
HAL Id: hal-03993123
https://hal.science/hal-03993123v1

Preprint submitted on 16 Feb 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

STABILISING AND ACCELERATING LIGHT
GATED RECURRENT UNITS FOR AUTOMATIC

SPEECH RECOGNITION
Adel Moumen, Titouan Parcollet

To cite this version:
Adel Moumen, Titouan Parcollet. STABILISING AND ACCELERATING LIGHT GATED RECUR-
RENT UNITS FOR AUTOMATIC SPEECH RECOGNITION. 2023. �hal-03993123�

https://hal.science/hal-03993123v1
https://hal.archives-ouvertes.fr

STABILISING AND ACCELERATING LIGHT GATED RECURRENT UNITS
FOR AUTOMATIC SPEECH RECOGNITION

Adel Moumen1, Titouan Parcollet1,2

1Laboratoire Informatique d’Avignon, Avignon Université
2Cambridge Machine Learning Systems Lab, University of Cambridge

ABSTRACT

The light gated recurrent units (Li-GRU) is well-known for achiev-

ing impressive results in automatic speech recognition (ASR) tasks

while being lighter and faster to train than a standard gated recurrent

units (GRU). However, the unbounded nature of its rectified linear

unit on the candidate recurrent gate induces an important gradient

exploding phenomenon disrupting the training process and prevent-

ing it from being applied to famous datasets. In this paper, we theo-

retically and empirically derive the necessary conditions for its sta-

bility as well as engineering mechanisms to speed up by a factor of

five its training time, hence introducing a novel version of this ar-

chitecture named SLi-GRU. Then, we evaluate its performance both

on a toy task illustrating its newly acquired capabilities and a set of

three different ASR datasets demonstrating lower word error rates

compared to more complex recurrent neural networks.

Index Terms— Speech Recognition, Recurrent Units.

1. INTRODUCTION

Automatic Speech Recognition (ASR) is the task of transforming

spoken language into text. Myriads of real-life devices and applica-

tions ranging from personal assistants to smart cars and automatic

captioning rely on advanced ASR systems to provide the optimal

experience to end users. ASR has greatly benefited from the rise of

deep learning to improved robustness and performance. In practice,

various deep learning techniques and models exhibiting different

strengths and weaknesses have been developed over the last decade.

Transformer neural networks, for instance, have reached unprece-

dented levels of word error rates for offline ASR [1]. Sequence-

to-sequence (seq2seq) modelling with recurrent neural networks

(RNN), on the other hand, has steadily achieved top-notch per-

formance both for online and offline ASR while remaining fairly

simpler to approach and implement both for academia and for the

industry. Nowadays, transformers and RNN still co-exist widely, and

the final choice of the architecture boils down to the desired use-case

and the available compute resources. A successful implementation

of a recurrent CTC-Attention encoder-decoder was first proposed

in [2], and consisted in a recurrent encoder with an attentional recur-

rent decoder trained jointly with the CTC loss function [3, 4]. Such

encoder-decoder architectures offer a rich literature as well as an

ever-growing number of open-source implementations [5, 6] which

continue to power many real-life products relying on ASR.

Following the CTC-Attention paradigm, one must find the most

appropriate encoder to turn the speech signal into a latent subspace

that the decoder can further process. In practice, and based on the

successful DeepSpeech architecture [7], many competitive encoders

simply combine convolutional layers with a deep recurrent neural

network. Hence, the choice of the recurrent unit is of crucial in-

terest to achieve state-of-the-art word error rates. For instance, the

light gated recurrent units (Li-GRU) [8] network has been designed

to carefully address the task of ASR. A Li-GRU is a compact single-

gate unit derived from the gated recurrent units (GRU) which reduce

by 30% the per-epoch training time over a standard GRU while also

improving the ASR accuracy. Nevertheless, and despite a clear inter-

est from the community, two major issues prevent a stronger adop-

tion of the Li-GRU: (1) it highly suffers from exploding gradients

as the gate is unbounded; and (2) no optimized implementation ex-

ists, hence leading to much larger training times than more complex

alternatives such as LSTM neural networks.

