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ABSTRACT: To assess the contribution of wind drag and Stokes drift on the near-surface circulation, a methodology to
isolate the geostrophic surface current from high-frequency radar data is developed. The methodology performs a joint
analysis utilizing wind field and in situ surface currents along with an unsupervised neuronal network. The isolation method
seems robust in the light of comparisons with satellite altimeter data, presenting a similar time variability and providing
more spatial detail of the currents in the coastal region. Results show that the wind-induced current is around 2.1% the
wind speed and deflected from the wind direction in the range [188, 238], whereas classical literature suggests higher values.
The wave-induced currents can represent more than 13% of the ageostrophic current component as function of the wind
speed, suggesting that the Stokes drift needs to be analyzed as an independent term when studying surface sea currents in
the coastal zones. The methodology and results presented here could be extended worldwide, as complementary informa-
tion to improve satellite-derived surface currents in the coastal regions by including the local physical processes recorded
by high-frequency radar systems. The assessment of the wave and wind-induced currents have important applications on
Lagrangian transport studies.

KEYWORDS: Atmosphere-ocean interaction; Ocean circulation; Surface observations

1. Introduction

The surface ocean currents result from complex physical
processes forced by ocean–atmosphere energetic fluxes (such
as momentum and heat fluxes), and traditionally, solved by
the superposition of several current components. These com-
ponents include the wind-induced current, the wave-induced
Stokes drift, the geostrophic current, tidal currents, among
others (Pedlosky 1987; Kundu et al. 2012; Kumar et al. 2017;
Berta et al. 2018). Ocean currents are assumed mostly in geo-
strophic balance when considering large-scale processes (larger
than tens of kilometers) (Hernández-Carrasco and Orfila 2018),
while ageostrophic currents play a more relevant role at smaller
spatial scales (such as coastal areas) (Donlon 2013). It has been
observed that geostrophic currents have important implications
on marine debris accumulation, whereas wind-induced currents
and Stokes drift influence oil spill transport, search and rescue,
and passive tracer trajectories (Ardhuin et al. 2009; Onink et al.
2019; van der Mheen et al. 2020). Nonetheless, the contribution
by wind-induced currents and Stokes drift on the surface ocean
current at local/regional scale is still poorly known.

In the literature, several methodologies are utilized in estimat-
ing geostrophic velocities. For instance, optimization functions
applied to velocity profiles (ADCPs) in order to separate the
current components (Roach et al. 2015), or information from al-
timeter satellite missions combined with in situ data (ADCP
moorings, gliders, and drifters-derived velocities) (Poulain et al.
2012; Rio et al. 2014; Carret et al. 2019). Nonetheless, still, there
are several limitations when trying to use altimeter products

(from available satellite missions) such as a strong land interfer-
ence on the signal inside the coastal area within the first 50 km
offshore (Albuquerque et al. 2018), and the spatial resolution
from altimeter maps is too coarse to capture fine flow features.

Regarding the wind-induced current and Stokes drift, previ-
ous studies have utilized drifters-derived information (Kirwan
et al. 1979; Poulain et al. 2012; Chang et al. 2012; Rio et al.
2014), high-frequency radars (HFR) (Mao and Heron 2008;
Ardhuin et al. 2009; Chavanne 2018; van der Mheen et al.
2020) and a combination between in situ and synthetic infor-
mation (from numerical models) (Tamtare et al. 2022) to esti-
mate the wind and wave effects on the surface current.
However, most of these studies performed wind and Stokes
drift estimation assuming the rest of the current components
(i.e., geostrophic currents, inertial oscillations, and tides) neg-
ligible or weak, assumptions that can be wrong in enclosed
basins such as the Mediterranean Sea, where mesoscale sur-
face currents are dominated by geostrophic balance (Poulain
et al. 2012; Hernández-Carrasco and Orfila 2018). For instance,
Ardhuin et al. (2009) used HFR data along with wave modeling
to show that the total surface current can be considered as the
superposition of the Stokes drift and an Eulerian current. The
Eulerian component was assumed to be influenced by inertial
and tidal currents and weakly influenced by the geostrophic
current component. On the other hand, Rio et al. (2014) used
drifters-derived information and satellite data to present a
methodology to estimate the near-surface (and subsurface) ocean
current at global scale. The latter methodology is based on the
superposition of the geostrophic balance and an empirical Ekman
model, and the authors remarked that regional-/local-scale
processes are not considered in the calculation due to the
nature of the data used. In situ information, such as HFR
data can be considered in order to include these local-scale
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effects. In addition, the Stokes drift contribution was not
included in the analysis.

From this background, it is clear that the role of the Stokes
drift and wind-induced current on the surface sea current at
local/regional scale (coastal regions) should be better captured,
and the previous estimations can be influenced by strong assump-
tions. To partially address these issues, we develop a methodol-
ogy to isolate the main current components from the HFR data,
and to determine a relationship between local wind, wave field,
and the surface current.

To take a step forward in this understanding, the aim of
this work is to answer two main questions: 1) Is it possible to
develop a methodology to estimate the geostrophic surface
current component by using in situ HFR data? And 2) by sub-
tracting the geostrophy from the measured surface current,
can this methodology help to determine the contribution by
waves and wind drag on the surface sea current? To answer
these fundamental questions, we apply the self-organizing
map (SOM) technique to HFR surface current data along
with wind data from an atmospheric model. SOM is an unsu-
pervised neural network, extensively applied to the oceanog-
raphy field in order to recognize circulation features such as
gyres and upwelling/downwelling processes at sea (Liu and
Weisberg 2005b, 2007; Liu et al. 2007; Orfila et al. 2021), or as
a tool to fill missing data in HFR systems (Hernández-Carrasco
et al. 2018). SOM is capable of capturing nonlinear processes in
the data (Liu and Weisberg 2005b). In addition, it has been
presented as a powerful tool to develop ocean current forecast
systems (Vilibić et al. 2016), showing promising results when
comparing against physics-based ocean models. Then, one
could think of a way to analyze the HFR currents with the wind
fields in order to extract targeted surface sea current features
(Mihanović et al. 2011). The analysis can allow a breakdown of
the total current into the geostrophic component and the near-
surface wind-driven component. Later, the assessment of the
contribution by the wave-induced current can be determined by
focusing on the ageostrophic surface current component. The
HFR (measured currents) includes the geostrophic component
as well as tidal-, wind-, and wave-driven components (Lorente
et al. 2022; Reyes et al. 2022), making these observations per-
fectly suitable for our breakdown analysis.

