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On quantum cohomology of Grassmannians of isotropic lines, unfoldings of A n -singularities, and Lefschetz exceptional collections

The subject of this paper is the big quantum cohomology rings of symplectic isotropic Grassmannians IG(2, 2n). We show that these rings are regular. In particular, by "generic smoothness", we obtain a conceptual proof of generic semisimplicity of the big quantum cohomology for IG(2, 2n). Further, by a general result of C. Hertling, the regularity of these rings implies that they have a description in terms of isolated hypersurface singularities, which we show in this case to be of type A n-1 . By the homological mirror symmetry conjecture, these results suggest the existence of a very special full exceptional collection in the derived category of coherent sheaves on IG(2, 2n). Such a collection is constructed in the appendix by Alexander Kuznetsov.

1. Introduction 1.1. Dubrovin's conjecture. Quantum cohomology rings of smooth projective varieties have been an object of intensive study ever since they were introduced at the beginning of 1990s. A particular question that attracted a lot of attention is a conjecture formulated by Boris Dubrovin in [START_REF] Dubrovin | Geometry and analytic theory of Frobenius manifolds[END_REF]. This conjecture provides a beautiful relation between two a priori seemingly unrelated objects -the quantum cohomology ring of a variety X and its bounded derived category of coherent sheaves D b (X). Dubrovin's conjecture has several parts, and its first part claims that the generic semisimplicity of the quantum cohomology of X is equivalent to the existence of a full exceptional collection in D b (X). Though there are no general approaches to this conjecture, it has been tested in many examples and the original formulation of Dubrovin has been made more precise (see [START_REF] Bayer | Semisimple quantum cohomology and blow-ups[END_REF][START_REF] Dubrovin | Geometry and analytic theory of Frobenius manifolds[END_REF][START_REF] Dubrovin | Quantum cohomology and isomonodromic deformation[END_REF][START_REF] Galkin | Gamma classes and quantum cohomology of Fano manifolds: Gamma conjectures[END_REF][START_REF] Hertling | An update on semisimple quantum cohomology and F -manifolds[END_REF] and references therein). 1.2. Quantum cohomology: big vs. small. The quantum cohomology ring of X is a (formal) deformation family of rings provided by the genus zero Gromov-Witten theory, that specializes to the ordinary cohomology ring H * (X, Q), if one sets all deformation parameters to zero. There exist two such deformation families that one often meets in the literature: the small quantum cohomology (involves only 3-point GW invariants) and the big quantum cohomology (involves GW invariants with arbitrary many insertions). The former family is a specialization of the latter (i.e. some of the deformation parameters are set to zero). It is the big quantum cohomology ring that Dubrovin used in [START_REF] Dubrovin | Geometry and analytic theory of Frobenius manifolds[END_REF] to formulate the conjecture.

In this paper we are concerned with generic semisimplicity of quantum cohomology. Therefore, we only consider the above deformation families in the neighbourhood of the generic point of the small quantum cohomology. In this way the small quantum cohomology (denote it QH(X)) becomes a commutative, associative, finite dimensional algebra over some field K, and the big quantum cohomology (denote it BQH(X)) is a formal deformation family of QH(X). This will be made more precise in Section 2.

In Dubrovin's conjecture we are interested in the semisimplicity of the generic member of the deformation family BQH(X). So it could happen that the special fiber QH(X) is not semisimple, whereas the generic fiber of the full family BQH(X) is. This is exactly what happens in the case of symplectic isotropic Grassmannians IG (2, 2n). Indeed, it was shown in [START_REF] Chaput | Quantum cohomology of minuscule homogeneous spaces III : semisimplicity and consequences[END_REF][START_REF] Chaput | On the quantum cohomology of adjoint varieties[END_REF] that the small quantum cohomology of IG(2, 2n) is not semisimple. Further, in [START_REF] Galkin | Dubrovin's conjecture for IG(2, 6)[END_REF][START_REF] Perrin | Semisimple quantum cohomology of some Fano varieties[END_REF] jointly with Sergey Galkin, we have proved that the big quantum cohomology of IG (2, 2n) is generically semisimple. Since, according to [START_REF] Kuznetsov | Exceptional collections for Grassmannians of isotropic lines[END_REF][START_REF] Samokhin | Some remarks on the derived categories of coherent sheaves on homogeneous spaces[END_REF], the derived category of coherent sheaves on IG(2, 2n) has a full exceptional collection, the first part of Dubrovin's conjecture holds. 1.3. Generic semisimplicity via generic smoothness. Our first result is the following (see Theorem 6.4).

Theorem A. The ring BQH(IG(2, 2n)) is regular.

As an easy consequence of the above theorem and generic smoothness (see Corollary 6.5) we recover generic semisimplicity of the big quantum cohomology of IG (2, 2n) proved in [START_REF] Galkin | Dubrovin's conjecture for IG(2, 6)[END_REF][START_REF] Perrin | Semisimple quantum cohomology of some Fano varieties[END_REF]. Note that in [START_REF] Galkin | Dubrovin's conjecture for IG(2, 6)[END_REF] the authors only considered the case of IG [START_REF] Bayer | Semisimple quantum cohomology and blow-ups[END_REF][START_REF] Coates | On the Convergence of Gromov-Witten Potentials and Givental's Formula[END_REF] and the proof was computer-assisted. The proof in [START_REF] Perrin | Semisimple quantum cohomology of some Fano varieties[END_REF] works for all IG(2, 2n) but needs many lengthy computations. Our proof is more conceptual and clarifies the situation. This is the content of Sections 2-6.

Our approach via generic smoothness gives a new perspective towards a proof of generic semisimplicity of quantum cohomology for more general Grassmannians IG(m, 2n) or even rational homogeneous spaces G/P . We plan to address this in a future work.

1.4. F -manifolds with smooth spectral cover. In [START_REF] Hertling | An update on semisimple quantum cohomology and F -manifolds[END_REF]Problem 2.8] the authors formulated the following question: characterise those varieties X for which the quantum cohomology has smooth spectral cover. In our terminology this question translates into the problem of characterising those varieties X for which the big quantum cohomology BQH(X) is a regular ring. According to the above theorem, isotropic Grassmannians IG(2, 2n) provide non-trivial examples. In fact, it is natural to expect that this property holds for any rational homogeneous space G/P . The regularity of BQH(X) implies, by a beautiful result of C. Hertling, that the F -manifold defined by the quantum cohomology of X has a description in terms of unfoldings of isolated hypersurface singularities. In our situation we prove the following (see Section 7.5).

Theorem B. Assume that the genus zero Gromov-Witten potential of IG(2, 2n) has nontrivial convergence radius. Then the F -manifold of BQH(IG (2, 2n)) decomposes into the product of the unfolding of an A n-1 -singularity and (2n -1)(n -1) copies of the unfolding of an A 1 -singularity. 1.5. Derived category of coherent sheaves. The above theorem and mirror symmetry suggest that IG (2, 2n) should have a Landau-Ginzburg model with one degenerate critical point of type A n-1 and (2n-1)(n-1) non-degenerate critical points. Therefore, the Fukaya-Seidel category of this LG model should have a semiorthogonal decomposition

C n-1 , E 1 , . . . , E (2n-1)(n-1)
, where E i are exceptional objects given by the non-degenerate critical points and C n-1 is the Fukaya-Seidel category of an A n-1 -singularity. By homological mirror symmetry conjecture, the bounded derived category of coherent sheaves D b (IG(2, 2n)) should be equivalent to the Fukaya-Seidel category of the LG model. Hence, the derived category D b (IG(2, 2n)) should also have a decomposition of this form. A more detailed account is contained in Section 8.

The above discussion is highly conjectural. Nonetheless, the aforementioned semiorthogonal decomposition of D b (IG(2, 2n)) is constructed directly in the Appendix by Alexander Kuznetsov.

Theorem C (Kuznetsov). There exists a semiorthogonal decomposition

D b (IG(2, 2n)) = A n-1 , E 1 , . . . , E (2n-1)(n-1) ,
where the E i are some exceptional objects and the subcategory A n-1 is equivalent to the bounded derived category of representations of the quiver of type A n-1 .

This theorem confirms the conjectural picture described above, as the bounded derived category of representations of the quiver of type A n-1 is equivalent to the Fukaya-Seidel category of an A n-1 -singularity by [START_REF] Seidel | More about vanishing cycles and mutation[END_REF]. Note that the result in the appendix is stronger. Namely, the objects E 1 , . . . , E (2n-1)(n-1) form a rectangular Lefschetz exceptional collection.

One can view these results as an enhanced version of Dubrovin's conjecture, i.e. a prediction of a more subtle relation between quantum cohomology rings and derived categories of coherent sheaves.
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Conventions and notation for quantum cohomology

Here we briefly recall the definition of the quantum cohomology ring for a smooth projective variety X. To simplify the exposition and avoid introducing unnecessary notation we impose from the beginning the following conditions on X: it is a Fano variety of Picard rank 1 and H odd (X, Q) = 0. For a thorough introduction we refer to [START_REF] Yu | Frobenius manifolds, quantum cohomology, and moduli spaces[END_REF].

2.1. Definition. Let us fix a graded basis ∆ 0 , . . . , ∆ s in H * (X, Q) and dual linear coordinates t 0 , . . . , t s . It is customary to choose ∆ 0 = 1. For cohomology classes we use the Chow grading, i.e. we divide the topological degree by two. Further, for variables t i we set deg

(t i ) = 1 -deg(∆ i ).
Let R be the ring of formal power series Q[[q]], k its field of fractions, and K an algebraic closure of k. We set deg(q) = index (X), which is the largest integer n such that -K X = nH for some ample divisor H on X, where K X is the canonical class of X.