The problems of vanishing and exploding gradients in recurrent

neural networks (RNNs) have been studied for decades and several

methods have been proposed. Gradient clipping and weight decay,

for instance, directly act on the values that are flowing throughout

the network during the forward and backward propagations [9, 10].

Regularization techniques, such as the soft orthogonal regularisation

(SOR) [11] constraint, propose to directly tackle the problem of un-

controlled growth of the error accumulation during backpropagation

through time (BPTT) [12] by introducing a term in the loss enforcing

the recurrent weight matrices to remain orthogonal [11]. Others even

proposed to develop a novel RNN architecture learning a unitary re-

current weight matrix in the complex domain [13]. An even more

stable approach is to directly clip the eigenvalues of the recurrent

weight matrices as soon as they reach a certain threshold [14]. How-

ever, the two latest solutions introduce important complexity over-

heads at computation time and remain mostly intractable for ASR

scenarios with medium and large datasets. Then, and despite promis-

ing research directions, the instability of the Li-GRU has never been

formally or empirically investigated. It remains impossible to verify

if existing methods preventing exploding gradients could benefit the

Li-GRU.

This article proposes to formalise and solve the issue that the

original Li-GRU encounters. Hence, it introduces the Stabilised Li-

GRU (SLi-GRU), offering theoretical and empirical guarantees on

its stability compared to the original Li-GRU as well as a five times

reduced training time following a well-designed CUDA implemen-

tation. In summary, the contributions are fourfold: 1. Theoretically

ground the conditions to avoid exploding gradients with the Li-GRU;

2. Analyse the impact of existing methods both theoretically and

empirically with the additive task on the Li-GRU, leading to the in-

troduction of the SLi-GRU; 3. Empirically validate the scaling of

the SLi-GRU to three well-known speech recognition tasks; and 4.

Deliver to the community a CUDA optimized version of the Li-GRU

and SLi-GRU within SpeechBrain1.

The conducted experiments on LibriSpeech and CommonVoice

1https://speechbrain.github.io/

demonstrate that the SLi-GRU is much more stable and faster than

the original Li-GRU which can not be trained with such datasets. It

also obtains better ASR performance than the state-of-the-art base-

line offered within Speechbrain based on LSTM neural networks.

2. ON THE INSTABILITY OF THE LI-GRU

The initial definition of the Li-GRU [8] is unstable and, in practice,

can not be applied to even medium-sized speech recognition datasets

such as Librispeech or CommonVoice. First, we recall the basic

equations of the Li-GRU (Section 2.1). Then, following a theoretical

analysis of the gradient exploding phenomenon arising at training

time, we derive the necessary bounds to ensure a smooth training

(Section 2.2). Finally, we formalise various approaches to tackle

the gradient exploding problem by investigating theoretically their

impact on the later boundaries (Section 2.3).

2.1. Light gated recurrent units

The Li-GRU [8] has been designed to carefully address the task of

speech recognition efficiently. By removing the reset gate, adding a

ReLU on the candidate gate, and applying batch normalization (BN)

[15] on the feed-forward connections the authors were not only able

to reduce by 30% the per-epoch training time of a Li-GRU against

a standard GRU [16], but also to improve the performance across

different tasks. In particular, the Li-GRU equations are:

zt = σ(BN (Wzxt) + Uzht−1), (1)

h̃ = ReLU(BN (Whxt) + Uhht−1), (2)

ht = zt ⊙ ht−1 + (1− zt)⊙ h̃. (3)

with zt the update gate, h̃t the candidate gate, ht the hidden state, all

taken at the time step t, and ht−1 the hidden state from the previous

time step. The logistic sigmoid function is denoted as σ while the

operator ⊙ refers to the element-wise product. The Li-GRU is fed at

each time step with a vector xt. Wz , Wh are the feed-forward, and

Uz , Uh the recurrent weights. In the following, we consider W∗ and

U∗ as references to the weights independently of the gates.

