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A Finite-Volume Tracking Scheme for
Two-Phase Compressible Flow

Christophe Chalons, Jim Magiera, Christian Rohde and Maria Wiebe

Abstract We propose a Finite-Volume tracking method in multiple space dimensions
to approximate weak solutions of the hydromechanical equations that allow two-
phase behaviour. The method relies on a moving mesh ansatz such that the phase
boundary is represented as a sharp interface without any artificial smearing. At the
interface an approximate solver is applied, such that the exact Riemann solution is
not required. From precedent work it is known that the method is locally conservative
and recovers planar traveling wave solutions exactly. To demonstrate the efficiency
and reliability of the new scheme we test it on various situations for liquid-vapour
flow.

Key words: Sharp interface resolution, compressible two-phase flow, moving mesh
method, Finite-Volume scheme, phase transition
Subject Classifications:35L65, 76M25, 76T10, 65M50

1 Introduction

We consider weak solutions of the Euler equations for compressible two-phase flow.
This system is equipped with an entropy-entropy flux pair such that the entropy is
strictly convex in a state space that is split into two disjoint open subsets - the liquid
and the vapour bulk. The separating set is called spinodal region. As a consequence
one has strict hyperbolicity in the complete state space. Phase boundaries are con-
sidered as shock waves that connect states in different phases in a subsonic way. In
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this way the spinodal region can be avoided. Phase boundaries still have to satisfy
the entropy inequality, thus being consistent with the second law of thermodynamics.
Nevertheless well-posedness in the setting of two disjoint state spaces must be re-
stored with additional constraints, e.g. so-called kinetic relations [17], which are put
on the phase boundary.
The numerical approximation of problems with phase boundaries is a challenging
issue: To avoid approximate solutions with values outside of the state space advanced
techniques like the precise tracking of the interface are required. In this contribution
we use the approach [5], extended to the two-phase Euler system. It relies on the
tracking of the phase boundary using a moving mesh and exploiting the exact dynam-
ics across phase boundaries. The moving mesh approach in this paper is different
from standard uses where the mesh is changed globally to reduce the error or to get
aligned with appropriate transport directions. Here we intend to track the mesh only
locally around the discrete interface and try to avoid any global changes of the mesh
that effect the bulk domains.
In the paper at hand we present a specific approach for the two-phase Euler equations.
In particular we present pertinent numerical tests in one and two space dimensions.
For the general approach and for analytical results we refer to [6]. Another approach
for the numerical treatment of phase boundaries in compressible liquid-vapour flow
is e.g. the ghostfluid method [10, 11]. Mixed phase volumes for compressible multi-
phase flow are allowed in [8] where also the moving-mesh approach is used.

2 Isothermal Euler equations

The isothermal Euler equations with non-monotone pressure function govern the
dynamics of compressible liquid-vapour flow. Assume that a time T ∈ (0,∞) and a
time-space domain DT = Rd× (0,T ) are given. Then the isothermal Euler equations
read as (

ρ

ρv

)
t
+O ·

(
ρv

ρv⊗v+ p(ρ)I

)
= 0 in DT . (1)

The unknowns are the density ρ = ρ(t,x) and the momentum ρv where v =
(v1(t,x), . . . ,vd(t,x))T denotes the velocity of the fluid. With u = (ρ,ρv) and a
suitable flux function f system (1) can be rewritten as

ut +O · f(u) = 0.

The given pressure function p is chosen in Van-der-Waals form

p : (0,B−1)→ R+, ρ 7→ Rθ
ρ

1−Bρ
−Aρ

2, (2)

with positive constants A,B,θ ,R > 0, where the fixed temperature θ is chosen in
the subcritical regime such that p is non-monotone (see Figure 1). We denote by
ρ

spinod
liq < ρ

spinod
vap the extreme values of the interval where the pressure function p is
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Fig. 1 Pressure function
p = p(ρ), which defines
the phases of a fluid by the
domains where p is monotone
increasing.