This paper is structured as follows: The study site and the
HFR setup are presented in section 2. The data preprocessing
is described in section 3. The methodology of the surface cur-
rent decomposition and the use of SOM on the HFR data to
isolate the main current components is presented in section 4.
Section 5 presents the estimation and validation of the geo-
strophic current. The assessment of the ageostrophic compo-
nent is described in section 6. Finally, section 7 shows the
discussion and conclusions.

2. Study site and HFR system

The Toulon Bay area (delimited by the region shown in
Fig. 1) is located on the southern coasts of France, in the
northwestern Mediterranean Sea. It is a urbanized zone, with
several socioeconomic activities such as fishery and tourism, and
the largest military port in France. Also, this highly anthropized

area includes a preserved area of the National Park of
Port-Cros (Rey et al. 2020). The geographic configuration of
the region presents a steep continental shelf, going from
tens of meter in the bay to several hundreds of meters off-
shore, and is composed by a semienclosed bay, the Giens
Peninsula (GIENS), and several capes and islands. The re-
gion is characterized by the dominant well-known boundary
Northern Current (NC) that determines the main kinematic
conditions (Shrira and Forget 2015), the semidiurnal and di-
urnal tidal motions (12 and 24 h, respectively) and an iner-
tial frequency band centered around 17.6 h. The NC is part
of the general cyclonic circulation of the western Mediterra-
nean basin (Millot 1999), showing a clear spatial and tempo-
ral variability due to complex coastline shapes, atmospheric
forcing and (sub)mesoscale structures (Ourmières et al.
2011; Guihou et al. 2013; Bourg and Molcard 2021). So the
NC can reach speeds up to 1 m s21, and can be close to the
shore or away from it depending on the season (Millot 1989;
Petrenko 2003; Ourmières et al. 2018). Concerning the at-
mospheric conditions, the dominant winds blow from west

FIG. 1. View of the Toulon Bay area (black rectangle) and loca-
tion of the three HFR stations (black circles). The blue arrows
show a snapshot of the measured surface current for 10 Jun 2020.
The contours are the isobaths for 800, 1500, 2200, and 2450 m
depth. P1, P2, and P3 are used to compare time series.
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and east. Westerly/northwesterly (called mistral) winds are
cold and dry, and easterly winds are warm and humid. These
two wind regimes can be strong (.10 m s21) and persistent
during the year, while calm weather conditions occur when
the wind speed is lower than 5 m s21 (Mazoyer et al. 2020).
In general, from winter to fall the waves come from east–
northeast (ENE) and west–northwest (WNW) reaching
heights up to 6 m (see Fig. A1 in the appendix). During sum-
mer the waves come predominately from WNW presenting
the smallest wave height values, whereas the highest values
are present during winter coming from ENE.

This study site is equipped with a WERA HFR system
manufactured by Helzel GmbH. The system is composed of
two transmitters (TX) and two receivers (RX) located on
three distant sites in the Toulon Bay area (see Fig. 1). A first
TX–RX station is located in Fort Peyras (PEY). It works in a
quasi-monostatic configuration with a 2-antenna transmitting
end-fire array and a linear 12-antenna receiving array. The
second station is a standalone transmitter composed of a sin-
gle monopole antenna located at the south of Porquerolles
Island (POR). The third station is composed of a 12-antenna
receiving array in Cap Bénat (CB). This network operates in
multistatic configuration (Guérin et al. 2019; Dumas et al.
2020) and provides four elliptical projections of the surface
currents corresponding to the four possible TX–RX combina-
tions. The radar operates at a central frequency f 5 16.15 MHz
with an available sweep band of 100 kHz allowing for a 1.5 km
range resolution. Surface current mapping is obtained by apply-
ing improved direction finding techniques (Dumas and Guérin
2020) to the receiving arrays, leading to high-resolution radial
maps of about 18 azimuthal resolution. The total surface veloc-
ity and its Cartesian components are obtained every hour by re-
combination of the best two radials (POR/CB and PEY/PEY)
and projected onto a regular Cartesian grid of 1 km resolution
using a weighted interpolation technique. In addition, quality
checks and consistency tests have been performed in the
voltage-to-current conversion while processing the radar data,
as well as a processing suite including the bistatic current extrac-
tion for each radial map, the signal-to-noise ratio threshold
definition, and the geometric dilution of precision (GDOP)
(Dumas et al. 2020). Then, several drifter’s campaigns have
been used to validate the measurements (Guérin et al. 2019).

3. Data preprocessing

a. HFR surface velocity field

Comparisons in June 2019 (Dumas et al. 2020) and November
2020 (not published yet) have shown a good agreement between
the radar-derived surface currents and the in situ CARTHE
drifters (Novelli et al. 2017), whose integration depth of about
60 cm is similar to the HFR one (Stewart and Joy 1974), under
the assumption of a linear velocity profile. Particularly, when av-
eraging over all drifters launches (five and eight in 2019 and
2020, respectively), it is observed a root-mean-square difference
on the order of 5–7 cm s21 for the hourly zonal component and
8–9 cm s21 for the meridional one. The differences are induced
by an increment in the absolute magnitude of currents during the

fall and winter periods, and a large excursion of the drifters to-
ward the borders of the HFR coverage. The signal-to-noise ratio
of the radar signal is minimal at the borders of the HFR domain
(by definition), reducing the accuracy of the retrieved surface
currents in these limiting regions. In the present study, we use
6 months of hourly HFR observations surveyed in 2020, from
1 June to 30 November. This period was selected because the
velocity maps cover more than 75% of the time every month.
First, the Data Interpolating Empirical Orthogonal Functions
(DINEOF) gap-filling algorithm (Alvera-Azcárate et al. 2005)
was applied to the radial velocity maps to complete missing data
in the HFR domain and to replace noisy velocity values. This al-
gorithm calculates the main modes of the data variability by
means of the empirical orthogonal functions (EOFs), and then,
those are used to fill gaps by an iterative method. Before deter-
mining the EOFs, data from the nonmissing regions were
removed to apply a cross validation. Then, by means of compari-
sons between the dataset and the reconstructed data the number
of EOFs was set to 197, retaining 97% of the variance and
obtaining a correlation between the original and reconstructed
velocities above 0.95. Later, the data were low-pass filtered using
3 days cutoff to remove high-frequency signals (such as inertial
oscillations, Stokes drift, tides, among others) (Rio et al. 2014)
and resampled to 3 h to match the wind time resolution. The
DINEOF computation, convergence, and application to the
HFR dataset can be found in Bourg and Molcard (2021).

