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Introduction

We consider weak solutions of the Euler equations for compressible two-phase flow. This system is equipped with an entropy-entropy flux pair such that the entropy is strictly convex in a state space that is split into two disjoint open subsets -the liquid and the vapour bulk. The separating set is called spinodal region. As a consequence one has strict hyperbolicity in the complete state space. Phase boundaries are considered as shock waves that connect states in different phases in a subsonic way. In this way the spinodal region can be avoided. Phase boundaries still have to satisfy the entropy inequality, thus being consistent with the second law of thermodynamics. Nevertheless well-posedness in the setting of two disjoint state spaces must be restored with additional constraints, e.g. so-called kinetic relations [START_REF] Truskinovsky | Shock Induced Transitions and Phase Structures in General Media[END_REF], which are put on the phase boundary. The numerical approximation of problems with phase boundaries is a challenging issue: To avoid approximate solutions with values outside of the state space advanced techniques like the precise tracking of the interface are required. In this contribution we use the approach [START_REF] Chalons | A conservative and convergent scheme for undercompressive shock waves[END_REF], extended to the two-phase Euler system. It relies on the tracking of the phase boundary using a moving mesh and exploiting the exact dynamics across phase boundaries. The moving mesh approach in this paper is different from standard uses where the mesh is changed globally to reduce the error or to get aligned with appropriate transport directions. Here we intend to track the mesh only locally around the discrete interface and try to avoid any global changes of the mesh that effect the bulk domains.

In the paper at hand we present a specific approach for the two-phase Euler equations. In particular we present pertinent numerical tests in one and two space dimensions. For the general approach and for analytical results we refer to [START_REF] Chalons | A finite volume method for undercompressive shock waves in two space dimensions[END_REF]. Another approach for the numerical treatment of phase boundaries in compressible liquid-vapour flow is e.g. the ghostfluid method [START_REF] Dressel | A finite-volume approach to liquid-vapour fluids with phase transition[END_REF][START_REF] Fechter | A sharp interface method for compressible liquid-vapor flow with phase transition and surface tension[END_REF]. Mixed phase volumes for compressible multiphase flow are allowed in [START_REF] Chertock | Interface tracking method for compressible multifluids[END_REF] where also the moving-mesh approach is used.

Isothermal Euler equations

The isothermal Euler equations with non-monotone pressure function govern the dynamics of compressible liquid-vapour flow. Assume that a time T ∈ (0, ∞) and a time-space domain D T = R d × (0, T ) are given. Then the isothermal Euler equations read as

ρ ρv t + • ρv ρv ⊗ v + p(ρ)I = 0 in D T . (1) 
The unknowns are the density ρ = ρ(t, x) and the momentum ρv where v = (v 1 (t, x), . . . , v d (t, x)) T denotes the velocity of the fluid. With u = (ρ, ρv) and a suitable flux function f system (1) can be rewritten as

u t + • f(u) = 0.
The given pressure function p is chosen in Van-der-Waals form

p : (0, B -1 ) → R + , ρ → Rθ ρ 1 -Bρ -Aρ 2 , (2) 
with positive constants A, B, θ , R > 0, where the fixed temperature θ is chosen in the subcritical regime such that p is non-monotone (see Figure 1). We denote by ρ ρ :

[0, T ) × R d → (0, ρ spinod liq ] ∪ [ρ spinod vap , B -1 ).
Therefore we define liquid and vapour bulk states according to

P -= 0, ρ spinod liq × R d , P + = ρ spinod vap , B -1 × R d , (3) 
and define the state space U as the union of both sets U = P -∪ P + ⊂ R m . We distinguish the phases by a mapping π given as

π : U → {-, +}, u → -if u ∈ P -, + if u ∈ P + . (4) 
In the following we will consider an initial state u 0 = (ρ 0 , ρ 0 v 0 ), such that

