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We prove that the Framisation of the Temperley-Lieb algebra is isomorphic to a direct sum of matrix algebras over tensor products of classical Temperley-Lieb algebras. We use this result to obtain a closed combinatorial formula for the invariants for classical links obtained from a Markov trace on the Framisation of the Temperley-Lieb algebra. For a given link L, this formula involves the Jones polynomials of all sublinks of L, as well as linking numbers.

Introduction

The Temperley-Lieb algebra was introduced by Temperley and Lieb [TeLi] for its applications in statistical mechanics. Jones later showed that the Temperley-Lieb algebra can be seen as a quotient of the Iwahori-Hecke algebra of type A [START_REF] Jones | Index for Subfactors[END_REF][START_REF] Jones | Hecke algebra representations of braid groups and link polynomials[END_REF]. He defined a Markov trace on it, now known as the Jones-Ocneanu trace, and used it to construct his famous polynomial link invariant, the Jones polynomial. This trace is also obtained as a specialisation of a trace defined directly on the Iwahori-Hecke algebra of type A, which in turn yields another famous polynomial link invariant, the HOMFLYPT polynomial (also known as the 2-variable Jones polynomial) [HOMFLY, PT].

Yokonuma-Hecke algebras were introduced by Yokonuma [Yo] as generalisations of Iwahori-Hecke algebras. In particular, the Yokonuma-Hecke algebra of type A is the centraliser algebra associated to the permutation representation with respect to a maximal unipotent subgroup of the general linear group over a finite field. In later years, Juyumaya transformed its presentation to "almost" the one we use in this paper and defined a Markov trace on it [START_REF] Juyumaya | Sur les nouveaux générateurs de l'algèbre de Hecke H(G,U,1)[END_REF][START_REF] Juyumaya | Braid relations in the Yokonuma-Hecke algebra[END_REF][START_REF] Juyumaya | Markov trace on the Yokonuma-Hecke algebra[END_REF]. Following Jones's method, Juyumaya and Lambropoulou used this trace to construct invariants for framed [START_REF] Juyumaya | Lambropoulou, p-adic framed braids[END_REF][START_REF] Juyumaya | p-adic framed braids II[END_REF], classical [START_REF] Juyumaya | An adelic extension of the Jones polynomial[END_REF] and singular [START_REF] Juyumaya | An invariant for singular knots[END_REF] links. The exact presentation for the Yokonuma-Hecke algebra used in this paper is due to the author and Poulain d'Andecy, who modified Juyumaya's generators in [ChPdA]. Although the construction of the Markov trace with the new generators remains similar, the invariants for framed and classical links obtained from it are not topologically equivalent to the Juyumaya-Lambropoulou ones. This was shown in [CJKL], where the new invariants were constructed and studied. From then on, these are the "standard" link invariants obtained from the Yokonuma-Hecke algebra of type A. As was shown in [CJKL], they are not topologically equivalent to the HOMFLYPT polynomial and they can be generalised to a 3-variable skein link invariant which is stronger than the HOMFLYPT. In the Appendix of [CJKL], Lickorish gave a closed combinatorial formula for the value of these invariants on a link L which involves the HOMFLYPT polynomials of all sublinks of L and linking numbers. The same formula was obtained independently by Poulain d'Andecy and Wagner [PdAWa] with a method that we will discuss at the end of the introduction.

However, even prior to these recent results, there has been algebraic and topological interest in finding the analogue of the Temperley-Lieb algebra in the Yokonuma-Hecke algebra context. On the one hand, it would be a quotient of the Yokonuma-Hecke algebra of type A such that the Markov trace on it would yield a link invariant more general (and now known to be stronger) than the Jones polynomial. On the other hand, it would be an example of the "framisation technique" proposed in [START_REF] Juyumaya | On the framization of knot algebras[END_REF], according to which known algebras producing invariants for classical links can be enhanced with extra generators to produce invariants for framed links; the foremost example is the Yokonuma-Hecke algebra of type A which can be seen as the "framisation" of the Iwahori-Hecke algebra of type A.

Goundaroulis, Juyumaya, Kontogeorgis and Lambropoulou defined and studied three quotients of the Yokonuma-Hecke algebra of type A as potential candidates [START_REF] Goundaroulis | The Yokonuma-Temperley-Lieb algebra[END_REF][START_REF] Goundaroulis | Framization of the Temperley-Lieb algebra[END_REF]. The one with the biggest topological interest was named "Framisation of the Temperley-Lieb algebra" and it is the one that produces the suitable generalisation of the Jones polynomial. The claim that this algebra is the natural analogue of the Temperley-Lieb algebra in this context is backed up algebraically by our findings in [START_REF] Chlouveraki | Representations of the Framisation of the Temperley-Lieb algebra[END_REF][START_REF] Chlouveraki | Representation theory and an isomorphism theorem for the Framisation of the Temperley-Lieb algebra[END_REF], where we studied the representation theory of this algebra and we proved the isomorphism theorem that we present in the current article (we also studied similarly the other two candidates in [START_REF] Chlouveraki | Determination of the representations and a basis for the Yokonuma-Temperley-Lieb algebra[END_REF][START_REF] Chlouveraki | Representation theory and an isomorphism theorem for the Framisation of the Temperley-Lieb algebra[END_REF]). This isomorphism theorem states that the Framisation of the Temperley-Lieb algebra is isomorphic to a direct sum of matrix algebras over tensor products of Temperley-Lieb algebras. This result makes the Framisation of the Temperley-Lieb algebra the ideal analogue of the Temperley-Lieb algebra in view of Lusztig's isomorphism theorem [Lu], later reproved by Jacon and Poulain d'Andecy [JaPdA], Espinoza and Ryom-Hansen [EsRy] and Rostam [Ro], that states that the Yokonuma-Hecke algebra of type A is isomorphic to a direct sum of matrix algebras over tensor products of Iwahori-Hecke algebras of type A. To prove our result we use the exposition by Jacon and Poulain d'Andecy, where the presentation of the Yokonuma-Hecke algebra of [ChPdA] is used. In fact, in the current article we do not use the modified presentation that we used in [START_REF] Chlouveraki | Representations of the Framisation of the Temperley-Lieb algebra[END_REF][START_REF] Chlouveraki | Representation theory and an isomorphism theorem for the Framisation of the Temperley-Lieb algebra[END_REF], but we reprove the results with the presentation of [ChPdA] in order to be with agreement with the most recent topologically oriented papers on the subject (for example, [CJKL], [GoLa], [PdA], etc.). Finally, our isomorphism theorem allows us to determine a basis for the Framisation of the Temperley-Lieb algebra.