b. Wind data and wind-induced current

The wind field at 10 m height (U10) comes from the Appli-
cation of Research to Operations at Mesoscale (AROME)
wind model. AROME is a nonhydrostatic 3D high-resolution
numerical model, operational at Météo-France since December
2008. The size of the mesh is 1.3 km over France and the outputs
available every 3 h. It was designed to improve short range fore-
casts of severe events such as intense Mediterranean precipita-
tions (Cévenole events), severe storms, fog, urban heat during
heat waves. The model has a data assimilation system to include
regional observations and outputs from previous forecast models,
adapted to the AROME spatial resolution (Brousseau et al.
2016). Additionally, data from the Application Radar à la
Météorologie Infrasynoptique (ARAMIS) radar network
(Doppler wind and precipitation) are used for model assimila-
tion at local scale on an hourly basis (for details, see http://
www.umr-cnrm.fr/). Given its good performance and high
temporal and spatial resolution, AROME has been utilized to
develop oceanographic forecast models by means of ocean–
atmosphere–wave coupled simulations (Sauvage et al. 2021).

To estimate the wind-induced current at the surface (z 5 0)
two methods are used: 1) the classical Ekman theory (uEkw ),
where the surface current is deflected 458 to the right of the
wind direction in the Northern Hemisphere (to the left in the
Southern Hemisphere) (Kundu et al. 2012); and 2) a modified
Ekman formulation (uEpw ) developed by using drifter trajecto-
ries (Rio et al. 2014) (a parametric Ekman model), where the
surface current is deflected between 208 and 408 from the
wind direction depending on seasonal variability and latitude.
Both approaches are based on the fact that the surface current
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results from a momentum balance between the wind drag and
Coriolis forces (Kirwan et al. 1979; Pedlosky 1987), and the
main difference lies on the value of the resultant current di-
rection. Thus, the classical Ekman model is defined as

uEkw 5
t���������

r2wAzf
√ ei(a2p/4), f 5 2vsin(f), (1)

where t 5 raCDU10U10 is wind shear stress, ra the air density,
the drag coefficient CD 5 (0.75 1 0.06U10) 3 1023 (Garrat
1997), a the wind direction, rw the water density, f is the
Coriolis parameter, v the angular velocity of Earth (equal to
7.292 3 1025 (rad s21), f the latitude, and Az the vertical
eddy viscosity in the water. In this study Az is assumed cons-
tant (Polton et al. 2005; Mao and Heron 2008) and equal to
0.1071 m2 s21 (Morales-Márquez et al. 2021; Roach et al.
2015).

The parametric Ekman model from Rio et al. (2014) is based
on the amplitude and phase factors (b and u, respectively),

uEpw 5 b(z)teiu(z), (2)

where u represents the deviation of the surface current from the
wind direction. These two parameters were defined based on
the fitting analysis to undrogued drifters for comparison with
the HFR currents, so that b ’ 0.73 m2 s kg21 and u’ 188.

c. Wave-induced current

The wave-induced current component, the Stokes drift (us),
depends on the wave energy spectrum distribution and local
water depth; however, analytical solutions have proven that
the estimation of us based on bulk wave parameters can give
good estimations, specifically, in the near-surface region (Kenyon
1969; Kumar et al. 2017). So, in this study, the WAVEWATCH
III (WWIII) model (Tolamn 2009) was employed to generate
hindcasts at the Toulon Bay, and the Stokes drift computations
are performed by using bulk wave parameters resultant from the
wave model. Thus, us 5 usk is estimated as

us 5
H2

s

16
kse22kz, k 5 k[cos(uw), sin(uw)], (3)

where uw is the mean wave direction of propagation, s is the
wave radian frequency, Hs is the significant wave height and k
the wavenumber vector, and z the depth measured from the
surface downward. Additionally, at the near-surface, e22kz is
close to 1 and

us’
H2

s

16
ks · (4)

Before the estimation of us, the WWIII was calibrated and
validated using in situ information (buoys) and satellite data.
A complete description of the model performance, numerical
settings and the methodology applied during the model calibra-
tion and validation is presented in Lira-Loarca et al. (2022).
The wave simulation was carried out by using a triangle-
unstructured computational grid covering the entire Mediterra-
nean Sea with varying spatial resolution (see Fig. 2). The

overall spatial resolution of the mesh is about 25 km offshore
increasing toward the coast of Toulon up to 300 m. Finally, the
outputs of the wave parameters were obtained every 3 h.

4. Methods

a. Components of the total surface sea current

At local/regional scales, the speed and direction of the
currents near the surface can be, mainly, determined by a lin-
ear superposition (Tamtare et al. 2022) of the geostrophic cur-
rent (ug), wind-induced current (uw), Stokes drifts (us), and
any outer current transported by the mean flow into the local
area (ue),

ut 5 ug 1 uw 1 us 1 ue, (5)

where ut is the total current measured by the HFR.
For the calculation of ug, the surface flow is assumed

stationary and the frictional forces due to wind drag are negli-
gible (including wave generation), so that the momentum
equilibrium is balanced by the Coriolis force and the pressure
gradient (Pedlosky 1987). In the study site, ug obeys the large-
scale circulation processes at the Mediterranean Sea scale, de-
scribed by the NC’s dynamic (Poulain et al. 2012; Guihou et al.
2013; Carret et al. 2019). Now, the sum of us 1 uw is defined
as the local ageostrophic component (ua) of the near-surface
sea current, since they rise from the ocean–atmosphere inter-
action, and ue represents the surface current not easily related
to wind-/wave-induced currents [such as residual circulation
or (sub)mesoscale processes generated locally or transported
by the mean flow].