(ρ, ρv)(0, •) = (ρ 0 , ρ 0 v 0 ). (5) 
A function u ∈ L ∞ ((0, T ) × R d , U ) is called a weak solution of the initial value problem (1), (5) in D T if T 0 R d uφ t + f(u) • φ dV dt = - R d u 0 φ (0, x) dV holds for all φ ∈ C ∞ 0 ([0, T ) × R d , R).
The system (1) is equipped with an entropy-entropy flux pair (η, q) : U → R d+1 . The canonical entropy-entropy flux pair for (1) is given by [START_REF] Abeyaratne | Kinetic relations and the propagation of phase boundaries in solids[END_REF]) that single phase boundaries do not only have to satisfy the Rankine-Hugoniot conditions but also an additional so-called kinetic relation. Following [START_REF] Hantke | Exact solutions to the Riemann problem for compressible isothermal Euler equations for two-phase flows with and without phase transition[END_REF] we require for some function K : P -× P + × R → R that all phase boundaries connecting u -with u + with velocity r satisfy the kinetic relation

η(ρ, m) = ρΨ (ρ) + |m| 2 2ρ , q(ρ, m) = (q 1 (ρ, m), . . . , q d (ρ, m)) = m ρ (η + p(ρ)), with Ψ such that Ψ (ρ) = p(ρ) ρ 2 . A weak solution u ∈ L ∞ ((0, T ) × R d , U ) is called an entropy solution of (1), (5) in D T if T 0 R d η(u)φ t + q(u) • φ dV dt ≥ - R d η(u 0 )φ (0, x) dV (6) holds for all φ ∈ C ∞ 0 ([0, T ) × R d , R), φ ≥ 0. It is well known (cf.
K (u -, u + , r) = 0 (7) 
where

K (u -, u + , r) = µ(ρ -) + 0.5 (v -• n -r) 2 -µ(ρ + ) -0.5 (v + • n -r) 2 + k * j,
with the Gibb's free energy µ given through µ = p /ρ, relative mass flux j = ρ -(v -• nr) and mobility k * > 0. In this paper we are interested in entropy solutions u that split

R d for each time t ∈ [0, T ) in two disjunct ±-phase domains D -(t), D + (t) and a hypersurface Γ (t) such that for almost all x ∈ R d πu(t, x) = ± ⇒ x ∈ D ± (t) (8) 
and

Γ (t) = D -(t) ∩ D + (t) hold. We call D ± (t) the ±-phase domain and Γ (t) the sharp interface. For x ∈ Γ (t) let n(t, x) = (n 1 (t, x), . . . , n d (t, x)) T ∈ S 1 denote the normal vector of Γ (t) that points into D -(t). Let the function u : D T → U be regular enough such that for (t, x) ∈ D T the traces u ± (t, x) := lim ε→0,ε>0 u(t, x ± εn(t, x))
exist. Then we define the interfacial jump for x ∈ Γ (t) by

u(t, x) = u + (t, x) -u -(t, x).
We denote by r(t, x) the speed of Γ (t) in direction n(t, x). Necessary conditions for the function u to be a weak solution of (1), ( 5) are the Rankine-Hugoniot conditions

-r(t, •) u(t, •) + n • f(u(t, •)) = 0. (9) 
In the given setting a function u ∈ C 0 ([0, T ); L ∞ (R d )), ±-phase domain families {D ± (t)} t∈[0,T ) and a sharp-interface family {Γ (t)} t∈[0,T ) are called an entropycompatible sharp-interface solution of (1), ( 5) if the following conditions hold.

(i) For t = 0 we have D ± (0) = D ±,0 , Γ (0) = Γ 0 , and for each t ∈ (0, T ) we have

R d = D -(t) ∪ D + (t) ∪ Γ (t) with disjunct d-dimensional ±-phase domains D ± (t)
and the hypersurface Γ (t). (ii) The condition [START_REF] Chertock | Interface tracking method for compressible multifluids[END_REF] holds for almost all (t, x) ∈ D T . (iii) The function u is an entropy solution of (1), ( 5) in D T . (iv) For each t ∈ (0, T ) the function u satisfies the trace conditions ( 7), [START_REF] Colombo | Characterization of Riemann solvers for the two phase p-system[END_REF].