In the second part of the paper, we discuss the Markov traces on the Temperley-Lieb algebra and its Framisation, and explain how we can use them to define invariants for classical links from the former and for framed and classical links from the latter. We give several definitions of the traces. First, for the Jones-Ocneanu trace, we give the original definition of [START_REF] Jones | Hecke algebra representations of braid groups and link polynomials[END_REF] of a trace that needs to be normalised and re-scaled to produce a link invariant, and another one which is already invariant under positive and negative stabilisation. As far as the Juyumaya trace is concerned, the original definition of [START_REF] Juyumaya | Markov trace on the Yokonuma-Hecke algebra[END_REF] is also of a trace that needs to be normalised and re-scaled to produce a link invariant (under certain conditions discussed in detail in §4.3), and its stabilised version appears as a particular case of the Markov traces defined and classified by Jacon and Poulain d'Andecy in [JaPdA]. Using these stabilised traces and the isomorphism theorem for the Yokonuma-Hecke algebra, Poulain d'Andecy and Wagner in [PdAWa] obtained closed formulas that connect the values of these traces on a link L with the values of the HOMFLYPT polynomials of all sublinks of L, as well as their linking numbers. For a certain choice of parameters (see [START_REF] Poulain D'andecy | Invariants for links from classical and affine Yokonuma-Hecke algebras[END_REF]Remarks 5.4] for details), they obtain Lickorish's formula. Here, we consider stabilised Markov traces on the Framisation of the Temperley-Lieb algebra, and thanks to our isomorphism theorem, we obtain an analogue of this formula for the link invariants obtained in this case; for a given link L, this formula involves the Jones polynomials of all sublinks of L and linking numbers. This formula has been obtained independently in [GoLa] as a specialisation of Lickorish's formula.

The Temperley-Lieb algebra and its Framisation

In this section, we give the definition of the Temperley-Lieb algebra as a quotient of the Iwahori-Hecke algebra of type A given by Jones [START_REF] Jones | Hecke algebra representations of braid groups and link polynomials[END_REF], as well as the definition of the Framisation of the Temperley-Lieb algebra as a quotient of the Yokonuma-Hecke algebra of type A given by Goundaroulis-Juyumaya-Kontogeorgis-Lambropoulou [START_REF] Goundaroulis | Framization of the Temperley-Lieb algebra[END_REF]. From now on, let n ∈ N, d ∈ N * , and let q be an indeterminate. Set R := C[q, q -1 ].

2.1. The Iwahori-Hecke algebra H n (q). The Iwahori-Hecke algebra of type A, denoted by H n (q), is an R-associative algebra generated by the elements G 1 , . . . , G n-1 subject to the following braid relations:

(2.1)

G i G j = G j G i for all i, j = 1, . . . , n -1 with |i -j| > 1, G i G i+1 G i = G i+1 G i G i+1 for all i = 1, . . . , n -2,
together with the quadratic relations:

(2.2)

G 2 i = 1 + (q -q -1 )G i for all i = 1, . . . , n -1.
Remark 2.1. If we specialise q to 1, the defining relations (2.1)-(2.2) become the defining relations for the symmetric group S n . Thus, the algebra H n (q) is a deformation of C[S n ], the group algebra of S n over C.

Remark 2.2. The relations (2.1) are defining relations for the classical braid group B n on n strands. Thus, the algebra H n (q) arises naturally as a quotient of the braid group algebra R[B n ] over the quadratic relations (2.2).

Let w ∈ S n and let w = s i1 s i2 . . . s ir be a reduced expression for w, where s i denotes the transposition (i, i+1). We define (w) := r to be the length of w. By Matsumoto's lemma, the element G w := G i1 G i2 . . . G ir is well defined. It is well-known that the set B Hn(q) := {G w } w∈Sn forms a basis of H n (q) over R, which is called the standard basis. One presentation of the standard basis is the following:

B Hn(q) = (G i1 G i1-1 . . . G i1-k1 ) . . . (G ip G ip-1 . . . G ip-kp ) 1 ≤ i 1 < • • • < i p ≤ n -1 i j -k j ≥ 1 ∀ j = 1, . . . , p
In particular, H n (q) is a free R-module of rank n!.

2.2. The Temperley-Lieb algebra TL n (q). Let i = 1, . . . , n -2. We set

G i,i+1 := 1 + qG i + qG i+1 + q 2 G i G i+1 + q 2 G i+1 G i + q 3 G i G i+1 G i = w∈ si,si+1 q (w) G w .
We define the Temperley-Lieb algebra TL n (q) to be the quotient H n (q)/I n , where I n is the ideal generated by the element G 1,2 (if n ≤ 2, we take I n = {0}). We have G i,i+1 ∈ I n for all i = 1, . . . , n -2, since

G i,i+1 = (G 1 G 2 . . . G n-1 ) i-1 G 1,2 (G 1 G 2 . . . G n-1 ) -(i-1) .
Jones [START_REF] Jones | Index for Subfactors[END_REF] has shown that the set

B TLn(q) := (G i1 G i1-1 . . . G i1-k1 ) . . . (G ip G ip-1 . . . G ip-kp ) 1 ≤ i 1 < • • • < i p ≤ n -1 1 ≤ i 1 -k 1 < • • • < i p -k p ≤ n -1
is a basis of TL n (q) as an R-module. In particular, TL n (q) is a free R-module of rank C n , where C n denotes the n-th Catalan number, that is,

C n = 1 n + 1 2n n = 1 n + 1 n k=0 n k 2 .
2.3. The Yokonuma-Hecke algebra Y d,n (q). The Yokonuma-Hecke algebra of type A, denoted by Y d,n (q), is an R-associative algebra generated by the elements g 1 , . . . , g n-1 , t 1 , . . . , t n subject to the following relations:

(2.3) (b 1 ) g i g j = g j g i for all i, j = 1, . . . , n -1 with |i -j| > 1, (b 2 ) g i g i+1 g i = g i+1 g i g i+1 for all i = 1, . . . , n -2, (f 1 ) t i t j = t j t i for all i, j = 1, . . . , n, (f 2 ) t j g i = g i t si(j) for all i = 1, . . . , n -1 and j = 1, . . . , n, (f 3 ) t d j = 1 for all j = 1, . . . , n, where s i denotes the transposition (i, i + 1), together with the quadratic relations:

(2.4) g 2 i = 1 + (q -q -1 ) e i g i for all i = 1, . . . , n -1, where (2.5)

e i := 1 d d-1 s=0 t s i t d-s i+1 .
Note that we have e 2 i = e i and e i g i = g i e i for all i = 1, . . . , n -1. Moreover, we have (2.6)

t i e i = t i+1 e i for all i = 1, . . . , n -1.

Remark 2.3. If we specialise q to 1, the defining relations (2.3)-(2.4) become the defining relations for the complex reflection group G(d, 1, n) ∼ = (Z/dZ) S n . Thus, the algebra Y

d,n (q) is a deformation of C[G(d, 1, n)].
Moreover, for d = 1, the Yokonuma-Hecke algebra Y 1,n (q) coincides with the Iwahori-Hecke algebra H n (q) of type A.

Remark 2.4. The relations (b 1 ), (b 2 ), (f 1 ) and (f 2 ) are defining relations for the classical framed braid group F n ∼ = Z B n , where B n is the classical braid group on n strands, with the t j 's being interpreted as the "elementary framings" (framing 1 on the jth strand). The relations t d j = 1 mean that the framing of each braid strand is regarded modulo d. Thus, the algebra Y d,n (q) arises naturally as a quotient of the framed braid group algebra R[F n ] over the modular relations (f 3 ) and the quadratic relations (2.4). Moreover, relations (2.3) are defining relations for the modular framed braid group F d,n ∼ = (Z/dZ) B n , so the algebra Y d,n (q) can be also seen as a quotient of the modular framed braid group algebra R[F d,n ] over the quadratic relations (2.4).

