 u ∈ Lq(R, X)
}

with its associated norm
∥u∥Hα,q(R,X) := ∥(I − ∂2

x) α
2 u∥Lq(R,X).

Here, (I − ∂2
x) α

2 have to be understood as the usual Fourier multiplier operator.

Before going further, we introduce
S0(R, X) :=

{
u ∈ S(R, X)

∣∣ supp(Fu) is compact, 0 /∈ supp(Fu)
}

.

Proposition 3.2 Let q ∈ (1, +∞) , α ∈ R , the following properties are true :

(i) Hα,q(R, X) is a reflexive Banach space with

(Hα,q(R, X))∗ = H−α,q′
(R, X∗);

(ii) S0(R, X) is a dense subspace of Hα,q(R, X) ;

(iii) Provided α ⩾ 0 , for all u ∈ S′(R, X) ,
∥u∥Hα,q(R,X) ∼α,q,X ∥u∥Lq(R,X) + ∥(−∂2

x) α
2 u∥Lq(R,X);

(iv) Provided α ∈ [0, 1/q) , 1
r = 1

q − α , for all u ∈ Hα,q(R, X) ,

∥u∥Lr(R,X) ≲α,q,X ∥(−∂2
x) α

2 u∥Lq(R,X);

(v) Provided α ∈ (−1 + 1/q, 1/q) , for all u ∈ Hα,q(R, X) ,
∥1R+u∥Hα,q(R,X) ≲α,q,X ∥u∥Hα,q(R,X).

Proof. — Point (i) is standard. Point (ii) is a direct consequence of the corresponding results for
α = 0 , see [Haa06, Lemma E.5.2]. Point (iii) is just [LMV18, Lemma 4.2]. Point (iv) follows from
[MV12, Corollary 1.4], point (iii) and a dilation argument. Point (v) is just [LMV18, Theorem 4.1].■
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For q ∈ (1, +∞) , α ∈ (−∞, 1/q) , thanks to the points (i), (ii) and (iv) from the Proposition 3.2,
we introduce the quantity

∥u∥Ḣα,q(R,X) := ∥(−∂2
x) α

2 u∥Lq(R,X),
one can consider the completion

Ḣα,q(R, X) := S0(R, X)∥·∥Ḣα,q(R,X)

so that the next definition is meaningful.

Definition 3.3 For q ∈ (1, +∞) , α < 1/q , we define the vector spaces

(i) for α ⩾ 0 , 1
r := 1

q − α ,

Ḣα,q(R, X) :=
{

u ∈ Lr(R, X)
∣∣ (−∂2

x) α
2 u ∈ Lq(R, X)

}
,

(ii) for α ⩽ 0 ,
Ḣα,q(R, X) :=

{
u ∈ Hα,q(R, X)

∣∣ (−∂2
x) α

2 u ∈ Lq(R, X)
}

,

with their associated norm
∥u∥Ḣα,q(R,X) := ∥(−∂2

x) α
2 u∥Lq(R,X).

Here, (−∂2
x) α

2 have to be understood as the usual Fourier multiplier operator.

In a similar way, we obtain the following collection of properties.

Proposition 3.4 Let q ∈ (1, +∞) , α ∈< 1/q , the following properties are true :

(i) for β ∈ R , such that α + β < 1/q ,

(−∂2
x)

β
2 : Ḣα+β,q(R, X) −→ Ḣα,q(R, X)

is an isomorphism of Banach spaces;

(ii) Ḣα,q(R, X) is reflexive, and whenever α ∈ (−1 + 1/q, 1/q) ,

(Ḣα,q(R, X))∗ = Ḣ−α,q′
(R, X∗);

(iii) S0(R, X) is a dense subspace of Ḣα,q(R, X) ;

(iv) provided α ∈ [0, 1/q) , 1
r = 1

q − α , for all u ∈ Ḣα,q(R, X) , v ∈ Lr′(R, X) ,

∥u∥Lr(R,X) ≲α,q,X ∥u∥Ḣα,q(R,X),
∥v∥Ḣ−α,q′ (R,X) ≲α,q,X ∥v∥Lr′ (R,X);

(v) provided α ∈ (−1 + 1/q, 1/q) , for all u ∈ Ḣα,q(R, X) ,
∥1R+u∥Ḣα,q(R,X) ≲α,q,X ∥u∥Ḣα,q(R,X).

Proof. — Point (iii) follows from the definition. Point (i) is straightforward by density of S0(R, X) .
Point (ii) is a direct consequence of the corresponding results for α = 0 , thanks to the point (i). Point
(iv) follows from the definition, the corresponding point in Proposition 3.2 and a duality argument
provided by the previous point (ii). Point (v) follows from points (iii) and (v) in Proposition 3.2
and a dilation argument when α ⩾ 0 , see e.g. [Gau22, Proposition 2.15]. The case α < 0 follows by
duality thanks to the current point (ii). ■

Let us start the construction of corresponding function spaces on the half-line.

