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A FULLY WELL-BALANCED LAGRANGE-PROJECTION TYPE1
SCHEME FOR THE SHALLOW-WATER EQUATIONS∗2

MANUEL J. CASTRO DÍAZ† , CHRISTOPHE CHALONS‡ , AND TOMÁS MORALES DE3
LUNA§4

Abstract. This work focuses on the numerical approximation of the Shallow Water Equations5
(SWE) using a Lagrange-Projection type approach. We propose a fully well-balanced explicit and6
positive scheme using relevant reconstruction operators. By fully well-balanced, it is meant that the7
scheme is able to preserve stationary smooth solutions of the model with non zero velocity, including8
of course also the well-known lake at rest equilibrium. Numerous numerical experiments illustrate the9
good behaviour of the scheme.10
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1. Introduction. We are interested in the numerical approximation of the well-13
known Shallow Water Equations (SWE), given by14

(1)
{

∂th+ ∂x(hu) = 0,
∂t(hu) + ∂x

(
hu2 + g h

2

2

)
= −gh∂xz,

15

where z(x) denotes a given smooth topography and g > 0 is the gravity constant. The16
primitive variables are the water depth h ≥ 0 and its velocity u, which both depend17
on the space and time variables, respectively x ∈ R and t ∈ [0,∞). At time t = 0,18
we assume that the initial water depth h(x, t = 0) = h0(x) and velocity u(x, t = 0) =19
u0(x) are given. In order to shorten the notations, we will use the following condensed20
form of (1), namely21

(2) ∂tU + ∂xF(U) = S(U, z),22

where U = (h, hu)T , F(U) = (hu, hu2 + gh2/2)T and S(U, z) = (0,−gh∂xz)T . In case23
of necessity and since the topography is assumed to be constant in time in this work,24
we will also make use of the following equivalent form of (1), namely25

(3)


∂th+ ∂x(hu) = 0,

∂t(hu) + ∂x

(
hu2 + g

h2

2

)
+ gh∂xz = 0,

∂tz = 0,

26
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2 M. J. CASTRO DÍAZ, C. CHALONS AND T. MORALES DE LUNA

and V = (h, hu, z)T . At last, recall that (1) is strictly hyperbolic over the phase space27
Ω = {(h, hu)T ∈ R2 | h > 0} and that the eigenstructure is composed by two genuinely28
non linear characteristic fields associated with the eigenvalues {u− c, u+ c} where the29
sound speed is defined by c =

√
gh. We recall also that the regions where u2 < c2 (resp.30

u2 > c2) are called subcritical (resp. supercritical).31
As already stated, we are especially interested in the design of a numerical scheme32

satisfying the so-called fully well-balanced property, meaning that it should be able to33
preserve discrete approximations of the smooth stationary solutions of (1). These steady34
states are governed by the ordinary differential system ∂xF (U) = S(U, z), namely35

(4) hu = constant, u2

2 + g(h+ z) = constant.36

Recall that the well-known ”lake at rest” solution corresponds to37

(5) h+ z = constant, u = 0,38

and that numerical schemes preserving these particular stationary solutions are said39
to be well-balanced (see for instance the recent book [26] for a review). Here we are40
also interested in preserving equilibriums (4) with a non-zero velocity, leading to the41
so-called fully well-balanced property.42

In order to reach this objective, we propose to use a strategy based on a Lagrange-43
Projection (or equivalently Lagrange-Remap) decomposition, which allows to naturally44
decouple the acoustic and transport terms of the model. Such a decomposition proved45
to be useful and very efficient to deal with subsonic or near low-Froude number flows.46
In this case, the usual CFL time step limitation of Godunov-type schemes is indeed47
driven by the acoustic waves and can thus be very restrictive. The Lagrange-Projection48
strategy allows to design a very natural implicit-explicit and large time-step schemes49
with a CFL restriction based on the (slow) transport waves and not on the (fast) acoustic50
waves. In this paper, we will stay focused on explicit schemes but the reader is referred51
to the pioneering work [20] and the more recent ones [14], [15], [16], [17] for more details.52
Note that the large time step Lagrange-Projection scheme proposed in [17] for the SWE53
is well-balanced, but not fully well-balanced.54

There is a huge amount of works about the design of numerical schemes for the55
SWE, but most of them intend to satisfy the well-balanced property, but not the full56
well-balanced property. To mention only a few of them, we refer for instance the reader57
to the following well-known contributions [3], [27], [30], [22], [23], [1], [19], [6], [7], [2].58
We also refer to the books [9] and [26] as well as [29] and [13] which provide additional59
references and overviews. As far as the full well-balanced property is concerned, let us60
quote for instance , [25], [34], [36], [11], [10], [35], [33], [4], [5], [12], [28], [31].61

The outline of the paper is as follows. In Section 2 we give a general introduction62
of the Lagrange-Projection approach in the case of flat topography. This technique will63
be generalized in Section 3 for the case of arbitrary topography in order to develop a64
fully well-balanced scheme. Finally, in Section 4, some numerical results will be shown65
in order to test this new scheme.66

2. The Lagrange-Projection decomposition. The aim of this section is to67
briefly present the Lagrange-Projection splitting strategy considered in this paper and68
to introduce the basics of the numerical approximation.69

Let us begin with the Lagrange-Projection decomposition. By using the chain rule70
for the space derivatives, one first writes system (1) under the following equivalent form71
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A FULLY WB LAGRANGE-PROJECTION SCHEME FOR THE SWE 3

for smooth solutions, namely72  ∂th+ u∂xh+ h∂xu = 0

∂t(hu) + u∂x(hu) + hu∂xu+ ∂x(gh
2

2 ) = −gh∂xz.
73

Then, the splitting simply consists in first solving the Lagrangian form of this system,74
namely75

(6)

 ∂th+ h∂xu = 0,

∂t(hu) + hu∂xu+ ∂x(gh
2

2 ) = −gh∂xz,
76

which gives in Lagrangian coordinates, with τ = 1/h and τ∂x = ∂m, ∂tτ − ∂mu = 0,

∂tu+ ∂m(gh
2

2 ) = −gh∂mz,

and then the transport system77

(7)
{
∂th+ u∂xh = 0,
∂t(hu) + u∂x(hu) = 0.78

Remark 2.1. This splitting procedure can be interpreted as a two-step algorithm79
consisting in solving first the system in Lagrangian coordinates and then projecting the80
results in the Eulerian coordinates. See [24] for further details.81