For our numerical approach the Riemann problem for the planar situation of (1) will be important. Fix some n ∈ S d-1 and define

F(u) = n 1 f 1 (u) + . . . + n d f d (u), u ∈ U . ( 10 
)
Fig. 2 Sketch of a Riemann pattern that contains a phase transition wave with speed σ . The adjacent states are

u ∓ ∈ P ∓ . x t 0 U - U + u -u + σ
Then for states U ± ∈ P ± , the Riemann problem is the special initial value problem

w t + (F(w)) x = 0 in (0, ∞) × R , w(0, x) = U -if x < 0, U + if x > 0, (11) 
with unknown w = w(t, x) ∈ U . It is a reasonable assumption that the exact entropy solution w of ( 11) is a self-similar function that connects the left state U -and the right state U + by at most 3 (for m-dimensional systems at most m) elementary waves (i.e., shock waves, contact waves, rarefaction waves, attached shock-rarefaction waves, each of them within either P -or P + ) and exactly one phase transition wave.

The phase boundary wave is a shock wave that connects a state u -in P -with a state u + in P + . Across this wave the conditions ( 9), ( 7) have to hold (see [START_REF] Lefloch | Hyperbolic systems of conservation laws[END_REF] for a general theory and [START_REF] Chen | Exact Riemann solvers for conservation laws with phase change[END_REF][START_REF] Colombo | Characterization of Riemann solvers for the two phase p-system[END_REF][START_REF] Hantke | Exact solutions to the Riemann problem for compressible isothermal Euler equations for two-phase flows with and without phase transition[END_REF][START_REF] Lefloch | Non-classical Riemann solvers and kinetic relations. II. An hyperbolic-elliptic model of phase-transition dynamics[END_REF][START_REF] Merkle | Computation of dynamical phase transitions in solids[END_REF] for specific cases). The range of the function w is in P -left to the phase transition and in P + otherwise (see Figure 2 for some illustration). In the following, we do not need to know the exact Riemann problem solution but only the speed of the phase transition, as well as the two adjacent values. This might be even given by an approximate solver [START_REF] Chalons | Fast relaxation solvers for hyperbolic-elliptic phase transition problems[END_REF][START_REF] Rohde | A relaxation Riemann solver for compressible two-phase flow with phase transition and surface tension[END_REF]. To combine both cases we introduce an interface solver. For some kinetic relation [START_REF] Chen | Exact Riemann solvers for conservation laws with phase change[END_REF] the mapping R F :

P -× P + → R × P -× P + with R F (U -, U + ) := (σ , u -, u + ) (12) 
is called an interface solver for (1) if the following conditions are satisfied.

(i) R F is a continuous mapping. (ii) The states u ± ∈ P ± and σ satisfy

-σ (u --u + ) + F(u -) -F(u + ) = 0, K (u -, u + , σ ) = 0. ( 13 
) (iii) If there is a r ∈ R such that U -, U + fulfill (13) with σ = r then R F (U -, U + ) = (r, U -, U + ).
We call σ the speed of the interface.

A FV Moving Mesh Method with Interface Tracking

In this section we shortly summarize the used numerical method from [START_REF] Chalons | A finite volume method for undercompressive shock waves in two space dimensions[END_REF] for multiple space dimensions. The method is a Finite Volume scheme on moving meshes combined with an interface tracking and a post-processing step where the mesh is improved with regard to the volume/perimeter ratio. Assume that a (fixed) mesh is given as set of (d+1)-polygons K i (i ∈ I index set), i.e. τ = {K i |K i ∈ P d+1 , i ∈ I} fulfilling the standard requirements of a mesh in R d . Then we call the pair T = (τ, {Φ i } i∈I ) a moving mesh with continuous functions

Φ i : [t 1 ,t 2 ] → L a (K i , R d ),t → Φ t i , Φ i (t 1 ) = id,
mapping from an interval to the space of affine mappings

L a (K i , R d ) from K i to R d , if for all t ∈ [t 1 ,t 2 ] the set {Φ t i (K i )
} i∈I is a (fixed) mesh with index set I. This enables us to define the time dependent elements and the time dependent edges as

K i (t) := Φ t i (K i ), S i, j (t) := Φ t i (K i ∩ K j ).
A Finite Volume scheme on a moving mesh then reads