Remark 2.5. The generators g i satisfying the quadratic relation (2.4) were introduced in [ChPdA]. In all the papers [START_REF] Juyumaya | Markov trace on the Yokonuma-Hecke algebra[END_REF][START_REF] Juyumaya | p-adic framed braids II[END_REF][START_REF] Juyumaya | An adelic extension of the Jones polynomial[END_REF][START_REF] Juyumaya | An invariant for singular knots[END_REF][START_REF] Chlouveraki | The Yokonuma-Hecke algebras and the HOMFLYPT polynomial[END_REF][START_REF] Goundaroulis | The Yokonuma-Temperley-Lieb algebra[END_REF][START_REF] Goundaroulis | Framization of the Temperley-Lieb algebra[END_REF] prior to [ChPdA], the authors consider the braid generators g i := g i + (q -1) e i g i (and thus, g i = g i + (q -1 -1) e i g i ), which satisfy the quadratic relation (2.7)

g 2 i = 1 + (q 2 -1) e i + (q 2 -1) e i g i , and the Yokonuma-Hecke algebra is defined over the ring C[q 2 , q -2 ]. Note that (2.8) e i g i = qe i g i for all i = 1, . . . , n -1.

Remark 2.6. In [START_REF] Chlouveraki | Representations of the Framisation of the Temperley-Lieb algebra[END_REF][START_REF] Chlouveraki | Representation theory and an isomorphism theorem for the Framisation of the Temperley-Lieb algebra[END_REF], we consider the braid generators g i := qg i , which satisfy the quadratic relation

(2.9) g 2 i = q 2 + (q 2 -1) e i g i , and the Yokonuma-Hecke algebra is defined over the ring C[q 2 , q -2 ]. Note that (2.10) e i g i = qe i g i for all i = 1, . . . , n -1.

Let w ∈ S n and let w = s i1 s i2 . . . s ir be a reduced expression for w. By Matsumoto's lemma, the element g w := g i1 g i2 . . . g ir is well defined. Juyumaya [START_REF] Juyumaya | Markov trace on the Yokonuma-Hecke algebra[END_REF] has shown that the set

B Y d,n (q) := {t a1 1 t a2 2 . . . t an n g w | 0 ≤ a 1 , a 2 , . . . , a n ≤ d -1, w ∈ S n } forms a basis of Y d,n (q) over R, which is called the standard basis. In particular, Y d,n (q) is a free R-module of rank d n n!.
2.4. The Framisation of the Temperley-Lieb algebra FTL d,n (q). Let i = 1, . . . , n -2. We set

g i,i+1 := 1 + qg i + qg i+1 + q 2 g i g i+1 + q 2 g i+1 g i + q 3 g i g i+1 g i = w∈ si,si+1 q (w) g w .
We define the Framisation of the Temperley-Lieb algebra to be the quotient Y d,n (q)/I d,n , where I d,n is the ideal generated by the element e 1 e 2 g 1,2 (if n ≤ 2, we take I d,n = {0}). Note that, due to (2.6), the product e 1 e 2 commutes with g 1 and with g 2 , so it commutes with g 1,2 . Further, we have e i e i+1 g i,i+1 ∈ I d,n for all i = 1, . . . , n -2, since

e i e i+1 g i,i+1 = (g 1 g 2 . . . g n-1 ) i-1 e 1 e 2 g 1,2 (g 1 g 2 . . . g n-1 ) -(i-1) . Remark 2.7. The ideal I d,n is also generated by the element 0≤a,b≤d-1 t a 1 t b 2 t -a-b 3 g 1,2 .
Remark 2.8. For d = 1, the Framisation of the Temperley-Lieb algebra FTL 1,n (q) coincides with the classical Temperley-Lieb algebra TL n (q).

Remark 2.9. In [START_REF] Goundaroulis | Framization of the Temperley-Lieb algebra[END_REF], the Framisation of the Temperley-Lieb algebra is defined to be the quotient Y d,n (q)/I d,n , where I d,n is the ideal generated by the element e 1 e 2 g 1,2 , where

g 1,2 = 1 + g 1 + g 2 + g 1 g 2 + g 2 g 1 + g 1 g 2 g 1 .
Due to (2.8) and the fact that the e i 's are idempotents, we have e 1 e 2 g 1,2 = e 1 e 2 g 1,2 , and so

I d,n = I d,n .
Remark 2.10. In [START_REF] Chlouveraki | Representations of the Framisation of the Temperley-Lieb algebra[END_REF][START_REF] Chlouveraki | Representation theory and an isomorphism theorem for the Framisation of the Temperley-Lieb algebra[END_REF], we define the Framisation of the Temperley-Lieb algebra to be the quotient Y d,n (q)/ I d,n , where I d,n is the ideal generated by the element e 1 e 2 g 1,2 , where

g 1,2 = 1 + g 1 + g 2 + g 1 g 2 + g 2 g 1 + g 1 g 2 g 1 .
Due to (2.10) and the fact that the e i 's are idempotents, we have e 1 e 2 g 1,2 = e 1 e 2 g 1,2 , and so

I d,n = I d,n .
3. An isomorphism theorem for the Framisation of the Temperley-Lieb algebra

Lusztig has proved that Yokonuma-Hecke algebras are isomorphic to direct sums of matrix algebras over certain subalgebras of classical Iwahori-Hecke algebras [START_REF] Lusztig | Character sheaves on disconnected groups VII, Represent[END_REF]§34]. For the Yokonuma-Hecke algebras Y d,n (q), these are all tensor products of Iwahori-Hecke algebras of type A. This result was reproved in [JaPdA] using the presentation of Y d,n (q) given by Juyumaya. Since we use the same presentation, we will use the latter exposition of the result in order to prove an analogous statement for FTL d,n (q).

Compositions and Young subgroups

. Let µ ∈ Comp d (n), where Comp d (n) = {µ = (µ 1 , µ 2 , . . . , µ d ) ∈ N d | µ 1 + µ 2 + • • • + µ d = n}.
We say that µ is a composition of n with d parts. The Young subgroup S µ of S n is the subgroup

S µ1 × S µ2 × • • • × S µ d
, where S µ1 acts on the letters {1, . . . , µ 1 }, S µ2 acts on the letters {µ 1 + 1, . . . , µ 1 + µ 2 }, and so on. Thus, S µ is a parabolic subgroup of S n generated by the transpositions s j = (j, j + 1) with

j ∈ J µ := {1, . . . , n -1} \ {µ 1 , µ 1 + µ 2 , . . . , µ 1 + µ 2 + • • • + µ d-1 }.
We have an Iwahori-Hecke algebra H µ (q) associated with S µ , which is the subalgebra of H n (q) generated by {G j | j ∈ J µ }. The algebra H µ (q) is a free R-module with basis {G w | w ∈ S µ }, and it is isomorphic to the tensor product (over R) of Iwahori-Hecke algebras