2.1. The Lagrange-Projection numerical algorithm. Space and time will be82
discretized using a space step ∆x and a time step ∆t into a set of cells [xj−1/2, xj+1/2)83
and instants tn+1 = n∆t, where xj+1/2 = j∆x and xj = (xj−1/2 + xj+1/2)/2 are84
respectively the cell interfaces and cell centers, for j ∈ Z and n ∈ N. For a given initial85
condition x 7→ U0(x), we will consider a discrete initial data U0

j which approximates86
1

∆x
∫ xj+1/2
xj−1/2

U0(x) dx, for j ∈ Z. Therefore, the proposed algorithm aims at computing87

an approximation Un
j of 1

∆x
∫ xj+1/2
xj−1/2

U(x, tn) dx where x→ U(x, tn) is the exact solution88

of (1) at all time tn, n ∈ N. Given the sequence {Un
j }j , it is a matter of defining the89

sequence {Un+1
j }j , n ∈ N, since {U0

j}j is assumed to be known.90
Using these notations, the overall Lagrange-Projection algorithm can be described91

as follows: for a given discrete state Un
j = (h, hu)nj , j ∈ Z that describes the system at92

instant tn, the computation of the approximation Un+1
j = (h, hu)n+1

j at the next time93
level is a two-step process defined by94

1. Update Un
j to Un+1−

j by approximating the solution of (6),95

2. Update Un+1−
j to Un+1

j by approximating the solution of (7).96

2.2. The case of a flat topography. In order to prepare the forthcoming devel-
opments, we first consider the simple situation of a flat topography, which corresponds
to the case ∂xz = 0. In this case and using standard notations, the Lagrangian step
writes (see [24]) 

τn+1−
j = τnj + ∆t

hnj ∆x (u∗
j+1/2 − u

∗
j−1/2),

un+1−
j = unj −

∆t
hnj ∆x (p∗

j+1/2 − p
∗
j−1/2),

This manuscript is for review purposes only.



4 M. J. CASTRO DÍAZ, C. CHALONS AND T. MORALES DE LUNA

with
u∗
j+1/2 = u∗(Un

j ,Un
j+1) := 1

2(unj + unj+1)− 1
2aj+1/2

(pnj+1 − pnj ),

p∗
j+1/2 = p∗(Un

j ,Un
j+1) := 1

2(pnj + pnj+1)−
aj+1/2

2 (unj+1 − unj ),

and pnj = g(hnj )2/2 for all j, or equivalently97

(8)

 Lnj h
n+1−
j = hnj ,

Lnj (hu)n+1−
j = (hu)nj −

∆t
∆x (p∗

j+1/2 − p
∗
j−1/2),

98

with
Lnj = 1 + ∆t

∆x (u∗
j+1/2 − u

∗
j−1/2).

Here, the constant aj+1/2 has to be chosen sufficiently large for the sake of stability, and
more precisely larger than the Lagrangian sound speed hc according to the well-known
subcharacteristic condition. In practice it is required that ai+1/2 is greater than the
values h

√
gh at the interface. The definition of aj+1/2 will be given later on and we also

refer for instance the reader to [9, 24, 14, 16] for more details. Moreover, the Lagrangian
step is stable under the Courant-Friedrichs-Lewy (CFL) condition

∆tmax
j

{
max(τnj , τnj+1)aj+1/2

}
≤ 1

2∆x.

As far as the the transport step is concerned, an upwind scheme is applied where
the value u∗

j+1/2 is the velocity at the interface xj+1/2.
hn+1
j = hn+1−

j − ∆t
∆x
(
u∗,−
j+1/2(hn+1−

j+1 − hn+1−
j ) + u∗,+

j−1/2(hn+1−
j − hn+1−

j−1 )
)
,

(hu)n+1
j = (hu)n+1−

j − ∆t
∆x
(
u∗,−
j+1/2((hu)n+1−

j+1 − (hu)n+1−
j ) + u∗,+

j−1/2((hu)n+1−
j − (hu)n+1−

j−1 )
)
,

where u∗,+
j±1/2 = max(u∗

j±1/2, 0) and u∗,−
j±1/2 = min(u∗

j±1/2, 0) for all j.99
The CFL condition associated with the transport step reads

∆tmax
j

{
(uj−1/2)+ − (uj+1/2)−} ≤ ∆x.

Easy calculations show that the system can be written in the equivalent form
hn+1
j = Lnj h

n+1−
j − ∆t

∆x
(
hn+1−
j+1/2u

∗
j+1/2 − h

n+1−
j−1/2u

∗
j−1/2

)
,

(hu)n+1
j = Lnj (hu)n+1−

j − ∆t
∆x
(
(hu)n+1−

j+1/2u
∗
j+1/2 − (hu)n+1−

j−1/2u
∗
j−1/2

)
,

where

hn+1−
j+1/2 =

{
hn+1−
j if u∗

j+1/2 ≥ 0,
hn+1−
j+1 if u∗

j+1/2 ≤ 0, (hu)n+1−
j+1/2 =

{
(hu)n+1−

j if u∗
j+1/2 ≥ 0,

(hu)n+1−
j+1 if u∗

j+1/2 ≤ 0,

which gives that the whole scheme is conservative in the usual sense of finite volume
methods and writes

hn+1
j = hnj −

∆t
∆x
(
hn+1−
j+1/2u

∗
j+1/2 − h

n+1−
j−1/2u

∗
j−1/2

)
,

(hu)n+1
j = (hu)nj −

∆t
∆x
(
(hu)n+1−

j+1/2u
∗
j+1/2 + p∗

j+1/2 − (hu)n+1−
j−1/2u

∗
j−1/2 − p

∗
j−1/2

)
.

This manuscript is for review purposes only.