The genus zero Gromov-Witten potential of X is an element Φ ∈ R[[t 0 , . . . , t s ]] defined by the formula Φ = (i 0 ,...,is)

∆ ⊗i 0 0 , . . . , ∆ ⊗is s t i 0 0 . . . t is s i 0 ! . . . i s ! , (2.1) 
where

∆ ⊗i 0 0 , . . . , ∆ ⊗is s = ∞ d=0 ∆ ⊗i 0 0 , . . . , ∆ ⊗is s d q d ,
and ∆ ⊗i 0 0 , . . . , ∆ ⊗is s d are rational numbers called Gromov-Witten invariants of X of degree d. With respect to the grading defined above Φ is homogeneous of degree 3dim X.

Using (2.1) one defines the big quantum cohomology ring of X. Namely, let us endow the

K[[t 0 , . . . , t s ]]-module BQH(X) = H * (X, Q) ⊗ Q K[[t 0 , . . . , t s ]]
with a ring structure by setting

∆ a ⋆ ∆ b = c ∂ 3 Φ ∂t a ∂t b ∂t c ∆ c , (2.2) 
on the basis elements and extending to the whole BQH(X) by K[[t 0 , . . . , t s ]]-linearity. Here ∆ 0 , . . . , ∆ s is the basis dual to ∆ 0 , . . . , ∆ s with respect to the Poincaré pairing. It is well known that (2.2) makes BQH(X) into a commutative, associative, graded K[[t 0 , . . . , t s ]]algebra with the identity element ∆ 0 . The algebra BQH(X) is called the big quantum cohomology algebra of X to distinguish it from a simpler object called the small quantum cohomology algebra which is the quotient of BQH(X) with respect to the ideal (t 0 , . . . , t s ). We will denote the latter QH(X) and use ⋆ 0 instead of ⋆ for the product in this algebra. It is a finite dimensional K-algebra. Equivalently one can say that QH(X) = H * (X, Q) ⊗ Q K as a vector space, and the K-algebra structure is defined by putting

∆ a ⋆ 0 ∆ b = c ∆ a , ∆ b , ∆ c ∆ c .
Remark 2.1. We are using a somewhat non-standard notation BQH(X) for the big quantum cohomology and QH(X) for the small quantum cohomology to stress the difference between the two. Note that this notation is different from the one used in [START_REF] Galkin | Dubrovin's conjecture for IG(2, 6)[END_REF] and is closer to the notation of [START_REF] Perrin | Semisimple quantum cohomology of some Fano varieties[END_REF].

Remark 2.2. The above definitions look slightly different from the ones given in [START_REF] Yu | Frobenius manifolds, quantum cohomology, and moduli spaces[END_REF]. The differences are of two types. The first one is that QH(X) and BQH(X) are in fact defined already over the ring R and not only over K. We pass to K from the beginning, since in this paper we are only interested in generic semisimplicity of quantum cohomology. The second difference is that in some papers on quantum cohomology one unifies the coordinate q with the coordinate t i which is dual to H 2 (X, Q), but the resulting structures are equivalent.

2.2. Deformation picture. The small quantum cohomology, if considered over the ring R (cf. Remark 2.2), is a deformation of the ordinary cohomology algebra, i.e. if we put q = 0, then the quantum product becomes the ordinary cup-product. Similarly, the big quantum cohomology is an even bigger deformation family of algebras. Since we work not over R but over K, we lose the point of classical limit but still retain the fact that BQH(X) is a deformation family of algebras with the special fiber being QH(X).

In this paper we view Spec(BQH(X)) as a deformation family of zero-dimensional schemes over Spec(K[[t 0 , . . . , t s ]]). In the base of the deformation we consider the following two points: the origin (the closed point given by the maximal ideal (t 0 , . . . , t s )) and the generic point η. The fiber of this family over the origin is the spectrum of the small quantum cohomology Spec(QH(X)). The fiber over the generic point will be denoted by Spec(BQH(X) η ). It is convenient to summarize this setup in the diagram Spec(QH(X))

/ / Spec(BQH(X)) π Spec(BQH(X) η ) o o πη Spec(K) / / Spec(K[[t 0 , . . . , t s ]]) η o o (2.3)
where both squares are Cartesian. By construction BQH(X) is a free module of finite rank over K[[t 0 , . . . , t s ]]. Therefore, it is a noetherian semilocal K-algebra which is flat and finite over K[[t 0 , . . . , t s ]]. Note that neither K[[t 0 , . . . , t s ]] nor BQH(X) are finitely generated over the ground field K. Therefore, some extra care is required in the standard commutative algebra (or algebraic geometry) constructions. For example, the notion of smoothness is one of such concepts.

Semisimplicity.

Let A be a finite dimensional algebra over a field F of characteristic zero. It is called semisimple if it is a product of fields. Equivalently, the algebra A is semisimple if the scheme Spec(A) is reduced. Another equivalent condition is to require the morphism Spec(A) → Spec(F ) to be smooth. Definition 2.3. We say that BQH(X) is generically semisimple if BQH(X) η is a semisimple algebra.

Geometry of IG(2, 2n)

Let V be a complex vector space endowed with a symplectic form ω. In this case the dimension of V has to be even and we denote it by 2n. For any 1 ≤ m ≤ n there exists an algebraic variety IG(m, V ) that parametrizes m-dimensional isotropic subspaces of V . For m = 2, and this is the case we are considering in this paper, it has the following explicit description. Consider the ordinary Grassmannian G(2, V ) with its Plücker embedding into P(Λ 2 V ). The symplectic form ω defines a hyperplane H ω = P (Ker ω) ⊂ P(Λ 2 V ) and the intersection of G(2, V ) with H ω is IG(2, V ). Thus, we have inclusions

IG(2, V ) ⊂ G(2, V ) ⊂ P(Λ 2 V ). (3.1)
As for different symplectic forms on V we obtain isomorphic isotropic Grassmannians, it is unambiguous to write IG(2, 2n). We will use this notation starting from Paragraph 3.2.

3.1. Two sets of cohomology classes. As for ordinary Grassmannians, one considers the short exact sequence of vector bundles on

X = IG(2, V ) 0 → U → V → V/U → 0, (3.2) 
where V is the trivial vector bundle with fiber V , U is the subbundle of isotropic subspaces, and V/U is the quotient bundle. Usually one refers to U and V/U as tautological subbundle and tautological quotient bundle respectively. One also defines a vector bundle U ⊥ as the kernel of the composition V ω → V * → U * , where the first morphism is the isomorphism induced by the symplectic form, and the second one is the dual of the natural inclusion U → V. From the definition of U ⊥ we immediately obtain an isomorphism

V/U ⊥ ≃ U * . (3.3)
Further, we have inclusions of vector bundles U ⊂ U ⊥ ⊂ V, and can also consider the short exact sequence

0 → U ⊥ /U → V/U → V/U ⊥ → 0. (3.4)
By taking Chern classes of vector bundles in (3.2) and (3.4) we obtain two sets of cohomology classes which generate the cohomology ring:

(a) Chern classes of V/U. The vector bundle V/U is of rank 2n -2 and and we denote its Chern classes by σ k = c k (V/U). Cycles representing these cohomology classes can be explicitly described as follows. Let

Z(E 2n-k-1 ) = {V 2 ∈ X | dim(V 2 ∩ E 2n-k-1 ) ≥ 1}. (3.5) Then σ k = [Z(E 2n-k-1 )] ∈ H 2k (X, Z).
In the above, E 2n-k-1 is a subspace of dimension 2nk -1 such that the rank of ω| E 2n-k-1 is minimal. Note that σ 0 = 1 is the fundamental class of X. These cohomology classes are usually called special Schubert classes.

(b) Chern classes of U and U ⊥ /U. The vector bundle U is of rank 2, so it only has two non-vanishing Chern classes a i = c i (U) for i = 1, 2. The vector bundle U ⊥ /U is self-dual of rank 2n -4, therefore it has only n -2 non-vanishing Chern classes b

i = c 2i (U ⊥ /U) for i ∈ [1, n -2].

Cohomology ring of IG(2, 2n

). The cohomology ring of X = IG(2, 2n) can be described in terms of generators and relations. We will give two presentations using the two sets of special cohomology classes defined above.

Proposition 3.1 ([3], Theorem 1.2). The cohomology ring H * (X, Q) is isomorphic to the quotient of the ring Q[σ 1 , • • • , σ 2n-2
] by the ideal generated by the elements

det(σ 1+j-i ) 1≤i,j≤r , with r ∈ [3, 2n -2] (3.6)
and the two elements

σ 2 n-1 + 2 n-1 i=1 (-1) i σ n-1+i σ n-1-i and σ 2 n + 2 n-2 i=1 (-1) i σ n+i σ n-i . (3.7)
The dimension of

H * (X, Q) is equal to 2 2 n 2 = 2n(n -1). Proposition 3.2. The cohomology ring H * (X, Q) is isomorphic to the quotient of the ring Q[a 1 , a 2 , b 1 , • • • , b n-2
] by the ideal generated by

(1 + (2a 2 -a 2 1 )x 2 + a 2 2 x 4 )(1 + b 1 x 2 + • • • + b n-2 x 2n-4 ) = 1 (3.8)
The last equality is viewed as an equality of polynomials in the variable x and gives a concise way to write a system of equations in the variables a i , b i .

Proof. This result is well know to specialists but we include a short proof for the convenience of the reader.