2.2. Gradient instabilities and temporal contributions

Despite its simplicity, the Li-GRU exhibits a weakness in Eq. 2 as

the recurrent process is unbounded, and therefore subject to potential

gradient instabilities. Here, and following carefully previous work

from [10,11,13,17], we propose to study from an analytical point of

view the theoretical motivations of the Li-GRU instability.

Let E =
∑t=0

N
Et be the total loss, where N is the sequence

length, and Et the loss at the time step t. We can highlight the gra-

dient exploding problem in the Li-GRU with the BPTT by showing

that each backpropagation step in the recurrent process is controlled

by a value η that may explode as soon as it deviates from 1. Fol-

lowing the BPTT, we first obtain ∂Et/∂ht and then backpropagate

from ∂Et/∂hm to ∂Et/∂hm−1 with (m ≤ t):

∂Et

∂hm

=
∂Et

∂ht

(

t∏

i=m

∂hi

∂hi−1

), (4)

∂Et

∂hm

=
∂Et

∂ht

(

t∏

i=m

∂+hi

∂hi−1

+
∂hi

∂zi

∂zi
∂hi−1

+
∂hi

∂h̃i

∂h̃i

∂hi−1

), (5)

with ∂+hi/∂hi−1 refering to the immediate partial derivative. Then,

we derive the ∂hi/∂hi−1 upper bound called η that will describe

the necessary conditions triggering the explosion phenomenon. η
is obtained by computing the norm of each partial derivatives of

∂hi/∂hi−1:

η =
γ1
4
||Uz||2 + ||Uh||2, (6)

with γ1 = max1≤m≤t,1≤j≤d|[hm−1]j |, and d the hidden dimen-

sion size. Then, considering ||∂Et/∂hm−1|| and ||∂Et/∂hm|| at

adjacent timesteps and leveraging the norm properties:

||
∂Et

∂hm−1

|| ≤ η||
∂Et

∂hm

||. (7)

Finally, by induction, we generalize over non adjacent time steps

noted p subject to p < m (i.e applying η, m− p times):

||
∂Et

∂hp

|| ≤ ηm−p||
∂Et

∂hm

||. (8)

It results that the Li-GRU may explode as soon as η > 1 following

the increase of the m − p quantity, hence, leading to the exploding

gradients phenomenon. Therefore, we wish to keep η as close as

possible to 1.

2.3. Stabilizing the Li-GRU

This section presents various methods to tackle exploding gradients

in the Li-GRU by analysing their impacts on η.

Soft orthogonal regularization (SOR). The SOR [11] helps any

RNN to keep U∗ close to orthogonal by adding a regularization term

to the loss, hence limiting the impact of U∗ on η. The spectral norm

of a matrix ||W ||2 is 1, simplifying the value of η from Eq. 6:

η =
γ1
4

+ 1. (9)

Despite being helpful to approach the problem of exploding gradi-

ents, such a regularization will constrain the weights to be in the

Stiefel manifolds, and potentially degrade the global training loss.

Weight decay and gradient clipping. Weight decay (WD) [9] adds

a penalty on the l2-norm of U∗ and W∗ potentially reducing the

impact of the recurrent weights on η. Nevertheless, this method is

not always sufficient and often is coupled with gradient clipping

(GC) [10, 18] that rescales the gradient so that its norm remains

lower than a threshold, hence postponing the growth of U∗. In prac-

tice, this method is effective for Uh that is never rescaled.

Sine activation function. In [19], the authors demonstrated that

the sine activation function was an excellent bounded alternative for

recurrent neural networks. In our case, it will be the non-linearity of

the candidate gate and therefore modify the expression of η as:

η =
γ1
4
||Uz||2 + cos||Uh||2. (10)

Such a change is effective in reducing the impact of ||Uh||2 on η,

however, it remains that γ1 may explode.