Definition 3.5 Let q ∈ (1, +∞) , α ∈ R , h ∈ {H, Ḣ} . We assume assume moreover that α < 1/q
when h = Ḣ . We define by restriction, in the sense of distributions, the normed vector space

hα,q(R+, X) := hα,q(R, X)|R+
.
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This is a Banach space with respect to the quotient norm
∥u∥hα,q(R+,X) := inf

U|R+
=u,

U∈hα,q(R,X).

∥U∥hα,q(R,X).

Proposition 3.6 Let q ∈ (1, +∞) , α ∈ R , h ∈ {H, Ḣ} . We assume assume moreover that α < 1/q
when h = Ḣ . The following properties hold :

(i) hα,q(R+, X) is a reflexive Banach space, for which S0(R, X)|R+
is a dense subspace;

(ii) provided α ∈ (−1 + 1/q, 1/q) , for all u ∈ hα,q(R+, X) , the extension of u to the whole line by
0 denoted by ũ yields an element of hα,q(R, X)

∥ũ∥hα,q(R,X) ∼α,q,X ∥u∥hα,q(R+,X);

(iii) provided α ∈ [0, 1/q) , 1
r = 1

q − α , for all u ∈ hα,q(R+, X) , v ∈ Lr′(R+, X) ,

∥u∥Lr(R+,X) ≲α,q,X ∥u∥hα,q(R+,X),
∥v∥h−α,q′ (R+,X) ≲α,q,X ∥v∥Lr′ (R+,X);

(iv) for all α ∈ (−1 + 1/q, 1/q) , the subspace C∞
c (R+, X) is dense in hα,q(R+, X) ;

(v) whenever α ∈ (−1 + 1/q, 1/q) ,

(hα,q(R+, X))∗ = h−α,q′
(R+, X∗);

(vi) provided α ∈ [0, 1/q) , for all u ∈ Hα,q(R+, X) ,
∥u∥Lq(R+,X) + ∥u∥Ḣα,q(R+,X) ∼α,q,X ∥u∥Hα,q(R+,X);

Proof. — Point (i) follows from the definition of function spaces by restriction, and the properties
for their counterparts on R . The point (ii) is a direct consequence of point (v) from both Proposi-
tions 3.2 and 3.4. Point (iii) follows from the from the definition of function spaces by restriction
and the corresponding result in Propositions 3.2 and 3.4.

The point (iv) for α ⩽ 0 follows from point (i) and (iii): indeed, both yields that Lr(R+, X)
is dense in Hα,q(R+, X) , therefore it suffices to approximate functions in Lr(R+, X) by ones in
C∞

c (R+, X) . For α > 0 , the inhomogeneous case is known to be true, see for instance [LMV18,
Proposition 6.4]. The case of homogeneous function space follows since by (i), and by construction,
Hα,q(R+, X) embeds continuously and densely in Ḣα,q(R+, X) .

For the point (v), one may use the (iv) and the case α = 0 in order to reproduce the proof as in
the scalar case, e.g. one may reproduce the proof of [Gau22, Proposition 2.27].

Finally, the point (vi) can be proved by the mean of current point (ii) and the point (iii) from
Proposition 3.2. ■

The next lemma is nothing but the Hardy-Sobolev inequality in the vector valued setting with
homogeneous estimate. Its proof is left to the reader and use a complex interpolation argument
allowed by [LMV18, Theorem 6.7], then dilation and density arguments by the mean of the points
(iv) and (vi) of Proposition 3.6.

Lemma 3.7 Let q ∈ (1, +∞) , α ∈ [0, 1/q) . For all u ∈ Ḣα,q(R+, X) the following inequality holds∥∥∥∥τ 7→ u(τ)
τα

∥∥∥∥
Lq(R+,X)

≲α,q ∥u∥Ḣα,q(R+,X).

3.2 The derivative on the half-line.
We will not discuss here the construction and properties of inhomogeneous Bessel potential spaces
Hs,p(R+, X) for s ∈ R , p ∈ (1, +∞) and the meaning of traces at 0 . Therefore as in the previous
subsection, we refer to [MV12,LMV18,SSS12] for more details.
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We recall that one may define the unbounded operator d
dt on Lq(R+, X) , also denoted by ∂t ,

with domain,
Dq(∂t) := H1,q

0 (R+, X) := {f ∈ Lq(R+, X) | ∂tf ∈ Lq(R+, X), f(0) = 0}.
Then, thanks to [DV87, Theorem 3.1] (see also [Haa06, Sections 8.4, 8.5], [LMV18, Theorem 6.8]
or [PS16, Theorem 4.3.14]), d

dt is an injective sectorial operator on Lq(R+, X) which admits bounded
imaginary powers, satisfying, for all s ∈ R∥∥(∂t)is

∥∥
Lq(R+,X)→Lq(R+,X) ≲q,X (1 + s2)e π

2 |s|, (3.1)

implying that (∂t)α , α ∈ [0, 1] , is injective with domain Hα,q
0 (R+, X) , α ̸= 1

q , see [LMV18, Theo-
rems 6.7 & 6.8], and we have an isomorphism, provided α ∈ (−1 + 1/q, 1/q) ,

(∂t)α : Ḣα,q(R+, X) −→ Lq(R+, X). (3.2)
For β ∈ (0, 1) , α ∈ [β, 1] , α ̸= 1/q , γ ∈ [β, α] , the following representation formula holds for all

f ∈ (∂t)βHα,q
0 (R+, X) ,

(∂t)−βf(t) = 1
Γ(γ)