A FULLY WB LAGRANGE-PROJECTION SCHEME FOR THE SWE 5

These formulas will be useful in the next sections to deal with a generalization of100
this scheme to the case of a non flat topography and impose the fully well-balanced101
property.102

2.3. An equivalent formulation. In this section, we propose an equivalent for-
mulation of the previous scheme based on the Reynolds’ transport theorem which can
be expressed for any scalar value X as

d

dt

∫
Ω(t)

X(x, t)dV =
∫

Ω(t)

( ∂
∂t
X(x, t) +∇.(X(x, t)v(x, t))

)
dV,

where dV is a volume element at point x (the integration variable), and v(x, t) is the
velocity at which the domain Ω(t) is moving. In the one dimension case considered
in this paper, and considering that Ω(t) is an interval with limits a(t) and b(t), the
Reynolds’s theorem reduces to

d

dt

∫ b(t)

a(t)
X(x, t)dx =

∫ b(t)

a(t)

( ∂
∂t
X(x, t) + ∂x(X(x, t)v(x, t))

)
dx.

This theorem expresses the time variation of the amount of X contained inside the103
volume Ω(t) which moves at velocity v(x, t).104

105
The Lagrangian coordinates. Considering that the velocity v(x, t) equals the fluid ve-106
locity u(x, t) in the SWE, the Reynolds’ theorem allows to describe the fluid motion107
in the Lagrangian coordinates, assuming that the observer moves with the fluid flow.108
Considering now successively that X = 1, h, hu and denoting by V (t) the infinitesimal109
control volume, we get110

(9) d

dt
V (t) = V (t)∂xu(x(t; ξ), t),111

112

(10) d

dt

(
V (t)h(x(t; ξ), t)

)
= 0,113

d

dt

(
V (t)(hu)(x(t; ξ), t)

)
= −V (t)∂xp(x(t; ξ), t),

where each point x(t; ξ) of the control volume is given by the solution of the following
ordinary differential equation, with initial condition ξ,{

∂tx(t; ξ) = u(x(t; ξ), t)
x(0; ξ) = ξ.

Note that with the above notations, and ξ1 = a(0) and ξ2 = b(0),

V (t) =
∫ x(t;ξ2)

x(t;ξ1)
1dx =

∫ ξ2

ξ1

∂ξx(t; ξ)dξ

so that for an infinitesimal control volume one can write

V (t) = V (0)∂ξx(t; ξ).

If we now denote α(ξ, t) = α(x(t; ξ), t) for any scalar quantity α, the previous relations
also write

d

dt
V (t) = V (0)∂ξu(ξ, t),

This manuscript is for review purposes only.



6 M. J. CASTRO DÍAZ, C. CHALONS AND T. MORALES DE LUNA

d

dt

(
V (t)h(ξ, t)

)
= 0,

114

(11) d

dt

(
V (t)hu(ξ, t)

)
= −V (0)∂ξp(ξ, t).115

The Lagrangian step. Let us now turn back to the numerical setting and consider for116
a given j that the control volume is defined at time t = 0 by the cell (xj−1/2, xj+1/2).117
The endpoints x±(t;xj±1/2) of the control volume at a given time t are thus defined by118
the solutions of the following ordinary differential equations119

(12)
{
∂tx±(t;xj±1/2) = u(x±(t;xj±1/2), t)
x±(0;xj±1/2) = xj±1/2.

120

Denoting hn+1−
j and (hu)n+1−

j constant approximate values of h and (hu) at time tn+1121
on the moving domain whose volume is Vj(∆t), a simple way to discretize (9) would be122

(13)

 Vj(∆t)hn+1−
j = V (0)hnj ,

Vj(∆t)(hu)n+1−
j = V (0)(hu)nj − V (0) ∆t

∆x (p∗
j+1/2 − p

∗
j−1/2),

123

with V (0) = ∆x and according to dV (t)/dt = V (t)∂xu(x(t; ξ), t),124

(14) Vj(∆t) = V (0)+
∫ ∆t

0
V (t)∂xu(x(t; ξ), t)dt ≈ V (0)+∆t(u∗

j+1/2−u
∗
j−1/2) = ∆xLnj .125

Therefore, one clearly sees that the discretizations (13) and (14) of (9) (or equivalently
(11)) allow to recover (8). At last, note now that from (12),∫ ∆t

0
∂tx±(t;xj±1/2)dt =

∫ ∆t

0
u(x±(t;xj±1/2), t)dt

so that
x±(∆t;xj±1/2)− x±(0;xj±1/2) ≈ ∆tu∗

j±1/2,

and by subtraction we also have

Vj(∆t) := x+(∆t;xj+1/2)− x−(∆t;xj−1/2) = V (0) + ∆t(u∗
j+1/2 − u

∗
j−1/2) = ∆xLnj ,

and therefore

Lnj = 1 + ∆t
∆x

(
u∗
j+1/2 − u

∗
j−1/2

)
=
x+(∆t;xj+1/2)− x−(∆t;xj−1/2)

∆x .

The transport step. Let us now turn to the transport or remap step. In the framework
of the present equivalent reformulation of our algorithm, we have now at hand some
constant approximations denoted hn+1−

j and (hu)n+1−
j of h and (hu) at time tn+1 on

the new cells (x−(∆t;xj−1/2), x+(∆t;xj+1/2)) and whose volume is Vj(∆t). In this
context, the aim of the remap step is just to project these values on the original mesh,
which simply writes with clear notations and X = h, hu,

Xn+1
j = 1

∆x

∫ xj+1/2

xj−1/2

Xn+1−
j (x)dx,

This manuscript is for review purposes only.



A FULLY WB LAGRANGE-PROJECTION SCHEME FOR THE SWE 7

or equivalently

Xn+1
j =

x−(∆t;xj−1/2)− xj−1/2

∆x Xn+1−
j−1/2+

+
x+(∆t;xj+1/2)− x−(∆t;xj−1/2)

∆x Xn+1−
j +

xj+1/2 − x+(∆t;xj+1/2)
∆x Xn+1−

j+1/2

where we have set for all j

Xn+1−
j+1/2 =

{
Xn+1−
j if u∗

j+1/2 ≥ 0,
Xn+1−
j+1 if u∗

j+1/2 < 0.

