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Abstract. This work is devoted to the derivation of an admissible asymptotic-preserving
scheme for the electronic M1 model in the diffusive regime. A numerical scheme is
proposed in order to deal with the mixed derivatives which arise in the diffusive limit
leading to an anisotropic diffusion. The derived numerical scheme preserves the re-
alisibility domain and enjoys asymptotic-preserving properties correctly handling the
diffusive limit recovering the relevant limit equation. In addition, the cases of non
constants electric field and collisional parameter are naturally taken into account with
the present approach. Numerical test cases validate the considered scheme in the non-
collisional and diffusive limits.

1 Introduction

In order to initiate nuclear fusion reactions, it was proposed to use laser pulses in or-
der to ignite a deuterium-tritium target. During this process the energy is transported
from the critical surface to denser parts through the electron transport. This transport
plays a key role in the understanding of plasma physical phenomena such as, paramet-
ric [27, 48] and hydrodynamic [20, 55, 62] instabilities, laser-plasma absorption [36, 53],
wave damping [18,41], energy redistribution and hot spot formation [10,46]. Spitzer and
Härm were the first to propose a electron transport theory in a fully ionised plasma with-
out magnetic field. They derived the electron plasma transport coefficients by solving
the electron kinetic equation by using the expansion of the electron mean free path over
the temperature scale length (denoted ε in this paper). The results of Spitzer and Härm
have been reproduced in other works [3,9,56] using the early works of Chapman [15,16]
and Enskog [25] for neutral gases. However in the case of non-local regimes [51], the
Spitzer-Härm theory is no more valid. Indeed the electron transport plasma coefficients
were derived in the case where the isotropic part of the electron distribution function
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remains close to the Maxwellian. For example, in the context of inertial confinement fu-
sion, the plasma particles may have an energy distribution far from the thermodynamic
equilibrium so that the fluid description is not adapted. Moreover kinetic effects like the
non local transport [10, 46], wave damping or the development of instabilities [20] can
be important over time scales shorter than the collisional time so that fluid simulations
are insufficient and kinetic codes have to be considered to capture the physical processes.
Therefore, a kinetic description seems unavoidable for the study of inertial confinement
fusion processes. However such a kinetic description is accurate but also computation-
ally expensive for describing most of real physical applications. Kinetic codes are often
limited to time and length much shorter than those studied with fluid simulations. It
is therefore an essential issue to describe kinetic effects by using reduced kinetic codes
operating on fluid time scales.

Angular moments models can be seen as a compromise between kinetic and fluid
models. On the one hand, they have the advantage to be less computationally expensive
than kinetic description since less variables are involved in the models and on the other
hand they provide results with a higher accuracy than fluid models [26, 59]. Grad [31],
initially proposed a moment closure hierarchy which leads to a hyperbolic set of equa-
tions for close equilibrium flows. The hierarchy proposed is based on a polynomial series
expansion of a distribution function close to the Maxwellian equilibrium. However, the
truncation of this expansion leads to a loss of the positivity of the distribution function
and to unrealisable moments, ie moments which can not be derived from a positive dis-
tribution function. In [1,43,49,50,58], closures based on entropy minimisation principles
are investigated. It has been shown that this closure choice enables to recover funda-
mental properties such as the positivity of the underlying distribution function, the hy-
perbolicity of the model and an entropy dissipation property [32, 43, 47]. In this work,
the moment model is based on an angular moments extraction. The kinetic equation is
only integrated with respect to the velocity direction while the velocity modulus is kept
as a variable. The closure used is based on an entropy minimisation principle and gives
the angular M1 model. This model is used in numerous applications such as radiative
transfer [5, 17, 22, 52, 60] or electron transport [21, 34, 44]. It satisfies fundamental proper-
ties and recovers the asymptotic diffusion equation in the long time and small mean free
path regimes [23]. In order to perform numerical simulations, the HLL scheme [37] is
often used for the M1 electronic model because it ensures the positivity of the first angu-
lar moment and the flux limitation property. However, this scheme does not degenerate
accordingly in the diffusive limit as most of the schemes. Even if the scheme is consistent
and one could use a very refined mesh with space step smaller than the mean free path,
such a solution would be far too computationally expensive to be used in practice. Over-
coming this major drawback a class of numerical schemes has emerged over the years
called asymptotic-preserving schemes (AP). Asymptotic-preserving schemes in the sense
of Jin-Levermore [38, 39] are designed to handle multi-scale situations and correctly cap-
ture the asymptotic limit considered. In this context many works have been performed
following different approaches in a one dimensional framework [2, 8, 19, 28, 40, 42, 54]. In
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particular, one of the most productive approach from the work of Gosse-Toscani [30] and
which has been largely extended [5, 7, 11, 12, 14], is based on the modification of approx-
imate Riemann solvers. Some works also deal with the two dimensional case [6, 13]. In
the present paper, the difference and the main difficulty comes from the mixed deriva-
tives arising in the diffusive limit. In the present paper, we consider the M1 model for
the electronic transport [21, 35, 36, 44, 45]. Ions are supposed fixed and electron-electron
collisions are not considered. The angular moment model studied reads


∂t f0(t,x,ζ)+ζ∂x f1(t,x,ζ)+E(x)∂ζ f1(t,x,ζ)=0,
∂t f1(t,x,ζ)+ζ∂x f2(t,x,ζ)+E(x)∂ζ f2(t,x,ζ)

− E(x)
ζ

( f0(t,x,ζ)− f2(t,x,ζ))=−2αei(x) f1(t,x,ζ)
ζ3 ,

(1.1)

where f0, f1 and f2 are the first three angular moments of the electron distribution func-
tion f . Omitting the x and t dependency, they are given by

f0(ζ)= ζ2
∫ 1

−1
f (µ,ζ)dµ,

f1(ζ)= ζ2
∫ 1

−1
f (µ,ζ)µdµ, (1.2)

f2(ζ)= ζ2
∫ 1

−1
f (µ,ζ)µ2dµ.

The coefficient αei is a positive physical function which may depend of x, E represents
the electrostatic field as function of x and ζ the velocity modulus. The term αei/ζ3 comes
from the angular integration of the Landau electron-ion collision operator [44]. This pa-
rameter is homogeneous to a frequency. The fundamental point of the moments models
is the definition of the closure which gives an expression of the highest moment as a
function of the lower ones. This closure relation corresponds to an approximation of the
underlying distribution function, which the moments system is constructed from. For the
M1 model the closure relation originates from an entropy minimisation principle [43,49].
The moment f2 can be computed [21, 22] as a function of f0 and f1

f2(t,x,ζ)=χ
( f1(t,x,ζ)

f0(t,x,ζ)

)
f0(t,x,ζ), with χ(α)=(1+α2+α4)/3. (1.3)

The set of admissible states [21] is defined by

A=
(
( f0, f1)∈R2, f0≥0, | f1|≤ f0

)
. (1.4)

In [33], a numerical scheme was proposed for the electronic M1 model without electric
field and in the homogeneous case. The scheme derived using the consistency with the
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integral form of the approximate Riemann solver ensures the admissibility conditions
(1.4) and correctly captures the limit diffusion equation. However, the general model
considering the x and ζ dependencies has not been considered. In such a general case,
mixed derivatives arise in the diffusion limit leading to a complex diffusion equation. In
addition, the source term −E(x)( f0− f2)/ζ also contributes in the limit equation. The
expression of the limit equation is detailed in section 2.

In this paper, the general electronic M1 model (1.1) is considered. The aim is to
propose a numerical scheme, extending the ideas of [33], in order to take into account
the mixed derivatives in the diffusive limit. Such a scheme must ensure the admissi-
bility conditions (1.4) and include the contribution of the source term in the diffusion
−E(x)( f0− f2)/ζ limit.