H µ1 (q) ⊗ H µ2 (q) ⊗ • • • ⊗ H µ d (q) (with H µi (q) ∼ = R if µ i ≤ 1).
For i = 1, . . . , d, we denote by ρ µi the natural surjection H µi (q) H µi (q)/I µi ∼ = TL µi (q), where I µi is the ideal generated by

G µ1+•••+µi-1+1,µ1+•••+µi-1+2 if µ i > 2 and I µi = {0} if µ i ≤ 2. We obtain that ρ µ := ρ µ1 ⊗ ρ µ2 ⊗ • • • ⊗ ρ µ d is a surjective R-algebra homomorphism H µ (q)
TL µ (q), where TL µ (q) denotes the tensor product of Temperley-Lieb algebras TL µ1 (q) ⊗ TL µ2 (q) ⊗ • • • ⊗ TL µ d (q). 3.2. An isomorphism theorem for the Yokonuma-Hecke algebra Y d,n (q). Let {ξ 1 , . . . , ξ d } be the set of all d-th roots of unity (ordered arbitrarily). Let χ be an irreducible character of the abelian group A d,n ∼ = (Z/dZ) n generated by the elements t 1 , t 2 , . . . , t n . There exists a primitive idempotent of C[A d,n ] associated with χ defined as

E χ := n j=1 1 d d-1 s=0 χ(t s j )t d-s j = n j=1 1 d d-1 s=0 χ(t j ) s t d-s j .
Moreover, we can define a composition µ χ ∈ Comp d (n) by setting

µ χ i := #{j ∈ {1, . . . , n} | χ(t j ) = ξ i } for all i = 1, . . . , d. Conversely, given a composition µ ∈ Comp d (n), we can consider the subset Irr µ (A d,n ) of Irr(A d,n ) defined as Irr µ (A d,n ) := {χ ∈ Irr(A d,n ) | µ χ = µ}.
There is an action of S n on Irr µ (A d,n ) given by w(χ)(t j ) := χ(t w -1 (j) ) for all w ∈ S n , j = 1, . . . , n.

Let χ µ 1 ∈ Irr µ (A d,n ) be the character given by              χ µ 1 (t 1 ) = • • • = χ µ 1 (t µ1 ) = ξ 1 χ µ 1 (t µ1+1 ) = • • • = χ µ 1 (t µ1+µ2 ) = ξ 2 χ µ 1 (t µ1+µ2+1 ) = • • • = χ µ 1 (t µ1+µ2+µ3 ) = ξ 3 . . . . . . . . . . . . . . . . . . . . . χ µ 1 (t µ1+•••+µ d-1 +1 ) = • • • = χ µ 1 (t n ) = ξ d
The stabiliser of χ µ 1 under the action of S n is the Young subgroup S µ . In each left coset in S n /S µ , we can take a representative of minimal length; such a representative is unique (see, for example, [START_REF] Geck | Characters of finite Coxeter groups and Iwahori-Hecke algebras[END_REF]§2.1]). Let {π µ,1 , π µ,2 , . . . , π µ,mµ } be this set of distinguished left coset representatives of S n /S µ , with

m µ = n! µ 1 !µ 2 ! . . . µ d !
and the convention that π µ,1 = 1. Then, if we set

χ µ k := π µ,k (χ µ 1 ) for all k = 1, . . . , m µ , we have Irr µ (A d,n ) = {χ µ 1 , χ µ 2 , . . . , χ µ mµ }. We now set E µ := χ∈Irr µ (A d,n ) E χ = mµ k=1 E χ µ k . Since the set {E χ | χ ∈ Irr(A d,n )} forms a complete set of orthogonal idempotents in Y d,n (q), and 
(3.1)

t j E χ = E χ t j = χ(t j )E χ and g w E χ = E w(χ) g w
for all χ ∈ Irr(A d,n ), j = 1, . . . , n and w ∈ S n , we have that the set

{E µ | µ ∈ Comp d (n)} forms a complete set of central orthogonal idempotents in Y d,n (q) (cf. [JaPdA, §2.4]).
In particular, we have the following decomposition of Y d,n (q) into a direct sum of two-sided ideals:

Y d,n (q) = µ∈Comp d (n) E µ Y d,n (q).
We can now define an R-linear map

Ψ µ : E µ Y d,n (q) → Mat mµ (H µ (q))
as follows: for all k ∈ {1, . . . , m µ } and w ∈ S n , we set

Ψ µ (E χ µ k g w ) := G π -1 µ,k wπ µ,l M k,l , where l ∈ {1, . . . , m µ } is uniquely defined by the relation w(χ µ l ) = χ µ k and M k,l is the elementary m µ × m µ matrix with 1 in position (k, l). Note that π -1 µ,k wπ µ,l ∈ S µ . We also define an R-linear map Φ µ : Mat mµ (H µ (q)) → E µ Y d,n (q)
as follows: for all k, l ∈ {1, . . . , m µ } and w ∈ S µ , we set

Φ µ (G w M k,l ) := E χ µ k g π µ,k wπ -1 µ,l E χ µ l .
Then we have the following [START_REF] Jacon | An isomorphism Theorem for Yokonuma-Hecke algebras and applications to link invariants[END_REF]Theorem 3.1]:

Theorem 3.1. Let µ ∈ Comp d (n).
The linear map Ψ µ is an isomorphism of R-algebras with inverse map Φ µ . As a consequence, the map

Ψ d,n := µ∈Comp d (n) Ψ µ : Y d,n (q) → µ∈Comp d (n) Mat mµ (H µ (q))
is also an isomorphism of R-algebras, with inverse map

Φ d,n := µ∈Comp d (n) Φ µ : µ∈Comp d (n) Mat mµ (H µ (q)) → Y d,n (q).
Remark 3.2. In [START_REF] Chlouveraki | Representation theory and an isomorphism theorem for the Framisation of the Temperley-Lieb algebra[END_REF], we show that we can construct similar isomorphisms over the smaller ring C[q 2 , q -2 ] when we consider the generators g i := qg i and G i := qG i . Note that

Ψ µ (E χ µ k g w ) := q (w)-(π -1 µ,k wπ µ,l ) G π -1 µ,k wπ µ,l M k,l and Φ µ ( G w M k,l ) := q (w)-(π -1 µ,k wπ µ,l ) E χ µ k g π µ,k wπ -1 µ,l E χ µ l .
In order to do this, we make use of Deodhar's lemma (see, for example, [START_REF] Geck | Characters of finite Coxeter groups and Iwahori-Hecke algebras[END_REF]Lemma 2.1.2]) about the distinguished left coset representatives of S n /S µ :

Lemma 3.3. (Deodhar's lemma) Let µ ∈ Comp d (n).
For all k ∈ {1, . . . , m µ } and i = 1, . . . , n -1, let l ∈ {1, . . . , m µ } be uniquely defined by the relation s i (χ µ l ) = χ µ k . We have

π -1 µ,k s i π µ,l =    1 if k = l; s j if k = l,
for some j ∈ J µ .