∫ t

0

1
(t − τ)1−γ

(∂t)γ−βf(τ) dτ, t > 0. (3.3)

Above formula remains true for f ∈ Ḣα−β,q(R+, X) , provided α, α − β < 1/q .
Similarly, the "dual" operator − d

dt , with domain Dq(−∂t) := H1,q(R+, X) , is an injective sectorial
operator on Lq(R+, X) which admits bounded imaginary powers. For all s ∈ R∥∥(−∂t)is

∥∥
Lq(R+,X)→Lq(R+,X) ≲q,X (1 + s2)e π

2 |s|, (3.4)

which also implies injectivity of (−∂t)α , α ∈ [0, 1] , with domain Hα,q(R+, X) .
For α ∈ (−1 + 1/q, 1/q) , we still have an isomorphism

(−∂t)α : Ḣα,q(R+, X) −→ Lq(R+, X). (3.5)
For β ∈ (0, 1) , α ∈ [β, 1] , γ ∈ [β, α] , the following representation formula holds for all f ∈

(−∂t)βHα,q(R+, X) ,

(−∂t)−βf(t) = 1
Γ(γ)

∫ +∞

t

1
(τ − t)1−γ

(−∂t)γ−βf(τ) dτ, t > 0. (3.6)

Above formula remains true for f ∈ Ḣα−β,q(R+, X) , provided α, α − β < 1/q .
More details about the functional analytic properties of operators ∂t and −∂t can also be

found in [PS16, Section 3.2] and [LMV18, Section 6], where the case of (power-)weighted, but
inhomogeneous, Sobolev spaces have been widely treated.

3.3 A comment for homogeneous Sobolev spaces and the time derivative
on a finite interval

We finish this section with a discussion about Sobolev space on (0, T ) (or [0, T ]), T > 0 , and the
related derivative operators. On can define those space similarly.

Definition 3.8 Let q ∈ (1, +∞) , −1 + 1/q < α < 1/q when h = Ḣ . We define by restriction, in
the sense of distributions, the normed vector space

hα,q((0, T ), X) := hα,q(R, X)|(0,T ) .
with the induced quotient norm.

But since 1(0,T ) = 1(0,+∞) − 1R+(· − T ) , we obtain

Proposition 3.9 Let q ∈ (1, +∞) , α ∈ (−1 + 1/q, 1/q) . The following properties hold :

(i) Ḣα,q((0, T ), X) is a reflexive Banach space, for which S0(R, X)|(0,T ) is a dense subspace;
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(ii) for all u ∈ Ḣα,q((0, T ), X) , the extension of u to the whole line denoted ũ , is such that
∥ũ∥Ḣα,q(R+,X) + ∥ũ∥Hα,q(R,X) ≲α,q,X,T ∥u∥Ḣα,q((0,T ),X).

(iii) Ḣα,q((0, T ), X) = Hα,q((0, T ), X) with equivalence of norms (depending on T ).

From there, and in particular from point (ii) of Proposition 3.9, one may expect that the theory
on the half line will carry over the behavior on (0, T ) up to extend the elements by 0 , or up to
the multiplication by 1(0,T ) . And this is indeed, what actually happens for ∂t and −∂t according
to [Haa06, Section 8.5].

4 The global-in-time Ḣα,q -maximal regularity with homoge-
neous trace estimate

Now, we go back to Lq -maximal regularity on a UMD Banach space X . We are going to state few
minor improvements of above results, the first one is about global-in-time estimates when the initial
data u0 lies in the homogeneous space D̊A(θ, q) , provided θ ∈ (0, 1) , q ∈ (1, +∞) .

A second goal is to obtain a Ḣα,q -maximal regularity result as a variation of above Theorem 2.2
where we take the advantage of [Pru02, Proposition 2.4], and the isomorphism properties (3.2) and
(3.5). Our proof for the corresponding homogeneous trace estimates is mainly inspired by techniques
from the proofs of [DHMT21, Lemma 2.19, Theorem 2.20], see also [PS16, Section 3.4] for similar
estimates proven in a similar way.

4.1 About mild solutions in the context of homogeneous operator theory
In the literature, it seems difficult to have a clear and definitive mention of what would be the exact
meaning of a mild solution of (ACP) in the context of homogeneous functions spaces with respect
the space variable (here the roles are played by D(Å) and D̊A(θ, q)). Here is an attempt.

Definition 4.1 Let ω ∈ [0, π
2 ) , (D(A), A) an ω -sectorial operator on a UMD Banach space X ,

such that it satisfies Assumptions (2.4) and (2.5).
Let T ∈ (0, +∞] , f ∈ L1

loc([0, T ), X) and u0 ∈ X + D(Å) . We say that u : [0, T ) −→ X + D(Å)
is a homogeneous-mild solution of (ACP) if

(i) u ∈ C0
b([0, T ), X + D(Å)) ,

(ii) v(t) := u(t) − e−tAu0 ∈ X , for all t ∈ [0, T ) ,

(iii) v ∈ C0
b([0, T ), X) is a mild solution of (ACP0 ) in the classical sense, i.e. for all t ∈ [0, T ) ,∫ t

0
v(s) ds ∈ D(A),

and

v(t) + A

∫ t

0
v(s) ds =

∫ t

0
f(s) ds in X.