To estimate each component, a decomposition method that
consists of three phases is performed: assessment of the geo-
strophic component ug, assessment of the wind-induced current
component, and estimation of us to complete the ageostrophic
component ua. This decomposition starts by training the SOM
to determine a neuron under negligible atmospheric forcing
conditions and then finding the snapshots of the velocity field
represented by the aforementioned neuron where a dominant
geostrophic balance may be considered. Later, ua is determined
by applying Eq. (5).

FIG. 2. Triangular-unstructured grid for the wave modeling and the
zoom-in at the Toulon Bay.
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b. Self-organizing map analysis

The SOM is an unsupervised learning neural network espe-
cially suited to extract patterns in large datasets. SOM is a
nonlinear pattern and classification tool used to map high-
dimensional input data onto a two-dimensional space, while
preserving the topological relationships between the input
data (Liu et al. 2006). The input data are clustered in units,
called neural units. The number of units is the same as the
size of the SOM array (or lattice), where each unit has a
weight vector (mi) that has the number of components equal
to the dimension of the input sample data.

The learning process algorithm consists of the presentation
of the input data to the SOM during an iterative process. In
each iteration the unit whose weight vector is the closest (the
smallest Euclidian distance) to the presented input data is se-
lected as the winner unit [best matching unit (BMU)],

ck 5 min‖Xk 2 mi‖, (6)

where ||·|| is the distance measure, ck is an index of the BMU
on the SOM related to the snapshot data k, and c is the loca-
tion of the BMU in the lattice map (previously defined). Dur-
ing the training iteration, the BMU is moved (updated) along
with its topological neighborhoods toward the input sample,
where the topological neighboring units are modified based
on a neighborhood function h. In this study, the batch version
of the SOM algorithm (in Vesanto et al. 2000) has been used.
This setting allows us to use simultaneously all the input data
to update the weight vectors, and provides lower quantization
(QE) and topographic errors (TE) while keeping a computa-
tional efficiency (Liu and Weisberg 2005b; Liu et al. 2006;
Mihanović et al. 2011),

mi(t 1 1)5
+
M

j51
njhij(t)Xj

+
M

j51
njhij(t)

, (7)

where M is the size of the lattice, Xj is the mean of the n data
vectors in group j, and hij(t) represents the neighborhood
function value at unit j centered on the unit i. For h, the Epa-
nechnikov neighborhood function has been defined, since it
presents better result for the batch training function based on
average QE and TE (Liu and Weisberg 2005b; Mihanović
et al. 2011).

5. Geostrophic current estimation

a. Assessment of ug using SOM analysis

To determine the neuron under negligible atmospheric
forcing conditions, the input data used are the total surface
currents measured by the HFR system (ut) and the wind U10.
The ut and U10 were daily averaged to perform a joint SOM
spatial analysis. The parameters for SOM were defined as fol-
lows: a hexagonal lattice structure (Hernández-Carrasco et al.
2018) and linear initialization (based on the first two leading
EOFs) (Liu and Weisberg 2007), along with a radius of 1 for

the neighborhood function and a 3 3 2 lattice array. The
radius and lattice array were found after several training runs,
trying to obtain the lowest QE and TE, while gathering the
negligible atmospheric forcing conditions in only one neuron.
The lower QE and TE, the better the SOM training (a better
BMU fitting) (Liu et al. 2006).

The resultant SOM array is arranged such that the most dis-
similar patterns are located the farthest away from each other
(e.g., neurons 1 and 6), while the more similar the closer.
Now, the 6 patterns identified by SOM (see Fig. 3) represent
characteristic features of the near-surface current and its asso-
ciated wind conditions. The timeline can be described as
N5 " N3 " N6 " N1 " N4 " N2. N2 and N5 are transi-
tional stages (during 31.7% of the time) associated with mid-
magnitude westerly winds that reduce the NC speed and
modify its direction, generating a reversal flow at the lower
part of N2 and upper part of N5. N3 and N6 (28.4% of the
time) show an NC tilted southward following the wind direc-
tion when strong westerly winds are blowing (mistral events).
N1 represents an intense NC due to the influence of a strong
easterly wind (during 11.5% of the time). Westerly winds
occur more often than easterly ones [as observed in the clima-
tology study by Rey et al. (2020)]. These five conditions have
been previously reported and analyzed by several studies in
the region, such as Guihou et al. (2013), Berta et al. (2018),
Carret et al. (2019), and Molcard et al. (2021). Finally, N4 oc-
curs during dates in which the wind changes its direction
(from westward to eastward) or during calm wind conditions,
showing a near-surface current not affected by wind drag
forces (negligible wind conditions) and a boundary current
only altered by land constraints. The wind speed is lower than
2 m s21 and the surface current goes from east to west cen-
tered around 42.88 latitude. Thus, N4 is the targeted neuron
representing a dominant geostrophic balance condition.

b. Influence of ua on the estimation of ug

After selecting the targeted neuron for the assessment of
ug, it is necessary to determine the influence of ua on N4. To
do so, a comparison between ut (HFR surface current) and ua
on three radar points (P1, P2, and P3) along the latitudinal
axis of the HFR was done (see Fig. 1}red circles for stations
deployment). P1 was selected close to the coast, P2 located in-
side the most stable position of the NC and P3 is outside the
NC vein. ua was determined using the snapshots (dates) of the
wind field represented by N4 (the BMU time series}see
Fig. A2 in the appendix) for uEkw [Eq. (1)]; and us [Eq. (3)]
was low-pass filtered (using a 3 day cutoff) and daily aver-
aged, so that the swell at the surface current was evaluated for
the same dates. Figure 4 shows this comparison. In addition, a
second comparison using the neurons under nonnegligible at-
mospheric conditions, following the same procedure, is also
shown.

The resultant comparison (in Fig. 4) shows the magnitude
of ut and ua for N4 in the left panel, and the rest of the neu-
rons in the right panel. During N4 conditions, neither the
wind-induced current nor the Stokes drift play a relevant role
on the surface current. In fact, ua is close to zero for the three
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FIG. 3. The 3 3 2 joint SOM analysis for ut and U10 from June to November
2020. Black arrows are the HFR surface current and red arrows the wind field at
10 m height. N4 represents a negligible atmospheric forcing conditions (,2 m s21),
while the rest of the neurons show patterns under nonnegligible wind condition
(.5 m s21).
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stations, having values lower than 10% of ut. The ua reaches
a maximum value of 4.5 cm s21 on P3 between the period
22–28 October, less than 50% of ut. Thus, given that under
negligible atmospheric forcing conditions ua is very weak
compared to ut, one can consider the near-surface current
dominated by geostrophic balance; therefore, the geostrophic
component can be defined as ug ’ ut for N4.