We first introduce the electronic M1 model with its diffusion limit in Section 2. In
Section 3, extending the ideas of [33], a numerical scheme is proposed. The scheme is
modified to ensure the admissibility conditions (1.4) and to capture the non isotropic
diffusion then the asymptotic-preserving property is exhibited. The contribution of the
term−E(x)( f0− f2)/ζ is finally included in the scheme. In Section 4, numerical examples
are presented to testify of the efficiency of the method. Finally, Section 5 presents our
conclusions.

2 Model and diffusion limit

In this section, the diffusion limit of the electronic M1 model (1.1) is introduced. After
considering a diffusive scaling, a formal Hilbert expansion is used to derive the limit
model. Even if such a procedure is not strictly rigorous from a mathematical point of
view, it is known that this approach gives an easy way to derive the limit model. In
addition, mathematical rigorous methods used for continuous descriptions can not be
easily adapted in this numerical context.
The scaled variables are defined by

t̃= t/t∗, x̃= x/x∗, ζ̃= ζ/vth, Ẽ=Ex∗/v2
th,

where t∗ is the typical time of the problem, x∗ the typical length and vth the electron ther-
mal velocity. Also, we assume that there exists σ such that αei(x)= ᾱeiσ(x) where ᾱei/v3

th
is the typical electron-ion collisional frequency.

A diffusion scaling is now considered. More precisely the parameters t∗ and x∗ are chosen
such that τei/t∗ = ε2, λei/x∗ = ε, where the electron-ion collisional period is given by
τei =v3

th/ᾱei and the mean free path by λei =vthτei. In this case system (1.1) rewrites
ε∂t f0(t,x,ζ)+ζ∂x f1(t,x,ζ)+E(x)∂ζ f1(t,x,ζ)=0,
ε∂t f1(t,x,ζ)+ζ∂x f2(t,x,ζ)+E(x)∂ζ f2(t,x,ζ)

− E(x)
ζ

( f0(t,x,ζ)− f2(t,x,ζ))=−2σ(x)
ζ3

f1(t,x,ζ)
ε

.

(2.1)
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Introducing the following Hilbert expansion of f ε
0 and f ε

1{
f ε
0 = f 0

0 +ε f 1
0 +O(ε2),

f ε
1 = f 0

1 +ε f 1
1 +O(ε2),

(2.2)

into the second equation of (2.1) taken at order ε−1 leads to

f 0
1 =0. (2.3)

Using the definition of f2 in (1.3), it follows that

f 0
2 = f 0

0 /3.

Inserting the Hilbert expansion (2.2) into the second equation of (1.1) gives at order ε0

f 1
1 =−

ζ4

6σ
∂x f 0

0−
Eζ3

6σ
∂ζ f 0

0 +
Eζ2

3σ
f 0
0 . (2.4)

Finally, using the previous equation in the first equation of (1.1) at order ε1, the following
limit equation is obtained

∂t f 0
0 +ζ∂x

(
− ζ4

6σ
∂x f 0

0−
Eζ3

6σ
∂ζ f 0

0 +
Eζ2

3σ
f 0
0

)
(2.5)

+E∂ζ

(
− ζ4

6σ
∂x f 0

0−
Eζ3

6σ
∂ζ f 0

0 +
Eζ2

3σ
f 0
0

)
=0.

In the case E= 0, one recognises a classical diffusion equation involving a second order
space derivative with a diffusion coefficient of−ζ5/6σ. However, in the general case this
limit equation involves mixed x and ζ derivatives leading to an anisotropic diffusion. In
addition, the source term E( f0− f2)/ζ also contributes in the diffusive limit leading to the
term (Eζ2/(3σ)) f 0

0 in the right side of (2.4) and in the x and ζ derivatives of (2.5). Such an
asymptotic limit is unusual compared to what has been studied in radiative transfer for
example [4, 5]. The difference lies in the fact that here charged particles are considered.
Then, the contribution of the electric field must be taken into account leading to these
unexpected limit involving mixed derivatives.

3 Numerical scheme

3.1 Previous results and limit of the approach

In [33] a numerical scheme was proposed for the simplified case without electric field
E and for the homogeneous case with non-constant electric field. The scheme is based
on an approximate Riemann solver whose the intermediate states are chosen to obtain
the asymptotic-preserving property while preserving the admissibility of the solution.
However the generalisation of such approach to the general model (1.1) is challenging
since mixed-derivatives in space and velocity modulus arise in the asymptotic limit (2.5).
In this section we briefly summarise the results obtained in [33] and explain the difficulty
encounters when generalising to the general model (1.1).
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3.1.1 Previous results

We start recalling the results obtained in [33]. For conciseness we only recall the case with
no electric field which was studied in the first part of [33]. In this case the model writes

∂t f0(t,x,ζ)+ζ∂x f1(t,x,ζ)=0,

∂t f1(t,x,ζ)+ζ∂x f2(t,x,ζ)=−2αei(x) f1(t,x,ζ)
ζ3 ,

(3.1)

and the corresponding diffusive limit reads

∂t f 0
0 +ζ∂x(−

ζ4

6σ
∂x f 0

0 )=0. (3.2)

We consider an uniform mesh with a constant space step ∆x= xi+1/2−xi−1/2 and a time
step ∆t. For this case the following numerical scheme has been proposed to compute the
numerical solution at time tn+1

f n+1
0i =

ax∆t
∆x

f R∗
0i−1/2+(1− 2ax∆t

∆x
) f n

0i+
ax∆t
∆x

f L∗
0i+1/2,

f n+1
1i =

ax∆t
∆x

f ∗1i−1/2+(1− 2ax∆t
∆x

) f n
1i+

ax∆t
∆x

f ∗1i+1/2,
(3.3)

where the intermediate states are given by

f ∗1 =
2axζ3

2axζ3+2αei∆x

( f L
1 + f R

1
2
− 1

2ax
(ζ f R

2 −ζ f L
2 )
)

,

and {
f L∗
0 = f̃0−Γθ,

f R∗
0 = f̃0+Γθ,

with

f̃0=
f L
0 + f R

0
2
− 1

2ax
(ζ f R

1 −ζ f L
1 ),

and
Γ=

1
2

(
f R
0 − f L

0 −
ζ

ax
( f L

1 −2 f ∗1 + f R
1 )
)

.

The coefficient θ ∈ [0,1] is fixed to ensure the admissibility conditions and is chosen as
θ=min(θ̃,1) where

θ̃=
f̃0−| f ∗1 |
|Γ| ≥0.

We associate the standard CFL condition

∆t≤∆x/ax. (3.4)

The properties obtained in [33] can be summarised as the following
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Theorem 3.1. The numerical scheme (3.3)
(i) is consistent with (3.1),
(ii) preserves the admissibility of the the numerical solutions under the CFL condition (3.4),
(iii) considered in diffusive regimes, is consistent with the limit diffusion equation (3.2).

The spatially homogeneous case but taking into account the electric field has been
investigated in the second part of [33].

Remark: The scheme (3.3) is explicit in the sense that, in order to update the numerical
solution, there is no need to solve an equation or a system. More precisely, in the same
spirit as in [7] (see also [29]), the approximate Riemann solver considered here is explicit
and, this is the key point, the intermediate states carefully combine the hyperbolic part
and the source term. To go further, an implicit treatment of the source term can been
seen ”inside” the definition of the intermediate states. Indeed, in the derivation of the
intermediate states f ?1 in [32], right after the time integration of the source term (writing
the consistency relations in the integral sense) a time implicit approximation was chosen.
This implicitation makes appear the term 2axζ3/(2axζ3+2αei∆x) in the definition of f ?1 .

3.1.2 Limit of the approach

In this part we show that the generalisation of this approach to the general model (1.1)
is not straightforward. Indeed, if one simply sums the schemes proposed in [33], for the
simplified case without electric field E and for the homogeneous case with non-constant
electric field, a direct discrete Hilbert expansion shows that the wrong limit model is
obtained since the mixed derivatives are not recovered in the limit regime. More pre-
cisely, only the second order space and velocity modulus derivatives are captured by the
scheme and the anisotropic diffusion is missing. This point is proved in this section.

