Simulating homomorphic evaluation of deep learning predictions - Archive ouverte HAL
Communication Dans Un Congrès Année : 2019

Simulating homomorphic evaluation of deep learning predictions

Christina Boura
  • Fonction : Auteur
  • PersonId : 994025
Nicolas Gama
  • Fonction : Auteur
  • PersonId : 1228062
Mariya Georgieva
  • Fonction : Auteur correspondant
  • PersonId : 1228069

Connectez-vous pour contacter l'auteur
Dimitar P. Jetchev
  • Fonction : Auteur

Résumé

Convolutional neural networks (CNNs) is a category of deep neural networks that are primarily used for classifying image data. Yet, their continuous gain in popularity poses important privacy concerns for the potentially sensitive data that they process. A solution to this problem is to combine CNNs with Fully Homomorphic Encryption (FHE) techniques. In this work, we study this approach by focusing on two popular FHE schemes, TFHE and HEAAN,, that can work in the approximated computational model. We start by providing an analysis of the noise after each principal homomorphic operation, i.e. multiplication, linear combination, rotation and bootstrapping. Then, we provide a theoretical study on how the most important non-linear operations of a CNN (i.e. max, Abs, ReLU), can be evaluated in each scheme. Finally, we measure via practical experiments on the plaintext the robustness of different neural networks against perturbations of their internal weights that could potentially result from the propagation of large homomorphic noise. This allows us to simulate homomorphic evaluations with large amounts of noise and to predict the effect on the classification accuracy without a real evaluation of heavy and time-consuming homomorphic operations. In addition, this approach enables us to correctly choose smaller and more efficient parameter sets for both schemes.
Fichier principal
Vignette du fichier
2019-591.pdf (519.85 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Licence

Dates et versions

hal-03993077 , version 1 (31-03-2023)

Licence

Identifiants

Citer

Christina Boura, Nicolas Gama, Mariya Georgieva, Dimitar P. Jetchev. Simulating homomorphic evaluation of deep learning predictions. 3rd International Symposium on Cyber Security Cryptography and Machine Learning, CSCML 2019, 2019, Beer-Sheva, France. pp.212-230, ⟨10.1007/978-3-030-20951-3_20⟩. ⟨hal-03993077⟩
34 Consultations
114 Téléchargements

Altmetric

Partager

More