Let us start by checking that (3.8) holds in the cohomology ring. Define 4 and rewrite (3.8) as P (x)P (-x)Q(x) = 1. We interpret the polynomial P (x) as the total Chern class of U and Q(x) as the total Chern class of U ⊥ /U. Now by using basic properties of Chern classes, short exact sequences (3.2), (3.4), and the isomorphism (3.3), it is easy to see that the above relation does hold.

P (x) = 1 + a 1 x + a 2 x 2 and Q(x) = 1 + b 1 x 2 + • • • + b n-2 x 2n-
The above discussion shows that we have a natural homomorphism of Q-algebras

ψ : Q[a 1 , a 2 , b 1 , • • • , b n-2 ]/(P (x)P (-x)Q(x) -1) → H * (X, Q) (3.9)
sending a i 's to a i 's and b i 's to b i 's. To prove the proposition it is enough to establish two facts: i) σ i 's can be expressed in terms of a i 's and b i 's, ii) the dimensions of both algebras in (3.9) are equal. To prove the first fact one can use again simple properties of Chern classes and the exact sequence (3.4). For the second fact, we first need to show that

Q[a 1 , a 2 , b 1 , • • • , b n-2 ]/(P (x)P (-x)Q(x)-1
) is finite dimensional. This can be done similarly to the finite-dimensionality part of the proof of [START_REF] Buch | Quantum Pieri rules for isotropic Grassmannians[END_REF]Theorem 1.2]. Then, we need to compute the dimension of this algebra. For this we can proceed similarly to the proof of [3, Lemma 1.1], which is based on [START_REF] Stanley | Hilbert functions of graded algebras[END_REF], and get the desired dimension 2n(n -1).

4. Small quantum cohomology of IG(2, 2n) 4.1. Two presentations. As described in Section 3.2, the ordinary cohomology ring of the Grassmannian IG(2, 2n) is generated by the special Schubert classes σ 1 , . . . , σ 2n-2 with relations (3.6) and (3.7). To pass to the small quantum cohomology, informally speaking, we need to adjoin a new variable q to the σ i 's and adjust relations (3.6)-(3.7) in such a way that they remain homogeneous and specialize to the original ones when setting q = 0. The degree of the variable q in the case of IG(2, 2n) is equal to 2n -1 (cf. Section 2.1). Thus, the only relation that needs to be modified is the second equation in (3.7). Moreover, up to a constant factor, this modification is unique for degree reasons. The complete answer for arbitrary Grassmannians IG(m, 2n) was given in [3, Theorem 1.5] which we reproduce here in the special case of m = 2.

Theorem 4.1 ([3], Theorem 1.5). The small quantum cohomology ring QH(X) is isomorphic to the quotient of the ring

K[σ 1 , • • • , σ 2n-2
] by the ideal generated by the elements

det(σ 1+j-i ) 1≤i,j≤r , with r ∈ [3, 2n -2]
and the two elements

σ 2 n-1 + 2 n-1 i=1 (-1) i σ n-1+i σ n-1-i and σ 2 n + 2 n-2 i=1 (-1) i σ n+i σ n-i + (-1) n+1 qσ 1 .
Combining the above theorem with Proposition 3.2 we arrive at the following statement.

Corollary 4.2. The small quantum cohomology ring QH(X) is isomorphic to the quotient of the ring

K[a 1 , a 2 , b 1 , • • • , b n-2
] by the ideal generated by

(1 + (2a 2 -a 2 1 )x 2 + a 2 2 x 4 )(1 + b 1 x 2 + • • • + b n-2 x 2n-4 ) = 1 -qa 1 x 2n . (4.1) 
Proof. We need to find the quantum deformation of (3.8). Since the index of X is 2n -1, there are no quantum corrections except possibly in degrees 2n -1 and 2n. Furthermore, as (3.8) has no terms of degree 2n -1, we only need to check the deformation in degree 2n.

Explicitly we need to check the relation a 2 2 b n-2 = -qa 1 . Note that since a 2 2 b n-2 has degree 2n and since a 2 2 b n-2 vanishes in H * (X, Q) (see Proposition 3.2), we have a 2 2 b n-2 = λa 1 q with λ =a 2 , a 2 b n-2 , ℓ 1 and ℓ the class of a line in X.

By the definition of a i 's we have a 2 = c 2 (U), and so a 2 is a Schubert class (in fact, we have a 2 = σ 1,1 ). Further, using basic properties of Chern classes, and Formulas (3.2)-(3.4) one obtains the equality of cohomology classes

a 2 b n-2 = σ 2n-2 .
Therefore, a 2 b n-2 is also a Schubert class. As ℓ is yet again a Schubert class, all insertions in the GW invariant a 2 , a 2 b n-2 , ℓ 1 are Schubert classes in X. One can compute such an invariant either by using methods of Section 5, or the quantum-to-classical principle for degree 1 invariants from [5, Section 4], and obtains a 2 , a 2 b n-2 , ℓ 1 = 1.

Structure of QH(X).

In this paragraph we decompose the K-algebra QH(X) as a direct product, or, equivalently, we decompose the K-scheme Spec(QH(X)) into connected components.

Proposition 4.3. The scheme Spec(QH(X)) is the disjoint union of (2n -1)(n -1) reduced points Spec(K) and one fat point Spec(K[ε]/(ε n-1 )).

Proof. By the presentation of QH(X) described in Corollary 4.2, the K-scheme Spec(QH(X)) is given as a closed subscheme of the affine space

A n = Spec(K[a 1 , a 2 , b 1 , . . . , b n-2 ]) defined by the equations 2a 2 -a 2 1 + b 1 = 0 a 2 2 + b 1 (2a 2 -a 2 1 ) + b 2 = 0 b 1 a 2 2 + b 2 (2a 2 -a 2 1 ) + b 3 = 0 . . . b i-1 a 2 2 + b i (2a 2 -a 2 1 ) + b i+1 = 0 (4.2) . . . b n-4 a 2 2 + b n-3 (2a 2 -a 2 1 ) + b n-2 = 0 b n-3 a 2 2 + b n-2 (2a 2 -a 2 1 ) = 0 b n-2 a 2
2 + qa 1 = 0. It is clear that the origin of A n is a solution of this system. Moreover, this solution corresponds to a fat point of Spec(QH(X)). Indeed, it is easy to see that the Zariski tangent space of (4.2) at the origin is one-dimensional. Thus, the origin is a fat point of Spec(QH(X)). Let A be the corresponding factor of QH(X). Thus, we have the direct product decomposition

QH(X) = A × B, (4.3) 
where B corresponds to components of Spec(QH(X)) supported outside the origin.

Setting a 1 = 0 in (4.2) we obtain b i = (-1) i ia i 2 . Therefore, eliminating the b i 's, we get an isomorphism of K-algebras

QH(X)/(a 1 ) ≃ A/(a 1 ) ≃ K[a 2 ]/(a n-1 2 ).
In particular, we have a surjective homomorphism of K-algebras

A → K[a 2 ]/(a n-1 2 ). (4.4)
Thus, the dimension of A is at least n -1. In fact, below we will see that dim K A = n -1. Now let us examine the structure of B, i.e. we need to study solutions of (4.2) different from the origin. It is convenient to rewrite (4.1) as

(z 4 + (2a 2 -a 2 1 )z 2 + a 2 2 )(z 2n-4 + b 1 z 2n-6 + • • • + b n-2 ) = z 2n -a 1
, where we set q = 1 for convenience. By making the substitution

a 1 = z 1 + z 2 , a 2 = z 1 z 2 , and putting Q(z) = z 2n-4 + b 1 z 2n-6 + • • • + b n-2 we arrive at (z 2 -z 2 1 )(z 2 -z 2 2 )Q(z) = z 2n -(z 1 + z 2 ). (4.5)
In geometric terms this manipulation corresponds to pulling back our system (4.2) with respect to the morphism

Spec(K[z 1 , z 2 , b 1 , . . . , b n-2 ]) → Spec(K[a 1 , a 2 , b 1 , . . . , b n-2 ])
defined by

a 1 → z 1 + z 2 , a 2 → z 1 z 2 , b i → b i .
It is a double cover unramified outside of the locus

z 1 = z 2 .
Let us count solutions of (4.5) for which z 1 = z 2 and both of them are non-zero. This reduces to counting pairs z 1 , z 2 satisfying

z 2n 1 = z 1 + z 2 (4.6) z 2n 2 = z 1 + z 2 .
Eliminating z 2 using the first equation we obtain that z 1 must be a solution of (z 2n 1z 1 ) 2n = z 2n 1 . Now it is straightforward to count that there are (2n -2)(2n -1) distinct pairs (z 1 , z 2 ), with z 1 = z 2 = 0, satisfying the system (4.6).

In terms of the original system (4.2) the above computation means that there are at least (n -1)(2n -1) distinct solutions outside of the origin. Note that we have divided the number of solutions by 2, since the initial count was on the double cover. In other words the dimension of B is at least (n -1)(2n -1).

Up to now we have shown that dim K (A) ≥ n -1 and dim K (B) ≥ (n -1)(2n -1). Since dim K (QH(X)) = 2n(n-1), this implies that dim K (A) = n-1 and dim K (B) = (n-1)(2n-1). Hence, (4.4) is an isomorphism.

Remark 4.4. The above proposition implies that QH(IG(2, 2n)) is not semisimple, as was already mentioned in the introduction. Moreover, we have an explicit description of the non-semisimple factor as K[ε]/(ε n-1 ). Note that the latter is the Milnor algebra of the A n-1 -singularity.