We first consider the case without the source term E
ζ ( f0− f2). The general model is

studied in part 3.4. For clarity, we start without considering it. In this case the electronic
M1 model reads

∂t f0(t,x,ζ)+ζ∂x f1(t,x,ζ)+E(x)∂ζ f1(t,x,ζ)=0,

∂t f1(t,x,ζ)+ζ∂x f2(t,x,ζ)+E(x)∂ζ f2(t,x,ζ)=−2αei(x) f1(t,x,ζ)
ζ3 ,

(3.5)

and its diffusive limit equation writes

∂t f 0
0 +ζ∂x

(
− ζ4

6σ
∂x f 0

0−
Eζ3

6σ
∂ζ f 0

0

)
+E∂ζ

(
− ζ4

6σ
∂x f 0

0−
Eζ3

6σ
∂ζ f 0

0

)
=0. (3.6)

Let us consider a constant velocity modulus step ∆ζ = ζi+1/2−ζi−1/2. From now the
indices i and j refer to the numerical solution considered in xi and ζ j. Specular reflection



8

−ax ax
t

x

URUL

U∗RU∗L

Figure 1: Structure of the approximate Riemann solver considered.

boundary conditions are considered in ζ=0. At the discrete level the following conditions
are imposed in the ghost cell denoted by the index 0

f n
0i0= f n

0i1, f n
1i0=− f n

1i1 for all i.

By summing the schemes proposed in [33], for the simplified case without electric field E
and for the homogeneous case with non-constant electric field ones obtains the following
scheme for (1.1)

Un+1
ij −Un

ij

∆t
=

ax

∆x
UR∗

i−1/2j+
2ax

∆x
Un

ij+
ax

∆x
UL∗

i+1/2j (3.7)

+
aζ

∆ζ
UR∗

ij−1/2+
2aζ

∆ζ
Un

ij+
aζ

∆ζ
UL∗

ij+1/2,

where the intermediate states of the approximated Riemann solver (see Figure 1) UL∗
i+1/2j,

UR∗
i−1/2j, UL∗

ij+1/2 and UR∗
ij−1/2 are defined by

UR∗
i−1/2j =

(
f R∗
0i−1/2j

f ∗1i−1/2j

)
, UL∗

i+1/2j =

(
f L∗
0i+1/2j

f ∗1i+1/2j

)
,

UR∗
ij−1/2=

(
f R∗
0ij−1/2

f ∗1ij−1/2j

)
, UL∗

ij+1/2=

(
f L∗
0ij+1/2

f ∗1ij+1/2

)
.

Following [32] the second components of the intermediate states at each interface are
chosen equal, ie f L∗

1i+1/2j = f R∗
1i+1/2j = f ∗1i+1/2j and f L∗

1ij+1/2 = f R∗
1ij+1/2 = f ∗1ij+1/2. Following

[4, 5, 33], the velocity waves ax and aζ are fixed such that

ax = ζ j, aζ = |Ei|. (3.8)
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For clarity, in the following, we omit the dependency of the speed ax in velocity modulus
and aζ in space. However, the results presented hold in the general case. Following the
ideas introduced in [33] one can naturally proposes the following intermediate states

f ∗1i+1/2j =αi+1/2j

( f n
1i+1j+ f n

1ij

2
−
(ζ j f n

2i+1j−ζ j f n
2ij)

2ax

)
, (3.9)

f ∗1ij+1/2=βij+1/2

( f n
1ij+1+ f n

1ij

2
−
(Ei f n

2ij+1−Ei f n
2ij)

2aζ

)
, (3.10)

with

αi+1/2j =
2axζ3

j

2axζ3
j +αei

i+1/2∆x
, βij+1/2=

2aζζ3
j+1/2

2aζζ3
j+1/2+αei

i ∆ζ
.

We introduce the following notations

f̃0i+1/2j =
f n
0i+1j+ f n

0ij

2
−ζ j

( f n
1i+1j− f n

1ij)

2ax
,

f̃0ij+1/2=
f n
0ij+1+ f n

0ij

2
−Ei

( f n
1ij+1− f n

1ij)

2aζ
.

(3.11)

and

f̃1i+1/2j =
f n
1i+1j+ f n

1ij

2
−ζ j

( f n
2i+1j− f n

2ij)

2ax
,

f̃1ij+1/2=
f n
1ij+1+ f n

1ij

2
−Ei

( f n
2ij+1− f n

2ij)

2aζ
.

(3.12)

In [33], the intermediate states of the considered approximate Riemann solvers were de-
fined using consistency relations and a corrective coefficient to ensure the admissibility
conditions. Following these ideas the intermediate states f R∗

0i+1/2j and f L∗
0i+1/2j are defined

by {
f L∗
0i+1/2j = f̃0i+1/2j−Γi+1/2jθ1i+1/2j,

f R∗
0i+1/2j = f̃0i+1/2j+Γi+1/2jθ1i+1/2j,

(3.13)

with

Γi+1/2j =
1
2

(
f n
0i+1j− f n

0ij−
ζ j

ax
( f n

1ij−2 f ∗1i+1/2j+ f n
1i+1j)

)
, (3.14)

and the coefficient θ1i+1/2j is fixed in order to ensure the admissibility conditions (1.4).
Similarly, the definitions of f R∗

0ij+1/2 and f L∗
0ij−1/2 read{

f L∗
0ij+1/2= f̃0ij+1/2−Γij+1/2θ2ij+1/2,

f R∗
0ij+1/2j = f̃0ij+1/2+Γij+1/2θ2ij+1/2,

(3.15)
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with

Γij+1/2=
1
2

(
f n
0ij+1− f n

0ij−
ζ j

aζ
( f n

1ij−2 f ?1ij+1/2+ f n
1ij+1)

)
. (3.16)

Then the corrective coefficients θ1i+1/2j and θ2ij+1/2 are fixed in the interval [0,1], the
larger possible such that the admissibility requirements (1.4) are fulfilled. A simple cal-
culation gives the following conditions

θ̃1i+1/2j =
f̃0i+1/2j−αi+1/2j| f̃1i+1/2j|

|Γi+1/2j||
, (3.17)

and

θ̃2ij+1/2=
f̃0ij+1/2−βij+1/2| f̃1ij+1/2|

|Γij+1/2|
. (3.18)

Finally, θ1i+1/2j =min(θ̃1i+1/2j,1) and θ2ij+1/2=min(θ̃2ij+1/2,1).

However as shown with the following result the wrong asymptotic behaviour is ob-
tained with this scheme.

Theorem 3.2. (Wrong consistency in the diffusion regime)
In the diffusion limit, the numerical scheme (3.7) degenerates into

f n+1,0
0ij − f n,0

0ij

∆t
=

ζ j

∆x

( ζ4
j

6σi+1/2∆x
( f n,0

0i+1j− f n,0
0ij )−

ζ4
j

6σi−1/2∆x
( f n,0

0i1j− f n,0
0i−1j)

)
(3.19)

+
Ei

∆ζ

(Eiζ
3
j+1/2

6σi∆ζ
( f n,0

0ij+1− f n,0
0ij )−

Eiζ
3
j−1/2

6σi∆ζ
( f n,0

0i1j− f n,0
0ij−1)

)
,

which is not consistent with the limit diffusion model (3.6).