Regarding the rest of the neurons (Fig. 4}right panel),
the comparison shows ut and ua with the same order of mag-
nitude, ua reaches values as high as 60% of ut (or more), for
instance, from 31 July to 30 September on P3, or from early
June to mid-July for P1 and P3. These neurons have an im-
portant contribution by the atmospheric forcing and, at the
same time, by ug. An estimated residual ut 2 ua gives values
close to ug in N4 (not shown), related to an increment in the
right panel when ua is high. Then, to assess the ageostrophic
component in Eq. (5), ug needs be to subtracted from ut (for
these neurons).

c. Validation of estimated ug against satellite-derived data

The satellite product SEALEVEL_EUR_PHY_L4_NRT_
OBSERVATIONS_008_060 provides daily absolute geo-
strophic velocities (UVG) on a 0.1258 3 0.1258 spatial grid
worldwide. UVG is calculated using information from the sea
level anomalies (SLA) and absolute dynamic topography
(ADT) measured by all the available altimeter missions (i.e.,
Jason-3, Sentinel-3A, HY-2A, SARAL/AltiKa, CryoSat-2,
Jason-2, Jason-1, T/P, Envisat, GFO, and ERS-1/-2). Then,
once the influence of ua (composed by wind drag and swell
waves) was verified to be insignificant under negligible atmo-
spheric forcing conditions and ug was determined from N4,

a comparison against satellite-derived information was per-
formed in order to validate the estimated ug.

The comparison was done as follows: 1) by using time
series from the closest satellite data to P1, P2, and P3; and
2) a spatial comparison using monthly averaged velocity
fields, applying a conditional averaging to ug. For the tem-
poral comparison, P1, P2, and P3 were conveniently selected
to be close to satellite nodes. For the conditional averaging
by month, only the velocity snapshots with BMU equal N4
were utilized, excluding the velocity maps with a significant
ua contribution. See Fig. 5 for the time series and Fig. 6 for
the monthly averaging comparisons.

The comparison in Fig. 5 shows ug and the satellite records
with a similar time variability. A stronger current speed is pre-
sent from October to November (during fall) than that ob-
served from June to September (summer). In summer the
currents on P1 and P2 are centered around 0.2 m s21 and P3
around 0.1 m s21, while in fall P1 and P2 are around 0.4 m s21

and P3 around 0.2 m s21. This trend implies that the geo-
strophic current doubles its magnitude from summer to fall
[in agreement with glider records in Carret et al. (2019) for
2010–16]. In addition, station P2 presents the best agreement
with the satellites, followed by P3 and by P1. The estimated
ug on P2 and P3 is capable of reproducing the oscillations in
the geostrophic current (e.g., 11 July–9 November for P2 and
13 June–10 August for P3), whereas on P1 the variance of
ug is higher for the HFR than that in the satellite data
(mid-June or fall). P2 and P3 present some overestimations
during summer and fall, but smaller than those observed on
P1. Finally, given that P1 is the closest station to the coastal
margins available on the satellite grid (20 km to POR), the

FIG. 4. Influence of ua on (left) negligible (N4) and (right) nonnegligible atmospheric conditions (N1, N2, N3, N5, N6). Red color is ut
and black color is ua. During this phase ut and us were low-pass filtered using a 3 day cutoff. ua, us, and ut refer to the magnitude of the ve-
locity fields.
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differences can be associated with effects of land constraints
on the surface current, captured by the HFR system but not
included in the satellite records (as shown in Fig. 6), in addi-
tion to larger errors in the measured velocity field due to
low signal-to-noise ratio values at the borders of the HFR
coverage.

From the conditional averaging per month, the compari-
son in Fig. 6, it is possible to observe that not only the geo-
strophic current speed is well reproduced by the estimated
ug but also its direction. Particularly, the countercurrent
traveling eastward in the southern region of the HFR do-
main and the westward current (the NC) in the central area
are well captured. This implies a great progress compared
to the standard way of evaluating the ug from current data,
where the whole dataset is used in the averaging procedure
[see Fig. A3 in the appendix and Berta et al. (2018)].
The main differences are present when approaching to the
coast, where ug is tilted northwestward and the satellite
data are mostly zonal or slightly tilted southwestward (e.g.,
June, July, September, or October). This deviation in ug is
produced by the presence of islands and the coastline orien-
tation. Now, given the high spatial resolution of the HFR,
additional information about the geostrophic current pat-
terns can be provided by ug. For instance, the cyclonic
eddy during August shown by the blue cross in the southern
part of the HFR domain, a smaller anticyclonic eddy in
November (in the upper part) or the strong shear in the
lower part of the velocity map in September. This informa-
tion cannot be seen with the satellite data, showing the
analysis developed in this study as a valuable and comple-
mentary tool to understand coastal processes. The condi-
tional monthly averaged ug is used in the next section for
the assessment of ua.

6. Assessment of the ageostrophic current component

a. Analysis of the wind-induced current

The HFR measures the near-surface sea layer, starting be-
low the air–sea interface and until the end of the turbulent
layer, so that the measured wind-induced current component
may not be fully balanced by the Coriolis force (Fernandez
et al. 1996). This direct wind-induced current can be ex-
pressed by a uw versus U10 relationship along with a deflected
angle (c) smaller than 458. In fact, in situ studies using HFR
and drifters data, observed direct wind-induced currents to be
udw ’ 1% to 4%3U10 (Ardhuin et al. 2009; van der Mheen
et al. 2020; Berta et al. 2018; Chang et al. 2012) and c in the
range [108–458] (Rio et al. 2014; Mao and Heron 2008). To
verify this assumption we determined udw as follows: first, the
conditional monthly averaged ug is subtracted from ut; later, a
3 3 3 joint SOM training is performed using the resultant ve-
locity maps and U10 as input data. Finally, the velocity snap-
shots represented by neurons with a clear response toU10 are
selected to estimate udw and c. For c a dot product between
udw · U10 [see Eq. (8)] is applied. The lattice array was defined
to extract the features that can be easily associated with the
terms in Eq. (5), keeping the minimum number of neurons.
Thus, the udw 5 f (U10) expression is compared against uEkw
and uEpw :

c 5 cos21 udw · U10

udwU10

( )
: (8)