It is easy to check that these final values coincide with the ones of the previous formu-126
lation of the scheme.127

3. The Lagrange-Projection scheme with a non flat topography. Now we
would like to extend this approach to the case of a non flat bottom paying a particular
attention to the well-balanced property. Here the Lagrange-Projection approach aims
at solving successively the Lagrangian form of our system, namely

∂th+ h∂xu = 0,

∂t(hu) + hu∂xu+ ∂x

(
g
h2

2

)
+ gh∂xz = 0,

which gives in Lagrangian coordinates, with τ = 1/h,
∂tτ − ∂mu = 0,

∂tu+ ∂m

(
g
h2

2

)
+ gh∂mz = 0,

and the transport system {
∂th+ u∂xh = 0,
∂t(hu) + u∂x(hu) = 0.

128
At this stage, it is important to have in mind that in order to get the fully well-balanced129
property, we are going to consider in-cell reconstructions in both Lagrangian and Trans-130
port steps. Moreover, these reconstructions will make both steps of the strategy to be131
fully well-balanced for (hu), in the sense that if the solution at time tn is an equilibrium132
state, we will have (hu)n+1

j = (hu)n+1−
j = (hu)nj for all j. This is clearly sufficient but133

not necessary as the fully well-balanced property simply asks for (hu)n+1
j = (hu)nj for134

all j. As far as h is concerned, we will have hn+1−
j 6= hnj in general, but the overall135

algorithm will be fully well-balanced, namely hn+1
j = hnj for all j. Let us now describe136

the two steps in details.137

3.1. The Lagrangian step.. Considering first the Lagrangian step, following the138
ideas used in the flat topography case, we propose the following generalization139

(15)

 Lnj h
n+1−
j = hnj ,

Lnj (hu)n+1−
j = (hu)nj −

∆t
∆x (p∗

j+1/2 − p
∗
j−1/2)−∆t{gh∂xz}j ,

140

with
Lnj = 1 + ∆t

∆x (u∗
j+1/2 − u

∗
j−1/2),

This manuscript is for review purposes only.



8 M. J. CASTRO DÍAZ, C. CHALONS AND T. MORALES DE LUNA

and where
{gh∂xz}j ≈

1
∆x

∫ xj+1/2

xj−1/2

gh(x, tn)∂xz(x, tn)dx.

At this stage, it remains to define u∗
j+1/2, p∗

j+1/2 and {gh∂xz}j for all j in such a way
that the fully well-balanced property holds true for this step.

Reconstruction procedure. In order to get this property, we propose to perform in-
cell reconstructions of the variables at time tn, that is to say just before starting the
Lagrangian step. With this in mind, we suggest to understand the cell values hnj and
(hu)nj as the averages of stationary solutions defined in the corresponding cell Cj . Thus,
we aim at defining the functions x→ h(x;K1,j ,K2,j) and x→ u(x;K1,j ,K2,j) such that

(hu)(x;K1,j ,K2,j) = K1,j ,

u(x;K1,j ,K2,j)2

2 + g
(
h(x;K1,j ,K2,j) + z(x)

)
= K2,j ,

with two constants K1,j and K2,j such that

hnj = 1
∆x

∫ xj+1/2

xj−1/2

h(x;K1,j ,K2,j)dx

and
(hu)nj = 1

∆x

∫ xj+1/2

xj−1/2

(hu)(x;K1,j ,K2,j)dx = K1,j .

In practice, and since we are only interested in a first order scheme, it is more conve-141
nient to approximate the above integrals by the mid-point quadrature formula, which142
allows to identify the cell averages hnj (respectively (hu)nj ) and the mid-point values143
h(xj ;K1,j ,K2,j) (resp. x → u(xj ;K1,j ,K2,j)). We are thus led to define the functions144
x→ h(x;K1,j ,K2,j) and x→ u(x;K1,j ,K2,j) by145

(16)


(hu)(x;K1,j ,K2,j) = (hu)nj ,
u(x;K1,j ,K2,j)2

2 + g
(
h(x;K1,j ,K2,j) + z(x)

)
=

(unj )2

2 + g
(
hnj + zj

)
,

146

zj = 1
∆x

∫ xj+1/2

xj−1/2

z(x)dx

for all j. Using the U notation, we have thus been able to reconstruct smooth sta-
tionary solutions x → U(x;K1,j ,K2,j) of the SWE within each cell and the average of
which coincides with the solution at time tn for the conservative variables and up to
second-order accuracy. These stationary solutions are then used to define left and right
extrapolated values at the mesh interfaces by setting for all j

Uj+1/2− = U(xj+1/2;K1,j ,K2,j), Uj−1/2+ = U(xj−1/2;K1,j ,K2,j).

Remark that, to close the definition of the reconstructed values, the bottom topography147
should be defined at the interface. Following the ideas in [1] and [11], let us consider148
a reconstructed bottom at zj+1/2, consistent with z(xj+1/2), whose precise definition149
will be discussed later. Thanks to (16) and using the notation q = hu, we consider the150
reconstructed states hj+1/2±, qj+1/2± given by151

This manuscript is for review purposes only.



A FULLY WB LAGRANGE-PROJECTION SCHEME FOR THE SWE 9

(17)


qnj+1/2+ = qnj+1,

(qnj+1)2

2(hnj+1/2+)2 + g(hnj+1/2+ + zj+1/2) =
(qnj+1)2

2(hnj+1)2 + g(hnj+1 + zj+1),152

and153

(18)


qnj+1/2− = qnj ,

(qnj )2

2(hnj+1/2−)2 + g(hnj+1/2− + zj+1/2) =
(qnj )2

2(hnj )2 + g(hnj + zj).
154

It is important to notice that the values hi+1/2± may not be uniquely defined or not155
defined at all. Let us recall that this idea of using in-cell reconstruction using equilibria156
has been used, for instance, in [28, 10, 11]. In particular, let us consider a similar157
notation and the following proposition in [10]:158

Proposition 3.1. Let u0 ∈ R, h0 ≥ 0, δ ∈ R and define q0 = h0u0. Consider the159
system160 

q2
0

2(h∗)2 + gh∗ = q2
0

2h2
0

+ g (h0 + δ) ,

h∗u∗ = q0,
h∗ ≥ 0, u∗ ∈ R,

(19)161

and denote hs ≡ hs(q0) =
(
q2
0
g

) 1
3

. There exists a solution (h∗, u∗) to (19) if and only162

if163

(20) δ + δ0(h0, q0) ≥ 0,164

where165

δ0(h0, q0) = g−1
(
q2
0

2h2
0

+ gh0 −
3
2(g|q0|)