ρ

p(ρ)

ρ
spinod
liq ρ spinod

vap

decreasing. The density must not take values in the interval (ρspinod
liq ,ρ

spinod
vap ), i.e.

ρ : [0,T )×Rd → (0,ρspinod
liq ]∪ [ρspinod

vap ,B−1).

Therefore we define liquid and vapour bulk states according to

P− =
(

0,ρspinod
liq

]
×Rd , P+ =

[
ρ

spinod
vap ,B−1

)
×Rd , (3)

and define the state space U as the union of both sets U = P−∪P+ ⊂ Rm. We
distinguish the phases by a mapping π given as

π : U →{−,+},u 7→

{
− if u ∈P−,

+ if u ∈P+.
(4)

In the following we will consider an initial state u0 = (ρ0,ρ0v0), such that

(ρ,ρv)(0, ·) = (ρ0,ρ0v0). (5)

A function u ∈ L∞((0,T )×Rd ,U ) is called a weak solution of the initial value
problem (1), (5) in DT if∫ T

0

∫
Rd

uφt + f(u) ·Oφ dV dt =−
∫
Rd

u0φ(0,x) dV

holds for all φ ∈ C ∞
0 ([0,T )×Rd ,R).

The system (1) is equipped with an entropy-entropy flux pair (η ,q) : U → Rd+1.
The canonical entropy-entropy flux pair for (1) is given by

η(ρ,m) = ρΨ(ρ)+
|m|2

2ρ
, q(ρ,m) = (q1(ρ,m), . . . ,qd(ρ,m)) =

m
ρ
(η + p(ρ)),

with Ψ such that Ψ ′(ρ) = p(ρ)
ρ2 . A weak solution u ∈ L∞((0,T )×Rd ,U ) is called

an entropy solution of (1), (5) in DT if∫ T

0

∫
Rd

η(u)φt +q(u) ·Oφ dV dt ≥−
∫
Rd

η(u0)φ(0,x) dV (6)

holds for all φ ∈ C ∞
0 ([0,T )×Rd ,R),φ ≥ 0.

It is well known (cf. [2]) that single phase boundaries do not only have to satisfy
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the Rankine-Hugoniot conditions but also an additional so-called kinetic relation.
Following [12] we require for some function K : P−×P+×R→R that all phase
boundaries connecting u− with u+ with velocity r satisfy the kinetic relation

K (u−,u+,r) = 0 (7)

where

K (u−,u+,r) = µ(ρ−)+0.5(v− ·n− r)2−µ(ρ+)−0.5(v+ ·n− r)2 + k∗ j,

with the Gibb’s free energy µ given through µ ′ = p′/ρ , relative mass flux j =
ρ− (v− ·n− r) and mobility k∗ > 0. In this paper we are interested in entropy so-
lutions u that split Rd for each time t ∈ [0,T ) in two disjunct ±-phase domains
D−(t),D+(t) and a hypersurface Γ (t) such that for almost all x ∈ Rd

πu(t,x) =±⇒ x ∈ D±(t) (8)

and Γ (t) = D−(t)∩D+(t) hold. We call D±(t) the ±-phase domain and Γ (t) the
sharp interface. For x ∈ Γ (t) let n(t,x) = (n1(t,x), . . . ,nd(t,x))T ∈S 1 denote the
normal vector of Γ (t) that points into D−(t). Let the function u : DT →U be regular
enough such that for (t,x) ∈ DT the traces

u±(t,x) := lim
ε→0,ε>0

u(t,x± εn(t,x))

exist. Then we define the interfacial jump for x ∈ Γ (t) by

Ju(t,x)K = u+(t,x)−u−(t,x).

We denote by r(t,x) the speed of Γ (t) in direction n(t,x). Necessary conditions for
the function u to be a weak solution of (1), (5) are the Rankine-Hugoniot conditions

−r(t, ·)Ju(t, ·)K+ Jn · f(u(t, ·))K = 0. (9)

In the given setting a function u ∈ C0([0,T );L∞(Rd)), ±-phase domain families
{D±(t)}t∈[0,T ) and a sharp-interface family {Γ (t)}t∈[0,T ) are called an entropy-
compatible sharp-interface solution of (1), (5) if the following conditions hold.