Layer normalization and recurrent weights. Layer normalization

(LN) [20] normalizes its input to have zero mean and unit variance.

If applied to the product of U∗ and ht−1 in Eq. 2 and Eq. 1, it will

also reduce the impact of γ1 on η, rescale the gradient of U∗, and

accelerate the convergence of the Li-GRU. Introducing the LN to

the original Li-GRU leads to a novel Li-GRU:

zt = σ(BN (Wzxt) + LN (Uzht−1)), (11)

1 250 500 750 1,000

1

5

10

15

20

25

30

Epochs

η

1 250 500 750 1,000
0

0.25

0.5

0.75

1

Epochs

MSE

1 250 500 750 1,000
0

2

4

6

8

10

Epochs

||Uh||2

1 250 500 750 1,000
0

2

4

6

8

10

Epochs

||Uz||2

Standard LiGRU Layer Normalization Sine Activation GC and WD SOR

Fig. 1. Results of the adding task with a sequence length of 2, 000 with different Li-GRUs equipped with different methods to prevent gradient

exploding to happen (Section 2.3). η is the scale of the gradient that transports the error in time. It must remain close to 1. The MSE loss

function must be close to 0. ||Uz||2 and ||Uh||2 shall remain as stable or small as possible. “GC and WD” refers to a Li-GRU with weight

decay and gradient clipping while “SOR” is the soft orthogonal constraint. A small coloured cross indicates that gradients exploded. The

layer normalization is the only method that solves the issue by keeping η close to 1, and at the same time, exhibiting the best MSE.

h̃ = ReLU(BN (Whxt) + LN (Uhht−1)), (12)

ht = zt ⊙ ht−1 + (1− zt)⊙ h̃. (13)

Following the proof from [17], η becomes:

η =
γ1
4σz

||Uz||2 +
1

σh

||Uh||2. (14)

with σ the standard deviation of the corresponding gates. In the latter

formulation, and motivated by [21], we decided to get rid of the gain

and bias terms of the layer normaliation to even further simplify the

architecture. In short, a simple LN enables ||∂Et/∂hm|| to remain

unaffected by the scaling of the recurrent weights but also minimizes

the value of γ1 due to the normalization of the input.

3. EMPIRICAL EVIDENCES

The empirical validity of the different proposed solutions to the

exploding gradients phenomenon is first investigated to properly

identify a successor of the Li-GRU named Stabilized Li-GRU (SLi-

GRU). Hence, we monitor various metrics including η during a task

designed to rapidly trigger large gradients (Section 3.1). Then, the

SLi-GRU is compared to a standard Li-GRU and well-known LSTM

networks on three datasets of speech recognition (Section 3.2).

3.1. The adding task

The adding task [22] is a synthetic benchmark designed to gen-

erate long sequences quickly highlighting exploding gradients. In

practice, a neural network must learn to predict the addition of two

numbers that are stored in large sequences. Indeed, having long

sequences increases the probability of seeing ∂ht/∂hm explode.

Then, the task requires the network to store real values for very long

periods, hence giving a convenient way of evaluating the network

memory.

Task Definition. Each input sequence is designed as a pair of com-

ponents. The first component is a real value sampled from a uniform

distribution in the range [0, 1] while the second is either 1 or 0,

and is used as a marker. The goal of the network in this task is to

remember the values of the first component of the two elements that

have a 1 in the second component so that the sum can be produced at

the output. All input sequences have a length of T . The first marker

equal to 1.0 is randomly picked in the range [0, T/2 − 1] while the

other is in the range [T/2, T − 1]. Using a large value of T (e.g

2, 000) is sufficient to create the exploding gradient problem and to

challenge the network to do a correct summation.

Architecture Details and Network Training. All models are

trained following the same setup so that the effect of the different

techniques may be properly compared. The maximum number of

epochs is 1, 000, and the number of time steps T is 2, 000. The batch

size is 256. Adam [23] is used as the optimizer with a learning rate

of 0.001. Each Li-GRU configuration used a ReLU if not mentioned

in the legend and a single hidden layer with 1, 024 hidden units.