2
3

)
∈ R+.166

Moreover,167
i) If we have equality in (20), there is only one solution (h∗, u∗) to (19), it is given by168

(21) h∗ = hs, u∗ =


q0

hs
if q0 6= 0,

0 if q0 = 0.
169

ii) If we have a strict inequality in (20), then there are exactly two different solutions170
(h∗
sup, u

∗
sup) and (h∗

sub, u
∗
sub) to (19), with h∗

sup ≤ hs < h∗
sub, and h∗

sup < hs for171
q0 6= 0.172

iii) A solution (h∗, u∗) to (19), with h∗u∗ 6= 0 satisfies:173
• It is a critical point ((u∗)2 = gh∗) if, and only if, h∗ = hs,174
• It is a subcritical point ((u∗)2 < gh∗) if, and only if, h∗ > hs,175
• It is a supercritical point ((u∗)2 > gh∗) if, and only if, h∗ < hs.176

iv) Assume that δ is such that (20) is satisfied strictly so that there are exactly two177
solutions hsub and hsup for (19).178
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a) When (h0, u0) is subcritical, we have179
a.1) if δ > 0, then h∗

sup < h0 < h∗
sub,180

a.2) if δ ≤ 0, then h∗
sup < h∗

sub ≤ h0,181
b) When (h0, u0) is supercritical, we have182

b.1) if δ ≥ 0, then h∗
sup ≤ h0 < h∗

sub,183
b.2) if δ < 0, then h0 ≤ h∗

sup < h∗
sub,184

c) When (h0, u0) is critical, we have h∗
sup ≤ h0 < h∗

sub.185

�186

Remark 3.2. Based on this result, solving equations (17) and (18) means:187
a) When ∆z = zj+1 − zj → 0, we can assure the existence of the reconstructed states.188

This means that when Uj and Uj+1 are not critical points (δ0(hj , qj) > 0 and189
δ0(hj+1, qj+1) > 0) and the bottom is continuous, we can define the reconstructed190
values provided that the spatial resolution is high enough. Nevertheless, some prob-191
lems may arise when we are near a critical point at the discrete level.192

b) When the reconstructed states exist, we have in general two possible choices: a sub-193
critical and supercritical value. We will select in general the solution that preserves194
the same character, that is, for Uj subcritical (resp. supercritical) we choose Uj+1/2−195
and Uj−1/2+ subcritical (resp. supercritical). This is true far from sonic points and196
for ∆z sufficiently small.197

c) In the general case, the choice of zj+1/2 should be taken with care. We require that198

zj − zj+1/2 ≥ −δ0(hj , qj) and zj+1 − zj+1/2 ≥ −δ0(hj+1, qj+1)199

so that the reconstructed states exist. Moreover, we shall impose that the recon-200
structed states verify201

hj+1/2− ≤ hj or hj+1/2− ≤ hs(qj),202

and203

hj+1/2+ ≤ hj+1 or hj+1/2+ ≤ hs(qj+1),204

which will play an essential role for the positivity of the scheme.205
Based on those conditions we propose the following definition:206

i) Case zj+1 ≥ zj :207
• Case zj+1 ≤ zj + δ0(hj , qj):208

We set zj+1/2 = zj+1, hj+1/2+ = hj+1 and hj+1/2− the solution of (18) with209
the same character (subcritical or supercritical) as hj .210

• Case zj+1 > zj + δ0(hj , qj):211
We set zj+1/2 = zj + δ0(hj , qj), hj+1/2− = hs(hj , qj) and hj+1/2+ the su-212
percritical solution of (17).213

ii) Case zj+1 < zj :214
• Case zj ≤ zj+1 + δ0(hj+1, qj+1):215

We set zj+1/2 = zj , hj+1/2− = hj and hj+1/2+ the solution of (17) with the216
same character (subcritical or supercritical) as hj+1.217

• Case zj > zj+1 + δ0(hj+1, qj+1):218
We set zj+1/2 = zj+1+δ0(hj+1, qj+1), hj+1/2+ = hs(hj+1, qj+1) and hj+1/2−219
the supercritical solution of (18).220

d) Although the previous definitions have been written for a general case, remark that
in most situations it becomes simpler: consider continuous bottom and assume a
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spatial discretization sufficiently small, such that

zj+1 − zj < δ0(hj , qj), for zj+1 ≥ zj

and
zj − zj+1 < δ0(hj+1, qj+1), for zj > zj+1.

Then, we get zj+1/2 = max(zj , zj+1) and the values hj+1/2+ and hj+1/2− correspond221
to the solutions of (17) and (18) with the same character (subcritical or supercritical)222
as hj+1 and hj respectively.223

To conclude this paragraph, notice that the proposed reconstruction procedure can224
be understood as a generalization of the well-known hydrostatic reconstruction associ-225
ated with the lake at rest equilibrium and defined by226

(22)
{
u(x;K1,j ,K2,j) = unj ,

h(x;K1,j ,K2,j) + z(x) = hnj + zj ,
227

see [1] for more details.

Now that the reconstruction is defined, we use the left and right traces Uj+1/2± to
calculate the numerical fluxes u∗

j+1/2 and p∗
j+1/2 by simply setting

u∗
j+1/2 = u∗(Uj+1/2−,Uj+1/2+) and p∗

j+1/2 = p∗(Uj+1/2−,Uj+1/2+),

and with228

(23) ai+1/2 = max
{
hni+1/2+

√
ghni+1/2+, h

n
i+1/2−

√
hni+1/2−

}
.229

Let us now define {gh∂xz}j such that

{gh∂xz}j ≈
1

∆x

∫ xj+1/2

xj−1/2

gh(x, tn)∂xz(x)dx.