(i) For t = 0 we have D±(0) = D±,0, Γ (0) = Γ0, and for each t ∈ (0,T ) we have
Rd = D−(t)∪D+(t)∪Γ (t) with disjunct d-dimensional ±-phase domains
D±(t) and the hypersurface Γ (t).

(ii) The condition (8) holds for almost all (t,x) ∈ DT .
(iii) The function u is an entropy solution of (1), (5) in DT .
(iv) For each t ∈ (0,T ) the function u satisfies the trace conditions (7), (9).

For our numerical approach the Riemann problem for the planar situation of (1) will
be important. Fix some n ∈S d−1 and define

F(u) = n1f1(u)+ . . .+ndfd(u), u ∈U . (10)
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Fig. 2 Sketch of a Riemann
pattern that contains a phase
transition wave with speed
σ . The adjacent states are
u∓ ∈P∓.

x

t

0

U− U+

u− u+

σ

Then for states U± ∈P±, the Riemann problem is the special initial value problem

wt +(F(w))x = 0 in (0,∞)×R , w(0,x) =

{
U− if x < 0,
U+ if x > 0,

(11)

with unknown w = w(t,x) ∈U . It is a reasonable assumption that the exact entropy
solution w of (11) is a self-similar function that connects the left state U− and the
right state U+ by at most 3 (for m-dimensional systems at most m) elementary waves
(i.e., shock waves, contact waves, rarefaction waves, attached shock-rarefaction
waves, each of them within either P− or P+) and exactly one phase transition wave.
The phase boundary wave is a shock wave that connects a state u− in P− with a
state u+ in P+. Across this wave the conditions (9), (7) have to hold (see [13] for a
general theory and [7, 9, 12, 14, 15] for specific cases). The range of the function
w is in P− left to the phase transition and in P+ otherwise (see Figure 2 for some
illustration). In the following, we do not need to know the exact Riemann problem
solution but only the speed of the phase transition, as well as the two adjacent
values. This might be even given by an approximate solver [4, 16]. To combine both
cases we introduce an interface solver. For some kinetic relation (7) the mapping
RF : P−×P+→ R×P−×P+ with

RF(U−,U+) := (σ ,u−,u+) (12)

is called an interface solver for (1) if the following conditions are satisfied.

(i) RF is a continuous mapping.
(ii) The states u± ∈P± and σ satisfy

−σ(u−−u+)+F(u−)−F(u+) = 0, K (u−,u+,σ) = 0. (13)

(iii) If there is a r ∈R such that U−, U+ fulfill (13) with σ = r then RF(U−,U+) =
(r,U−,U+).

We call σ the speed of the interface.

3 A FV Moving Mesh Method with Interface Tracking

In this section we shortly summarize the used numerical method from [6] for mul-
tiple space dimensions. The method is a Finite Volume scheme on moving meshes
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combined with an interface tracking and a post-processing step where the mesh is
improved with regard to the volume/perimeter ratio.

Assume that a (fixed) mesh is given as set of (d+1)-polygons Ki (i ∈ I index set),
i.e. τ = {Ki|Ki ∈ Pd+1, i ∈ I} fulfilling the standard requirements of a mesh in Rd .
Then we call the pair T = (τ,{Φi}i∈I) a moving mesh with continuous functions

Φi : [t1, t2]→La(Ki,Rd), t 7→Φ
t
i , Φi(t1) = id,

mapping from an interval to the space of affine mappings La(Ki,Rd) from Ki to Rd ,
if for all t ∈ [t1, t2] the set {Φ t

i (Ki)}i∈I is a (fixed) mesh with index set I.
This enables us to define the time dependent elements and the time dependent

edges as

Ki(t) := Φ
t
i (Ki), Si, j(t) := Φ

t
i (Ki∩K j).