K i (t n+1 ) u n+1 i = |K i (t n )| u n i -∆t n ∑ j∈N(i) S i, j t n+1/2 g n i, j (u n i , u n j ) + h n i, j (u n i , u n j ) ,
with t n+1/2 = t n + 0.5∆t. The numerical flux function g n i, j and the geometrical flux function h n i, j are L-continuous functions, which obey the consistency condition

g n i, j (u, u) = f(u) • n i, j (t n+1/2 )
as well as the conservation property

g n i, j (u, v) + h n i, j (u, v) = -g n j,i (v, u) + h n j,i (v, u) .
The idea of the scheme in [START_REF] Chalons | A finite volume method for undercompressive shock waves in two space dimensions[END_REF] is to choose the mappings Φ i (and thus the time dependent elements K i (t)) with the aid of the interface solver R F such that the position of the phase transition is tracked. This has two advantages: First, we can treat interface edges separately via making a special choise for numerical and geometrical fluxes g n i, j (u, v) and h n i, j (u, v) when π(u) = π(v). Secondly, we do not have any smearing across the interface hypersurface due to avaraging, since the phases are sharply separated.

In an additional post-processing step we define a new mesh in order to maintain a decent volume to perimeter ratio of the mesh triangles that might become either very small or very big due to the interface tracking. In our implementation the mesh is chosen as a Constrained Delaunay Traingulation, which provides methods for insertion and removal of points. The complete description of the remeshing algorithm is out of scope. Let us mention that the remeshing, realized by point insertion and removal leads only to small changes of the mesh, e.g. the insertion causes 6 new triangles in expectation [START_REF] Berg | Computational Geometry: Algorithms and Applications[END_REF]. In the numerical Example 2 of Section 4.2 we verify this by comparing the meshes before and after remeshing.

The two most important properties of the complete scheme are the following.

• The scheme fulfills the conservation property

R d (u h (t n , •) -u 0 ) dV = 0,
which does not hold e.g. for the ghost fluid method for two-phase problems. • Assume that an entropy-compatible sharp-interface solution of (1), ( 5) is given as

u(t, x) = u L ∈ P -if x • ν + ct < 0 u R ∈ P + if x • ν + ct > 0, D ± (t) = {x ∈ R d | x • ν + ct ≶ 0}.
Then the algorithm is able to resolve u exactly independent of the coarsity of the mesh when the numerical and geometrical fluxes are chosen as

g n i, j (u, v) =      f(U(u, v)) • n i, j if u ∈ P -, v ∈ P + , f(U(v, u)) • n i, j if u ∈ P + , v ∈ P -, gn i, j (u, v) otherwise, h n i, j (u, v) =      -σ (u, v)U(u, v) if u ∈ P -, v ∈ P + , +σ (v, u)U(v, u) if u ∈ P + , v ∈ P -, hn i, j (u, v) otherwise,
where the values σ (u, v), U(u, v) and V(u, v) are obtained from the interface solver R f•n i, j (see ( 12))

(σ (u, v), U(u, v), V(u, v)) = R f•n i, j (u, v)
and gn i, j , hn i, j are arbitrary numerical and geometrical fluxes, respectively. For a detailed explanation and proofs in two-space dimensions we refer to [START_REF] Chalons | A finite volume method for undercompressive shock waves in two space dimensions[END_REF].

Numerical Results

In this section we will present numerical results for the two-dimensional isothermal Euler equations (1) and Van-der-Waals pressure (2) with constants A = 3, B = 1 3 , θ = 0.85 and R = 8 3 . This gives us a state space that is separated by an interval, the unstable spinodal region, into two sets, cf. [START_REF] Berg | Computational Geometry: Algorithms and Applications[END_REF]. The construction of an interface solver that allows for entropy compatible sharp-interface solutions has just recently been established in full generality (see [START_REF] Zeiler | Liquid Vapor Phase Transitions: Modeling, Riemann Solvers and Computation[END_REF], and [START_REF] Colombo | Characterization of Riemann solvers for the two phase p-system[END_REF] for the framework). Since the details of the construction are not important in the sequel we skip them refering to [START_REF] Zeiler | Liquid Vapor Phase Transitions: Modeling, Riemann Solvers and Computation[END_REF]. In the following examples we apply two kinds of interface solvers, namely an exact and an approximate Riemann solver.