Four-point Gromov-Witten invariants

In Section 6 we will study the deformation of QH(IG(2, 2n)) in the big quantum cohomology BQH(IG(2, 2n)) in the direction of the special Schubert class σ 2 . In particular, we will need the values of Gromov-Witten invariants pt, σ 2 , σ i , σ j 1 , which we compute in this section. Note that for dimension reasons these invariants vanish unless i + j = 2n -2.

Morally a GW invariant ∆ 1 , . . . , ∆ n d counts the number of rational curves of degree d on X incident to general representatives of the cohomology classes ∆ i . Even though for a general variety X this enumerative meaning fails, in our case X = IG(2, 2n) we have the following fact.

Lemma 5.1. The Gromov-Witten invariant pt, σ 2 , σ i , σ j 1 is the number of lines meeting general representatives of the cohomology classes pt, σ 2 , σ i and σ j . Furthermore, given any open dense subset of the set of lines, the above lines can be chosen in this open subset.

Proof. It follows from Kleiman-Bertini's Theorem [START_REF] Kleiman | The transversality of a general translate[END_REF] (see also [START_REF] Fulton | Notes on stable maps and quantum cohomology[END_REF]Lemma 14]).

Lines on IG(2, 2n

). We recall the description of the Hilbert scheme of lines on IG(2, 2n) from [START_REF] Landsberg | On the projective geometry of rational homogeneous varieties[END_REF]Theorem 4.3] and [31,Proposition 3]. First start with the Hilbert scheme of lines on the ordinary Grassmannian G(2, 2n). The Hilbert scheme of lines on a variety X and the universal line are denoted F 1 (X) and Z 1 (X) respectively.

A line on G(2, 2n) is given by a pair (W 1 , W 3 ) of nested subspaces of C 2n of dimension 1 and 3 respectively. Geometrically the corresponding line is given by

ℓ(W 1 , W 3 ) = {V 2 ∈ G(2, 2n) | W 1 ⊂ V 2 ⊂ W 3 }.
(5.1)

Extending the above description to families one can show that there exist isomorphisms

F 1 (G(2, 2n)) ≃ Fl(1, 3; 2n) Z 1 (G(2, 2n)) ≃ Fl(1, 2, 3; 2n).
Moreover, the natural projections from

Z 1 (G(2, 2n)) ⊂ G(2, 2n) × F 1 (G(2, 2n)) to G(2, 2n)
and F 1 (G(2, 2n)) are given by forgetting a part of the flag Fl(1, 2, 3; 2n)

f / / p G(2, 2n) Fl(1, 3; 2n) Now if the line ℓ(W 1 , W 3 ) is contained in IG(2, 2n
), we have that any two dimensional subspace V 2 with W 1 ⊂ V 2 ⊂ W 3 is isotropic. This is easily seen to be equivalent to the fact that W 1 ⊂ W ⊥ 3 or equivalently W 1 ⊂ ker(ω| W 3 ) (note that in [31, Proposition 3], this last condition is missing). In particular we have

F 1 (IG(2, 2n)) = {ℓ(W 1 , W 3 ) ∈ F 1 (G(2, 2n)) | ω(W 1 , W 3 ) = 0}.
Schematically, this can be described as the zero locus of ω :

W 1 ⊗ W 3 → O F 1 (G(2,2n)) in F 1 (G(2, 2n
)), where W 1 and W 3 are the tautological subbundles. In particular a general element ℓ(W 1 , W 3 ) ∈ F 1 (IG(2, 2n)) is determined by W 3 since W 1 = ker(ω| W 3 ). We make this more precise. Let G(3, 2n) be the Grassmannian of 3-dimensional vector subspaces in C 2n and IG(3, 2n) the closed subset representing subspaces isotropic for the form ω.

Proposition 5.2. The Hilbert scheme F 1 (IG(2, 2n)) is the blow-up of IG (3, 2n) in G (3, 2n).

Proof. Since F 1 (IG(2, 2n)) is a subscheme of F 1 (G(2, 2n)) = Fl(1, 3; 2n), we have a morphism π : F 1 (IG(2, 2n)) → G(3, 2n) defined by (W 1 , W 3 ) → W 3 by forgetting W 1 .
We prove that this is the desired blow-up. Denote by W 1 and W 3 the tautological rank 1 and 3 bundles on Fl(1, 3; 2n) and G (3, 2n). Recall that IG(3, 2n) is defined by the vanishing of ω : Λ 2 W 3 → O G (3,2n) . Pulling back via π and using the fact that W 1 ⊂ ker(ω| W 3 ), we get that π * ω factors as follows:

Λ 2 W 3 / / π * ω & & ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ Λ 2 (W 3 /W 1 ) s O F 1 (IG(2,2n)) .
Since the top map is a morphism of vector bundles and never vanishes, the vanishing of π * ω is equivalent to the vanishing of s. This just means that the transform of the ideal defining IG(2, 2n) in G(2, 2n) to F 1 (IG(2, 2n)) is Λ 2 (W 3 /W 1 ) and therefore invertible. By the universal property of blow-up, we deduce that π factors through the blow-up p :

Bl IG(3,2n) (G(3, 2n)) of IG(3, 2n) in G(3, 2n): F 1 (IG(2, 2n)) f / / π ) ) ❙ ❙ ❙ ❙ ❙ ❙ ❙ ❙ ❙ ❙ ❙ ❙ ❙ ❙ Bl IG(3,2n) (G(3, 2n)) p G(3, 2n).
Since IG (3, 2n) and G(3, 2n) are smooth, we only need to check that f is bijective since Zariski's Main Theorem will imply that f is an isomorphism. Note that the all diagram is Sp 2n -equivariant and is bijective on the complement of IG(3, 2n): the subspace W 1 is determined by W 1 = ker(ω| W 3 ). Now the fiber π -1 (W 3 ) for W 3 ∈ IG(3, 2n) is isomorphic to P(W 3 ) ≃ P 2 and is homogeneous under the stabiliser of W 3 in Sp 2n . Since the fiber of p over W 3 is also isomorphic to P 2 (the codimension of IG (3, 2n) in G(3, 2n) is 3), the map f must be bijective on the fiber. The result follows.

The group of symplectic automorphisms Sp 2n acts on IG(2, 2n) and F 1 (IG(2, 2n)). In terms of (5.1) there are two types of lines on IG(2, 2n) corresponding to the two Sp 2n -orbits on F 1 (IG(2, 2n)):

(i) If W 3 is not isotropic, then W 1 is the kernel of the symplectic form ω on W 3 . Therefore, W 1 is completely determined by W 3 . A line of this type will be denoted by ℓ(W 3 ). These lines form the open orbit of the Sp 2n -action. (ii) If W 3 is isotropic, then W 1 is any one-dimensional subspace of W 3 . These lines form the closed orbit of the Sp 2n -action. Note that in terms of the blow-up description the open orbit is π -1 (G(3, 2n) \ IG(3, 2n)) and the closed orbit is the exceptional divisor of the blow-up which is isomorphic to the isotropic flag variety IFl(1, 3; 2n).

5.2.

Computation of the invariant. Let X be IG (2, 2n). Denote by Y the Hilbert scheme of lines on X described above, and by Y the open orbit of the Sp 2n -action. In order to compute pt, σ 2 , σ i , σ j 1 , according to Lemma 5.1, it is enough to consider lines in the open orbit Y .

For a closed subvariety Z ⊂ X we define

Y (Z) = {ℓ ∈ Y | ℓ ∩ Z = ∅},
which is a closed subvariety of Y .

Lemma 5.3. (i) There exist identifications

Y ({E 2 }) def = {ℓ(W 3 ) ∈ Y | E 2 ⊂ W 3 } ≃ P(C 2n /E 2 ) \ P(E ⊥ 2 /E 2 ) Y (Z(E 2n-k-1 )) = {ℓ(W 3 ) ∈ Y | dim(W 3 ∩ E 2n-k-1 ) ≥ 1},
where {E 2 } is the one-point subvariety of X corresponding to an isotropic subspace E 2 ⊂ C 2n , and Z(E 2n-k-1 ) was defined in (3.5).

(ii) If E 2 and E 2n-k-1 are in general position, the intersection

Y ({E 2 }) ∩ Y (Z(E 2n-k-1 )) is isomorphic to P E 2 + E 2n-k-1 /E 2 \ P (E 2 + E 2n-k-1 ) ∩ E ⊥ 2 /E 2 ,
which we view as a subvariety of P(C 2n /E 2 ) \ P(E ⊥ 2 /E 2 ). Proof. (i) The first isomorphism just maps W 3 to W 3 /E 2 and uses the fact that W 3 is non-

isotropic iff W 3 /E 2 is not contained in E ⊥
2 /E 2 . The second equality works as follows. Consider a point

V 2 ∈ (ℓ(W 3 ) ∩ Z(E 2n-k-1 )) ⊂ X.
Then, by definition of ℓ(W 3 ) and Z(E 2n-k-1 ), we have

V 2 ⊂ W 3 and dim(V 2 ∩ E 2n-k-1 ) ≥ 1. Thus, we get dim(W 3 ∩ E 2n-k-1 ) ≥ 1. Conversely, for W 3 satisfying dim(W 3 ∩ E 2n-k-1 ) ≥ 1, one can find a 2-dimensional isotropic subspace V 2 ⊂ W 3 meeting E 2n-k-1 non-trivially.
(ii) First, assume that k = 0. Then, we have E 2 + E 2n-1 = C 2n , as E 2 and E 2n-1 are assumed to be in general position. Further, since we clearly have Y (Z(E 2n-1 )) = Y , the claim follows. Now assume that k ≥ 1. Since E 2 and E 2n-k-1 are in general position, we have

E 2 ∩ E 2n-k-1 = 0. If ℓ(W 3 ) is a point of Y ({E 2 }) ∩ Y (Z(E 2n-k-1
)), then we have the inclusion

W 3 ⊂ E 2 + E 2n-k-1 . Therefore, we have W 3 /E 2 ⊂ (E 2 + E 2n-k-1 )/E 2 , which proves the claim. Corollary 5.4. pt, σ 2 , σ i , σ j 1 = δ i+j,2n-2 .
Proof. As was mentioned at the beginning of this section, the invariant vanishes unless i + j = 2n -2. So we assume i + j = 2n -2. In that case, pt, σ 2 , σ i , σ j 1 is the number of lines meeting {E 2 }, Z(E 2n-3 ), Z(E 2n-i-1 ) and Z(E 2n-j-1 ), where the subspaces E k ⊂ C 2n are in general position with ω| E k of minimal rank.