A Finite Volume scheme on a moving mesh then reads∣∣Ki(tn+1)
∣∣un+1

i = |Ki(tn)|un
i −∆ tn

∑
j∈N(i)

∣∣∣Si, j

(
tn+1/2

)∣∣∣(gn
i, j(u

n
i ,u

n
j)+hn

i, j(u
n
i ,u

n
j)
)
,

with tn+1/2 = tn +0.5∆ t. The numerical flux function gn
i, j and the geometrical flux

function hn
i, j are L-continuous functions, which obey the consistency condition

gn
i, j(u,u) = f(u) ·ni, j(tn+1/2)

as well as the conservation property

gn
i, j(u,v)+hn

i, j(u,v) =−
(

gn
j,i(v,u)+hn

j,i(v,u)
)
.

The idea of the scheme in [6] is to choose the mappings Φi (and thus the time
dependent elements Ki(t)) with the aid of the interface solver RF such that the
position of the phase transition is tracked. This has two advantages: First, we can treat
interface edges separately via making a special choise for numerical and geometrical
fluxes gn

i, j(u,v) and hn
i, j(u,v) when π(u) 6= π(v). Secondly, we do not have any

smearing across the interface hypersurface due to avaraging, since the phases are
sharply separated.

In an additional post-processing step we define a new mesh in order to maintain
a decent volume to perimeter ratio of the mesh triangles that might become either
very small or very big due to the interface tracking. In our implementation the mesh
is chosen as a Constrained Delaunay Traingulation, which provides methods for
insertion and removal of points. The complete description of the remeshing algorithm
is out of scope. Let us mention that the remeshing, realized by point insertion and
removal leads only to small changes of the mesh, e.g. the insertion causes 6 new
triangles in expectation [3]. In the numerical Example 2 of Section 4.2 we verify this
by comparing the meshes before and after remeshing.

The two most important properties of the complete scheme are the following.
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• The scheme fulfills the conservation property∫
Rd

(uh(tn, ·)−u0) dV = 0,

which does not hold e.g. for the ghost fluid method for two-phase problems.
• Assume that an entropy-compatible sharp-interface solution of (1), (5) is given as

u(t,x) =

{
uL ∈P− if x ·ν+ ct < 0
uR ∈P+ if x ·ν+ ct > 0,

D±(t) = {x ∈ Rd |x ·ν+ ct ≶ 0}.

Then the algorithm is able to resolve u exactly independent of the coarsity of the
mesh when the numerical and geometrical fluxes are chosen as

gn
i, j(u,v) =


f(U(u,v)) ·ni, j if u ∈P−,v ∈P+,

f(U(v,u)) ·ni, j if u ∈P+,v ∈P−,

g̃n
i, j(u,v) otherwise,

hn
i, j(u,v) =


−σ(u,v)U(u,v) if u ∈P−,v ∈P+,

+σ(v,u)U(v,u) if u ∈P+,v ∈P−,

h̃n
i, j(u,v) otherwise,

where the values σ(u,v), U(u,v) and V(u,v) are obtained from the interface
solver Rf·ni, j (see (12))

(σ(u,v),U(u,v),V(u,v)) = Rf·ni, j(u,v)

and g̃n
i, j, h̃n

i, j are arbitrary numerical and geometrical fluxes, respectively.

For a detailed explanation and proofs in two-space dimensions we refer to [6].

4 Numerical Results

In this section we will present numerical results for the two-dimensional isothermal
Euler equations (1) and Van-der-Waals pressure (2) with constants A = 3, B = 1

3 ,
θ = 0.85 and R = 8

3 . This gives us a state space that is separated by an interval, the
unstable spinodal region, into two sets, cf. (3). The construction of an interface solver
that allows for entropy compatible sharp-interface solutions has just recently been
established in full generality (see [18], and [9] for the framework). Since the details
of the construction are not important in the sequel we skip them refering to [18]. In
the following examples we apply two kinds of interface solvers, namely an exact and
an approximate Riemann solver.
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4.1 Numerical Results for the one-dimensional Euler equations