The soft orthogonal regularization λ is set to 0.001 after carefully

trying multiple values. Weight decay is fixed to 0.001 as well and

the gradient clipping norm threshold is given at 1. The training loss

is the standard mean squared error (MSE) and the recurrent weights

follow an orthogonal initialization [24].

Results. As shown in Fig. 1, the layer normalization outperformed

all the other methods on the principal metrics (i.e η and MSE). Not

only the LN keep η close to 1, but also converged faster to an

excellent MSE of 0.0005 whereas the sine activation, i.e the second

best, achieved an MSE of 0.01. The sine-based Li-GRU is also

slower than its LN counterpart to converge. Moreover, the value of

η deviated from 1 with the sine Li-GRU as the number of epochs

reached 700 indicating the start of an instability in the gradients.

The SOR, on the other hand, and despite promising performance to

postpone the problem of exploding gradients, was not able to reach a

correct MSE due to a negative effect of the constraint applied to the

recurrent weights. The standard Li-GRU and its gradient clipping

and weight decay variant were not able to prevent the exploding gra-

dient phenomenon and crashed at the same time than the standard

Li-GRU. The experiments costed a total of 0.04 kg of CO2 [25].

Introducing the SLi-GRU. This analysis demonstrates that the layer

normalized Li-GRU, named SLi-GRU thereafter, is the only archi-

tecture to: (1) remember past information, hence leading to an ex-

cellent MSE score, (2) postpone the gradient exploding problem suc-

cessfully under tight conditions, and (3) offer a theoretical formula-

tion of η that satisfies the need for a high level of stability.

Table 1. Results of different CRDNN equipped with different RNN expressed in terms of word error rate (WER) and character error rate

(CER) (i.e. lower is better) on the test sets of CommonVoice French, Italian and LibriSpeech. Inf refers to infinity i.e. exploding gradients.

Params (M) is the number of neural parameters. Results in bold are the best results over the experiments. As expected the original Li-GRU

exploded on all tasks while the SLi-GRU obtains the best performance even compared to the best LSTM-based CRDNN from SpeechBrain.
CV Italian CV French LS 960 Clean LS 960 Other

Method CER % WER % Params (M) CER % WER % Params (M) CER % WER % Params (M) CER % WER % Params (M)

LSTM 3.50 11.06 148.2 5.86 14.61 148.2 1.87 3.83 173.0 6.0 10.36 173.0

SLi-GRU 3.05 10.05 148.1 5.32 13.46 148.1 1.27 3.42 170.0 3.77 7.82 170.0

LSTM 6.82 16.28 50.8 7.46 18.96 50.8 2.83 4.74 94.8 8.48 12.84 94.8

SLi-GRU 3.56 11.56 50.6 6.34 15.53 50.6 2.04 4.06 94.3 5.96 10.41 94.3

LiGRU Inf Inf 148.1 Inf Inf 148.1 Inf Inf 170.0 Inf Inf 170.0

LiGRU Inf Inf 50.6 Inf Inf 50.6 Inf Inf 94.3 Inf Inf 94.3

3.2. Automatic speech recognition experiments

The task of speech recognition is to transcribe the content of an

audio signal into a human-readable output. One of the challenges

of speech recognition lies in the long input sequences potentially

triggering exploding gradients with RNNs. In the following, and

to illustrate the latter issue, we compare our newly introduced SLi-

GRU to Li-GRU and LSTM neural networks on three different

datasets including CommonVoice French, Italian and LibriSpeech.