Proposition 4.2 Let ω ∈ [0, π
2 ) , (D(A), A) an ω -sectorial operator on a UMD Banach space

X , such that it satisfies Assumptions (2.4) and (2.5). Let T ∈ (0, +∞] , f ∈ L1
loc([0, T ), X) and

u0 ∈ X + D(Å) .
The problem (ACP) admits at most one homogeneous-mild solution.

Proof. — Let u1 and u2 be two homogeneous-mild solutions to (ACP). Then, we set for all t ⩾ 0 ,
V (t) := u1(t) − u2(t) = (u1(t) − e−tAu0) − (u2(t) − e−tAu0) . It follows that V is a mild solution of
(ACP0

0 ) in the classical sense. Hence, uniqueness provided by [ABHN11, Proposition 3.1.16] yields
V = 0 in X . ■

13



Remark 4.3 Since for u0 ∈ X , one recovers classical mild solutions from the definition, and there
is no ambiguity since mild solutions in the classical sense are in particular homogeneous-mild
solution. From now on, we will refer without distinction to homogeneous-mild solution and mild
solution in the classical sense, as mild solutions.

4.2 Preliminary lemmas
First, we state a Lemma for the problem (ACP0 ), about homogeneous fractional Sobolev in-time
estimates for initial data u0 ∈ D̊A(θ, q) , q ∈ (1, +∞) , θ ∈ (0, 1) .

Lemma 4.4 Let ω ∈ [0, π
2 ) , (D(A), A) an ω -sectorial operator on a UMD Banach space X , such

that it satisfies Assumptions (2.4) and (2.5). Let q ∈ (1, +∞) , α ∈ (−1 + 1/q, 1/q) .
For all u0 ∈ D̊A(1 + α − 1/q, q) , we have

t 7→ Åe−tAu0 ∈ Ḣα,q(R+, X) ∩ Lq
1+α(R+, X)

with estimates
∥t 7→ t1−(1+α)Åe−tAu0∥Lq(R+,X) = ∥u0∥

D̊A(1+α−1/q,q),

∥Åe−(·)Au0∥Ḣα,q(R+,X) ≲q,α,A ∥u0∥
D̊A(1+α−1/q,q).

Proof. — We just have to prove the estimate in Sobolev space. The equality of norms is straight-
forward by definition of the D̊A(1 + α − 1/q, q)-norm.

Step 1: The case α = 0 is straightforward.
Step 2: The case α ∈ (0, 1/q) . For u0 ∈ D̊A(1 + α − 1/q, q) , one can write u0 = x0 + a0 ,

where (x0, a0) ∈ X × D(Å) . By [DHMT21, Proposition 2.6], the following equality holds in X , for
all t > 0 ,

Åe−tAu0 = Ae−tAx0 + e−tAÅa0.
Therefore, thanks to the representation formulae (3.6), and integral formulations for fractional pow-
ers of A , we have for all t > 0 ,

AαÅe−tAu0 = Aα(Ae−tAx0 + e−tAÅa0)
= A1+αe−tAx0 + Aαe−tAÅa0

= 1
Γ(1 − α)

∫ +∞

t

1
(τ − t)α

(A2e−τAx0 + Ae−τAÅa0) dτ

= (−∂t)α−1[A2e−(·)Ax0 + Ae−(·)AÅa0](t)
= (−∂t)α−1[AÅe−(·)Au0](t)
= (−∂t)α[Åe−(·)Au0](t).

So that, by the isomorphism property (3.5), we have
∥Åe−(·)Au0∥Ḣα,q(R+,X) ∼α,q ∥AαÅe−(·)Au0∥Lq(R+,X) .

From there, we obtain

∥AαÅe−(·)Au0∥Lq(R+,X) =
(∫ +∞

0
(τ

1
q ∥AαÅe−τAu0∥X)q dτ

τ

) 1
q

≲q,α,A

(∫ +∞

0
(τ

1
q −α∥Åe− τ

2 Au0∥X)q dτ

τ

) 1
q

≲q,α,A ∥u0∥
D̊A(1+α−1/q,q).

Our last set of inequalities follows from the analyticity of the semigroup (e−tA)t>0 on X and the
fact that one can write for all τ > 0 ,

AαÅe−τAu0 = Aαe− τ
2 AÅe− τ

2 Au0 . (4.1)
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Step 3: The case α ∈ (−1 + 1/q, 0) . We play with the integral representations like (3.6) and
fractional powers of A , so that as in Step 2, we should be able to write for t > 0 ,

(−∂t)α[Åe−(·)Au0](t) =
∫ +∞

t

(−∂τ )α+1[Åe−(·)Au0](τ) dτ

=
∫ +∞

t

τA1+αÅe−τAu0
dτ

τ
.

Notice that the last integral can be understood as an improper Riemann integral, so that it gives a
measurable function with values in X .