Numerical Results for the one-dimensional Euler equations

As a first example we show numerical results, where we apply the scheme from Section 3 reduced to the one-dimensional case. In one space dimension the phase transitions boils down to a single point and the interface tracking consists of tracking the position of a moving cell edge in the computational mesh. The one-dimensional Euler equations are given by

ρ t + (ρv) x = 0 (ρv) t + (ρv 2 + p(ρ)) x = 0, ( 14 
)
with fluid density ρ(t, x), scalar velocity v(t, x) (in x-direction) and given pressure function p(ρ). For the interface solver, we take in this example the Relaxation Riemann solver from [START_REF] Rohde | A relaxation Riemann solver for compressible two-phase flow with phase transition and surface tension[END_REF]. The Relaxation Riemann solver is an approximate Riemann solver and does in general not return the exact Riemann solution, but satisfies the properties of an interface solver, see (i),(ii),(iii) on p. 5.

-0.1 0 0.1 0.2 0 0.5 We used a mesh with 1000 cells. 14), [START_REF] Merkle | Computation of dynamical phase transitions in solids[END_REF]. By h(τ) we denote the mesh width.

1 1.5 2 ρ h v h
|τ| h(τ) (u h -u)(t, •) L 1 EOC 80 2.
Example 1. We check the quality of the scheme by a problem with known exact solution u. It consists of four constant states connect via two shock waves and one phase transition

u(t, x) =          (1.7, 1.0992) : x < s 1 t, (1.8074, 1) 
:

s 1 t < x < s 2 t, (0.3197, 1)
:

s 2 t < x < s 3 t, (0.2, 0.4903) : s 3 t < x, u 0 = u(0, •), (15) 
with wave speeds s 1 = -0.574, s 2 = 1 and s 3 = 1.8515 (all numbers rounded to 4 digits). Figure 3 depicts the numerical approximation. The experimental orders of convergence (EOC) are presented in Table 1 and show that the EOC tends to 1. This convergence rate might be expected for a single shock wave. Thus one can conclude that the overall approach works, also with an inexact solver.

Numerical Results for the two-dimensional Euler equations

We will conclude this work with numerical examples for the two-dimensional isothermal Euler equations. We perform the computations on the bounded domain Ω := (-1, 1) 2 in all cases. Appropriate boundary conditions are given for each test case.

The realization of the interface tracking and the remeshing operator was done with the 2D Triangulation package of the C++ library CGAL [START_REF]CGAL Computational Geometry Algorithms Library[END_REF]. Its Constrained Delaunay triangulation 2 class in combination with the hierarchy structure was extended to implement the moving mesh. This class manages a triangulation that is almost Delaunay except for a set of given constraints (in our case: prescribed edges of the interface curve) and it provides methods for the insertion, removal and motion of points.

For the computation of the numerical and geometrical fluxes, we will consider the one-dimensional problem [START_REF] Fechter | A sharp interface method for compressible liquid-vapor flow with phase transition and surface tension[END_REF]. It is easy to see, that the problem with the three unknown (ρ, ρv 1 , ρv 2 ) can be rewritten as the one-dimensional Euler equations ( 14) with density and the projected momentum

ρv p = ρv • n = ρ(v 1 n 1 + v 2 n 2 ) as unknown.
In fact, the used interface solver from [START_REF] Zeiler | Liquid Vapor Phase Transitions: Modeling, Riemann Solvers and Computation[END_REF] applies to this system which readily can be used to design an interface solver.

Example 2 (Riemann problem). We start with a validation example and take initial conditions that correspond to a one-dimensional Riemann problem, where the entropy-compatible solution is known. At the boundary we apply absorbing boundary conditions. The entropy solution under investigation consists out of two shock waves with velocities s 1 = -1.2960, s 3 = 1.5928 and one phase transition with velocity s 2 = 0.2185 which is given as