Since we have reconstructed stationary solutions in each cell, we clearly have for all j

∂x(hu2 + g
h2

2 )(x;K1,j ,K2,j) = −(gh∂xz)(x;K1,j ,K2,j),

which, by integrating in the interior of the cell, gives

−{gh∂xz}j = 1
∆x
(
p(xj+1/2;K1,j ,K2,j)− p(xj−1/2;K1,j ,K2,j)

)
+

1
∆x
(
hu2(xj+1/2;K1,j ,K2,j)− hu2(xj−1/2;K1,j ,K2,j)

)
,

that is to say

−{gh∂xz}j =
pnj+1/2− − p

n
j−1/2+

∆x +
(hu2)nj+1/2− − (hu2)nj−1/2+

∆x ,

where of course pnj+1/2− = g(hnj+1/2−)2/2 and pnj−1/2+ = g(hnj−1/2+)2/2. Since, (hu)nj+1/2− =
(hu)nj−1/2+ = (hu)nj , we finally get

−{gh∂xz}j =
pnj+1/2− − p

n
j−1/2+

∆x + (hu)nj
unj+1/2− − u

n
j−1/2+

∆x .

This manuscript is for review purposes only.
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Remark that the definition of {gh∂xz}j is related to the integral of the source term230
along the path that corresponds to the integral curves defining stationary states. We231
refer the reader to [29] and [13] for further details.232

233

3.2. The Transport step. Considering now the Transport step, we propose first
to rewrite equation

∂tX + u∂xX = 0
in following way

∂tX + ∂x(Xu)−X∂xu = 0,
with X = h, (hu). Now we suggest the following update formulas

Xn+1
j = Xn+1−

j − ∆t
∆x
(
Xn+1−
j+1/2u

∗
j+1/2 −X

n+1−
j−1/2u

∗
j−1/2

)
+Xn+1−

j

∆t
∆x
(
u∗
j+1/2 − u

∗
j−1/2

)
,

or equivalently234

(24) Xn+1
j = LnjX

n+1−
j − ∆t

∆x
(
Xn+1−
j+1/2u

∗
j+1/2 −X

n+1−
j−1/2u

∗
j−1/2

)
,235

where the u∗
j+1/2 have the same definition as in the Lagrangian step, and where the236

values Xn+1−
j+1/2 denote relevant approximations of X = h, (hu) at the interface xj+1/2 at237

time tn+1−. Let us notice first that the whole scheme is actually conservative since easy238
calculations show that it writes239
(25)

hn+1
j = hnj −

∆t
∆x
(
hn+1−
j+1/2u

∗
j+1/2 − h

n+1−
j−1/2u

∗
j−1/2

)
,

(hu)n+1
j = (hu)nj −

∆t
∆x
(
(hu)n+1−

j+1/2u
∗
j+1/2 + p∗

j+1/2 − (hu)n+1−
j−1/2u

∗
j−1/2 − p

∗
j−1/2

)
−∆t{gh∂xz}j .

240

Finally, the values Xn+1−
j+1/2 have to be defined for X = h, (hu) in order to get the ex-241

pected well-balanced property. Let us now address this issue.242
243

If one first considers the definition of hn+1−
j+1/2, it is a matter of defining an approxi-

mation of h at the interface xj+1/2 and at time tn+1−. Mimicking the definition used
in the case of a flat topography, namely

hn+1−
j+1/2 =

{
hn+1−
j if u∗

j+1/2 ≥ 0,
hn+1−
j+1 if u∗

j+1/2 ≤ 0,

and the formula Lnj hn+1−
j = hnj which was used to define an approximation of h on the

j-th cell and at time tn+1−, we are tempted to set

hn+1−
j+1/2 =

{
hn+1−
j+1/2− if u∗

j+1/2 ≥ 0,
hn+1−
j+1/2+ if u∗

j+1/2 ≤ 0,

where the values hn+1−
j+1/2± have to be defined.244

245
Definition of hn+1−

j+1/2±. Here we propose to define246

(26) hn+1−
j+1/2± = hnj+1/2±247
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which is a simple way to account for the reconstruction procedure introduced in the248
Lagrangian step. It will also guarantee the fully well-balanced property.249
Note that following the same idea introduced in Section 2.3, we may interpret again250
the transport step as the projection of the values in Lagrangian coordinates into the251
Eulerian coordinates. The reconstructed states hn+1−

j+1/2± can thus be seen as the values252

at time tn+1 to the left and to the right of x∗
j+1/2 = x(∆t;xj+1/2), the position at time253

tn+1 of the moving Lagrangian intercell. Here we propose hnj+1/2± as an approximation254
of those values.255

256
257

Regarding now the definition of (hu)n+1−
j+1/2, it is a matter of defining again a suitable

approximation of (hu) at time tn+1−. Here, we propose to keep the same definition used
in the case of a flat topography, namely

(hu)n+1−
j+1/2 =

{
(hu)n+1−

j if u∗
j+1/2 ≥ 0,

(hu)n+1−
j+1 if u∗

j+1/2 ≤ 0,

which will be sufficient to get the fully well-balanced property, as we show now.258

3.3. Positivity and fully well-balanced property. In this section, we prove
that the Lagrangian-Projection scheme defined by (15)-(24) is fully well-balanced and
that it preserves positivity of water height.

Well-balanced property. We shall check that the scheme defined previously preserves
all smooth stationary states. Let us assume that the solution at time tn corresponds to
a general steady state of the SWE, that is to say

(hu)nj = K1 and
(unj )2

2 + g
(
hnj + zj

)
= K2, ∀ j ∈ Z,

whereK1 andK2 are two given constants. The reconstruction procedure gives Uj+1/2− =
Uj+1/2+ and in particular

u∗
j+1/2 = unj+1/2± =: unj+1/2 and p∗

j+1/2 = pnj+1/2± =: pnj+1/2.

As a consequence, the Lagrangian step (15) gives Lnj h
n+1−
j = hnj ,

Lnj (hu)n+1−
j = (hu)nj −

∆t
∆x (pnj+1/2 − p

n
j−1/2)−∆t{gh∂xz}j ,

with
Lnj = 1 + ∆t

∆x
(
unj+1/2 − u

n
j−1/2

)
,

−{gh∂xz}j =
pnj+1/2 − p

n
j−1/2

∆x + (hu)nj
unj+1/2 − u

n
j−1/2

∆x ,

that is to say {
Lnj h

n+1−
j = hnj ,

Lnj (hu)n+1−
j = Lnj (hu)nj .