Therefore, we can bound, thanks to the Fatou Lemma and then to the analyticity of the semigroup
(we use the same trick (4.1)),∥∥∥∥t 7→

∫ +∞

t

τA1+αÅe−τAu0
dτ

τ

∥∥∥∥q

Lq(R+,X)
⩽ lim inf

M→+∞

∫ +∞

0

∥∥∥∥∥
∫ M

t

τA1+αÅe−τAu0
dτ

τ

∥∥∥∥∥
q

X

dt

⩽
∫ +∞

0

(∫ +∞

t

∥τA1+αÅe−τAu0∥X
dτ

τ

)q

dt

≲q,α,A

∫ +∞

0

(
t

1
q

∫ +∞

t

τ−α∥Åe− τ
2 Au0∥X

dτ

τ

)q dt

t
.

Finally, by the mean of Hardy’s inequality [Haa06, Lemma 6.2.6], we conclude∥∥∥∥t 7→
∫ +∞

t

τA1+αÅe−τAu0
dτ

τ

∥∥∥∥q

Lq(R+,X)
≲q,α,A

∫ +∞

0

(
t

1
q −α∥Åe− t

2 Au0∥X

)q dt

t

≲q,α,A ∥u0∥q

D̊A(1+α−1/q,q)
. ■

Now, the next lemma ensures that the maximal regularity operator applied to a Sobolev in-time
function, even with negative regularity, still yields an actual measurable function with values in X .

Lemma 4.5 Let ω ∈ [0, π
2 ) , (D(A), A) an ω -sectorial operator on a UMD Banach space X , and

let q ∈ (1, +∞) , α ∈ [0, 1/q) .
For f ∈ Ḣα,q(R+, X) , the following holds for all T > 0 ,

t 7→
∫ t

0
e−(t−s)Af(s) ds ∈ C0([0, T ], X)

with estimate ∥∥∥∥∥t 7→
∫ t

0
e−(t−s)Af(s) ds

∥∥∥∥∥
L∞([0,T ],X)

≲A,α,q T 1+α−1/q∥f∥Ḣα,q(R+,X).

Moreover, if A has the Lq -maximal regularity property, the results still holds for α ∈ (−1 + 1/q, 0) .

Proof. — Step 1: For α = 0 , q ∈ (1, +∞) . Let f ∈ Lq(R+, X) . By uniform boundedness of the
semigroup (e−tA)t⩾0 on X and Hölder’s inequality yield∥∥∥∥∥

∫ t

0
e−(t−s)Af(s) ds

∥∥∥∥∥
X

≲A

∫ t

0
∥f(s)∥X ds

≲A t1−1/q∥f∥Lq([0,t],R)

The supremum on t ∈ [0, T ] yields the estimate∥∥∥∥∥t 7→
∫ t

0
e−(t−s)Af(s) ds

∥∥∥∥∥
L∞([0,T ],X)

≲A T 1−1/q∥f∥Lq(R+,X).

Continuity in-time follows from the dominated convergence theorem.
Step 2: For α ∈ (0, 1/q) , f ∈ Ḣα,q(R+, X) , for 1

r = 1
q − α , we have f ∈ Lr(R+, X) by Sobolev
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embeddings. Therefore by Step 1,∥∥∥∥∥t 7→
∫ t

0
e−(t−s)Af(s) ds

∥∥∥∥∥
L∞([0,T ],X)

≲A T 1−1/r∥f∥Lr(R+,X)

≲A,α,q T 1+α−1/q∥f∥Ḣα,q(R+,X).

Step 3: Let α ∈ (−1+1/q, 0) , f ∈ Ḣα,q(R+, X) and assume that A has the maximal regularity
property. First of all, by commutation properties for resolvents of ∂t and A , one can write

(∂t + A)−1f = (∂t)−α−1∂t(∂t + A)−1(∂t)αf

= (∂t)−α−1(∂t)αf − (∂t)−α−1A(∂t + A)−1(∂t)αf .
So that setting fα := (∂t)αf and uα := (∂t + A)−1fα , by the representation formula (3.3), we end
up with the following expression for t > 0

(∂t + A)−1f(t) =
∫ t

0
e−(t−s)Af(s) ds = 1

Γ(1 + α)

∫ t

0

1
(t − s)−α

[fα(s) − Auα(s)] ds.

Young’s inequality for the convolution, then the triangle inequality yield∥∥∥∥∥t 7→
∫ t

0
e−(t−s)Af(s) ds

∥∥∥∥∥
L∞([0,T ],X)

⩽
1

Γ(1 + α) ∥t 7→ tα∥Lq′ ([0,T ]) ∥fα − Auα∥Lq(R+,X)

⩽
T 1+α−1/q

Γ(1 + α)(αq′ + 1)
1
q′

(
∥fα∥Lq(R+,X) + ∥Auα∥Lq(R+,X)

)
.