The locus of such lines is the intersection in P(C 2n /E 2 ) \ P(E ⊥ 2 /E 2 ) of three linear spaces

P (E 2 + E 2n-3 )/E 2 , P (E 2 + E 2n-i-1 )/E 2 and P (E 2 + E 2n-j-1 )/E 2 .
Since these linear spaces are in general position, and of respective codimensions 1, i -1 and j -1 that add up to the dimension of P(C 2n /E 2 ), they meet in exactly one point.

Big quantum cohomology of IG(2, 2n)

In this section we show the regularity of BQH(IG(2, 2n)) and deduce its generic semisimplicity, which was proved previously in [START_REF] Galkin | Dubrovin's conjecture for IG(2, 6)[END_REF][START_REF] Perrin | Semisimple quantum cohomology of some Fano varieties[END_REF]. 6.1. Deformation. As before we let X = IG(2, 2n) and consider the deformation BQH τ (X) of the small quantum cohomology QH(X) inside the big quantum cohomology BQH(X) in the direction of the Schubert class τ = σ 2 . Thus, the ring BQH τ (X) is the quotient of BQH(X) with respect to the ideal generated by those elements of H * (X, Q)

* which vanish on σ 2 . Explicitly BQH τ (X) can be described in the following way. For any cohomology classes a, b ∈ H * (X) the product is of the form

a ⋆ τ b = a ⋆ 0 b + t σ d≥1 a, b, σ, σ 2 d q d σ ∨ + O(t 2 ),
where a ⋆ 0 b is the small quantum product, σ runs over the basis of the cohomology consisting of Schubert classes, σ ∨ is the dual basis, and t is the deformation parameter of degree -1.

Let us have a closer look at the products of the form σ i ⋆ τ σ j . According to the dimension axiom for GW invariants σ i , σ j , σ, σ 2 d vanishes unless

i + j + deg(σ) + 2 = (2n -1)d + 2(2n -2).
Therefore, applying Corollary 5.4, we have

σ i ⋆ τ σ j = σ i ⋆ 0 σ j + δ i+j,2n-2 qt + O(t 2 ), (6.1) 
for i + j ≤ 2n -2 .

6.2. Presentation for BQH τ (X). Consider the following elements in BQH τ (X)

∆ r = det(σ 1+j-i ) 1≤i,j≤r for r ∈ [3, 2n -2] Σ 2n-2 = σ n-1 ⋆ τ σ n-1 + 2 n-1 i=1 (-1) i σ n-1+i ⋆ τ σ n-1-i Σ 2n = σ n ⋆ τ σ n + 2 n-2 i=1 (-1) i σ n+i ⋆ τ σ n-i + (-1) n+1 qσ 1 ,
where all products are taken in BQH τ (X). Note that these are "the same" elements as the relations in the presentation of QH(X) in Theorem 4.1. The lower indices indicate the degree of the respective element in BQH τ (X).

Remark 6.1. The variable t can only appear together with a positive power of q so that q d t can only occur in elements of degree at least deg(q) + deg(t) = 2n -2.

Lemma 6.2. We have

∆ r = O(t 2 ) for all r ∈ [3, 2n -2], Σ 2n-2 = (-1) n qt + O(t 2 ) and Σ 2n = O(t).
Proof. (i) Here we prove the statement about ∆ r 's. From Theorem 4.1 and the above remark we know that ∆ r = O(t 2 ) for r ∈ [3, 2n -3]. Thus, we only need to consider ∆ 2n-2 . Inductively developing the determinant with respect to the first column we have

∆ 2n-2 = 2n-2 s=1 (-1) s-1 σ s ⋆ τ ∆ 2n-2-s = O(t 2 ) -σ 2n-4 ⋆ τ ∆ 2 + σ 2n-3 ⋆ τ ∆ 1 -σ 2n-2 ,
where we used the fact that ∆ r = O(t 2 ) for r ∈ [3, 2n -3]. Thus, we need to prove that

σ 2n-4 ⋆ τ σ 2 -σ 2n-4 ⋆ τ σ 1 ⋆ τ σ 1 + σ 2n-3 ⋆ τ σ 1 -σ 2n-2 (6.2)
is of the form O(t 2 ). We will see this by reducing everything to products of special Schubert classes. First, let us look at the term

σ 2n-4 ⋆ τ σ 1 ⋆ τ σ 1 . Since σ 2n-4 ⋆ 0 σ 1 = σ 2n-3 + σ ′ 2n-3
, where σ ′ 2n-3 is a Schubert class of degree 2n -3 different from σ 2n-3 (see [START_REF] Chaput | On the quantum cohomology of adjoint varieties[END_REF]), and for degree reasons, we have

(σ 2n-4 ⋆ τ σ 1 ) ⋆ τ σ 1 = (σ 2n-3 + σ ′ 2n-3 ) ⋆ τ σ 1 . (6.3) 
By (6.1) we have

σ 2n-3 ⋆ τ σ 1 = σ 2n-3 ⋆ 0 σ 1 + qt + O(t 2
). Thus, we only need to take care of the term σ ′ 2n-3 ⋆ τ σ 1 . For degree reasons we have

σ ′ 2n-3 ⋆ τ σ 1 = σ ′ 2n-3 ⋆ 0 σ 1 + σ ′ 2n-3 , σ 1 , pt, σ 2 1 qt + O(t 2
). Applying the dimension axiom for Gromov-Witten invariants we see that the 4-point invariant σ ′ 2n-3 , σ 1 , pt, σ 2 1 is equal to the 3-point invariant σ ′ 2n-3 , pt, σ 2 1 . The latter can be computed using results in [START_REF] Chaput | On the quantum cohomology of adjoint varieties[END_REF] and we get σ ′ 2n-3 , pt, σ 2 1 = 1. Therefore, we obtain

σ ′ 2n-3 ⋆ τ σ 1 = σ ′ 2n-3 ⋆ 0 σ 1 + qt + O(t 2 ). (6.4) 
Plugging (6.3)-(6.4) into (6.2), using (6.1) and the fact that ∆ 2n-2 vanishes modulo t, we obtain the required statement.

(ii) To prove the statement about Σ 2n-2 we just apply (6.1) to each summand of Σ 2n-2 , and use and the fact that Σ 2n-2 vanishes modulo t.

(iii) The statement about Σ 2n is evident, as it just claims that there might be a non-trivial deformation along t.

By a standard argument (see e.g. [10, Proposition 10]) we obtain the following.

Corollary 6.3. The ring BQH τ (X) is the quotient of (K[[t]])[σ 1 , • • • , σ 2n-2 ] modulo relations of the form ∆ r + O(t 2 )
for all r ∈ [3, 2n -2] (6.5) 

Σ 2n-2 + (-
(X) = A × B = A × i∈I B i where A = K[ε]/(ε n-1
) each B i is the ground field K. By Hensel's lemma this decomposition lifts to BQH τ (X) and we have

BQH τ (X) = A × i∈I B i (6.8)
where A and B i are algebras over K [[t]].

By construction the K[[t]

]-algebra BQH τ (X) is a free module over K[[t]] of finite rank equal to dim H * (X). Therefore, A and B i 's are also free K[[t]]-modules of finite rank. Reducing modulo t one sees that the rank of A is n -1 and the ranks of B i 's are all equal to 1. Similarly we obtain that the natural algebra homomorphism K[[t]] → B i is an isomorphism of K-algebras. Theorem 6.4. The ring BQH(X) is regular.

Proof. Let us first prove that BQH τ (X) is a regular ring, which amounts to showing that A is regular. Consider the presentation of BQH τ (X) given in Corollary 6.3. Taking linear terms one computes the Zariski tangent space of A at the maximal ideal (it corresponds to the origin in coordinates σ 1 , . . . , σ 2n-2 , t). We have: (6.5) contribute σ r for r ∈ [3, 2n -2], the relation (6.6) contributes 2σ 2n-2 + qt, and the relation (6.7) contributes σ 1 (note that the deformation along t has not changed the linear part of this relation). Therefore, the dimension of the tangent space is 1. Since the Krull dimension of A is also equal to 1, we obtain regularity.

The regularity of BQH(X) follows from an identical argument. The only difference is the number of the deformation parameters. Note that no additional GW invariants are necessary. Corollary 6.5. BQH(X) is generically semisimple.