Deodhar's lemma implies that, for all i = 1, . . . , n -1, Ψ µ (E µ g i ) is a symmetric matrix whose diagonal non-zero coefficients are of the form G j with j ∈ J µ , while all non-diagonal non-zero coefficients are equal to q. Thus, if consider the diagonal matrix

U µ := mµ k=1 q (π µ,k ) M k,k , the coefficients of the matrix U µ Ψ µ (E µ g i )U -1
µ satisfy:

(U µ Ψ µ (E µ g i )U -1 µ ) k,l = q ( (π µ,k )-(π µ,l )) (Ψ µ (E µ g i )) k,l
, for all k, l ∈ {1, . . . , m µ }. Therefore, following the definition of Ψ µ and Deodhar's lemma, the matrix

U µ Ψ µ (E µ g i )U -1
µ is a matrix whose diagonal coefficients are the same as the diagonal coefficients of Ψ µ (E µ g i ) (and thus of the form G j with j ∈ J µ ), while all non-diagonal non-zero coefficients are equal to either 1 or q 2 . Moreover, since, for all j = 1, . . . , n,

Ψ µ (E µ t j ) = mµ k=1 χ µ k (t j )M k,k is a diagonal matrix, we have U µ Ψ µ (E µ t j )U -1 µ = Ψ µ (E µ t j ).
We conclude that the map

Ψ µ : E µ Y d,n (q) → Mat mµ (H µ (q)) defined by Ψ µ (E µ a) := U µ Ψ µ (E µ a)U -1 µ , for all a ∈ Y d,n (q), is an isomorphism of C[q 2 , q -2 ]-algebras. Its inverse is the map Φ µ : Mat mµ (H µ (q)) → E µ Y d,n (q) defined by Φ µ (A) := Φ µ (U -1 µ AU µ ), for all A ∈ Mat mµ (H µ (q)). As a consequence, the map Ψ d,n := µ∈Comp d (n) Ψ µ : Y d,n (q) → µ∈Comp d (n) Mat mµ (H µ (q))
is also an isomorphism of C[q 2 , q -2 ]-algebras, with inverse map

Φ d,n := µ∈Comp d (n) Φ µ : µ∈Comp d (n) Mat mµ (H µ (q)) → Y d,n (q).
3.3. From FTL d,n (q) to Temperley-Lieb. Recall that FTL d,n (q) is the quotient Y d,n (q)/I d,n , where I d,n is the ideal generated by the element e 1 e 2 g 1,2 (with

I d,n = {0} if n ≤ 2). Let µ ∈ Comp d (n).
We will study the image of e 1 e 2 g 1,2 under the isomorphism Ψ µ .

By (3.1), for all i = 1, . . . , n -1 and χ ∈ Irr(A d,n ), we have

(3.2) e i E χ = E χ e i = 1 d d-1 s=0 χ(t i ) s χ(t i+1 ) d-s E χ =    E χ if χ(t i ) = χ(t i+1 ); 0 if χ(t i ) = χ(t i+1 ).
We deduce that, for all k = 1, . . . , m µ ,

(3.3) E χ µ k e 1 e 2 g 1,2 =    E χ µ k g 1,2 if χ µ k (t 1 ) = χ µ k (t 2 ) = χ µ k (t 3 ); 0 otherwise . Proposition 3.4. Let µ ∈ Comp d (n) and k ∈ {1, . . . , m µ }.
We have

Ψ µ (E χ µ k e 1 e 2 g 1,2 ) =    G i,i+1 M k,k for some i ∈ {1, . . . , n -2} if χ µ k (t 1 ) = χ µ k (t 2 ) = χ µ k (t 3 ); 0 otherwise . Thus, Ψ µ (E µ e 1 e 2 g 1,2
) is a diagonal matrix in Mat mµ (H µ (q)) with all non-zero coefficients being of the form G i,i+1 for some i ∈ {1, . . . , n -2}.

Proof. If χ µ k (t 1 ) = χ µ k (t 2 ) = χ µ k (t 3 ), then w(χ µ k ) = χ µ k for all w ∈ s 1 , s 2 ⊆ S n , and so (3.4) Ψ µ (E χ µ k g 1,2 ) = w∈ s1,s2 Ψ µ (E χ µ k g w ) = w∈ s1,s2 G π -1 µ,k wπ µ,k M k,k .
We will show that there exists i ∈ {1, . . . , n -2} such that w∈ s1,s2

G π -1 µ,k wπ µ,k = G i,i+1
.

By Lemma 3.3, there exist i, j ∈ J µ such that

π -1 µ,k s 1 π µ,k = s i and π -1 µ,k s 2 π µ,k = s j .
Consequently, π -1 µ,k s 1 s 2 π µ,k = s i s j , π -1 µ,k s 2 s 1 π µ,k = s j s i and π -1 µ,k s 1 s 2 s 1 π µ,k = s i s j s i . Moreover, since s 1 and s 2 do not commute, s i and s j do not commute either, so we must have j ∈ {i -1, i + 1}. Hence, if j = i -1, then

w∈ s1,s2 G π -1 µ,k wπ µ,k = G i-1,i , while if j = i + 1, then w∈ s1,s2 G π -1 µ,k wπ µ,k = G i,i+1 .
We conclude that there exists i ∈ {1, . . . , n -2} such that w∈ s1,s2

G π -1 µ,k wπ µ,k = G i,i+1 , whence we deduce that Ψ µ (E χ µ k g 1,2 ) = G i,i+1 M k,k .
Combining this with (3.3) yields the desired result.

Markov traces and link invariants

The presentation for the Temperley-Lieb algebra given in §2.2 is due to Jones, who used a Markov trace defined on it, the Jones-Ocneanu trace, to construct his famous polynomial invariant for classical links, the Jones polynomial [START_REF] Jones | Hecke algebra representations of braid groups and link polynomials[END_REF]. A similar construction on the Framisation of the Temperley-Lieb algebra yields invariants for framed and classical links [START_REF] Goundaroulis | Framization of the Temperley-Lieb algebra[END_REF]. In this section, we will relate the latter to the Jones polynomial using the isomorphism of Theorem 3.6. 4.1. The inductive Jones-Ocneanu trace. Using the natural algebra inclusions H n (q) ⊂ H n+1 (q) for n ∈ N (setting H n (q) := R for n ≤ 1), we can define the Jones-Ocneanu trace on n≥0 H n (q) as follows [Jo2, Theorem 5.1]: Theorem 4.1. Let z be an indeterminate over C. There exists a unique linear Markov trace

τ z : n≥0 H n (q) -→ R[z]
defined inductively on H n (q), for all n ≥ 0, by the following rules:

τ z (1) = 1 1 ∈ H n (q) τ z (ab) = τ z (ba) a, b ∈ H n (q) τ z (aG n ) = z τ z (a) a ∈ H n (q).
It is easy to check (by solving the equation τ z (G 1,2 ) = 0) that the trace τ z passes to the quotient Temperley-Lieb algebra TL n (q) if and only if

z = - 1 q 2 (q + q -1 ) = - 1 q 3 + 1 or z = -q -1 .
The second value is discarded as not being topologically interesting. For z = -(q 3 + 1) -1 , we will simply denote τ z by τ .