The 3 3 3 array depicted in Fig. 7 shows the neurons
grouped in three main features. The first group represents
the residual surface currents associated with geostrophic
balance; so that after removing ug from the HFR data, the
resultant neurons are characterized by insignificant currents
(,2 cm s21) along with negligible atmospheric forcing con-
ditions (neurons N5, N7, and N9). The second group illus-
trates the patterns that cannot be, completely, related to
local wind-driven currents (ue), such as the clockwise vortex
observed in N1 or the curved path on the surface current in
response to strong mistral in N3. The latter may be associ-
ated with Ekman-geostrophic wind response. Finally, the
third group represents the wind-driven near-surface cur-
rents, either by westerly (N2, N4, and N6) or easterly (N8)
wind conditions. The velocity snapshots composing the third
group were used to calculate t. The shear stress is averaged
by bins following an incremental step of Dt 5 0.1 Pa, and
the confidence interval determined using one standard devi-
ation (g) (following Chang et al. 2012). Then, a linear re-
gression for udw was obtained from the mean t values (see
Fig. 8),

udw 5 0:34t 1 0:12, r2 5 0:98 (5 # U10 # 14 m s21), (9)

with a high correlation coefficient (0.98), and the mean ob-
served c, with respect to the wind direction, was found in the
range [188, 238]. Here, changes in the turbulence mixing can
play a relevant role on g, due to the seasonal variability of the
stratification and atmospheric forcing (Dritschel et al. 2020;

FIG. 5. Comparison of time series for ug (N4) vs satellite-derived
geostrophic current speed for the three stations along the latitudi-
nal axis of the HFR domain. Red color for HFR and black color
for satellite.

J OURNAL OF ATMOS PHER I C AND OCEAN I C TECHNOLOGY VOLUME 391934

Unauthenticated | Downloaded 05/17/24 05:56 AM UTC



Rascle and Ardhuin 2009). c presents similar results to those
observed by Rio et al. (2014) using undrogued drifters, which
could better describe the wind-induced near-surface current,
since the surrounding surface sea current is the main driver of
undrogued drifters. In addition, the direct wind-induced cur-
rent can be approximated by udw ; 2:1%3U10, a similar fac-
tor to that reported in the Toulon Bay area in Berta et al.
(2018) by means of a multiplatform observing system.

Now, the comparison against uEkw and uEpw is performed
since Eqs. (1) and (2) are regularly applied to understand and
predict the large-scale distribution of floating microplastic in
the ocean (Kubota 1994; Martinez et al. 2009; Onink et al.
2019), or to estimate the total surface and subsurface current
worldwide (Rio et al. 2014). Here, this comparison is done in
order to assess the performance of Eq. (9) against two well-
established formulations. Figure 8 (bottom panel) shows uEkw
always smaller than udw and uEpw . This behavior has been

observed in Shrira and Almelah (2020) when comparing the
classical theory against calculation for a depth varying verti-
cal mixing coefficient model, forced by a time-dependent
wind field. Additionally, the stronger the shear (or U10) the
lesser the differences between udw and uEpw , whereas the dif-
ference between udw and uEkw keeps constant (;10 cm s21).
In average, for U10 around 6 m s21 udw is twice uEpw , while for
U10 higher than 6 m s21 the difference is lower than 5 cm s21.
So udw seems to present good estimations, particularly when
comparing to uEpw . Nonetheless, it is important to highlight
that even when recent improvements to the Ekman model
have been presented, still, this is an open research topic
(from the theoretical and practical viewpoint). This prob-
lem involves not only the near-surface ocean circulation
but also its behavior along the water column as a function
of time and space (Shrira and Almelah 2020; Dritschel et al.
2020).

FIG. 6. Comparison of monthly averaged velocity maps from June to November 2020: Estimated ug (HFR) vs satellite-derived velocity
(SAT). Red color for HFR and black color for satellite data.
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FIG. 7. The 3 3 3 SOM analysis using the ut–ug resultant maps and U10 as input data. The SOM parameters were chosen following the
same procedure in section 5. Black color represents the surface current and red color represents the wind field.
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b. Stokes drift contribution

To estimate the contribution of waves to the ageostrophic
component, us [Eq. (3)] is estimated from the wave maps ac-
cording to the BMUs (as for the wind-induced current) and
then added to udw in Eq. (9) (see Fig. 8, bottom panel). The in-
crement from udw (in %) is referred to here as the contribution
by the Stokes drift. At this point, the wave parameters are not
low-pass filtered, as previously done in section 5, so that ua is
computed using the original WWIII outputs.

Figure 8 shows a clear effect by us on ua. During weak to
mid wind conditions (,6 m s21), us can represent up to 10%
of ua, whereas for mid to strong wind conditions (.6 m s21)
the wave contribution can be above 13%. This result is in
agreement with Ardhuin et al. (2009), who found that most of
the Stokes drift contribution comes from the high-frequency
part of the wave energy spectrum, so that us is function of the
wind speed U10 and Hs. This quantitative comparison shows
that the wave effects need to be included as an independent
term in the momentum balance equation when predicting the

surface currents (as shown in Tamtare et al. 2022), playing a
relevant role on the net particle movement at the near-surface
ocean (Clarke and Van Gorder 2018).

7. Discussion and conclusions

The aim of this study is to assess the influence of wind drag
and Stokes drift on the near-surface circulation based on in
situ HFR data, and to introduce a methodology to estimate
the geostrophic current component based on an unsupervised
neuronal network (SOM). This methodology can be used as
complementary information to include regional coastal cur-
rents (where satellites can present strong land interference)
into global circulation databases. In fact, the ug estimation
presented here is in agreement with previous studies based on
multiplatform systems such as the Copernicus Marine Service
Information and Berta et al. (2018), and long-term circulation
analysis (Carret et al. 2019; Bourg and Molcard 2021). In ad-
dition, the estimation of the geostrophic current from HFR
data presents a good advantage compared to satellite data,
where the spatial resolution of satellite derived currents does
not allow us to observe local circulation patterns at regional
scales.