As a first example we show numerical results, where we apply the scheme from
Section 3 reduced to the one-dimensional case. In one space dimension the phase
transitions boils down to a single point and the interface tracking consists of tracking
the position of a moving cell edge in the computational mesh. The one-dimensional
Euler equations are given by

ρt +(ρv)x = 0

(ρv)t +(ρv2 + p(ρ))x = 0,
(14)

with fluid density ρ(t,x), scalar velocity v(t,x) (in x-direction) and given pressure
function p(ρ). For the interface solver, we take in this example the Relaxation Rie-
mann solver from [16]. The Relaxation Riemann solver is an approximate Riemann
solver and does in general not return the exact Riemann solution, but satisfies the
properties of an interface solver, see (i),(ii),(iii) on p. 5.

−0.1 0 0.1 0.2
0

0.5

1

1.5

2

ρh
vh

Fig. 3: Numerical solution of
the 1-d Euler equations for the
initial data (15) at time t = 0.5.
We used a mesh with 1000
cells.

|τ| h(τ) ‖(uh−u)(t, ·)‖L1 EOC
80 2.50 ·10−2 0.01895 0.64

160 1.25 ·10−2 0.01215 0.72
320 6.25 ·10−3 0.00736 0.77
640 3.13 ·10−3 0.00430 0.82

1280 1.56 ·10−3 0.00243 0.90
2560 7.81 ·10−4 0.00130 0.96
5120 3.91 ·10−4 0.00067 0.80

10240 1.95 ·10−4 0.00039 1.20
20480 9.77 ·10−5 0.00017

Table 1: L1-errors und EOCs for the nu-
merical scheme for solving the Riemann
problem (14), (15). By h(τ) we denote
the mesh width.

Example 1. We check the quality of the scheme by a problem with known exact
solution u. It consists of four constant states connect via two shock waves and one
phase transition

u(t,x) =


(1.7,1.0992) : x < s1t,
(1.8074,1) : s1t < x < s2t,
(0.3197,1) : s2t < x < s3t,
(0.2,0.4903) : s3t < x,

u0 = u(0, ·), (15)

with wave speeds s1 =−0.574, s2 = 1 and s3 = 1.8515 (all numbers rounded to 4
digits). Figure 3 depicts the numerical approximation. The experimental orders of
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convergence (EOC) are presented in Table 1 and show that the EOC tends to 1. This
convergence rate might be expected for a single shock wave. Thus one can conclude
that the overall approach works, also with an inexact solver.

4.2 Numerical Results for the two-dimensional Euler equations

We will conclude this work with numerical examples for the two-dimensional
isothermal Euler equations. We perform the computations on the bounded domain
Ω := (−1,1)2 in all cases. Appropriate boundary conditions are given for each test
case.
The realization of the interface tracking and the remeshing operator was done with
the 2D Triangulation package of the C++ library CGAL [1]. Its Constrained Delau-
nay triangulation 2 class in combination with the hierarchy structure was extended
to implement the moving mesh. This class manages a triangulation that is almost
Delaunay except for a set of given constraints (in our case: prescribed edges of the
interface curve) and it provides methods for the insertion, removal and motion of
points.
For the computation of the numerical and geometrical fluxes, we will consider the
one-dimensional problem (11). It is easy to see, that the problem with the three
unknown (ρ,ρv1,ρv2) can be rewritten as the one-dimensional Euler equations
(14) with density and the projected momentum ρvp = ρv ·n = ρ(v1n1 + v2n2) as
unknown. In fact, the used interface solver from [18] applies to this system which
readily can be used to design an interface solver.

Example 2 (Riemann problem). We start with a validation example and take ini-
tial conditions that correspond to a one-dimensional Riemann problem, where the
entropy-compatible solution is known. At the boundary we apply absorbing boundary
conditions. The entropy solution under investigation consists out of two shock waves
with velocities s1 = −1.2960, s3 = 1.5928 and one phase transition with velocity
s2 = 0.2185 which is given as

(ρ(t,x),ρv(t,x)) =


(0.2,0,0) if x1 < s1t,
(0.2646,−0.0837,0) if s1t < x1 < s2t,
(1.8094,0.2538,0) if s2t < x1 < s3t,
(1.65,0,0) if s3t < x1.