Proof. This is a simple corollary of the above Theorem 6.4. Let us give a short proof for completeness. The coordinate ring of the generic fiber BQH(X) η = BQH(X) ⊗ K[[t 0 ,...,ts]] K((t 0 , . . . , t s )) is a localization of BQH(X). Therefore, it is also a regular ring, since BQH(X) was regular. This implies that BQH(X) η is a product of finite field extensions of K((t 0 , . . . , t s )) which was our definition of semisimplicity.

Relation to the unfolding of A n-1 -singularity

In this section we establish a relation between the quantum cohomology of IG(2, 2n) and the unfolding of an A n-1 -singularity. The comparison takes place at the level of F -manifolds. The concept of an F -manifold was introduced in [START_REF] Hertling | Weak Frobenius manifolds[END_REF] as a weakening of that of a Frobenius manifold. Every Frobenius manifold gives rise to an F -manifold after forgetting a part of the structure. Both F -manifolds and Frobenius manifolds arise naturally in quantum cohomology and singularity theory. We begin by briefly recalling relevant concepts and refer to [START_REF] Hertling | Frobenius manifolds and moduli spaces for singularities[END_REF] for details.

7.1. F -manifolds: generalities. Let M be a complex manifold. Endow T M (the holomorphic tangent sheaf) with an O M -bilinear, commutative, associative, and unital product • : T M × T M → T M , and denote e the global unit vector field. The triple (M, • , e) is called an F -manifold, if the identity

Lie X•Y (•) = X • Lie Y (•) + Y • Lie X (•) (7.1)
is satisfied for any local vector fields X and Y . Given two F -manifolds (M 1 , • 1 , e 1 ) and (M 2 , • 2 , e 2 ) one can endow the product M 1 ×M 2 with a natural structure of an F -manifold (see Proposition 2.10 of [START_REF] Hertling | Frobenius manifolds and moduli spaces for singularities[END_REF]). The resulting

F - manifold is denoted (M 1 × M 2 , • 1 ⊞ • 2 , e 1 ⊞ e 2 ).
If (M, • , e) is an F -manifold and P ∈ M a point, then by (M, P, • , e) we will denote the germ of (M, • , e) at P . A germ (M, P, • , e) is called irreducible if it cannot be written as a product of germs of F -manifolds.

Let (M, P, • , e) be a germ of an F -manifold. The tangent space T P M is a finite dimensional commutative C-algebra, and as such it uniquely decomposes into the product of local algebras

T P M = B 1 × • • • × B r .
Moreover, this decomposition extends to an analytic neighbourhood of P , i.e. we have the decomposition

(M, P, • , e) = r i=1 (M i , P i , • i , e i )
of germs of irreducible F -manifolds (see Theorem 2.11 of [START_REF] Hertling | Frobenius manifolds and moduli spaces for singularities[END_REF]). 7.2. F -manifold of BQH(X). In Section 2 we have defined big quantum cohomology ring BQH(X) as an algebra over K[[t 0 , . . . , t s ]], where K is the algebraic closure of Q((q)). Another way of packaging the ingredients appearing in BQH(X) is in the language of formal Frobenius manifold and formal F-manifolds (see [START_REF] Yu | Frobenius manifolds, quantum cohomology, and moduli spaces[END_REF]).

For reasons that will become clear later, the setting of formal F -manifolds is not suitable for our needs. Therefore, we will describe how to pass to the analytic setting by making some convergence assumption. As was already mentioned in Remark 2.2, BQH(X) can be defined as an algebra over R[[t 0 , . . . , t s ]], where R = Q[[q]]. Moreover, since X is a Fano variety, one can further replace R with Q[q]. Further, we can specialize to q = 1 and replace Q with C. This way we get BQH(X) defined over C[[t 0 , . . . , t s ]] which we will denote BQH(X) C .

Another way to formulate the above procedure is to say that for a Fano variety X, if we put q = 1, the Gromov-Witten Potential (2.1) gives an element of the power series ring C[[t 0 , . . . , t n ]]. Let us denote this power series by Φ q=1 .

A priori it is not clear that Φ q=1 has a non-trivial domain of convergence. This is one of the standard expectations in Gromov-Witten theory, but by no means an established result. Therefore, we will make the following assumption.

Convergence assumption: the power series Φ q=1 converges in some open neighbourhood M of the origin.

Repeating the definition of quantum multiplication we now obtain an analytic F -manifold (even Frobenius) structure on M. Namely, basis elements ∆ i appearing in (2.2) form a basis of sections of the holomorphic tangent sheaf of M. Thus, Formula (2.2) endows T M with a multiplication, and one can further check that (7.1) is satisfied. 7.3. F -manifolds for isolated hypersurfaces singularities. An isolated hypersurface singularity is a holomorphic function germ f : (C m , 0) → (C, 0) with an isolated singularity at the origin, i.e. the origin is an isolated critical point of f . One defines the Milnor algebra of f as O C m ,0 /( ∂f ∂x 1 , . . . , ∂f ∂xm ), which is the algebra of functions on the critical locus of f . An unfolding of an isolated hypersurface singularity f :

(C m , 0) → (C, 0) is a holomorphic function germ F : (C m , 0) × (C n , 0) → (C, 0) satisfying F |C m ×{0} = f . The germ (C n , 0)
is called the base of the unfolding and is often denoted (M, 0). The relative critical locus C ⊂ (C m , 0) × (M, 0) is the closed subspace defined by the ideal J F = ( ∂F ∂x 1 , . . . , ∂F ∂xm ). Note that C is not necessarily reduced. This setup can be conveniently described by the diagram

C i / / p % % ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ (C m × M, 0) π F / / (C, 0) (M, 0) (7.2)
Define a morphism of sheaves

T (M,0) → p * O C (7.3) 
by sending a local vector field X to X(F ) |C , where X ist a lift of X to (C m ×M, 0). One says that unfolding F is semiuniversal if (7.3) is an isomorphism (cf. [14, Theorem 5.1]). In this case one can transport the product structure from p * O C to T M . Moreover, this multiplication endows (M, 0) with an F -manifold structure (cf. [14, Theorem 5.3]).

Example:

A n -singularity. Let us illustrate the above construction in the simplest case of f = x n+1 , which is also the relevant case for our considerations. In this case a semiuniversal unfolding is given by

F = x n+1 + a n-1 x n-1 + • • • + a 1 x + a 0 ,
where a 0 , . . . , a n-1 are coordinates on the base space of the unfolding M = C n . The fact that f is a function of one variable is a special feature of this example. Among isolated hypersurface singularities it is the only one that can be realised in this way.

7.4. Spectral cover of an F -manifold. Let (M, • , e) be an F -manifold. The spectral cover of (M, • , e) is defined as the relative analytic spectrum Specan(T M , •). By construction there exists a canonical morphism Specan(T M , •) → M. In general Specan(T M , •) is only an analytic space, i.e. it could be singular and/or non-reduced. The canonical morphism Specan(T M , •) → M is finite, and in the reduced case can be seen as a ramified covering of M.

In the quantum cohomology setting the spectral cover is given by the spectrum of the big quantum cohomology ring. In the singularity theory setting the spectral cover is nothing else but the relative critical locus C that appears in (7.2).

An F -manifold (M, • , e) is called generically semisimple if there is an open subset U ⊂ M, so that for every point in P ∈ U the algebra structure on T P M is semisimple.

One can nicely characterise generic semisimplicity of an -manifold in terms of its spectral cover. Namely, we have the following Theorem 7.1 ([14], Theorem 3.2). An F -manifold (M, • , e) is generically semisimple if and only if its spectral cover is reduced.

Note that, the "if" part of the statement is an immediate consequence of the generic smoothness in characteristic zero.

The next theorem can be viewed as a refinement of the above one and gives a beautiful characterisation of (germs of) F -manifolds with smooth spectral covers. Theorem 7.2 ([14], Theorem 5.6). Any germ of an irreducible generically semisimple Fmanifold with smooth spectral cover is isomorphic to the base space of a semiuniversal unfolding of an isolated hypersurface singularity. 

(M, O, •, e) = (M 0 , P 0 , • 0 , e 0 ) × (2n-1)(n-1) i=1 (M i , P i , • i , e i ),
where (M i , P i , • i , e i ) are one-dimensional F -manifolds and (M 0 , P 0 , • 0 , e 0 ) is an irreducible (n -1)-dimensional F -manifold.

Computing the rank of the Jacobian matrix, similar to the proof of Theorem 6.4, implies that the spectral cover of (M, O, •, e) and, hence, of (M i , P i , • i , e i ) is smooth. Thus, by Theorem 7.2 each germ (M i , P i , • i , e i ) is isomorphic to the base space of a semiuniversal unfolding of an isolated hypersurface singularity. Moreover, we can identify the type of this singularity.

Theorem 7.3. If the convergence assumption of Section 7.2 is satisfied for IG(2, 2n), then the following statements hold.

(i) The F -manifold (M 0 , P 0 , • 0 , e 0 ) is isomorphic to the base space of a semiuniversal unfolding of an isolated hypersurface singularity of type A n-1 .

(ii) For i ≥ 1 the F -manifolds (M i , P i , • i , e i ) are isomorphic to the base space of a semiuniversal unfolding of an isolated hypersurface singularity of type A 1 .

Proof. We only prove the first assertion. The second one is proved in a similar way.

The statement follows from the following observation. Proposition 4.3 implies that the tangent space to Spec T P 0 M 0 at its unique point is of dimension one. Now, assuming that (M 0 , P 0 , • 0 , e 0 ) is given by an unfolding of f , we get an identification between the Milnor algebra of f and T P 0 M 0 . In singularity theory the dimension of the tangent space to the spectrum of the Milnor algebra is known as corank of f at the critical point. Now, the statement follows from the fact that the only singularity of corank 1 and Milnor number n -1 is the A n-1 -singularity (see Section 11.1 of [START_REF] Arnold | Classification of critical points, caustics and wave fronts[END_REF]).