Under the usual CFL restriction, we thus have (hu)n+1−
j = (hu)nj so that the Lagrangian

step is fully well-balanced for (hu). Note that in general, hn+1−
j 6= hnj , except if uj+1/2 =
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uj−1/2 gets true, which happens in the particular case of the lake at rest steady state
(unj = 0 for all j).
We also have

hn+1−
j+1/2− = hnj+1/2− = hnj+1/2+ = hn+1−

j+1/2+.

As a consequence, (25) gives
hn+1
j = hnj −

∆t
∆x
(
(hu)nj − (hu)nj

)
,

(hu)n+1
j = (hu)nj −

∆t
∆x
(
(hu)nj unj+1/2 + pnj+1/2 − (hu)nj unj−1/2 − p

n
j−1/2

)
−∆t{gh∂xz}j ,

Therefore, the scheme is thus fully well-balanced since hn+1
j = hnj and (hu)n+1

j = (hu)nj259
for all j.260

261
Positivity property. It is clear that the Lagrangian step (15) preserves positivity of water262
thickness provided that Lnj > 0, which will be true under a suitable CFL condition. The263
question is then whether the transport step preserves positivity or not. Following the264
ideas presented in [1], given a numerical scheme for water height in the form265

hn+1
j = hnj −

∆t
∆x

(
Fhj+1/2 −F

h
j−1/2

)
,266

the scheme will preserve the positivity of h if whenever hnj = 0, one has

Fhj+1/2 −F
h
j−1/2 ≤ 0.

The fully well-balanced Lagrange-Projection for variable h writes267

hn+1
j = hn+1−

j − ∆t
∆x

(
u∗
j+1/2(hn+1−

j+1/2 − h
n+1−
j ) + u∗

j−1/2(hn+1−
j − hn+1−

j−1/2

)
.268

Now, definitions given in Remark 3.2. c) grants that when Unj is a subcritical state,
then

max(hn+1−
j+1/2−, h

n+1−
j−1/2+) ≤ hnj .

Conversely, when Unj is supercritical, we have

max(hn+1−
j+1/2−, h

n+1−
j−1/2+) ≤ hs(qnj ).

It follows then that whenever hnj = 0 we get

hn+1−
j = 0, hn+1−

j+1/2− = 0, and hn+1−
j−1/2− = 0.

In that case, we get269

hn+1
j = −∆t

∆x

(
u∗
j+1/2h

n+1−
j+1/2 − u

∗
j−1/2h

n+1−
j−1/2

)
.270

Now, it is easy to check that in this case271

u∗
j+1/2h

n+1−
j+1/2 = (u∗

j+1/2)−hn+1−
j+1/2+ ≤ 0,272

This manuscript is for review purposes only.



A FULLY WB LAGRANGE-PROJECTION SCHEME FOR THE SWE 15

0.2 0.4 0.6 0.8

0.0

0.2

0.4

0.6

0.8

1.0

t = 1.000

Surface
Bottom

(a) Surface

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

1.0

1.2
t = 1.000

Discharge

(b) Discharge

Figure 1. Subcritical steady state

and273

u∗
j−1/2h

n+1−
j−1/2 = (u∗

j−1/2)+hn+1−
j−1/2+ ≥ 0,274

and the result follows.275
�276

4. Numerical results.277

4.1. Subcritical steady state. In this first test we will verify the fully well bal-278
anced property of the scheme. To do so, let us consider a bottom topography279

(27) z(x) = 0.5 exp
(
− (x− 0.5)2

0.005

)
,280

and the subcritical steady state solution verifying281

hu = 0.5, u2

2 + g(h+ z) = 0.125.282

The simulation is carried out with 200 cells and open boundary conditions. As283
expected, this steady state is preserved by the scheme with an error 10−12. Figure 1284
shows the surface elevation as well as the discharge at time t = 1 which corresponds285
just to the given initial condition.286

4.2. Generation of subcritical steady state. The objective of this test is to287
study the convergence of the scheme to steady states. To do so let us consider the288
bottom topography (27) and we consider as initial condition a lake at rest situation:289
h+ z = 1, u = 0. We impose at the left boundary the condition hu(x = 0, t) = 0.5 and290
at the right boundary the condition h(x = 1, t) = 1. It is expected that, for long time,291
the solution will converge to the steady state presented previously. The simulation292
is carried out with 200 cells and the time evolution of the surface and discharge are293
shown in Figure 2. Here a comparison with the solutions computed with 800 cells are294
also shown. Figure 3 shows the steady state reached for t = 50 and comparison with295
the exact reference solution. Moreover, 10−12. Figure 4 shows the deviation from the296

expected constant values for q and u2

2 + g(h+ z) at the steady state. We see that the297
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Figure 2. Generation of subcritical steady state from stationary initial condition: surface and
discharge evolution. Continuous lines correspond to the solution computed with 200 cells and discon-
tinuous to the one computed with 800 cells
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Figure 3. Generation of subcritical steady state from stationary initial condition: surface eleva-
tion compared to reference solution

achieved error is similar to the previous case, order 10−12 for the first one and 10−12298
for the second.299

4.3. Transcritical continuous steady state. As it is known, the generalized300
hydrostatic reconstruction procedure may present some problems at critical points where301
the reconstructed states may not be well defined. We propose now to take as initial302
condition a transcritical steady state to check how this situation is handled by the303
scheme. We consider again the bottom topography (27) and we solve numerically the304
relations305

hu = 1.5, u2

2 + g(h+ z) = E,306
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Figure 5. Transcritical steady state: surface elevation

with307

E = 1.5
2h2

s

+ g(hs + 0.5), and hs =
(

1.52

g

)1/3

.308

We consider the subcritical solution for x < 0.5 and the supercritical solution for x > 0.5.309
Previous values guarantee that these solutions exist and there is a critical point at310
x = 0.5.311

Figure 5 shows the surface elevation for time t = 1 using 201 cells. We remark that312
the scheme behaves well at x = 0.5 where the critical point is located. Let us recall that313
critical points may be problematic for the reconstruction using equilibria. This is due314
to the fact that at discrete level we represent the exact smooth functions by a piece-wise315
constant function consisting on the cell averages which gives in practice a jump on the316
bottom at the interfaces. Nevertheless we check in Figure 5(b) that the scheme captures317
correctly the solution. Figure 6 shows the deviation from the expected constant values318

for q and u2

2 + g(h+ z) at the steady state. We see that the error is of order 10−14 for319

the first one and 10−13 for the second which shows that the steady state is preserved.320