Proof. Following the same approach as in [5, 7, 33], using the diffusion scaling and equa-
tion (3.7) leads to

ε
Un+1,ε

ij −Un,ε
ij

∆t
=

ax

∆x
UR∗,ε

i−1/2j−
2ax

∆x
Un,ε

ij +
ax

∆x
UL∗,ε

i+1/2j (3.20)

+
aζ

∆ζ
UR∗,ε

ij−1/2−
2aζ

∆ζ
Un,ε

ij +
aζ

∆ζ
UL∗,ε

ij+1/2,

and equations (3.9) and (3.10) give

f ∗,ε1i+1/2j =αε
i+1/2j

( f n,ε
1i+1j+ f n,ε

1ij

2
−
(ζ j f n,ε

2i+1j−ζ j f n,ε
2ij )

2ax

)
,

f ∗,ε1ij+1/2=βε
ij+1/2

( f n,ε
1ij+1+ f n,ε

1ij

2
−
(Ei f n,ε

2ij+1−Ei f n,ε
2ij )

2aζ

)
,

(3.21)
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with

αε
i+1/2j =

2axζ3
j

2axζ3
j +σi+1/2∆x/ε

, βε
ij+1/2=

2aζζ3
j+1/2

2aζζ3
j+1/2+σi∆ζ/ε

. (3.22)

Consequently as ε tends to zero, (3.22) shows that αε and βε also tends to zero. Therefore
from (3.21) one obtains that

f ∗,01i+1/2j =0 and f ∗,01ij+1/2=0. (3.23)

Now, since the second component of (3.20) reads

ε
f n+1,ε
1ij − f n,ε

1ij

∆t
=

ax

∆x
f ∗,ε1i−1/2j−

2ax

∆x
f n,ε
1ij +

ax

∆x
f ∗,ε1i+1/2j

+
aζ

∆ζ
f ∗,ε1ij−1/2−

2aζ

∆ζ
f n,ε
1ij +

aζ

∆ζ
f ∗,ε1ij+1/2,

it follows that at order ε0 the previous equation gives

f n,0
1ij =0. (3.24)

Therefore one correctly recovers the condition (2.3) and from the definition (1.3), it fol-
lows that

f n,0
2ij = f n,0

0ij /3.

The consistency with the wrong limit diffusion equation is now proved. Firstly, one re-
marks that in the limit ε tends to zero, the definitions (3.17) and (3.18) and the result (3.24)
give

θ1i+1/2j =1, θ2ij+1/2=1. (3.25)

Indeed, when ε tends to zero, the definitions (3.17) and (3.18) lead to

θ̃1i+1/2j =
f n,0
0i+1j+ f n,0

0ij

| f n,0
0i+1j− f n,0

0ij |
≥1, θ̃2ij+1/2=

f n,0
0ij+1+ f n,0

0ij

| f n,0
0ij+1− f n,0

0ij |
≥1.

Then from the definitions (3.13)-(3.14)-(3.15)-(3.16), we obtain{
f L∗
0i+1/2j = f n

0ij+( f L∗
1i+1/2j− f n

1ij),

f R∗
0i−1/2j = f n

0ij+( f n
1ij− f R∗

1i−1/2j),
(3.26)

and {
f L∗
0ij+1/2= f n

0ij+( f L∗
1ij+1/2− f n

1ij),

f R∗
0ij−1/2= f n

0ij+( f n
1ij− f R∗

1ij−1/2),
(3.27)
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Secondly, the first component of (3.20) reads

ε
f n+1,ε
0ij − f n,ε

0ij

∆t
=

ax

∆x
f R∗,ε
0i−1/2j−

2ax

∆x
f n,ε
0ij +

ax

∆x
f L∗,ε
0i+1/2j

+
aζ

∆ζ
f R∗,ε
0ij−1/2−

2aζ

∆ζ
f n,ε
0ij +

aζ

∆ζ
f L∗,ε
0ij+1/2,

and by using (3.26)-(3.27) it follows that

ε
f n+1,ε
0ij − f n,ε

0ij

∆t
=ax

f L∗,ε
1i+1/2j− f R∗,ε

1i−1/2j

∆x
+aζ

f L∗,ε
1ij+1/2− f R∗,ε

1ij−1/2

∆ζ
.

Finally, the previous equation considered at order ε0 brings no information but at the
order ε1 ones obtains

f n+1,0
0ij − f n,0

0ij

∆t
=ax

f L∗,1
1i+1/2j− f R∗,1

1i−1/2j

∆x
+aζ

f L∗,1
1ij+1/2− f R∗,1

1ij−1/2

∆ζ
,

which gives, by using the definitions (3.21), the numerical scheme (3.19).

This wrong behaviour was expected since standard asymptotic-preserving correc-
tions do not give anisotropic numerical viscosity. Therefore an innovative approach must
be investigated. In the present work, in order to capture the complete anisotropic model
while ensuring the admissibility requirement, new intermediate states are considered.

3.2 Derivation of the new scheme

In this part the derivation of a new numerical scheme for the model (3.5) is detailed based
on the scheme introduced in section 3.1. The objective is to extend the scheme introduced
in [33] to the model (1.1) in the sense that one should recover the scheme of [33] in the
homogeneous case or in the case without electric field.

We propose to modify the scheme introduced in section 3.1 to capture the correct
asymptotic limit. Therefore the following states are proposed

f ∗1i+1/2j =αi+1/2j

( f1i+1j+ f1ij

2
− (ζ j f2i+1j−ζ j f2ij)

2ax
(3.28)

−ci+1/2j(
∂ f0

∂ζ
)i+1/2j(1−αi+1/2j)

)
,

f ∗1ij+1/2=βij+1/2

( f1ij+1+ f1ij

2
− (Ei f2ij+1−Ei f2ij)

2aζ
(3.29)

− c̄ij+1/2(
∂ f0

∂x
)ij+1/2(1−βij+1/2)

)
,
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with

αi+1/2j =
2axζ3

j

2axζ3
j +αei

i+1/2∆x
, βij+1/2=

2aζζ3
j+1/2

2aζζ3
j+1/2+αei

i ∆ζ
. (3.30)

The differences with the intermediate states of [33] come from the last terms in (3.28) and
(3.29). In the present study it is proved that these intermediate states give the asymptotic-
preserving property for the general model (3.6). In the present case the numerical viscos-
ity contributes in the x and ζ directions. The terms ( ∂ f0

∂ζ )i+1/2j, (
∂ f0
∂x )ij+1/2 and the coeffi-

cients c and c̄ are fixed in order to obtain the relevant limit equation (2.5) in the diffusion
regime. We set

ci+1/2j =
Ei+1/2∆x

3ax
, c̄ij+1/2=

ζ j+1/2∆ζ

3aζ
. (3.31)

We use an upwind scheme for the discretisation of the terms ( ∂ f0
∂ζ )i+1/2j and ( ∂ f0

∂x )ij+1/2.

Since the coefficient c̄ is always positive the term ( ∂ f0
∂x )ij+1/2 is always upwinded in the

same direction

c̄ij+1/2(
∂ f0

∂x
)ij+1/2≈ c̄ij+1/2

f0i+1j+1/2− f0ij+1/2

∆x

≈ c̄ij+1/2
f0i+1j+1− f0ij+1+ f0i+1j− f0ij

2∆x
.

Similarly one obtains

ci+1/2j(
∂ f0

∂ζ
)i+1/2j≈


ci+1/2j

f0i+1j− f0i+1j−1+ f0ij− f0ij−1

2∆ζ
if ci+1/2j <0,

ci+1/2j
f0i+1j+1− f0i+1j+ f0ij+1− f0ij

2∆ζ
if ci+1/2j >0.

The previous two conditions rewrite

ci+1/2j(
∂ f0

∂ζ
)i+1/2j = c−i+1/2j

f0i+1j− f0i+1j−1+ f0ij− f0ij−1

2∆ζ

+c+i+1/2j
f0i+1j+1− f0i+1j+ f0ij+1− f0ij

2∆ζ
,

with (c)+=max(c,0) and (c)−=min(c,0).

In order to ensure the admissibility conditions (1.4), the definitions of the intermediate
states f ∗1i+1/2j and f ∗1ij+1/2 given in (3.28) and (3.29) are modified such that

f ∗1i+1/2j =αi+1/2j

(
f̃1i+1/2j−θ1i+1/2jci+1/2j(

∂ f0

∂ζ
)i+1/2j(1−αi+1/2j)

)
, (3.32)

f ∗1ij+1/2=βij+1/2

(
f̃1ij+1/2−θ2ij+1/2c̄ij+1/2(

∂ f0

∂x
)ij+1/2(1−βij+1/2)

)
. (3.33)
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Remark 3.1. In the case θ1i+1/2j = 0 and θ2ij+1/2 = 0, the admissibility requirements (1.4)
are fulfilled.