Datasets. Three datasets with different complexities and sizes are

considered to evaluate the models: LibriSpeech [26], Common-

Voice French (version 8.0) [27], and CommonVoice Italian (version

8.0) [27]. These datasets are primer choices as they exhibit long

sequences making the training challenging for the SLi-GRU while

remaining extremely competitive as the community has been exten-

sively investigating them. The utterances of CommonVoice (CV)

are obtained from volunteers all around the world. The French set

(CV-fr) contains 460K utterances (671 hours) with different accents,

and more than 16K participants. The train set consists of 620.59
hours, while both validation and test sets contain 25.52, and 25.52
hours of speech respectively. The Italian set (CV-it), is relatively

small compared to CV-fr. It contains 208, 24, 26 hours training,

validation, and test data. Finally, LibriSpeech (LS) is a corpus of

960 hours of read and clean English speech.

Architecture Details and Network Training. We trained an

LSTM [28], a Li-GRU, and a SLi-GRU with two different scenarios

on a single and popular end-to-end (E2E) ASR architecture with all

datasets: an encoder-decoder CTC-Attention based CRDNN coming

from the SpeechBrain toolkit [5]. The encoder is composed of three

distinct parts: a VGG-like features extractor, a bidirectional RNN,

and a deep dense neural network. This is combined with a location-

aware attentive GRU decoder jointly trained with the CTC loss.

The two different scenarios that are considered for the Li-GRU are:

(1) a low-budget model (LB), as claimed by the original Li-GRU

authors, we wished to verify if a smaller Li-GRU could achieve

state-of-the-art performance. In this particular case, the ASR system

has 50.6M and 94.3M parameters on CV and LS respectively; (2) a

high-budget model (HB), with the Li-GRU matching approximately

the same number of neural parameters than the best LSTM-based

CRDNN from SpeechBrain (i.e 148M and 170M parameters). Hy-

perparameters and neural architectures vary across the different

datasets and are extensively described in the corresponding Speech-

Brain recipes [5] (commit hash ee50231). A recurrent language

model (LM) trained with the LS language modelling resources is

coupled via shallow fusion for LibriSpeech. No LM is used with CV.

Results. First, it is worth underlining that the standard Li-GRU

did not even succeed in lasting more than one epoch on all tasks

as the gradient exploding problem formally demonstrated in this

work simply hits hard empirically as well. Such a problem is solved

with the introduction of our SLi-GRU that was able to proceed for

the entire training hence proving that the recurrent layer normal-

ization is an effective solution to approach exploding gradients in

RNNs. Then, with a fixed size of 148M and 170M parameters, the

SLi-GRU outperformed the previous state-of-the-art CRDNN model

from SpeechBrain on the three datasets with WER of 7.82%, 3.42%,

13.46% and 10.05% compared to 10.36%, 3.83%, 14.61% and

11.06% for the LSTM on the LS other and clean, and CV French

and Italian datasets respectively. Even more interestingly, the LB

SLi-GRU solely equipped with a third and half of the neural parame-

ters on CV and LS reached promising performance as the WER only

degraded by 0.425 in average compared to the HB LSTM over the

three datasets. Furthermore, the LB SLi-GRU reduced the WER by

21% in average against the LB LSTM. Following the original find-

ings of the Li-GRU [8], it seems clear that our SLi-GRU represents

an interesting alternative to LSTM for speech recognition in HB and

LB scenarios. Finally, we estimate that at least 39.3 kg of CO2 have

been emitted to produce these results [25].

3.3. Efficiency perspectives

The original Li-GRU made available to the community did not lever-

age any optimization scheme at training time. Hence, it introduced

an extremely large overhead in iteration time, even compared to

much more complex LSTM networks that directly benefit from a

CUDA implementation. As we wish our method to impact widely

and positively the community, we decided to implement a custom

CUDA version of the SLi-GRU so that anyone may use it with large

datasets without suffering from excessive training times. The latter

contribution is five times faster and change the time-complexity

from a quadratic to a linear regime, compared to the default PyTorch

implementation. This contribution replaces the previous Li-GRU

implementation in the well-known SpeechBrain toolkit.

