

Screening Gender Transfer in Neural Machine Translation

Guillaume Wisniewski, Lichao Zhu, Nicolas Ballier, François Yvon

▶ To cite this version:

Guillaume Wisniewski, Lichao Zhu, Nicolas Ballier, François Yvon. Screening Gender Transfer in Neural Machine Translation. BlackBoxNLP 2021, Nov 2021, Punta Cana, Dominican Republic. hal-03993451

HAL Id: hal-03993451 https://hal.science/hal-03993451v1

Submitted on 16 Feb 2023 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Screening Gender Transfer in Neural Machine Translation

Guillaume Wisniewski¹, Lichao Zhu¹, Nicolas Ballier², François Yvon³ ¹LLF, Université de Paris, F-75013 Paris, France ²CLILLAC-ARP, Université de Paris, F-75013 Paris, France ³LISN, Université Paris-Saclay & CNRS, 91403 Orsay, France

universite

PARIS-SACLA

Information flow within an encoder/decoder architecture

- key steps in interpreting NMT systems
- \hookrightarrow which informations are captured by the decoder?
- \hookrightarrow which informations are captured by the encoder?
- \hookrightarrow which informations are transferred from the source to the target?
- linguistic probe: predict the gender of the French occupational noun from a source/target word representation
- \hookrightarrow simple binary classification problem
- \hookrightarrow evaluation: accuracy

In the source

- \hookrightarrow the generation of *'her'* (feminine embedding)
- \hookrightarrow the generation of '*his*' (masculine embedding)
- \hookrightarrow a neutral version of the embedding average of *son* representation over all sentences
- evaluation: distribution of pronoun in translation hypothesis

- how: study the transfer of gender information from French to English
- \hookrightarrow using probes to find where this information is represented;
- \hookrightarrow using causal models to determine when this information is used

Gender Transfer between French and English

• challenge

- \hookrightarrow in French: gender = property of all nouns \oplus agreement rules within noun phrase
- \hookrightarrow in English: gender = only in rare constructs involving human agents and pronoun coreference
- focus on the following pattern:
 - [DET] [N] a terminé son travail.
 - \rightarrow The [N] has finished [PRO] work.
- \hookrightarrow [N] = occupational noun either feminine or masculine
- \hookrightarrow [DET] = French determiner in agreement with the noun
- \hookrightarrow [PRO] = English possessive pronoun
- Dataset of 3,394 parallel sentences following this pattern
- \hookrightarrow perfectly balanced between genders

layer	а	terminé	son	travail		eos
1	80.4%	75.1%	80.6%	76.4%	59.5%	73.3%
2	85.8%	80.8%	81.6%	78.3%	87.6%	88.3%
3	89.5%	88.2%	89.2%	82.0%	86.5%	87.6%
4	90.8%	89.3%	90.6%	85.9%	85.7%	85.6%
5	90.4%	89.3%	90.4%	85.5%	86.4%	85.2%
6	91.0%	89.3%	90.0%	86.0%	86.4%	85.1%

Gender information

- \rightarrow is more present in the deepest layer of the encoder
- \hookrightarrow spreads all over the representation of the source tokens
 - \Rightarrow and not only the tokens involved in our hypothesis

In the target

- target sentence not as 'regular' as source sentences (predicted by MT system)
 - \Rightarrow accuracy of the probe computed over all tokens
 - of the translation hypothesis

intervention	English pronoun	% sentences
none	her	13.4%
	his	57.1%
	other	29.5%
feminine	her	17.3%
	his	56.8%
	other	25.9%
gender-neutral	her	13.2%
	other	29.4%
	his	57.4%
masculine	her	13.8%
	other	29.2%
	his	57.0%

 \hookrightarrow representations of *son* are not the only evidence used during the generation of the translation hypothesis \Rightarrow path (c) has only a limited influence

Conclusion

• Hypothetical paths for transferring gender

- \hookrightarrow (a) *direct influence* \rightarrow cross-lingual attention;
- \hookrightarrow (b) *indirect influence* \rightarrow monolingual encoding of gender in the representation of the English noun;
- \hookrightarrow (c) *indirect influence* \rightarrow cross-lingual attention to the French possessive adjective.

Probing Representations

	♂ or ♀	
	\uparrow	
\uparrow	<u> </u>	\uparrow

	dec	decoder		
layer	the	all tokens		
1	89.5%	71.6%		
2	92.0%	76.3%		
3	91.8%	78.1%		
4	90.9%	79.1%		
5	89.3 %	82.4%		
6	87.7%	84.7%		

• gender information encoded in all target tokens \Rightarrow even those for which the information is useless

Manipulating Representations

- Contributions: new dataset \oplus two techniques (probing & manipulating)
- Conclusions:
- \hookrightarrow gender information in the representation of all tokens representations built by the encoder and the decoder
- \hookrightarrow choice of English pronoun distributed
- future work:
- \hookrightarrow generalization to other language & syntactic divergences
- \hookrightarrow identify which information is used to choose the English pronoun

Code & Corpus

https://github.com/neuroviz/neuroviz/tree/main/ blackbox2021

Acknowledgments

• goal: identify if and when gender information is used

• how: intervention \rightarrow replace the embedding of 'son'

by a representation that triggers

This work was partially funded by the NeuroViz project subsidized by the IIe-de-France Region, and supported in part by the 2020 émergence research project SPEC-TRANS.

Contact information

guillaume.wisniewski@u-paris.fr

BlackBoxNLP 2021, November 11th 2021, Punta Cana