The relationship between the wind and the wind-induced
currents found in this study is in agreement with other investi-
gations around the world, such as van der Mheen et al. (2020)
for the western Australian region, or Chang et al. (2012) and
Shay et al. (2007) for the Pacific and Atlantic coasts. In addi-
tion, this relationship gives similar results to those observed
using the empirical Ekman model proposed by Rio et al.
(2014), including the deflected angle in the range [188, 238].
This analysis has important application on offshore industries,
search and rescue, oil spill monitoring, among others, given
that classical literature suggests udw ; 3%3U10 (Bye 1967),
while it seems to be closer to udw ; 2:1%3U10, affecting
drastically the prediction of floating objects.

Equation (9) and Fig. 8 are developed under the assump-
tion of zero lag for the surface current response to wind. This
was confirmed by calculations of wind-current cross correla-
tion for several time shifts (from 2300 to 300 h), showing the
highest correlation coefficient centered at zero time shift (see
Fig. A4 in the appendix). This result is in agreement with a
similar diagram presented in Mao and Heron (2008). Thus, at
3 h time resolution the assumption is valid; however, this
could change if the time resolution of wind and HFR data is
increased.

The limitation of this study lies on the fact that the breaking
down analysis is performed by finding neurons under negligi-
ble atmospheric forcing conditions, so that information about
udw for very weak wind scenarios is not well known and the in-
tercept value in Eq. (9) (0.12) could be overestimated. This in-
tercept could be associated with thermal winds response to
wind forcing. Thus, it is necessary to include information of
the water column in this methodology, to capture the effect of
the stratification and vertical gradients on ug. In addition, the
velocity field here analyzed is measured in a deep water re-
gion (water depth . 800 m), so that the geostrophic current is
mainly driven by horizontal density gradients and, in less

FIG. 8. (top) Direct wind-induced current ( udw ) as a function of
the wind stress t. The black error bars show plus and minus one stan-
dard deviation (g) and the dashed red line represents the linear re-
gression with a correlation coefficient equal 0.98 (udw ; 2:1%3U10).
(bottom) A comparison between udw and the two classical wind-
induced current formulations ( uEkw and uEpw ). ua is retrieved by
adding us to udw according to the BMUs for N2, N4, N6, and N8 in
the 33 3 lattice.
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degree, by horizontal changes in the water surface elevation
(the baroclinic and barotropic contributions from the pressure
gradient). Nonetheless, in shallow water regions (20–100 m)
the ageostrophic component affects the entire water column,
playing a major role in the geostrophic balance adjustment
(Ekman-geostrophic adjustment) (Liu and Weisberg 2005a;

Jia and Li 2012); thus, larger SOM arrays are needed in the
joint analysis, together with additional variables such as the
divergence of the velocity field when separating the current
components.

It was possible to observe that the Stokes drift (us) plays
a relevant role on the near-surface ageostrophic current

FIG. A1. Wave roses by season taken at P2. The roses were calculated using the wave parameters fromWWIII.

FIG. A2. The BMU time series for 33 2.
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component (ua). Estimations indicate that us can be around
10% of ua under weak wind conditions, and above 13% under
moderate/strong wind conditions. This result contributes to
the understanding of the role of us on ua, since to our knowl-
edge, very few quantitative analysis based on in situ data have
been performed [e.g., Tamtare et al. (2022) or Ardhuin et al.
(2009)]. The wave contribution has been, previously, assumed
negligible or too small (Berta et al. 2018; Morales-Márquez
et al. 2021) to be evaluated individually in the ageostrophic
component (Chang et al. 2012; van der Mheen et al. 2020).

SOM can be seen as a robust technique to extract dominant
patterns from oceanographic information, including nonlinear
processes. In addition, its low computational cost along with
the capability to capture correlated physics-based processes
(like wind and currents) makes it an efficient tool to analyze
large amounts of data at sea, compared to time-demanding
computational methods, such as ocean numerical modeling or
supervised neural networks.

Finally, the novelty in this work is the specific use of a neu-
ronal network method, more and more widespread in ocean-
ography (Sinha and Abernathey 2021), to identify and assess
the different components of the surface current. Our results
open a new avenue for the validation of satellite data and
their extension near the coast, but also suggest new insight for
the wind and wave-induced components crucial for Lagrang-
ian transport applications.
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APPENDIX

Supplementary Figures

This appendix presents Figs. A1–A4.
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2021: On the impact of the Caribbean Counter Current in the
Guajira upwelling system. Front. Mar. Sci., 8, 626823, https://
doi.org/10.3389/fmars.2021.626823.

Ourmières, Y., B. Zakardjian, K. Béranger, and C. Langlais, 2011:
Assessment of a NEMO-based downscaling experiment for
the north-western Mediterranean region: Impacts on the
Northern Current and comparison with ADCP data and al-
timetry products. Ocean Modell., 39, 386–404, https://doi.org/
10.1016/j.ocemod.2011.06.002.

}}, J. Mansui, A. Molcard, F. Galgani, and P. Isabelle, 2018:
The boundary current role on the transport and stranding of
floating marine litter: The French Riviera case. Cont. Shelf
Res., 155, 11–20, https://doi.org/10.1016/j.csr.2018.01.010.

Pedlosky, J., 1987: Geophysical Fluid Dynamics. Springer-Verlag,
710 pp.

Petrenko, A. A., 2003: Variability of circulation features in the
Gulf of Lion NW Mediterranean Sea. Importance of inertial
currents. Oceanol. Acta, 26, 323–338, https://doi.org/10.1016/
S0399-1784(03)00038-0.

Polton, J. A., D. M. Lewis, and S. E. Belcher, 2005: The role of
wave-induced Coriolis–Stokes forcing on the wind-driven
mixed layer. J. Phys. Oceanogr., 35, 444–457, https://doi.org/
10.1175/JPO2701.1.

Poulain, P.-M., M. Menna, and E. Mauri, 2012: Surface geo-
strophic circulation of the Mediterranean Sea derived from
drifter and satellite altimeter data. J. Phys. Oceanogr., 42,
973–990, https://doi.org/10.1175/JPO-D-11-0159.1.

Rascle, N., and F. Ardhuin, 2009: Drift and mixing under the
ocean surface revisited: Stratified conditions and model-data
comparisons. J. Geophys. Res., 114, C02016, https://doi.org/10.
1029/2007JC004466.