4. CONCLUSION

We introduced the SLi-GRU, a theoretically grounded and empiri-

cally validated stabilized version of the original Li-GRU. Following

an analytical demonstration, we showed that applying a layer-wise

normalization to the recurrent gate of the SLi-GRU is sufficient to

prevent the exploding gradients phenomenon. During the conducted

experiments, the SLi-GRU outperformed the previous state-of-the-

art relying on LSTM from the SpeechBrain toolkit in three automatic

speech recognition tasks. Furthermore, we also released an opti-

mized version of the SLi-GRU further reducing the required training

time by a factor of five.

5. REFERENCES

[1] Shigeki Karita, Nanxin Chen, Tomoki Hayashi, Takaaki Hori,

Hirofumi Inaguma, Ziyan Jiang, Masao Someki, Nelson En-

rique Yalta Soplin, Ryuichi Yamamoto, Xiaofei Wang, et al.,

“A comparative study on transformer vs rnn in speech applica-

tions,” in 2019 IEEE Automatic Speech Recognition and Un-

derstanding Workshop (ASRU). IEEE, 2019, pp. 449–456.

[2] Shinji Watanabe, Takaaki Hori, Suyoun Kim, John R Hershey,

and Tomoki Hayashi, “Hybrid ctc/attention architecture for

end-to-end speech recognition,” IEEE Journal of Selected Top-

ics in Signal Processing, vol. 11, no. 8, pp. 1240–1253, 2017.

[3] Alex Graves, Santiago Fernández, Faustino Gomez, and Jürgen

Schmidhuber, “Connectionist temporal classification: la-

belling unsegmented sequence data with recurrent neural net-

works,” in Proceedings of the 23rd international conference

on Machine learning, 2006, pp. 369–376.

[4] Alex Graves and Navdeep Jaitly, “Towards end-to-end speech

recognition with recurrent neural networks,” in International

conference on machine learning. PMLR, 2014, pp. 1764–1772.

[5] Mirco Ravanelli, Titouan Parcollet, Peter Plantinga, Aku

Rouhe, Samuele Cornell, Loren Lugosch, Cem Subakan, Nau-

man Dawalatabad, Abdelwahab Heba, Jianyuan Zhong, et al.,

“Speechbrain: A general-purpose speech toolkit,” arXiv

preprint arXiv:2106.04624, 2021.

[6] Shinji Watanabe, Takaaki Hori, Shigeki Karita, Tomoki

Hayashi, Jiro Nishitoba, Yuya Unno, Nelson-Enrique Yalta So-

plin, Jahn Heymann, Matthew Wiesner, Nanxin Chen, et al.,

“Espnet: End-to-end speech processing toolkit,” Proc. Inter-

speech 2018, pp. 2207–2211, 2018.

[7] Dario Amodei, Sundaram Ananthanarayanan, Rishita Anub-

hai, Jingliang Bai, Eric Battenberg, Carl Case, Jared Casper,

Bryan Catanzaro, Qiang Cheng, Guoliang Chen, et al., “Deep

speech 2: End-to-end speech recognition in english and man-

darin,” in International conference on machine learning.

PMLR, 2016, pp. 173–182.

[8] Mirco Ravanelli, Philemon Brakel, Maurizio Omologo, and

Yoshua Bengio, “Light gated recurrent units for speech recog-

nition,” IEEE Transactions on Emerging Topics in Computa-

tional Intelligence, vol. 2, no. 2, pp. 92–102, 2018.

[9] Ilya Loshchilov and Frank Hutter, “Decoupled weight decay

regularization,” in ICLR, 2019.

[10] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio, “On

the difficulty of training recurrent neural networks,” in Inter-

national conference on machine learning. PMLR, 2013, pp.

1310–1318.

[11] Eugene Vorontsov, Chiheb Trabelsi, Samuel Kadoury, and

Chris Pal, “On orthogonality and learning recurrent networks

with long term dependencies,” in International Conference on

Machine Learning. PMLR, 2017, pp. 3570–3578.