From there, we recall that we have assumed the Lq -maximal regularity property, so that, by the
isomorphism property (3.2),∥∥∥∥∥t 7→

∫ t

0
e−(t−s)Af(s) ds

∥∥∥∥∥
L∞([0,T ],X)

≲A,α,q T 1+α−1/q∥fα∥Lq(R+,X)

≲A,α,q T 1+α−1/q∥f∥Ḣα,q(R+,X). ■

Corollary 4.6 Let ω ∈ [0, π
2 ) , (D(A), A) an ω -sectorial operator on a UMD Banach space X , and

let q ∈ (1, +∞) , α ∈ [0, 1/q) .
For f ∈ Ḣα,q(R+, X) , the following holds for all T > 0 ,

t 7→
∫ t

0
e−(t−s)Af(s) ds ∈ C0([0, T ],DA(1 + α − 1/q, q))

with estimate, for all T > 0 ,∥∥∥∥∥t 7→
∫ t

0
e−(t−s)Af(s) ds

∥∥∥∥∥
L∞([0,T ],DA(1+α−1/q,q))

≲A,α,q (1 + T 1+α−1/q)∥f∥Ḣα,q(R+,X) (4.2)

∥∥∥∥∥t 7→
∫ t

0
e−(t−s)Af(s) ds

∥∥∥∥∥
L∞(R+,D̊A(1+α−1/q,q))

≲A,α,q ∥f∥Ḣα,q(R+,X). (4.3)

Proof. — Thanks to Lemma 4.5, it suffices to prove the estimate (4.3).
Step 1: First we assume α = 0 and f ∈ Lq(R+, X) , we may extend f to R by setting f(t) := 0
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for t < 0 . In a similar fashion to what has been done in [DHMT21, Lemma 2.19], we can bound∥∥∥∥∥
∫ t

0
e−sAf(t − s) ds

∥∥∥∥∥
q

D̊A(1−1/q,q)

=
∫ +∞

0

(
τ

1
q

∥∥∥A

∫ t

0
e−(τ+s)Af(t − s) ds

∥∥∥
X

)q
dτ

τ

≲A,q

∫ +∞

0

(∫ +∞

0

1
τ + s

∥f(t − s)∥Xds

)q

dτ

≲A,q

∫ +∞

0

(
τ

1
q −1

∫ τ

0
∥f(t − s)∥Xds

)q
dτ

τ

+
∫ +∞

0

(
τ

1
q

∫ +∞

τ

1
s

∥f(t − s)∥Xds

)q
dτ

τ
.

We can apply Hardy’s inequalities, see [Haa06, Lemma 6.2.6], to obtain∥∥∥∥∥
∫ t

0
e−sAf(t − s) ds

∥∥∥∥∥
q

D̊A(1−1/q,q)

≲A,q

∫ +∞

0
(τ

1
q ∥f(t − τ)∥X)q dτ

τ
≲A,q ∥f∥q

Lq(R+,X).

Step 2: For α ∈ (0, 1/q) , f ∈ Ḣα,q(R+, X) , by Sobolev embeddings, we have f ∈ Lr(R+, X) ,
r = q

1−αq , so that by Step 1, for all T > 0 :

t 7→
∫ t

0
e−sAf(t − s) ds ∈ C0([0, T ],DA(1 − 1/r, r)) .

So that it is well defined. Let t > 0 , by [DHMT21, Lemma 2.15], we have∥∥∥∥∥
∫ t

0
e−sAf(t − s) ds

∥∥∥∥∥
q

D̊A(1+α−1/q,q)

∼α,q

∫ +∞

0

(
τ1+ 1

q −α
∥∥∥A2e−τA

∫ t

0
e−(t−s)Af(s) ds

∥∥∥
X

)q
dτ

τ︸ ︷︷ ︸
(I)

.

Since ∂t and A have commuting resolvents, we have
(∂t + A)−1 = (∂t)−α(∂t + A)−1(∂t)α.

Therefore, setting fα := (∂t)αf ∈ Lq(R, X) (up to consider, again, the extension of fα (not f ) to
the whole line by 0), we can use the representation formula (3.3), to obtain

(I) ∼α,q

∫ +∞

0

(
τ1+ 1

q −α
∥∥∥∫ t

0

1
(t − u)1−α

∫ u

0
A2e−(τ+(u−s))Afα(s) ds du

∥∥∥
X

)q
dτ

τ
.

From there, we can use the triangle inequality and we can write, provided 0 ⩽ s ⩽ u ⩽ t ,

A2e−(τ+(u−s))A = A1+αe− (τ+(u−s))
2 AA1−αe− τ

2 Ae− (u−s)
2 A,

so that, by analyticity of the semigroup (e−tA)t⩾0 on X , and the Fubini-Tonelli theorem, we have

(I) ≲α,q,A

∫ +∞

0

(
τ

1
q

∫ t

0

∫ u

0

1
(t − u)1−α

1
(τ + (u − s))1+α

∥fα(s)∥Xds du

)q
dτ

τ
.

Again by Fubini-Tonelli, and since
∫ t

s
1

(t−u)1−α
1

(τ+(u−s))1+α du = 1
α

(t−s)α

(τ+(t−s))τα , it follows that

(I) ≲α,q,A

∫ +∞

0

(
τ

1
q −α

∫ t

0

sα

(τ + s)∥fα(t − s)∥Xds

)q
dτ

τ
.