Then θ1i+1/2j and θ2ij+1/2 are now fixed in the interval [0,1], the larger possible such that
the admissibility requirements (1.4) are fulfilled. A simple calculation gives the following
conditions

θ̃1i+1/2j =
f̃0i+1/2j−αi+1/2j| f̃1i+1/2j|

|Γi+1/2j|+|αi+1/2j(
∂ f0
∂ζ )i+1/2jci+1/2j|

, (3.34)

and

θ̃2ij+1/2=
f̃0ij+1/2−βij+1/2| f̃1ij+1/2|

|Γij+1/2|+|βij+1/2(
∂ f0
∂ζ )ij+1/2c̄ij+1/2|

. (3.35)

Finally, θ1i+1/2j =min(θ̃1i+1/2j,1) and θ2ij+1/2=min(θ̃2ij+1/2,1).

We point out that the definitions of the intermediates states f L,?
0 , f R,?

0 are left un-
changed and are given by (3.13)-(3.15).

3.2.1 Properties of the new scheme

In this part, the admissibility, the consistency in the classical regime and the asymptotic-
preserving property in the diffusive regime of the scheme are proved.

Theorem 3.3. (Admissibility) If for all (i, j)∈N2, Un
i,j∈A, then for all (i, j)∈N2, Un+1

i,j ∈A as
soon as the following CFL condition holds

∆t≤ ∆ζ∆x
(2ax∆ζ+2aζ∆x)

. (3.36)

Proof. The numerical scheme (3.7) also writes as a convex combination of vectors of A

Un+1
ij =(1− 2ax∆t

∆x
− 2aζ∆t

∆ζ
)Un

ij+
ax∆t
∆x

UR∗
i−1/2j+

ax∆t
∆x

UL∗
i+1/2j (3.37)

+
aζ∆t
∆ζ

UR∗
ij−1/2+

aζ∆t
∆ζ

UL∗
ij+1/2,

Using the definitions of θ1 and θ2 given in (3.34) and (3.35) the intermediate states UR∗
i−1/2j,

UL∗
i+1/2j, UR∗

ij−1/2 and UL∗
ij+1/2 belong to A. Since A is a convex space it follows that the

updated states Un+1
i belongs to A.

Theorem 3.4. (Consistency in the classical regime)
The numerical scheme (3.7) is consistent, when ∆t and ∆x tend to zero, with the set of equations
(3.5).
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Proof. Using the definitions (3.28) and (3.29), the second component of (3.7) reads

f n+1
1ij − f n

1ij

∆t
=

ax

∆x

[
αi+1/2j

(
f̃1i+1/2j−θ1i+1/2jci+1/2j(

∂ f0

∂ζ
)i+1/2j(1−αi+1/2j)

)]
−2ax

∆x
f n
1ij

+
ax

∆x

[
αi−1/2j

(
f̃1i−1/2j−θ1i−1/2jci−1/2j(

∂ f0

∂ζ
)i−1/2j(1−αi−1/2j)

)]
(3.38)

+
aζ

∆ζ

[
βij+1/2

(
f̃1ij+1/2−θ2ij+1/2c̄ij+1/2(

∂ f0

∂x
)ij+1/2(1−βij+1/2)

)]
−2aζ

∆ζ
f n
1ij

+
aζ

∆ζ

[
βij−1/2

(
f̃1ij−1/2−θ2ij−1/2c̄ij−1/2(

∂ f0

∂x
)ij−1/2(1−βij−1/2)

)]
.

Inserting the definitions (3.11) into (3.38) and using the following expressions for αi+1/2j
and βij+1/2

αi+1/2j =
2axζ3

j

2axζ3
j +αei

i+1/2∆x
=1− σi+1/2∆x

2axζ3
j +αei

i+1/2∆x
,

and

βij+1/2=
2aζζ3

j+1/2

2aζζ3
j+1/2+αei

i ∆ζ
=1− αei

i ∆ζ

2aζζ3
j+1/2+αei

i ∆ζ
,

leads to the following expression

f n+1
1ij − f n

1ij

∆t
=− ( f2i+1j− f2i−1j)−ax( f1i+1j− f2ij+ f1i−1j)

2∆x

− ( f2ij+1− f2ij−1)−aζ( f1ij+1− f2ij+ f1ij−1)

2∆ζ

+
ax

2∆x
αei

i+1/2∆x

2axζ3
j +αei

i+1/2∆x
(( f1i+1j+ f1ij)−

f2i+1j− f2ij

ax
)

+
ax

2∆x
αei

i−1/2∆x

2axζ3
j +αei

i−1/2∆x
(( f1ij+ f1i−1j)−

f2ij− f2i−1j

ax
)

+
aζ

2∆ζ

αei
i ∆ζ

2aζζ3
j+1/2+αei

i ∆ζ
(( f1ij+1+ f1ij)−

f2ij+1− f2ij

aζ
)

+
aζ

2∆ζ

αei
i ∆ζ

2aζζ3
j−1/2+αei

i ∆ζ
(( f1ij+ f1ij−1)−

f2ij− f2ij−1

aζ
)

+O(∆x)+O(∆ζ),
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which is correctly consistent with the second equation of (3.5) as ∆x and ∆t tend to zero.
Similarly, the first equation of (3.7) writes

f n+1
0ij − f n

0ij

∆t
=

ax

∆x
f L∗
0i+1/2j+

2ax

∆x
f n
0ij+

ax

∆x
f R∗
0i−1/2j.

Considering the definitions (3.13)-(3.15) this equation rewrites

f n+1
0ij − f n

0ij

∆t
=

ax

∆x
( f̃0i+1/2j−2 f n

0ij+ f̃0i−1/2j)−
ax

∆x
(Γi+1/2jθi+1/2j−Γi−1/2jθi−1/2j)

+
aζ

∆ζ
( f̃0ij+1/2−2 f n

0ij+ f̃0ij−1/2)−
aζ

∆ζ
(Γij+1/2θij+1/2−Γij−1/2θij−1/2)

and by using (3.11)-(3.14)-(3.16), one obtains the consistency with the first equation of
(3.5).

Now, in order to show the asymptotic-preserving property, in the limit τei/t∗ tends to
zero with the limit diffusion equation, one considers the diffusion scaling and a discrete
Hilbet expansion is used.

Theorem 3.5. (Consistency in the diffusion regime)
In the diffusion limit, the numerical scheme (3.7) degenerates into

f n+1,0
0ij − f n,0

0ij

∆t
=

ζ j

∆x

[ ζ4
j

6σi+1/2∆x
( f n,0

0i+1j− f n,0
0ij )−

ζ4
j

6σi−1/2∆x
( f n,0

0i1j− f n,0
0i−1j)

+
ζ3

j Ei+1/2

6σi+1/2
(

∂ f n,0
0

∂ζ
)i+1/2j−

ζ3
j Ei−1/2

6σi−1/2
(

∂ f n,0
0

∂ζ
)i−1/2j

]
(3.39)

+
Ei

∆ζ

[Eiζ
3
j+1/2

6σi∆ζ
( f n,0

0ij+1− f n,0
0ij )−

Eiζ
3
j−1/2

6σi∆ζ
( f n,0

0i1j− f n,0
0ij−1)

+
ζ4

j+1/2

6σi
(

∂ f n,0
0

∂x
)ij+1/2−

ζ4
j−1/2

6σi
(

∂ f n,0
0

∂x
)ij−1/2

]
.