Figure 4 shows the numerical solution. One can clearly see that the phase-transition
in the middle is resolved as a sharp vertical line while the two neighboring shock
waves are slightly smeared out. With the exact solution we compute L1-errors and
the (experimental) orders of convergence, see Table 2. The errors and the orders
listed in Table 2 show that we obtain again convergence with order close to 1. This
means that the treatment of the phase transition does not influence the overall order
of convergence, since we would already expect a convergence order of 1 for shock
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waves within one phase. We also check the remeshing routine of the algorithm. We

Fig. 4: Numerical solution with
two shock waves and one phase
transition.

|T (t)| h(T (t)) ‖(uh−u)(t, ·)‖L1 EOC(t)
760 2.0645 ·10−1 7.0457 ·10−2 0.8468

3120 9.4325 ·10−2 3.6295 ·10−2 1.0986
12757 5.3309 ·10−2 1.9390 ·10−2 0.7928
50884 2.6078 ·10−2 1.1000 ·10−2 0.7338

204158 1.1835 ·10−2 6.1603 ·10−3

Table 2: Experimental orders of conver-
gence (EOC) at time t = 0.1 for the Rie-
mann problem.

compute the relative change in the number of triangles given as

r(tn) = |Î(n) \ I(n)|/|Î(n)|,

where I(n) is the index set of the mesh T (tn) and Î(n) the index set of the mesh T̂ (tn)
that results from the remeshing of T (tn) such that Ki = K̂i is valid for all i ∈ I∩ Î.
From Figure 5 it can be seen that the change is decreasing for finer meshes and, for
the three moving meshes depicted in the figure, limited by 1.56%, only.

Fig. 5 Relative change in the
number of triangles of the
remeshing routine performed
after every time step of the
algorithm. The three moving
meshes correspond to the
meshes 2, 3 and 4 of Table 2.

0 5 ·10−2 0.1 0.15 0.2 0.25

0.0034

0.0073

0.0156

tn

r(
tn )

T1, |T1(0.1)|= 3120
T2, |T2(0.1)|= 12757
T3, |T3(0.1)|= 50884

Example 3 (Oscillating Droplet). Next, we continue with an example, which involves
more intricate geometric dynamics of the interface. This time, the initial condition
consists of a liquid droplet surrounded by the fluid in vapour phase.

(ρ0(x),ρ0v0(x)) =

{
(1.7,0,0) if ‖x‖2 < 0.2,
(0.3,0,0) if ‖x‖2 > 0.2

At the boundary we choose reflecting boundary conditions. Figure 6 shows the
numerical results, that show how the initial bubble emmits a wave to the inside and
one wave to the outside of the bubble with a lower jump height (see color scale).
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Fig. 6: Numerical solutions for a single droplet surrounded by gas at t = 0, 0.5 and 1.

Example 4 (Vapour bubbles). In the next example we will consider a couple of vapour
bubbles that start emitting waves and oscillate. The emitted waves interact thereby
with the sharp phase boundaries, see Figure 7. For this example we again choose
reflecting boundary conditions.

Fig. 7: Numerical solutions for three vapour bubbles in liquid at t = 0, 0.5 and 1.

Example 5 (With surface tension). In all previous examples surface tension was
neglected. Surface tension can be modeled via a modified Rankine-Hugoniot conditon
at the phase boundary given as

Jρ(v ·n−σ)K = 0,
Jρ(v ·n−σ)v ·n− p(ρ)K = ζ

∗
κ

where σ is the velocity of the phase boundary, ζ ∗ ≥ 0 is a constant surface tension
coefficient and κ = κ(x, t) the mean curvature of the interface curve. In this last
example we show numerical results where surface tension acts on a deformed droplet.
We use again reflecting boundary conditions. Figure 8 shows how the droplet evolves
to an equilibrium circular shape.
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