We can reproduce the use of Hardy’s inequalities [Haa06, Lemma 6.2.6] as in Step 1, to obtain∫ +∞

0

(
τ

1
q −α

∫ +∞

0

sα

(τ + s)∥fα(t − s)∥Xds

)q
dτ

τ
≲α,q ∥fα∥q

Lq(R+,X) ≲α,q ∥f∥q

Ḣα,q(R+,X) .
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One may also prove the continuity in-time by a density argument and the estimate (4.2). ■

4.3 The main result
Theorem 4.7 Let ω ∈ [0, π

2 ) , (D(A), A) an ω -sectorial operator on a UMD Banach space X , such
that it satisfies Assumptions (2.4) and (2.5). Let q ∈ (1, +∞) , α ∈ (−1+1/q, 1/q) and assume that
one of the two following conditions is satisfied

(i) α ⩾ 0 and A has the Lq -maximal regularity property,

(ii) α < 0 and A has BIP on X of type θA < π
2 .

Let T ∈ (0, +∞] . For f ∈ Ḣα,q((0, T ), X) , u0 ∈ D̊A(1 + α − 1/q, q) , the problem (ACP) admits
a unique mild solution u ∈ C0

b([0, T ], D̊A(1 + α − 1/q, q)) such that ∂tu , Au ∈ Ḣα,q((0, T ), X) with
estimate
∥u∥L∞([0,T ],D̊A(1+α−1/q,q)) ≲A,q,α ∥(∂tu, Au)∥Ḣα,q((0,T ),X) ≲A,q,α ∥f∥Ḣα,q((0,T ),X) + ∥u0∥

D̊A(1+α−1/q,q).
(4.4)

Moreover, if A admits BIP on X of type θA < π
2 , for f ∈ Ḣα,q((0, T ), X) , u0 ∈ DA(1 + α − 1/q, q)

and all β ∈ [0, 1] ,
∥(−∂t)1−βAβu∥Ḣα,q((0,T ),X) ≲A,q,α ∥f∥Ḣα,q((0,T ),X) + ∥u0∥

D̊A(1+α−1/q,q). (4.5)

Remark 4.8 • In Theorem 4.7, assumptions (2.4) and (2.5) are assumed here in order to ensure
that D̊A(θ, q) is a well defined, even if not complete, normed vector space.

• If u0 = 0 , the estimate (4.5) remains valid if we replace the operator (−∂t)1−β by (∂t)1−β .
• If one asks instead the initial data u0 to be in the smaller, but complete, space DA(θ, q) then

one can drop assumptions (2.4) and (2.5), and the estimate (4.4) still holds. However, one loose the
possibility to compute the corresponding equivalent norm by the mean of real interpolation.

• The assumption (ii) is probably not necessary for the case α < 0 . However, it is not clear
in this case how to prove the left hand side of the estimate (4.4). Indeed, our approach require to
consider the action of A1+α , see Step 3 in the proof.

Proof (of Theorem 4.7). — Let q ∈ (1, +∞) , α ∈ (−1 + 1/q, 1, q) . Throughout this proof, and
without loss of generality, we assume T = +∞ .

Step 1: The Ḣα,q -maximal regularity estimate, for u0 = 0 , f ∈ Ḣα,q(R+, X) . Mixed derivatives
estimates.

We recall that A has the Lq -maximal regularity property.
Now, we use the fact ∂t and A have their resolvent that commutes with each other, we have

(∂t + A)−1 = (∂t)−α(∂t + A)−1(∂t)α.
This equality and the isomorphism property of (∂t)α (3.2) yield

∥(∂tu, Au)∥Ḣα,q(R+,X) ≲A,q,α ∥f∥Ḣα,q(R+,X) .

And for the same reasons, from the Lq -setting, if A has BIP on X of type θA < π
2 , by [Pru02,

Proposition 2.4] for all β ∈ [0, 1] , we have
∥(∂t)1−βAβu∥Ḣα,q(R+,X) ≲A,q,α ∥f∥Ḣα,q(R+,X). (4.6)

This estimate will be useful later.
Concerning the estimate (4.5) (with u0 ∈ DA(1 + α − 1/q, q)), it suffices to assume that the

right hand side of (4.4) holds. Indeed, in this case it suffices to apply manually the three lines
lemma, see e.g. the proof of [Lun18, Theorem 2.7], to the holomorphic families (of operators)
(e(z−β)2(−∂t)1−zAz(∂t + A)−1)0⩽ℜ(z)⩽1 and (e(z−β)2(−∂t)1−zAz[e−tA(·)])0⩽ℜ(z)⩽1 , provided β ∈
(0, 1) is fixed. The proof of the boundedness is then carried over by (4.4) and BIP of A and of −∂t

respectively. Details are left to the reader.
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Step 2: The trace estimate when α ∈ [0, 1/q) . Let u0 ∈ D̊A(1 + α − 1/q, q) , f ∈ Ḣα,q(R+, X) .
The solution u must be given for all t > 0 , by

u(t) = e−tAu0 +
∫ t

0
e−sAf(t − s) ds.

Corollary 4.6 tells us that
u ∈ C0

b(R+, D̊A(1 + α − 1/q, q))),
with the estimate

∥u∥L∞(R+,D̊A(1+α−1/q,q)) ≲A,q,α ∥f∥Ḣα,q(R+,X) + ∥u0∥
D̊A(1+α−1/q,q).