Proof. Following the same approach as in section 3.1.2, equations (3.32) and (3.33) give

f ∗,ε1i+1/2j =αε
i+1/2j

[
f̃ ε
1i+1/2j−θ1i+1/2jci+1/2j(

∂ f ε
0

∂ζ
)i+1/2j(1−αε

i+1/2j)
]
,

f ∗,ε1ij+1/2=βε
ij+1/2

[
f̃ ε
1ij+1/2−θ2ij+1/2c̄ij+1/2(

∂ f ε
0

∂x
)ij+1/2(1−βε

ij+1/2)
]
,

(3.40)

where αε
i+1/2j and βε

ij+1/2 are given by (3.22). Consequently it follows that

f ∗,01i+1/2j =0 and f ∗,01ij+1/2=0. (3.41)
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Now, since the second component of (3.20) reads

ε
f n+1,ε
1ij − f n,ε

1ij

∆t
=

ax

∆x
f ∗,ε1i−1/2j−

2ax

∆x
f n,ε
1ij +

ax

∆x
f ∗,ε1i+1/2j

+
aζ

∆ζ
f ∗,ε1ij−1/2−

2aζ

∆ζ
f n,ε
1ij +

aζ

∆ζ
f ∗,ε1ij+1/2,

it follows that at order ε0 the previous equation gives

f n,0
1ij =0. (3.42)

Therefore one correctly recovers the condition (2.3) and from the definition (1.3), it fol-
lows that

f n,0
2ij = f n,0

0ij /3.

The consistency with the limit diffusion equation is now proved. Firstly, one remarks
that in the limit ε tends to zero, the results (3.41) and (3.42) give

θ1i+1/2j =1, θ2ij+1/2=1. (3.43)

Indeed, when ε tends to zero, the definitions (3.34) and (3.35) lead to

θ̃1i+1/2j =
f n,0
0i+1j+ f n,0

0ij

| f n,0
0i+1j− f n,0

0ij |
≥1, θ̃2ij+1/2=

f n,0
0ij+1+ f n,0

0ij

| f n,0
0ij+1− f n,0

0ij |
≥1.

Then from the definitions (3.13)-(3.15)-(3.11), we obtain{
f L∗
0i+1/2j = f n

0ij+( f L∗
1i+1/2j− f n

1ij),

f R∗
0i−1/2j = f n

0ij+( f n
1ij− f R∗

1i−1/2j),
(3.44)

and {
f L∗
0ij+1/2= f n

0ij+( f L∗
1ij+1/2− f n

1ij),

f R∗
0ij−1/2= f n

0ij+( f n
1ij− f R∗

1ij−1/2),
(3.45)

Secondly, the first component of (3.20) reads

ε
f n+1,ε
0ij − f n,ε

0ij

∆t
=

ax

∆x
f R∗,ε
0i−1/2j−

2ax

∆x
f n,ε
0ij +

ax

∆x
f L∗,ε
0i+1/2j

+
aζ

∆ζ
f R∗,ε
0ij−1/2−

2aζ

∆ζ
f n,ε
0ij +

aζ

∆ζ
f L∗,ε
0ij+1/2,

and by using (3.44)-(3.45) it follows that

ε
f n+1,ε
0ij − f n,ε

0ij

∆t
=ax

f L∗,ε
1i+1/2j− f R∗,ε

1i−1/2j

∆x
+aζ

f L∗,ε
1ij+1/2− f R∗,ε

1ij−1/2

∆ζ
.
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Finally, the previous equation considered at order ε0 brings no information but at the
order ε1 ones obtains

f n+1,0
0ij − f n,0

0ij

∆t
=ax

f L∗,1
1i+1/2j− f R∗,1

1i−1/2j

∆x
+aζ

f L∗,1
1ij+1/2− f R∗,1

1ij−1/2

∆ζ
,

which gives, by using the definitions (3.32)-(3.33), the numerical scheme (3.39).

3.3 General case with the term E
ζ ( f0− f2)

As specified in part 3.1, in order to take into account the contribution of the source term
E
ζ ( f0− f2), we simply propose to modify the intermediate states f ∗1i+1/2j and f ∗1ij+1/2 given
in (3.32) and (3.33) such that

f ∗1i+1/2j =αi+1/2j

[
f̃1i+1/2j−θ1i+1/2jci+1/2j

(
(

∂ f0

∂ζ
)i+1/2j−

S̃i+1/2j

2

)
(1−αi+1/2j)

]
, (3.46)

f ∗1ij+1/2=βij+1/2

[
f̃1ij+1/2+

∆ζ

2aζ
Sij+1/2−θ2ij+1/2c̄ij+1/2(

∂ f0

∂x
)ij+1/2(1−βij+1/2)

]
,

with

S̃i+1/2j =
ζ2

j

3αei
i

f0i+1j+ f0ij

2
and Sij+1/2=

Ei

2

( f0ij+1− f2ij+1

ζ j+1
+

f0ij− f2ij

ζ j

)
.

In this case, as in the previous part the coefficients θ1 and θ2 are also fixed to ensure the
admissibility requirements.

Theorem 3.6. In the diffusive limit, the numerical scheme given by (3.7)-(3.13)-(3.15)-(3.46) is
consistent with the limit equation (2.5).

Proof. The proof is the same than for Theorem 3, considering the intermediate states
f ∗1i+1/2j and f ∗1ij+1/2 given in (3.46). A direct calculation using the Hilbert expansions
leads to the result. The terms Sij+1/2 are consistent with the term E

ζ ( f0− f2) while the

terms S̃i+1/2j enable to correctly recover the contribution of the two terms Eζ2

3σ f 0
0 in the x

and ζ derivatives of the limit equation.

4 Numerical examples

In this section, the asymptotic-preserving scheme (3.7) is compared with the HLL scheme
[37] and an explicit discretisation of the diffusion equation (2.5) in collisional regimes.
We point out that no exact solution is available for a given value of the collisional pa-
rameter αei. However, in very collisional regime, one expects the solution obtained with
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the asymptotic-preserving scheme (3.7) to be close to the one obtained with an explicit
discretisation of the diffusion equation (2.5). Similarly, in non-collisional regimes the so-
lution obtained with the asymptotic-preserving scheme (3.7) is expected to be close to the
one obtained with a HLL scheme which is known to behave correctly in such regimes.
The time step used for the asymptotic-preserving scheme is computed with the CFL con-
dition (3.36).

4.1 Relaxation of a Gaussian profile in the diffusion regime

In this example, the numerical scheme (3.7)-(3.13)-(3.15)-(3.46) is validated in the diffu-
sive regime considering an inhomogeneous plasma with electric field. In this case, the
initial conditions are the following{

f0(t=0,x,ζ)= ζ2exp(−x2)exp(2(ζ−3)2),
f1(t=0,x,ζ)=0.

The profile of f0 at initial time as a function of x and ζ is displayed in Figure 2.
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Figure 2: Representation of the f0 profile at the initial time as a function of x and ζ.

For this test we have set E=1, αei=104, the space range chosen is [-10,10] and the modulus
velocity range [0,6]. The collisional parameter αei is large and chosen equals to 104. There-
fore we can consider that the limit tei/t is reached particularly quickly and the particule
transport can be described with the limit diffusion equation. In Figure 3, the solution ob-
tained with the numerical scheme (3.7)-(3.13)-(3.15)-(3.46) is compared with the solution
obtained with the HLL scheme and with an explicit discretisation of the limit diffusion
equation (2.5) at different times. For all schemes we have set ∆x = 0.125 and ∆ζ = 0.2.
At time t= 1, one remarks that the f0 profile obtained with the HLL scheme is already
seriously spread out while the profiles obtained with the AP scheme and the diffusion
equation do not have changed. At time t = 50, the AP scheme and diffusion equation
discretisation f0 profiles are spread out while the profile obtained with the HLL scheme
has vanished. As observed at time t=100, in the long time regime, the AP scheme and
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the discretisation of the diffusion equation behave identically. In addition a convergence
study is presented in Figure 4. The L1 and L2 errors (in x and ζ) between the AP scheme
and the diffusion scheme are displayed in green while the L1 and L2 errors between the
HLL scheme and the diffusion scheme are displayed in red as functions of the collisional
parameter αei at time t=50. Here this numerical convergence study shows that when the
collisional parameter becomes large the L1 and L2 errors obtained with the AP scheme
correctly tend to zero as expected while the L1 and L2 errors obtained with the HLL
scheme miss the diffusion limit.
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Figure 3: Representation of the f0 profile as function of x and ζ at time t=1 (top), t=50 (middle), t=100
(bottom), for the HLL scheme (left), AP scheme (middle) and the diffusion equation.