Remark 7.4. Note that the convergence assumption is classically expected (for example, see [START_REF] Coates | On the Convergence of Gromov-Witten Potentials and Givental's Formula[END_REF] and references therein). Further, it may be possible that Theorem 7.2 holds in the formal setting [15].

LG model: expectations

In this paragraph we will see how our previous results fit into the general picture of homological mirror symmetry for Fano varieties. Note that we are not going to prove a mirror symmetry type statement, but rather speculate about properties of a Landau-Ginzburg mirror for IG(2, 2n). 8.1. Mirror symmetry for Fano varieties. Let X be a smooth projective Fano variety and (Y, w) a Landau-Ginzburg model, i.e. Y is a smooth variety and w a regular function on it. To be able to formulate mirror-symmetry-type statements we also endow X and Y with symplectic forms compatible with respective complex structures but our notation will not reflect the symplectic forms explicitly. For simplicity we assume that w has only isolated, but possibly degenerate, critical points.

To X one attaches two triangulated categories -the category of D-branes of type A and the category of D-branes of type B. The category of D-branes of type A is the derived Fukaya category D Fuk(X), which encodes the symplectic geometry of X and is independent of the complex structure. The category of D-branes of type B is D b Coh(X) -the bounded derived category of coherent sheaves on X, which encodes the complex geometry of X and is independent of the symplectic structure.

Further one defines categories of D-branes of type A and B for the pair (Y, w). The category of D-branes of type A is the derived Fukaya-Seidel category D FS(Y, w) and the category of D-branes of type B is the triangulated category of matrix factorisations MF(Y, w). As before the category of D-branes of type A is independent of the complex structure and the category of D-branes of type B of the symplectic one.

One says that X and (Y, w) are mirror to each other if there exist triangulated equivalences of categories

D Fuk(X) ≃ MF(Y, w) (8.1) D b Coh(X) ≃ D FS(Y, w). (8.2)
As it is not essential for our purposes, we refrain from recalling precise definitions of the above categories and instead refer to [START_REF] Orlov | Landau-Ginzburg models, D-branes and mirror symmetry[END_REF] and references therein. 8.2. Quantum cohomology and mirror symmetry. Up to now we viewed the quantum cohomology of X as a purely algebro-geometric object. Historically, Gromov-Witten invariants and quantum cohomology were first defined in symplectic geometry [START_REF] Ruan | A mathematical theory of quantum cohomology[END_REF], and in mirror symmetry they appear on the symplectic side. Namely, conjecturally there exists an isomorphism of algebras QH(X) → HH * (D Fuk(X)), known as closed-open map (e.g. see [START_REF] Ganatra | Automatically generating Fukaya categories and computing quantum cohomology[END_REF]), from the small quantum cohomology to the Hochschild cohomology of D Fuk(X).

Let us assume that X and (Y, w) are mirror to each other. Then (8.1) gives rise to the isomorphism

HH * (D Fuk(X)) ≃ HH * (MF(Y, w)).
According to [START_REF] Lin | Global matrix factorizations[END_REF]Theorem 3.1], the Hochschild cohomology HH * (MF(Y, w)) is isomorphic to the Milnor algebra of (Y, w). Therefore, reduced points of Spec QH(X) correspond to non-degenerate critical points of w, whereas fat points correspond to degenerate ones.

8.3.

LG model for IG (2, 2n). Let us assume that IG(2, 2n) has a mirror LG model (Y, w) with only isolated critical points. Then the above discussion combined with Proposition 4.3 imply that the critical locus of w has only one degenerate critical point. Moreover, Theorem 7.3 predicts that the degenerate critical point is of type A n-1 .

The above should imply (see [START_REF] Orlov | Landau-Ginzburg models, D-branes and mirror symmetry[END_REF][START_REF] Seidel | More about vanishing cycles and mutation[END_REF]) that D FS(Y, w) has a semiorthogonal decomposition of the form

D FS(Y, w) = C n-1 , E 1 , . . . , E (2n-1)(n-1) (8.3) 
where E i are exceptional objects given by vanishing thimbles attached to non-degenerate critical points and C n-1 is the subcategory generated by vanishing thimbles attached to the degenerate one. Further, it should also follow that subcategory C n-1 is the Fukaya-Seidel category of an isolated hypersurface singularity of type A n-1 . The latter was studied by P. Seidel in [START_REF] Seidel | More about vanishing cycles and mutation[END_REF] and shown to be equivalent to the bounded derived category of representations of the quiver of type A n-1 . Note that C n-1 also has a full exceptional collection.

The above discussion combined with equivalence (8.2) suggest that D b Coh(IG(2, 2n)) should have a semiorthogonal decomposition (in fact, a full exceptional collection)

D b Coh(IG(2, 2n)) = A n-1 , E 1 , . . . , E (2n-1)(n-1) ,
where subcategory A n-1 is equivalent to the bounded derived category of representations of the quiver of type A n-1 . Such a decomposition is constructed explicitly in Theorem 9.6 of the Appendix by Alexander Kuznetsov. 9. Appendix by Alexander Kuznetsov 9.1. Lefschetz exceptional collections. Recall the notion of a Lefschetz semiorthogonal decomposition [START_REF] Kuznetsov | Homological projective duality[END_REF]Def. 4.1] and [START_REF] Kuznetsov | Semiorthogonal decompositions in algebraic geometry[END_REF]Def. 3.1]). In this paper we will need its special casea Lefschetz exceptional collection ([20, Def. 2.1]). We will remind this notion for the readers convenience. 

 E 1 , E 2 , . . . , E λ 0 block 1 , E 1 (1), E 2 (1), . . . , E λ 1 (1) block 2 , . . . , E 1 (m -1), E 2 (m -1), . . . , E λm (m -1) block m   where λ = (λ 0 ≥ λ 1 ≥ • • • ≥ λ m-1 ≥ 0) is a non-increasing sequence of positive integers (the support partition of the Lefschetz collection). A Lefschetz exceptional collection is full if it generates the derived category D b (X). It is called rectangular if λ 0 = λ 1 = • • • = λ m (i.e., if the Young diagram of its support partition is a rectangle).
Clearly, to specify a Lefschetz exceptional collection one needs to give its first block and its support partition. We will denote by (E • , λ) the corresponding Lefschetz exceptional collection. Let us list several interesting examples.

Example 9.2. Let X = G(2, m). Set k = ⌊m/2⌋, E i = S i-1 U * for 1 ≤ i ≤ k, and λ = (k 2k+1 ), if m = 2k + 1 is odd, (k k , (k -1) k ), if m = 2k is even
(here the exponents stand for the multiplicities of the entries, thus the first line denotes the partition with 2k + 1 parts equal to k, and the second line means the partition with k parts equal k and k parts equal k -1).

Example 9.3. Let X = IG (2, 2k). Set E i = S i-1 U * for 1 ≤ i ≤ k, and λ = (k k-1 , (k -1) k ) with the same convention about the exponents as in the previous example.

The collections listed in these examples are full [START_REF] Kuznetsov | Exceptional collections for Grassmannians of isotropic lines[END_REF]Theorems 4.1,5.1]. With the conventions we took they can be rewritten as

D b (G(2, 2k + 1)) = S •-1 U * , (k 2k+1 ) , (9.1) 
D b (G(2, 2k)) = S •-1 U * , (k k , (k -1) k ) , (9.2) 
D b (IG(2, 2k)) = S •-1 U * , (k k-1 , (k -1) k ) . (9.
3)

The first of these collections is rectangular, while the last two are not.

It is known that G(k, n) has a rectangular Lefschetz exceptional collection of length n if and only if k and n are coprime [START_REF] Fonarev | Minimal Lefschetz decompositions of the derived categories for Grassmannians[END_REF]. Lefschetz exceptional collections on general isotropic Grassmannians are not yet known, it is a good question to construct such a collection. Definition 9.4. Given a Lefschetz exceptional collection (E • , λ) with the length of λ equal to m, the subcollection (E • , (λ m ) m ) = (E 1 , . . . , E λm , E 1 (1), . . . , E λm (1), . . . , E 1 (m -1), . . . , E λm (m -1)) Lemma 9.7. For every 1 ≤ i ≤ k there is an isomorphism

L A,...,A(k-i) (S k-1 U * (k -i)) ∼ = F i (k -i)[2k -i -1].
Proof. Since (9.6) is exact, we have yet another exact sequence for F i :

0 → F i → Λ i V ⊗ S k-i-1 U * (i -k) → • • • → Λ k-1 V ⊗ O X (-1) → → Λ k-1 V * ⊗ O X → Λ k-2 V * ⊗ U * → . . . → V * ⊗ S k-2 U * → S k-1 U * → 0. (9.8)
Twisting it by O X (ki) we note that all its terms (except for the leftmost F i (ki) and the rightmost S k-1 U * (ki)) lie in the subcategory A, . . . , A(ki -1), A(ki) . In other words, the cone of the morphism

S k-1 U * (k -i) → F i (k -i)[2k -i -1]
represented by the extension class of this exact sequence, is contained in the subcategory A, . . . , A(ki -1), A(ki) . So, to prove the claim of the lemma, it is enough to show that F i (ki) ∈ A, . . . A(ki) ⊥ . For this we use the twist by O X (ki) of (9.7). The terms of this twist clearly belong to the first line of (9.4) twisted by O X (-k), hence to the orthogonal of the second half of (9.4) twisted by O X (-k), i.e., to A, A(1), . . . , A(k -1) ⊥ . This gives the required embedding.