Since f = ∂tu + Au and e−tAu0 = u(t) −
∫ t

0 e−sAf(t − s) ds , for all t > 0 , the triangle inequality
leads to

∥u∥L∞(R+,D̊A(1+α−1/q,q)) ≲A,q,α∥(∂tu, Au)∥Ḣα,q(R+,X) +
(∫ +∞

0

(
τ

1
q −α∥Au(τ)∥X

)q
dτ

τ

) 1
q

+
(∫ +∞

0

(
τ

1
q −α

∥∥∥∥A

∫ τ

0
e−sAf(τ − s) ds

∥∥∥∥
X

)q
dτ

τ

) 1
q

.

Thus, by the Hardy-Sobolev inequality, Lemma 3.7, we obtain

∥u∥L∞(R+,D̊A(1+α−1/q,q)) ≲A,q,α∥(∂tu, Au)∥Ḣα,q(R+,X) +
∥∥∥∥τ 7→ A

∫ τ

0
e−(τ−s)Af(s) ds

∥∥∥∥
Ḣα,q(R+,X)

.

Now, we may apply Step 1 on the last term, by the triangle inequality, since, again, f = ∂tu + Au ,
we deduce

∥u∥L∞(R+,D̊A(1+α−1/q,q)) ≲A,q,α∥(∂tu, Au)∥Ḣα,q(R+,X) + ∥f∥Ḣα,q(R+,X)

≲A,q,α∥(∂tu, Au)∥Ḣα,q(R+,X).

Step 3: The trace estimate when α ∈ (−1 + 1/q, 0) . Let f ∈ Ḣα,q(R+, X) .
By Lemma 4.5, we have

t 7→
∫ t

0
e−(t−s)Af(s) ds ∈ C0(R+, X) .

However, for t, τ > 0 ,

e−τA

∫ t

0
e−(t−s)Af(s) ds =

∫ t+τ

0
e−(τ+t−s)Af(s) ds −

∫ τ

0
e−(τ−s)Af(s + t) ds.

So that if we set v = (∂t + A)−1f , vt = (∂t + A)−1[f(· + t)] , we obtain for t, τ > 0
e−τAv(t) = v(t + τ) − vt(τ).

Therefore, by analyticity of the semigroup (e−τA)τ>0 , and the triangle inequality, we obtain for
t > 0 ,

∥v(t)∥
D̊A(1+α−1/q,q) ≲α,q,A ∥A1+αv(· + t)∥Lq(R+,X) + ∥A1+αvt∥Lq(R+,X).

We can now apply (4.6) with β = 1 + α , and use the translation invariance of Sobolev norms,
yielding

∥v(t)∥
D̊A(1+α−1/q,q) ≲α,q,A ∥f∥Ḣα,q(R+,X).

Now, for u = e−(·)Au0 + v , provided u0 ∈ D̊A(1 + α − 1/q, q) , we deduce
∥u∥L∞(R+,D̊A(1+α−1/q,q)) ≲α,q,A ∥f∥Ḣα,q(R+,X) + ∥u0∥

D̊A(1+α−1/q,q).

Again, to obtain the left hand side of (4.4), as in the previous Step 2, it suffices to estimate u0
in D̊A(1 + α − 1/q, q) -norm. However, such estimate may involve the action of fractional powers of
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A on e−τAu0 , for which the meaning is not clear when u0 ∈ D̊A(θ, q) . To circumvent this issue,
we use the fact that D(A) is dense in D̊A(1 + α − 1/q, q) by [DHMT21, Lemma 2.10]. Thus, let
(u0,n)n∈N be a sequence in D(A) which converges to u0 in D̊A(1+α−1/q, q) . We set for all n ∈ N ,
un := e−(·)Au0,n + v .

By analyticity of the semigroup (e−τA)τ>0 , and by the identity
(−∂t)α[Aun − Av](τ) = (−∂t)α[Ae−(·)Au0,n](τ) = A1+αe−τAu0,n,

we are able to deduce that

∥u0,n∥
D̊A(1+α−1/q,q) =

(∫ +∞

0

(
τ

1
q −α∥Ae−τAu0,n∥X

)q dτ

τ

) 1
q

≲α,q,A

(∫ +∞

0
∥A1+αe−τAu0,n∥q

Xdτ

) 1
q

≲α,q,A

(∫ +∞

0
∥(−∂t)α[Aun − Av](τ)∥q

Xdτ

) 1
q

.

Finally, we can use the isomorphism property (3.5) and the triangle inequality to obtain
∥u0,n∥

D̊A(1+α−1/q,q) ≲α,q,A ∥Aun∥Ḣα,q(R+,X) + ∥Av∥Ḣα,q(R+,X)

≲α,q,A ∥Aun∥Ḣα,q(R+,X) + ∥f∥Ḣα,q(R+,X)

≲α,q,A ∥(∂tun, Aun)∥Ḣα,q(R+,X) .
The proof ends here since one can pass to the limit as n goes to infinity.

It remains to prove the continuity in time with values in D̊A(1 + α − 1/q, q) which follows from
a density argument1. ■
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