[12] Paul J Werbos, “Backpropagation through time: what it does

and how to do it,” Proceedings of the IEEE, vol. 78, no. 10, pp.

1550–1560, 1990.

[13] Martin Arjovsky, Amar Shah, and Yoshua Bengio, “Unitary

evolution recurrent neural networks,” in International confer-

ence on machine learning. PMLR, 2016, pp. 1120–1128.

[14] Sekitoshi Kanai, Yasuhiro Fujiwara, and Sotetsu Iwamura,

“Preventing gradient explosions in gated recurrent units,” in

Advances in Neural Information Processing Systems, I. Guyon,

U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-

wanathan, and R. Garnett, Eds. 2017, vol. 30, Curran Asso-

ciates, Inc.

[15] Sergey Ioffe and Christian Szegedy, “Batch normalization: Ac-

celerating deep network training by reducing internal covari-

ate shift,” in International conference on machine learning.

PMLR, 2015, pp. 448–456.

[16] Kyunghyun Cho, Bart van Merriënboer, Dzmitry Bahdanau,

and Yoshua Bengio, “On the properties of neural machine

translation: Encoder–decoder approaches,” Syntax, Semantics

and Structure in Statistical Translation, p. 103, 2014.

[17] Lu Hou, Jinhua Zhu, James Kwok, Fei Gao, Tao Qin, and Tie-

Yan Liu, “Normalization helps training of quantized lstm,” in

Advances in Neural Information Processing Systems, H. Wal-

lach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox,

and R. Garnett, Eds. 2019, vol. 32, Curran Associates, Inc.

[18] Tomáš Mikolov et al., “Statistical language models based on

neural networks,” Presentation at Google, Mountain View, 2nd

April, vol. 80, no. 26, 2012.

[19] Giambattista Parascandolo, Heikki Huttunen, and Tuomas Vir-

tanen, “Taming the waves: sine as activation function in deep

neural networks,” 2017.

[20] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton,

“Layer normalization,” stat, vol. 1050, pp. 21, 2016.

[21] Jingjing Xu, Xu Sun, Zhiyuan Zhang, Guangxiang Zhao, and

Junyang Lin, “Understanding and improving layer normaliza-

tion,” Advances in Neural Information Processing Systems,

vol. 32, 2019.

[22] Sepp Hochreiter and Jürgen Schmidhuber, “Long short-term

memory,” Neural computation, vol. 9, no. 8, pp. 1735–1780,

1997.

[23] Diederik P Kingma and Jimmy Ba, “Adam: A method for

stochastic optimization,” in ICLR (Poster), 2015.

[24] Andrew M. Saxe, James L. McClelland, and Surya Ganguli,

“Exact solutions to the nonlinear dynamics of learning in deep

linear neural networks,” CoRR, vol. abs/1312.6120, 2014.

[25] Titouan Parcollet and Mirco Ravanelli, “The Energy and Car-

bon Footprint of Training End-to-End Speech Recognizers,” in

Proc. Interspeech 2021, 2021, pp. 4583–4587.

[26] Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev

Khudanpur, “Librispeech: an asr corpus based on public do-

main audio books,” in 2015 IEEE international conference

on acoustics, speech and signal processing (ICASSP). IEEE,

2015, pp. 5206–5210.

[27] Rosana Ardila, Megan Branson, Kelly Davis, Michael Kohler,

Josh Meyer, Michael Henretty, Reuben Morais, Lindsay Saun-

ders, Francis Tyers, and Gregor Weber, “Common voice: A

massively-multilingual speech corpus,” in Proceedings of the

12th Language Resources and Evaluation Conference, 2020,

pp. 4218–4222.

[28] Klaus Greff, Rupesh K Srivastava, Jan Koutnı́k, Bas R Ste-

unebrink, and Jürgen Schmidhuber, “Lstm: A search space

odyssey,” IEEE transactions on neural networks and learning

systems, vol. 28, no. 10, pp. 2222–2232, 2016.