Recall that we denote by ρ n the natural surjection H n (q) H n (q)/I n ∼ = TL n (q). Let us denote by σ 1 , . . . , σ n-1 the generators of the classical braid group B n , such that the natural epimorphism δ n : RB n H n (q) is given by δ n (σ i ) = G i . Then ρ n • δ n : RB n TL n (q) is also an epimorphism. Let now L denote the set of oriented links. For any α ∈ B n , we denote by α the link obtained as the closure of α. By the Alexander Theorem, we have L = ∪ n { α | α ∈ B n }. Further, by the Markov Theorem, isotopy of links is generated by conjugation in B n (αβ ∼ βα) and by positive and negative stabilisation (α ∼ ασ ±1 n ). Jones's method for constructing polynomial link invariants consists of normalising and re-scaling τ with respect to the latter: For any α ∈ B n , let

V q ( α) := (-q -q -1 ) n-1 q 2 (α) (τ • ρ n • δ n )(α) ,
where (α) is the sum of the exponents of the braiding generators σ i in the word α. Then the map

V q : L → R, α → V q ( α)
is an 1-variable ambient isotopy invariant of oriented links, known as the Jones polynomial (cf. [START_REF] Jones | Hecke algebra representations of braid groups and link polynomials[END_REF]).

Example 4.2. We consider the Hopf link with two positive crossings, which is the closure of the braid σ 2 1 ∈ B 2 . We have V q ( σ 2 1 ) = (-q -q -1 )q 4 τ (G 2 1 ) = -(q + q -1 )q 4 1 -q -q -1 q 2 (q + q -1 ) = -(q + q -1 )q 4 + (q -q -1 )q 2 = -q 5 -q.

Figure 1. The Hopf link with two positive crossings.

Remark 4.3. More generally, for any value of z, the trace τ z can be normalised and re-scaled with respect to positive and negative stabilisation as follows: For any α ∈ B n , let

P q,z ( α) := Λ n-1 H ( λ H ) (α) (τ z • δ n )(α)
, where

λ H := z -(q -q -1 ) z and Λ H := 1 z √ λ H .
Then the map

P q,z : L → R[z ±1 , λ H ±1
], α → P q,z ( α) is a 2-variable invariant of oriented links, known as the HOMFLYPT polynomial (cf. [HOMFLY, PT]). For z = -(q 3 + 1) -1 , we get λ H = q 4 and Λ H = -q -q -1 , whence P q,z = V q . 4.2. The stabilised Jones-Ocneanu traces. Instead of normalising and re-scaling the Jones-Ocneanu trace τ , we can consider a family of traces τ n : H n (q) → R for n ∈ N that are stabilised by definition. However, for any a ∈ H n (q), we have τ n (a) = τ n+1 (a).

More specifically, let us consider the Iwahori-Hecke algebra H n (q) with braid generators G i := q 2 G i . These satisfy the quadratic relation (4.1) G i 2 = q 4 + q 2 (q -q -1 )G i .

We then have the following (see, for example, [START_REF] Geck | Characters of finite Coxeter groups and Iwahori-Hecke algebras[END_REF]Theorem 4.5.2]):

Theorem 4.4. There exists a unique family of R-linear Markov traces τ n : H n (q) → R such that

τ 1 (1) = 1 τ n (ab) = τ n (ba) a, b ∈ H n (q) τ n+1 (aG n ) = τ n+1 (aG n -1 ) = τ n (a) a ∈ H n (q).
Moreover, we have τ n+1 (a) = (-q -q -1 )τ n (a) for all a ∈ H n (q).

We observe that

G 1,2 = 1 + q -1 G 1 + q -1 G 2 + q -2 G 1 G 2 + q -2 G 2 G 1 + q -3 G 1 G 2 G 1 .
We have τ 3 (1) = (-q -q -1 ) 2 τ 1 (1) = q 2 + 2 + q -2 τ 3 (G 1 ) = (-q -q -1 )τ 2 (G 1 ) = (-q -q -1 )τ

1 (1) = -q -q -1 τ 3 (G 2 ) = τ 2 (1) = (-q -q -1 )τ 1 (1) = -q -q -1 τ 3 (G 1 G 2 ) = τ 2 (G 1 ) = τ 1 (1) = 1 τ 3 (G 2 G 1 ) = τ 2 (G 1 ) = τ 1 (1) = 1 τ 3 (G 1 G 2 G 1 ) = τ 2 (G 1 2 ) = q 4 τ 2 (1) + q 2 (q -q -1 )τ 2 (G 1 ) = -q 5 -q whence τ 3 (G 1,2 ) = q 2 + 2 + q -2 -2 -2q -2 + 2q -2 -q 2 -q -2 = 0. Since we have τ n (G 1,2 ) = (-q -q -1 ) n-3 τ 3 (G 1,2
), the trace τ n factors through the Temperley-Lieb algebra TL n (q) for all n ∈ N. Further, if we consider the natural epimorphism δ n : RB n H n (q) given by δ (σ i ) = G i , we have [START_REF] Jones | Hecke algebra representations of braid groups and link polynomials[END_REF]§11]:

(4.2) (τ n • ρ n • δ n )(α) = V q ( α) for all α ∈ B n . Example 4.5. We have (τ 2 • ρ 2 • δ 2 )(σ 2 1 ) = τ 2 (G 1 2 ) = -q 5 -q.
Remark 4.6. More generally, for any value of z, if we consider the braid generators G i := √ λ H G i , where λ H = z-(q-q -1 ) z , and we define a family of stabilised Jones-Ocneanu traces (τ n z ) n∈N as in Theorem 4.4, with

τ n+1 z (a) = ( √ zλ H ) -1 τ n z (a) and with values in R[z ±1 , √ λ H ±1
], then we have [START_REF] Jones | Hecke algebra representations of braid groups and link polynomials[END_REF](6.2)]:

(τ n z • δ n )(α) = P q,z ( α) for all α ∈ B n .
4.3. The inductive Juyumaya trace. An important property of the Yokonuma-Hecke algebra is that it also supports a Markov trace defined for all values of n. More precisely, due to the inclusions Y d,n (q) ⊂ Y d,n+1 (q) (setting Y d,0 (q) := R), we obtain (cf. [START_REF] Juyumaya | Sur les nouveaux générateurs de l'algèbre de Hecke H(G,U,1)[END_REF]Theorem 12]):

Theorem 4.7. Let z, x 1 , . . . , x d-1 be indeterminates over C. There exists a unique linear Markov trace

tr d,z : n≥0 Y d,n (q) -→ C[z, x 1 , . . . , x d-1 ]
defined inductively on Y d,n (q), for all n ≥ 0, by the following rules:

tr d,z (1) = 1 1 ∈ Y d,n (q) tr d,z (ab) = tr d,z (ba) a, b ∈ Y d,n (q) tr d,z (ag n ) = z tr d,z (a) a ∈ Y d,n (q) tr d,z (at k n+1 ) = x k tr d,z (a) a ∈ Y d,n (q) (1 ≤ k ≤ d -1).
Remark 4.8. Note that, for d = 1, the trace tr 1,z is defined by only the first three rules. Thus, tr 1 coincides with the Jones-Ocneanu trace τ z on the Iwahori-Hecke algebra

H n (q) ∼ = Y 1,n (q).
The values of the parameters for which the trace tr d,z passes to the quotient algebra FTL d,n (q) are given in [START_REF] Goundaroulis | Framization of the Temperley-Lieb algebra[END_REF]Theorem 6]; their determination is not straightforward as in the classical case. However, not all of them are topologically interesting.