4.2 Relaxation of a temperature profile in the diffusive regime with a self-
consistent electric field

In this example, we consider the relaxation of a temperature profile in the diffusive
regime considering a self-consistent electric field. The space range is [−40,40] and the
velocity modulus range [0,6]. The collisional parameter αei is chosen equal to 104. For all
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Figure 4: Representation of the L1 error (left) and L2 error (right) (in x and ζ) between the AP scheme and
the diffusion scheme (green) and the HLL scheme and the diffusion scheme (red) as a function of the collisional

parameter αei at time t=50.

schemes we have set ∆x=0.2 and ∆ζ=0.125. The initial conditions are the following f0(t=0,x,ζ)=

√
2
π

ζ2

Tini(x)3/2 exp(− ζ2

2Tini(x)
),

f1=0,
(4.1)

with Tini(x)=2−arctan(x).

In this case the electric field is self-consistent meaning that at each time step it is calcu-
lated from the plasma profile. In this case we consider a Spitzer type model [9, 57], to
evaluate the electric field

E(x)=−dT(x)
dx

, (4.2)

where

T(x)=
1

3ne

(∫ +∞

0
ζ2 f0dζ−u2ne

)
,

with ne =
∫ +∞

0 f0dζ and u= 1
ne

∫ +∞
0 f1ζdζ.

In Figure 5, the temperature profile is displayed at the initial time and at time t=80. The
temperature profiles obtained with the HLL scheme, the AP scheme and a discretisation
of the diffusion equation (2.5) are compared at time t=80. On one hand, one remarks that



22

the HLL temperature profile is excessively spread out compared to the AP and diffu-
sion profiles while on the other hand the AP and diffusion profiles match exactly at time
t=80. This example demonstrates the inability of the HLL scheme in capturing the correct
temperature profile while the AP scheme presented handle perfectly the diffusion limit
regime.
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Figure 5: Representation of the temperature profile as a function of x at time t=80.

4.3 Two electron beams interaction

In this example the interaction between two electron beams is considered. This collision-
less test case enables us to validate the AP scheme (3.7)-(3.13)-(3.15)-(3.46) in a regime
where electrostatic effects are predominant compared to the collisional effects, therefore
we set αei =0. For the AP and the HLL schemes we have set ∆x=0.125 and ∆ζ=0.2.
Consider two electron beams propagating at velocity v0 and v1. In that case, the disper-
sion relation [36] is given by

1− 1
(ω−kv0)2−

1
(ω−kv1)2 =0,

where v0 and v1 denote the beams velocities.

This configuration can lead to electrostatic instabilities [18, 36]. Indeed, the solutions of
the form Aeiωt+ikx are unstable when ωI the imaginary part of ω is strictly positive. In
the case v0=−v1 we can show that the solution is stable if kv0≥

√
2.

This test is problematic for the M1 model. Indeed, if we consider two electron beams
propagating with opposite velocities the distribution function is well defined. Neverthe-
less, the M1 model considers only the angular moments f0 and f1. For the calculation
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of f1 the two populations contributions cancel and we get f1 =0. The M1 model sees an
unrealistic isotropic configuration. To overcome this problem the superposition principle
is used since the model is linear [36, 61]. Two particle populations (one per beam) are
considered. For each time step the M1 problem is solved for the first population then
for the second one. Hence the electrostatic field is calculated using the Maxwell-Ampere
solved taking into account the two distribution functions. This approach was validated
for the present test case in [34].

In the case of two streams propagating with opposite velocities vd and −vd, the initial
electron distribution function is the following

f (t=0,x,v)=0.5[(1+Acos(kx))Mvd(v)+(1−Acos(kx))M−vd(v)],

with

M±vd(v)=exp
(
− (v∓vd)

2

2

)
.

The first corresponding angular moments f 1
0 and f 2

0 of the first and second population
read 

f 1
0 (t=0,x,ζ)=0.5(1+Acos(kx))

ζ

vd

(
exp(− (ζ−vd)

2

2
)−exp(− (ζ+vd)

2

2
)
)

,

f 2
0 (t=0,x,ζ)=0.5(1−Acos(kx))

ζ

vd

(
exp(− (ζ−vd)

2

2
)−exp(− (ζ+vd)

2

2
)
)

.

The second angular moments f 1
1 and f 2

1 of the first and second population read
f 1
1 (t=0,x,ζ)=0.5(1+Acos(kx))

1−ζvd

v2
d

(
exp(− (ζ−vd)

2

2
)−exp(− (ζ+vd)

2

2
)
)

,

f 2
1 (t=0,x,ζ)=−0.5(1−Acos(kx))

1−ζvd

v2
d

(
exp(− (ζ−vd)

2

2
)−exp(− (ζ+vd)

2

2
)
)

.

At each time step, the electrostatic field is computed using the Maxwell-Ampere equation
considering the contribution of the two population of particles

dE
dt

=
∫ +∞

0
f 1
1 ζdζ+

∫ +∞

0
f 2
1 ζdζ.

The parameter A is introduced to perturb the initial condition in order to enable the de-
velopment of the electrostatic instability. The velocity modulus range chosen is [0,12] and
the space range is [0,25]. In this example we set vd=4, A=0.001 and periodical boundary
conditions are used. The results have been compared with a kinetic code [24]. In Figure
6, the evolution of the electrostatic energy is displayed as a function of time using the AP
scheme in red and the kinetic code in dashed blue. The AP scheme and the kinetic code
give analogous results. This numerical experiment shows the good behaviour of the AP
scheme in a regime where electrostatic effects are predominant.
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Figure 6: Representation of the temporal evolution of the electrostatic energy.

4.4 Relaxation of a temperature profile in the diffusive regime with a self-
consistent electric field and non-constant collisional parameter

In this example, the initial conditions are the same than for the previous example where
the initial temperature profile is given by (4.1) and the electric field is computed using
(4.2). In this case the collisional parameter αei is not constant and follows the linear profile

αei(x)= ax+b,

with αei(xmin=−40)=5·103 and αei(xmax=40)=105. It follows that the coefficients a and
b read

a=
105−5.103

xmax−xmin
, b=5.103−axmin.

The space range is [-40,40] and the velocity modulus range [0,6]. For this test case we
have set ∆x= 0.4 and ∆ζ = 0.25 for all the schemes. In Figure 7, the temperature profile
is displayed at the initial time and at time t=5000 for the AP scheme and an explicit
discretisation of the diffusion equation (2.5). After a long time (t=5000) and despite the
strong spatial variation of the function αei the AP and diffusion profiles give very close
result. One remark on the space interval [-40,0] the AP curve in red is slightly different to
the diffusion curve in dashed blue while on the interval [0,40] the results match perfectly.
This could be explained as the collisional parameter αei becomes larger for important x,
therefore, the limit diffusive regime is fully reached for large x where the comparison
with the diffusion equation is valid.

4.5 Case a non-constant self-consistent collisional parameter

When considering physical relevant configurations occurring in plasma physics, the col-
lisional parameter depends of the state of the plasma. The knowledge of the ionic and
electronic distribution function is required to compute the collisional parameter. There-
fore in this test case, we choose to consider a nonlinear collisional parameter which de-
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Figure 7: Representation of the temperature profile at time t=5000.

pends of the solution itself

αei(t,x,ζ)=exp( f0(t,x,ζ)+ f1(t,x,ζ)).

In this case, E=1, the space range chosen is [-10,10] and the velocity modulus range [0,6].
For this test case we have set ∆x=0.33 and ∆ζ=0.125. The initial condition is given by{

f0(t=0,x,ζ)= ζ2exp(−(ζ−3)2))exp(−x2/10),
f1=0.