Combining this lemma with (9.5) we deduce an exceptional collection

R k = F k , F k-1 (1), . . . , F 1 (k -1) . (9.9) 
To prove the Theorem it remains to show it is completely orthogonal.

Lemma 9.8. We have Ext

• (F i (k -i), F j (k -j)) = 0 for all 1 ≤ j < i ≤ k.
Proof. To show this we use for F i (ki) resolution (9.8) twisted by O X (ki), and for F j (kj) resolution (9.7) twisted by O X (kj). The terms of the first are contained in the subcategory A, . . . , A(ki -1), A(ki), S k-1 U * (ki) , and the terms of the second are contained in the subcategory S k-1 U * (-j), A(1j), . . . , A(-1) .

All the components of these subcategories are clearly semiorthogonal -this follows immediately from the twist of (9.4) by O X (-j), since -j < ki ≤ k -1j by the assumption on i and j taken in the lemma.

This Lemma together with the exceptional collection (9.9) proves Theorem 9.5. We denote the corresponding residual subcategory of IG(2, 2k) by Rk , so that Rk = Ā, Ā(1), . . . , Ā(2k -2) ⊥ .

Using mutations of exceptional collections it is easy to deduce from (9.10) that Rk = L Ā(S k-1 U * ), L Ā, Ā(1) (S k-1 U * (1)), . . . L Ā, Ā(1),..., Ā(k-2) (S k-1 U * (k -2)) . (9.11) The first step of the proof in this case is to show that these objects are given by the (restrictions to IG(2, 2k)) of the same sheaves F i as before.

Lemma 9.9. For every 2 ≤ i ≤ k there is an isomorphism

L Ā,..., Ā(k-i) (S k-1 U * (k -i)) ∼ = F i (k -i)[2k -i -1].
Proof. The same proof as in Lemma 9.7 applies. We restrict exact sequences (9.7) and (9.8) to X = IG (2, 2k). Twisting the restriction of (9.8) by O X (ki) we note that all its terms (except for the leftmost F i (ki) and the rightmost S k-1 U * (ki)) lie in the subcategory Ā, . . . , Ā(ki -1), Ā(ki) . In other words, the cone of the morphism

S k-1 U * (k -i) → F i (k -i)[2k -i -1]
represented by the extension class of this exact sequence, is contained in the subcategory Ā, . . . , Ā(k -i-1), Ā(k -i) . So, to prove the claim of the lemma, it is enough to show that F i (k -i) ∈ Ā, . . . Ā(k -i) ⊥ . For this we use the twist by O X (k -i) of the restriction of (9.7). The terms of this twist belong to the first line of (9.10) twisted by O X (-k), hence to the orthogonal of the second line of (9.10) twisted by O X (-k), i.e., to Ā, Ā(1), . . . , Ā(k -2) ⊥ . This gives the required embedding.

Combining this lemma with (9.11) we deduce an exceptional collection Rk = F k , F k-1 (1), . . . , F 2 (k -2) .

(9.12)

Remark 9.10. Note that the object F 1 (k -1) = S k-1 U * (-1) also belongs to Rk . This follows easily by mutating the first component Ā of (9.10) to the right (it gets twisted by the anticanonical class O X (2k -1)), and then twisting the resulting decomposition by O X (-1).

To prove the Theorem it remains to compute Ext-spaces between its objects.

Lemma 9.11. Assume 1 ≤ j < i ≤ k. We have

Ext • (F i (k -i), F j (k -j)) = C, if i = j + 1, 0, otherwise.
Proof. To show this we use for F i (ki) (the restriction of) resolution (9.8) twisted by O X (ki), and for F j (kj) (the restriction of) resolution (9.7) twisted by O X (kj). The terms of the first are contained in the subcategory Ā, . . . , Ā(ki -1), Ā(ki), S k-1 U * (ki) ,

and the terms of the second are contained in the subcategory S k-1 U * (-j), Ā(1j), . . . , Ā(-1) .

In case of i ≥ j + 2 all the components of these subcategories are clearly semiorthogonalthis follows immediately from the twist of (9.10) by O X (-j), since -j < ki ≤ k -2j by the assumption on i and j. If, however, i = j + 1 we do not have a semiorthogonality between S k-1 U * (k -i) and S k-1 U * (-j). On a contrary, a direct Borel-Bott-Weil calculation shows that Ext • (S k-1 U * (ki), S k-1 U * (-j)) ∼ = Ext • (S k-1 U * , S k-1 U * (ijk))

∼ = Ext • (S k-1 U * , S k-1 U * (1 -k)) ∼ = C[3 -2k].
Finally, using exact sequences (9.7) and (9.8) we deduce that

Ext • (F i (k -i), F j (k -j)) ∼ = Ext • (S k-1 U * (k -i)[i + 1 -2k], S k-1 U * (-j)[j -1]) ∼ = Ext • (S k-1 U * (k -i), S k-1 U * (-j))[2k -3] ∼ = C.
Remark 9.12. A chain of morphisms

F k → F k-1 (1) → • • • → F 2 (k -2) → F 1 (k -1)
computed in Lemma 9.11 can be described as follows. Consider the bicomplex of [20, Proposition 5.3]. Replacing m by k and W by V (according to the difference in the notation), and identifying V with V * via the symplectic form, we note that the columns of the obtained bicomplex coincide with the sequences (9.7) twisted by O(2ki). Since the totalization of the bicomplex is exact, we conclude that the cohomology sheaves of the vertical differential of the bicomplex form an exact sequence

0 → F k (k) → F k-1 (k -1) → • • • → F 2 (2k -2) → F 1 (2k -1) → 0,
from which the required chain can be obtained by a twist.

Lemma 9.11 together with the exceptional collection (9.9) proves Theorem 9.6. Indeed, we can define the functor D b (A k-1 ) → Rk by the rule

S i → F k+1-i (i -1)[1 -i], 1 ≤ i ≤ k -1
where S i stand for the simple representations of the quiver. Since Ext • (S i , S j ) = C[-1], if i = j -1, 0, otherwise, it follows that the functor is fully faithful, and by (9.12) it is essentially surjective.

Remark 9.13. Under this equivalence the extra object F 1 (k -1) ∈ Rk corresponds (up to a shift) to the projective module of the first vertex of the quiver.

7. 5 .

 5 F -manifold of BQH(IG(2, 2n)). Let (M, O, •, e) be the germ at the origin of the Fmanifold for the big quantum cohomology of IG(2, 2n) as defined in Section 7.2. The decomposition of QH(IG(2, 2n)) described in Section 4.2 gives rise to the decomposition of the algebra (T O M, • O ) = QH(IG(2, 2n)) C into the product of local algebras. Thus, according to Section 7.1, we obtain the product decomposition

Definition 9 . 1 .

 91 A Lefschetz exceptional collection in D b (X) with respect to the line bundle O X (1) is an exceptional collection in D b (X) which has a block structure 

9. 3 .

 3 Isotropic Grassmannian. Denote the block of the rectangular part of the collection (9.3) by Ā, so that Ā = O, U * , . . . , S k-2 U * .The Lefschetz decomposition of IG(2, 2k) then can be rewritten asD b (IG(2, 2k)) = Ā, S k-1 U * , Ā(1), S k-1 U * (1), . . . , Ā(k -2), S k-1 U * (k -2), Ā(k -1), Ā(k), . . . , Ā(2k -2) . (9.10)
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is called the rectangular part of (E • , λ). The subcategory orthogonal to the rectangular part of a Lefschetz exceptional collection is called the residual subcategory. It is zero if and only if the original collection is full and rectangular.

The main result of this section is the following two Theorems describing the residual subcategories of (9.2) and (9.3). Note that the residual subcategory of (9.1) is zero.

Theorem 9.5. The residual subcategory of (9.2) is generated by k completely orthogonal exceptional objects. In particular, it is equivalent to the derived category of the union of k disjoint points.

Theorem 9.6. The residual subcategory of (9.3) is equivalent to the derived category of representations of A k-1 quiver.

We prove Theorem 9.5 in Section 9.2, and Theorem 9.6 in Section 9.3 below. 9.2. Usual Grassmannian. Denote the block of the rectangular part of the collection (9.2) by A, so that A = O, U * , . . . , S k-2 U * . The Lefschetz decomposition of G(2, 2k) then can be rewritten as

We denote the corresponding residual subcategory of G(2, 2k) by R k , so that

Using mutations of exceptional collections it is easy to deduce from (9.4) that

where L A is the left mutation through A, L A,A(1) is the left mutation through A, A(1) , and so on. So, it is enough to show that these objects (they are automatically exceptional) are completely orthogonal. For this we will use an alternative description of the objects, obtained by using the following long exact sequence (constructed in [20, Proof of Lemma 4.3]):

Its second line is the Koszul complex, and its cohomology is isomorphic to Λ k-1 U ⊥ . Its first line is the dual of the second line twisted by O X (-1) taking into account isomorphisms S i U ∼ = S i U * (-i) (obtained by taking the symmetric powers of the isomorphism U ∼ = U * (-1)). Consequently, the cohomology of the first line is isomorphic to Λ k-1 (V /U) ⊗ O X (-1). So, the canonical isomorphism

allows to glue the two lines into a single long exact sequence.

We denote by F i the cohomology of the subcomplex of (9.6) consisting of its first i terms. In other words, F i are defined by the following exact sequences