Rey, V., C. Dufresne, J.-L. Fuda, D. Mallarino, T. Missamou,
C. Paugam, G. Rougier, and I. Taupier-Letage, 2020: On the
use of long-term observation of water level and temperature
along the shore for a better understanding of the dynamics:
Example of Toulon area, France. Ocean Dyn., 70, 913–933,
https://doi.org/10.1007/s10236-020-01363-7.

Reyes, E., and Coauthors, 2022: Coastal high-frequency radars in
the Mediterranean}Part 2: Applications in support of sci-
ence priorities and societal needs. Ocean Sci., 18, 797–837,
https://doi.org/10.5194/os-18-797-2022.

Rio, M. H., S. Mulet, and N. Picot, 2014: Beyond GOCE for the
ocean circulation estimate: Synergetic use of altimetry, gravime-
try, and in situ data provides new insight into geostrophic and
Ekman currents. Geophys. Res. Lett., 41, 8918–8925, https://doi.
org/10.1002/2014GL061773.

Roach, C. J., H. E. Phillips, N. L. Bindoff, and S. R. Rintoul,
2015: Detecting and characterizing Ekman currents in the
Southern Ocean. J. Phys. Oceanogr., 45, 1205–1223, https://
doi.org/10.1175/JPO-D-14-0115.1.

Sauvage, C., C. L. Brossier, and M.-N. Bouin, 2021: Towards
kilometer-scale ocean–atmosphere–wave coupled forecast: A
case study on a Mediterranean heavy precipitation event.
Atmos. Chem. Phys., 21, 11 857–11887, https://doi.org/10.5194/
acp-21-11857-2021.

Shay, L., J. Martinez-Pedraja, T. Cook, B. Haus, and R. Weisberg,
2007: High-frequency radar mapping of surface currents using
WERA. J. Atmos. Oceanic Technol., 24, 484–503, https://doi.
org/10.1175/JTECH1985.1.

Shrira, V. I., and P. Forget, 2015: On the nature of near-inertial
oscillations in the uppermost part of the ocean and a possible
route toward HF radar probing of stratification. J. Phys. Oce-
anogr., 45, 2660–2678, https://doi.org/10.1175/JPO-D-14-0247.1.

C Á C ER E S - E U S E E T A L . 1941DECEMBER 2022

Unauthenticated | Downloaded 05/17/24 05:56 AM UTC

https://doi.org/10.1029/2004JC002786
https://doi.org/10.1175/JPO3083.1
https://doi.org/10.1029/2005JC003117
https://doi.org/10.1175/JTECH1999.1
https://doi.org/10.5194/os-18-761-2022
https://doi.org/10.1175/2007JPO3709.1
https://doi.org/10.1175/2007JPO3709.1
https://doi.org/10.1016/j.marpolbul.2009.04.022
https://doi.org/10.1016/j.marpolbul.2009.04.022
https://doi.org/10.1016/j.ecss.2019.106529
https://doi.org/10.1016/j.ecss.2019.106529
https://doi.org/10.1029/2011JC007104
https://doi.org/10.3406/geo.1989.20925
https://doi.org/10.1016/S0924-7963(98)00078-5
https://doi.org/10.1007/s10236-021-01479-4
https://doi.org/10.1029/2020JC017104
https://doi.org/10.1029/2020JC017104
https://doi.org/10.1175/JTECH-D-17-0055.1
https://doi.org/10.1175/JTECH-D-17-0055.1
https://doi.org/10.1029/2018JC014547
https://doi.org/10.3389/fmars.2021.626823
https://doi.org/10.3389/fmars.2021.626823
https://doi.org/10.1016/j.ocemod.2011.06.002
https://doi.org/10.1016/j.ocemod.2011.06.002
https://doi.org/10.1016/j.csr.2018.01.010
https://doi.org/10.1016/S0399-1784(03)00038-0
https://doi.org/10.1016/S0399-1784(03)00038-0
https://doi.org/10.1175/JPO2701.1
https://doi.org/10.1175/JPO2701.1
https://doi.org/10.1175/JPO-D-11-0159.1
https://doi.org/10.1029/2007JC004466
https://doi.org/10.1029/2007JC004466
https://doi.org/10.1007/s10236-020-01363-7
https://doi.org/10.5194/os-18-797-2022
https://doi.org/10.1002/2014GL061773
https://doi.org/10.1002/2014GL061773
https://doi.org/10.1175/JPO-D-14-0115.1
https://doi.org/10.1175/JPO-D-14-0115.1
https://doi.org/10.5194/acp-21-11857-2021
https://doi.org/10.5194/acp-21-11857-2021
https://doi.org/10.1175/JTECH1985.1
https://doi.org/10.1175/JTECH1985.1
https://doi.org/10.1175/JPO-D-14-0247.1


}}, and R. B. Almelah, 2020: Upper-ocean Ekman current dy-
namics: A new perspective. J. Fluid Mech., 887, A24, https://
doi.org/10.1017/jfm.2019.1059.

Sinha, A., and R. Abernathey, 2021: Estimating ocean surface cur-
rents with machine learning. Front. Mar. Sci., 8, 672477,
https://doi.org/10.3389/fmars.2021.672477.

Stewart, R., and J. W. Joy, 1974: HF radio measurement of sur-
face currents. Deep-Sea Res., 21, 1037–1049, https://doi.org/10.
1016/0011-7471(74)90066-7.

Tamtare, T., D. Dumont, and C. Chavanne, 2022: The Stokes
drift in ocean surface drift prediction. J. Oper. Ocean-
ogr., 15, 156–168, https://doi.org/10.1080/1755876X.2021.
1872229.

Tolamn, H., 2009: User manual and system documentation of
WAVEWATCH III version 3.14. MMAB Rep. 276, 220 pp.,
http://polar.ncep.noaa.gov/mmab/papers/tn276/MMAB_276.pdf.

van der Mheen, M., C. Pattiaratchi, S. Cosoli, and M. Wandres,
2020: Depth-dependent correction for wind-driven drift cur-
rent in particle tracking applications. Front. Mar. Sci., 7, 305,
https://doi.org/10.3389/fmars.2020.00305.

Vesanto, J., J. Himberg, E. Alhoniemi, and J. Parhankangas,
2000: SOM Toolbox for MATLAB 5. SOM Toolbox Team
Rep. A57, 60 pp.
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