We consider periodical boundary conditions. In Figure 8, the initial profile of f0 is dis-
played at the initial time and at time t=3.

5 Conclusion

In this work, an asymptotic-preserving scheme has been proposed for the electronic M1
model in the diffusive limit. In order to deal with the mixed derivatives which arise in
the diffusive limit an anisotropic numerical viscosity has been considered. The numerical
scheme preserves the realisibility domain and captures the correct limit equation. The
contribution of the source term E( f0− f2)/ζ is integrated and the cases of non constant
electric field and collisional parameter are naturally included. Numerical examples have
been performed in non-collisional and diffusive regimes. It has been observed that the
present scheme behaves correctly in both regimes.
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Figure 8: Representation of the f0 profile as function of x and ζ at the initial time (left) and t=3 (right).

A possible perspective could be to consider an electron-electron collisional operator or
the study of the coupling with the Maxwell’s equations.
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and B. Dubroca and S. Guisset and M. Touati and V. Tikhonchuk. Phys. Plasmas 22, 082706
(2015).

[27] E. Epperlein and R. Short. Phys. Fluids B 4, 2211 1992.
[28] F. Filbet and S. Jin. A class of asymptotic preserving schemes for kinetic equations and

related problems with stiff sources. J. Comp. Phys. vol. 229, no 20 (2010).
[29] L. Gosse and G. Toscani. An asymptotic-preserving well-balanced scheme for the hyperbolic

heat equations. C. R. Math. Acad. Sci. Paris 334 (4) (2002) 337342.
[30] L. Gosse and G. Toscani. Space localizaion and well-balanced schemes for discrete kinetic

models in diffusive regimes. SIAM J. Numer. Anal. 41 (2) (2003) 641658.
[31] H. Grad. On the kinetic theory of rarefied gases. Commun. Pure Appl. Math. 2, 331-407

(1949).
[32] C.P.T. Groth and J.G. McDonald. Towards physically-realizable and hyperbolic moment

closures for kinetic theory. Continuum Mech. Thermodyn. 21, 467-493 (2009).
[33] S. Guisset, S. Brull, E. d’Humières, and B. Dubroca. Asymptotic-preserving well-balanced



28

scheme for the electronic M1 model in the diffusive limit: particular cases. ESAIM: M2AN,
51 5 (2017) 1805-1826.

[34] S. Guisset, S. Brull, B. Dubroca, E. d’Humières, S. Karpov, and I. Potapenko. Asymptotic-
preserving scheme for the Fokker-Planck-Landau-Maxwell system in the quasi-neutral
regime. Communications in Computational Physics, volume 19, issue 02, pp. 301-328 (2016).

[35] S. Guisset, S. Brull, E. dHumires, B. Dubroca, and V. Tikhonchuk. Classical transport theory
for the collisional electronic M1 model. Physica A: Statistical Mechanics and its Applications,
Volume 446, Pages 182-194 (2016).

[36] S. Guisset, J.G. Moreau, R. Nuter, S. Brull, E. dHumières, B. Dubroca, and V.T. Tikhonchuk.
Limits of the M1 and M2 angular moments models for kinetic plasma physics studies. J.
Phys. A: Math. Theor. 48, 335501 (2015).

[37] A. Harten, P.D. Lax, and B. Van Leer. On upstream differencing and Godunov-type schemes
for hyperbolic conservation laws. SIAM Review 25 (1983), 35-61.

[38] S. Jin and C.D. Levermore. Fully discrete numerical transfer in diffusive regimes. Transport
Theory Statist. Phys. 22 (6) 739791. (1993).

[39] S. Jin and C.D. Levermore. The discrete-ordinate method in diffusive regimes. Transport
Theory Statist. Phys. 20 (56) 413439. (1991).

[40] P. Lafitte and G. Samaey. Asymptotic-preserving projective integration schemes for kinetic
equations in the diffusion limit. SIAM Journal on Scientific Computing , 34(2):A579 A602,
2012.

[41] L. Landau. On the vibration of the electronic plasma. J. Phys. USSR 10 (1946).
[42] M. Lemou and L. Mieussens. A New Asymptotic Preserving Scheme Based on Micro-Macro

Formulation for Linear Kinetic Equations in the Diffusion Limit. SIAM J. Sci. Comput., 31(1),
334368, 2008.

[43] C.D. Levermore. Moment closure hierarchies for kinetic theories. J. Stat. Phys. 83, 1021-1065
(1996).

[44] J. Mallet, S. Brull, and B. Dubroca. An entropic scheme for an angular moment model for the
classical Fokker-Planck-Landeau equation of electrons. Comm. Comput. Phys., 422, (2013).

[45] J. Mallet, S. Brull, and B. Dubroca. General moment system for plasma physics based on
minimum entropy principle. Kinetic and Related Models, vol. 8, No.3, 533-558, (2015).

[46] A. Marocchino, M. Tzoufras, S. Atzeni, A. Schiavi, Ph. D. Nicola, J. Mallet, V. Tikhonchuk,
and J.-L. Feugeas. Nonlocal heat wave propagation due to skin layer plasma heating by
short laser pulses. Phys. Plasmas 20, 022702, (2013).

[47] J.G. McDonald and C.P.T. Groth. Towards realizable hyperbolic moment closures for viscous
heat-conducting gas flows based on a maximum-entropy distribution. Continuum Mech.
Thermodyn. 25, 573-603 (2012).

[48] N. Meezan, L. Divol, M. Marinak, G. Kerbel, L. Suter, R. Stevenson, G. Slark, and K. Oades.
Phys. Plasmas 11, 5573 2004.

[49] G.N. Minerbo. Maximum entropy Eddigton Factors. J. Quant. Spectrosc. Radiat. Transfer,
20, 541, (1978).

[50] I. Muller and T. Ruggeri. Rational Extended Thermodynamics. Springer, New York (1998).
[51] Ph. D. Nicola, J.-L. A. Feugeas, and G. P. Schurtz. A practical nonlocal model for heat trans-

port in magnetized laser plasmas. Phys. Plasmas 13, 032701, (2006).
[52] J.-F. Ripoll. An averaged formulation of the M1 radiation model with presumed probability

density function for turbulent flows. J. Quant. Spectrosc. Radiat. Trans. 83 (34), 493517.
(2004).

[53] W. Rozmus, V. T. Tikhonchuk, and R. Cauble. A model of ultrashort laser pulse absorption



29

in solid targets. Phys. Plasmas 3, 360 (1996).
[54] S.Boscarino, P.G. LeFloch, and G. Russo. High-order asymptotic-preserving methods for

fully nonlinear relaxation problems. SIAM J. Sci. Comput. Vol. 36, No.2, pp.A377-A395.
[55] K. Shigemori, H. Azechi, M. Nakai, M. Honda, K. Meguro, N. Miyanaga, H. Takabe, and

K. Mima. Phys. Rev. Lett. 78, 250 1997.
[56] I.P. Shkarofsky, T.W. Johnston, and The Particle Kinetics of Plasmas M.P. Bachynski.

Addison-Wesley (Reading, Massachusetts, 1966).
[57] L. Spitzer and R. Härm. Phys. Rev. 89 (1953) 977.
[58] H. Struchtrup. Macroscopic Transport Equations for Rarefied Gas Flows. Springer, Berlin

(2005).
[59] M. Touati, J.L Feugeas, P. Nicolai, J.J Santos, L. Gremillet, and V.T. Tikhonchuk. New Journ.

of Physics 16 (2014).
[60] R. Turpault. A consistent multigroup model for radiative transfer and its underlying mean

opacity. J. Quant. Spectrosc. Radiat. Transfer 94, 357371 (2005).
[61] R. Turpault, M. Frank, B. Dubroca, and A. Klar. Multigroup half space moment appproxi-

mations to the radiative heat transfer equations. J. Comput. Phys. 198 363 (2004).
[62] A. Velikovich, J. Dahlburg, J. Gardner, and R. Taylor. Phys. Plasmas 5, 1491 1998.