This manuscript is for review purposes only.
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Figure 6. Transcritical steady state: deviation from the expected constant state
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Figure 7. Perturbation of a steady state at times t = 0, 0.02 and 0.04

4.4. Small perturbation of a steady state. We consider now a small pertur-321
bation of previous transcritical steady state. To do so, let us consider the same bottom322
and initial condition and we add a perturbation in the water thickness by increasing its323
value in 0.15 for 0.15 < x < 0.25.324

Figures 7 and 8 show the evolution of the surface and the discharge at the beginning325
of the simulation, where the perturbation propagates along the domain. Figure 9 shows326
the surface elevation and discharge at time t = 10 when the steady state is reached.327
Compared to the prescribed initial steady state, we remark that the perturbation has328
not affected the reached steady state. Nevertheless, a small artifact is seen at the critical329
point in Figure 9(b) although it is very small. This small artifact reduces as the number330
of cells is increased.331

Consider now a smaller perturbation of 0.0001 for 0.15 < x < 0.2 and let us compare332
the scheme provided here with a similar based on just an hydrostatic reconstruction [1].333
While the former is fully well-balanced, the latter is only well-balanced for lake at rest334
steady states. The simulations are done using 3201 volume cells. Figure 10 shows at335
time t = 0.05 the difference between the computed values h and q with respect to the336
unperturbed steady-state h0 and q0 described in Subsection 4.3. As we see, just from337
the beginning, the non fully well-balanced scheme is producing a perturbation in the338
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Figure 8. Perturbation of a steady state at times t = 0.06, 0.1 and 0.12
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Figure 9. Perturbation of a steady state at times t = 10

middle of the domain which is even bigger than the perturbation introduced on the339
initial condition. Nevertheless, the fully well-balanced scheme introduced here does not340
present this problem.341

4.5. Transcritical steady state with shock. We consider now a numerical test342
taken from [9] consisting of a transcritical flow with a shock over a bump. The interval343
is [0, 25], the initial condition and depth bottom is given by344

(28)
h(x, t = 0) = 0.33, hu(x, t = 0) = 0.18,

z(x) =
{

0.2 + 0.05(x− 10)2, if 8 < x < 12,
0, otherwise,

345

and the boundary conditions are given by hu(x = 0, t) = 0.18, h(x = 25, t) = 0.33.346
We consider a uniform mesh composed by 201 cells.347
The initial condition will evolve until a transcritical solution with a stationary shock348

is developed. Figure 11 shows the surface and discharge evolution obtained with the349
scheme proposed here. In Figure 12 we see the surface profile obtained and a comparison350
for a reference solution with increasing number of cells. We remark there is a small351
problem for the scheme at the critical point near x = 10 and the position of the shock352
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Figure 10. Perturbation of a steady state. Comparison with the unperturbed steady state at time
t = 0.05 for fully and non fully well-balanced schemes
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Figure 11. Transcritical steady state with shock: surface elevation and discharge for times
t=0,5,10,50
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Figure 12. Transcritical steady state with shock: surface elevation
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Figure 13. Transcritical steady state with shock: steady state condition for different number of cells

No. of cells h hu
L1 error order L1 error order

25 2.31e-02 0.00 1.53e-01 0.00
50 1.77e-02 0.38 1.09e-01 0.48
100 1.18e-02 0.59 6.67e-02 0.71
200 7.00e-03 0.75 3.62e-02 0.88
400 3.74e-03 0.91 1.79e-02 1.01

Table 1
L1 errors and numerical orders of accuracy.

does not exactly coincide with reference solution. Nevertheless those problems disappear353
when the mesh is refined and the numerical solutions converge to the reference solution.354
Figure 13 shows the steady state conditions and comparison with a reference solution355
for different number of cells.356

4.6. Formal convergence of the scheme. We intend now to study the formal357
convergence of the scheme proposed here. To do so, let us consider the initial condition358
given by359

z(x) = 0.1 cos(2πx), h(x, 0) = 1.1 + 0.1 sin(4πx)− z(x), hu(x, 0) = 0.0.360

We compute a reference solution using 3200 points in the interval [0, 1] and using361
periodic boundary conditions up to time t = 0.2. Then we make a comparison with the362
solutions given by different number of cells. The L1 errors are shown in Table 1. As363
expected, the scheme presented here is a first order scheme.364

4.7. Traveling wave over an obstacle. We consider now bottom topography365
and initial condition given by366

(29) z(x) =
{

0.5, if 0.6 < x < 0.7,
0, otherwise, h(x, t = 0) =

{
0.5, if 0.6 < x < 0.7,
1, otherwise,367

and hu(x, t = 0) = 0. This will produce a rarefaction followed by a shock that travels368
towards the obstacle at the bottom. We compute the solution using 201 cells in the369
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Figure 14. Travelling wave over an obstacle: surface elevation and discharge for times t =
0, 0.04, 0.12, 0.2
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Figure 15. Travelling wave over an obstacle: surface elevation and discharge for time t = 1

interval [0, 1] with open boundary conditions and compare the results with a reference370
solution computed on a fine grid with 3201 points. The time evolution of the surface371
and discharge are shown in Figure 14 where dashed lines correspond to the results using372
the finer grid and continuous line to the coarser grid. The final time is shown in 15 once373
the waves have left the domain and the steady state is reached. We see that scheme is374
able to reproduce the evolution of the waves in the flat region as well as when the shock375
encounters the obstacle.376

5. Conclusions. We have introduced a positive and fully well-balanced Lagrange-377
Projection scheme for the Shallow Water Equations (SWE). This means that the scheme378
is able to preserve stationary solutions of the model with non zero velocity. Moreover,379
the scheme is positive under suitable CFL condition. Numerical results have shown that380
the scheme behaves well even in transcritical regimes or near critical points, provided381
that a sufficient number of cells is used. In a next work we propose to define semi-382
implicit fully well-balanced numerical schemes for SWE. Fully well-balanced high order383
Lagrange-Projection schemes will be also considered.384
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