First, let us denote by d,n the natural surjection Y d,n (q) Y d,n (q)/I d,n ∼ = FTL d,n (q). Recall that we denote by F n the classical framed braid group. We have F n ∼ = Z B n , and there exists a natural epimorphism γ d,n : RF n Y d,n (q) given by γ d,n

(σ i ) = g i and γ d,n (t k j ) = t k(mod d) j for all k ∈ Z. The map d,n • γ d,n : RF n FTL d,n (q) 
is also an algebra epimorphism. Let now L f denote the set of oriented framed links. By the Alexander Theorem, we have

L f = ∪ n { α | α ∈ F n }.
Further, by the Markov Theorem for framed links [KoSm, Lemma 1], isotopy of framed links is generated by conjugation in F n (αβ ∼ βα) and by positive and negative stabilisation (α ∼ ασ ±1 n ), for any n. In view of all this, Juyumaya and Lambropoulou [START_REF] Juyumaya | p-adic framed braids II[END_REF] attempted to normalise and re-scale the trace tr d,z in order to obtain invariants for framed knots and links following Jones's method; they discovered that this is the only Markov trace known in literature that cannot be re-scaled directly. They showed that tr d,z re-scales when the parameters (x k ) 1≤k≤d-1 satisfy the following system of equations, known as the E-system:

(4.3) d-1 s=0 x k+s x d-s = x k d-1 s=0 x s x d-s (1 ≤ k ≤ d -1), with x 0 = x d = 1.
The solutions of the E-system where computed by Gérardin in the Appendix of [START_REF] Goundaroulis | Framization of the Temperley-Lieb algebra[END_REF] and they are parametrised by the non-empty subsets of Z/dZ: If D is such a subset, then

x k = 1 |D| j∈D exp 2πijk d (1 ≤ k ≤ d -1).
For the rest of the paper, D will denote a non-empty subset of Z/dZ and (x 1 , . . . , x d-1 ) will be the corresponding solution of the E-system. We will denote by tr d,D,z the Juyumaya trace with these parameters and we will call it the specialised Juyumaya trace. We have tr d,D,z (e i ) = 1/|D| =: E D for all i. According to [START_REF] Goundaroulis | Framization of the Temperley-Lieb algebra[END_REF](7.7)], the trace tr d,D,z passes to the quotient algebra FTL d,n (q) if and only if

z = - E D q 2 (q + q -1 ) = - E D q 3 + 1 or z = - E D q .
The second value is discarded as not being topologically interesting. For z = -E D (q 3 + 1) -1 , we will simply denote tr d,D,z by tr d,D . Normalising and re-scaling tr d,D with respect to positive and negative stabilisation yields the following: For any α ∈ F n , let

φ d,D,q ( α) := - q + q -1 E D n-1 q 2 (α) (tr d,D • d,n • γ d,n )(α) ,
where (α) is the sum of the exponents of the braiding generators σ i in the word α. Then the map

φ d,D,q : L f → R, α → φ d,D,q ( α)
is an 1-variable ambient isotopy invariant of oriented framed links [START_REF] Goundaroulis | Framization of the Temperley-Lieb algebra[END_REF](7.8)].

We denote by θ d,D,q the restriction of φ d,D,q to the set L of classical links; the map θ d,D,q is an 1-variable ambient isotopy invariant of oriented classical links.

Example 4.9. We consider the classical Hopf link with two positive crossings. We have

θ d,D,q ( σ 2 1 ) = - q + q -1 E D q 4 tr d,D (g 2 1 ) = - q + q -1 E D q 4 1 - (q -q -1 )E D q 2 (q + q -1 ) = - q 5 + q 3 E D + q 3 -q.
We now consider the framed Hopf link with framings 0 and 1. This is the closure of the framed braid

t 2 σ 2 1 . Note that (tr d,D • d,n • γ d,n )(t 2 σ 2 1 ) = tr d,D (t 2 g 2 1 ) = tr d,D (g 1 t 1 g 1 ) = tr d,D (t 1 g 2 1 ) = (tr d,D • d,n • γ d,n )(t 1 σ 2 1 ). We have tr d,D (t 1 g 2 1 ) = tr d,D (t 1 ) + (q -q -1 )tr d,D (t 1 e 1 g 1 ) = tr d,D (t 1 ) 1 - (q -q -1 )E D q 2 (q + q -1 ) = x 1 tr d,D (g 2 1 )
.

We deduce that

φ d,D,q ( t 2 σ 2 1 ) = - q + q -1 E D q 4 tr d,D (t 2 g 2 1 ) = x 1 θ d,D,q (σ 2 1 ) = x 1 - q 5 + q 3 E D + q 3 -q .
Remark 4.10. More generally, for any value of z, the trace tr d,D,z can be normalised and re-scaled with respect to positive and negative stabilisation as follows: For any α ∈ F n , let

Φ d,D,q,z ( α) := Λ n-1 D ( λ D ) (α) (tr d,D,z • γ d,n )(α)
, where

λ D := z -(q -q -1 )E D z and Λ D := 1 z √ λ D .
Then the map Φ d,D,q,z :

L f → R[z ±1 , λ D ±1 ], α → Φ d,D,q,z ( α)
is a 2-variable invariant of oriented framed links [START_REF] Chlouveraki | Identifying the invariants for classical knots and links from the Yokonuma-Hecke algebras[END_REF]Theorem 3.1]. For z = -E D (q 3 + 1) -1 , we get λ D = q 4 and Λ D = -(q + q -1 )/E D , whence Φ d,D,q,z = φ d,D,q . We denote by Θ d,D,q,z the restriction of Φ d,D,q,z to the set L of classical links; the map Θ d,D,q,z is a 2-variable invariant of oriented classical links. For z = -E D (q 3 + 1) -1 , we have Θ d,D,q,z = θ d,D,q .

Remark 4.11. Using the same construction, but replacing the generators g i with the generators g i := g i + (q -1) e i g i , Juyumaya and Lambropoulou defined 2-variable invariants for framed [START_REF] Juyumaya | p-adic framed braids II[END_REF] and classical [START_REF] Juyumaya | An adelic extension of the Jones polynomial[END_REF] links from the specialised Juyumaya trace on the Yokonuma-Hecke algebra Y d,n (q). Considering the specialised Juyumaya trace on FTL d,n (q), but replacing again g i with g i , Goundaroulis, Juyumaya, Kontogeorgis and Lambropoulou defined 1-variable invariants for framed and classical links in [START_REF] Goundaroulis | Framization of the Temperley-Lieb algebra[END_REF]. As shown in [START_REF] Chlouveraki | Identifying the invariants for classical knots and links from the Yokonuma-Hecke algebras[END_REF]Section 8], these invariants are not topologically equivalent to the ones we define in this paper. There is no such issue when replacing g i with g i := qg i or with g i := q 2 g i .