(ρ(t, x), ρv(t, x)) =          (0.2, 0, 0) if x 1 < s 1 t, (0.2646, -0.0837, 0) if s 1 t < x 1 < s 2 t, (1.8094, 0.2538, 0) if s 2 t < x 1 < s 3 t, (1.65, 0, 0) if s 3 t < x 1 .
Figure 4 shows the numerical solution. One can clearly see that the phase-transition in the middle is resolved as a sharp vertical line while the two neighboring shock waves are slightly smeared out. With the exact solution we compute L 1 -errors and the (experimental) orders of convergence, see Table 2. The errors and the orders listed in Table 2 show that we obtain again convergence with order close to 1. This means that the treatment of the phase transition does not influence the overall order of convergence, since we would already expect a convergence order of 1 for shock waves within one phase. We also check the remeshing routine of the algorithm. We compute the relative change in the number of triangles given as

r(t n ) = | Î(n) \ I (n) |/| Î(n) |,
where I (n) is the index set of the mesh T (t n ) and Î(n) the index set of the mesh T (t n ) that results from the remeshing of T (t n ) such that K i = Ki is valid for all i ∈ I ∩ Î.

From Figure 5 it can be seen that the change is decreasing for finer meshes and, for the three moving meshes depicted in the figure, limited by 1.56%, only. Example 3 (Oscillating Droplet). Next, we continue with an example, which involves more intricate geometric dynamics of the interface. This time, the initial condition consists of a liquid droplet surrounded by the fluid in vapour phase.

(ρ 0 (x), ρ 0 v 0 (x)) = (1.7, 0, 0) if x 2 < 0.2, (0.3, 0, 0) if x 2 > 0.2

At the boundary we choose reflecting boundary conditions. Figure 6 shows the numerical results, that show how the initial bubble emmits a wave to the inside and one wave to the outside of the bubble with a lower jump height (see color scale). Example 4 (Vapour bubbles). In the next example we will consider a couple of vapour bubbles that start emitting waves and oscillate. The emitted waves interact thereby with the sharp phase boundaries, see Figure 7. For this example we again choose reflecting boundary conditions. Example 5 (With surface tension). In all previous examples surface tension was neglected. Surface tension can be modeled via a modified Rankine-Hugoniot conditon at the phase boundary given as

ρ(v • n -σ ) = 0, ρ(v • n -σ )v • n -p(ρ) = ζ * κ
where σ is the velocity of the phase boundary, ζ * ≥ 0 is a constant surface tension coefficient and κ = κ(x,t) the mean curvature of the interface curve. In this last example we show numerical results where surface tension acts on a deformed droplet. We use again reflecting boundary conditions. Figure 8 shows how the droplet evolves to an equilibrium circular shape. 

Fig. 1

 1 Fig. 1 Pressure function p = p(ρ), which defines the phases of a fluid by the domains where p is monotone increasing.

Fig. 3 :

 3 Fig. 3: Numerical solution of the 1-d Euler equations for the initial data (15) at time t = 0.5.We used a mesh with 1000 cells.

Fig. 4 :

 4 Fig. 4: Numerical solution with two shock waves and one phase transition.

Fig. 5 )T 1 ,T 2 ,T 3 ,

 5123 Fig.5Relative change in the number of triangles of the remeshing routine performed after every time step of the algorithm. The three moving meshes correspond to the meshes 2, 3 and 4 of Table2.

Fig. 6 :

 6 Fig.6: Numerical solutions for a single droplet surrounded by gas at t = 0, 0.5 and 1.

Fig. 7 :

 7 Fig. 7: Numerical solutions for three vapour bubbles in liquid at t = 0, 0.5 and 1.

Fig. 8 :

 8 Fig.8: Numerical solutions for a deformed droplet at times t = 0, 0.8 and 6.

Table 1 :

 1 L 1 -errors und EOCs for the numerical scheme for solving the Riemann problem (

	50 •10 -2	0.01895	0.64
	160 1.25 •10 -2	0.01215	0.72
	320 6.25 •10 -3	0.00736	0.77
	640 3.13 •10 -3	0.00430	0.82
	1280 1.56 •10 -3	0.00243	0.90
	2560 7.81 •10 -4	0.00130	0.96
	5120 3.91 •10 -4	0.00067	0.80
	10240 1.95 •10 -4	0.00039	1.20
	20480 9.77 •10 -5	0.00017	

Table 2 :

 2 Experimental orders of convergence (EOC) at time t = 0.1 for the Riemann problem.