Remark 4.12. For d = 1, we have θ 1,{0},q = V q and Θ 1,{0},q,z = P q,z . More generally, when |D| = 1, it was shown in [ChLa] that the invariants θ d,D,q and Θ d,D,q,z are equivalent to the Jones and HOMFLYPT polynomials respectively. More specifically, let us consider the Yokonuma-Hecke algebra Y d,n (q) with braid generators g i := q 2 g i . These satisfy the quadratic relation (4.4) g i 2 = q 4 + q 2 (q -q -1 )e i g i .

We then have the following (see also [START_REF] Jacon | An isomorphism Theorem for Yokonuma-Hecke algebras and applications to link invariants[END_REF]§5.2], [PdA, §5.2]):

Theorem 4.13. There exists a unique family of R-linear Markov traces tr n d,D : Y d,n (q) → R such that

tr 1 d,D (1) = 1 tr n d,D (ab) = tr n d,D (ba) a, b ∈ Y d,n (q) tr n+1 d,D (ag n ) = tr n+1 d,D (ag n -1 ) = tr n d,D (a) a ∈ Y d,n (q) tr n+1 d,D (at k n+1 ) = x k tr n+1 d,D (a) a ∈ Y d,n (q) (1 ≤ k ≤ d -1).
Moreover, we have tr n+1 d,D (a) = (-q -q -1 )E -1 D tr n d,D (a) for all a ∈ Y d,n (q).

First of all, note that q 4 g n -1 = g n -q 2 (q -q -1 )e n .

Therefore, for all a ∈ Y d,n (q), we have Now, we observe that g 1,2 = 1 + q -1 g 1 + q -1 g 2 + q -2 g 1 g 2 + q -2 g 2 g 1 + q -3 g 1 g 2 g 1 .

q 2 (q -q -1 )tr n+1 d,D (ae n ) = tr n+1 d,D (ag n ) -q 4 tr n+1 d,D (ag n -1 ) = (1 -q 4 )tr n d,D ( 
We have tr 3 d,D (e 1 e 2 ) = (-q -q -1 )tr 2 d,D (e 1 ) = (-q -q -1 ) 2 tr 1 d,D (1) = q 2 + 2 + q -2 tr 3 d,D (e 1 e 2 g 1 ) = (-q -q -1 )tr 2 d,D (e 1 g 1 ) = (-q -q -1 )tr 1 d,D (1) = -q -q -1 tr 3 d,D (e 1 e 2 g 2 ) = tr 2 d,D (e 1 ) = (-q -q -1 )tr 1 d,D (1) = -q -q -1 tr 3 d,D (e 1 e 2 g 1 g 2 ) = tr 2 d,D (e 1 g 1 ) = tr 1 d,D (1) = 1 tr 3 d,D (e 1 e 2 g 2 g 1 ) = tr 2 d,D (e 1 g 1 ) = tr 1 d,D (1) = 1 tr 3 d,D (e 1 e 2 g 1 g 2 g 1 ) = tr 2 d,D (e 1 g 1 2 ) = q 4 tr 2 d,D (e 1 ) + q 2 (q -q -1 )tr 2 d,D (e 1 g 1 ) = -q 5 -q whence tr 3 d,D (e 1 e 2 g 1,2 ) = q 2 + 2 + q -2 -2 -2q -2 + 2q -2 -q 2 -q -2 = 0. Since we have tr n d,D (e 1 e 2 g 1,2 ) = -

q + q -1 E D n-3 tr 3 d,D (e 1 e 2 g 1,2 ),
the trace tr n d,D factors through the Framisation of the Temperley-Lieb algebra FTL d,n (q) for all n ∈ N. Further, if we consider the natural epimorphism γ d,n : RF n Y d,n (q) given by γ d,n

(σ i ) = g i and γ d,n (t k j ) = t k(mod d) j
for all k ∈ Z, we have [START_REF] Poulain D'andecy | Invariants for links from classical and affine Yokonuma-Hecke algebras[END_REF]Remarks 5.4]:

(4.7) (tr n d,D • d,n • γ d,n )(α) = φ d,D,q ( α) for all α ∈ F n .
Example 4.14. We have

(tr 2 d,D • d,2 • γ d,2 )(σ 2 1 ) = tr 2 d,D (g 1 2 ) = tr 2 d,D (q 4 + q 2 (q -q -1 )e 1 g 1 ) = - q 5 + q 3 E D + q 3 -q. and (tr 2 d,D • d,2 • γ d,2 )(t 2 σ 2 1 ) = tr 2 d,D (t 1 g 1 2 ) = q 4 tr 2 d,D (t 1 ) + q 2 (q -q -1 )tr 1 d,D (t 1 ) = x 1 - q 5 + q 3 E D + q 3 -q .
Remark 4.15. More generally, for any value of z, if we consider the braid generators g )(α) = Φ d,D,q,z ( α) for all α ∈ F n . 4.5. Connecting the invariants with the use of the isomorphism theorem. In this last subsection, we will only be interested in invariants of classical links. The invariants Θ d,D,q,z and θ d,D,q of §4.3 have been further studied in [CJKL] and [GoLa] respectively. where their following properties have been proved:

i := √ λ D g i , where λ D = z-(q-q -1 )E D z ,
(P1) They do not depend on d and D, but only on the cardinality of D (and equivalently on E D ). (P2) They can be generalised to skein link invariants where E D is taken to be an indeterminate.

(P3) They are not topologically equivalent to the HOMFLYPT polynomial and the Jones polynomial respectively. We will illustrate point (P3) for the invariant θ d,D,q with the following example.

Example 4.16. We consider the link L := LLL(0) of [EKT] with the orientation of Figure 2. This is a 3-component link, whose components are one left-handed trefoil (T) and 2 unknots (U1 and U2). The link L has the same Jones polynomial as the disjoint union of 3 unknots, even though it is not topologically equivalent to it. We have:

V q (L) = (q + q -1 ) 2 = V q ( 1 B3 ) Now, the link L is the closure of the following braid:

σ -1 1 σ 2 2 σ -1 3 σ -1 2 σ -1 4 σ -2 3 σ -1 2 σ -1 1 σ 2 σ 3 σ -3 2 σ 3 σ 2 σ 4 σ 3 σ 2 ∈ B 5 .
In order to compute θ d,D,q on the closure of this braid, we used the program designed for this reason by Karvounis [Ka], which is available at http://www.math.ntua.gr/ ~sofia/yokonuma. We have that θ d,D,q (L) is equal to:

V q (L) + (E D -1)
q + q -1 E 2 D q 11 E D q 16 -3q 14 + 2q 12 -5q 10 + 6q 8 -4q 6 + 4q 4 -5q 2 + 2 -q 10 -q 8 -q 6 + q 2 . We observe that for E D = 1, θ d,D,q (L) = V q (L). Moreover,

θ d,D,q ( 1 B3 ) = - q + q -1 E D 2 = E -2 D V q ( 1 B3 ),
and so θ d,D,q distinguishes two links that the Jones polynomial cannot distinguish. In the Appendix of [CJKL], Lickorish gave a closed combinatorial formula for computing the value of Θ d,D,q,z on a link L which involves the HOMFLYPT polynomials of all sublinks of L and linking numbers [START_REF] Chlouveraki | Identifying the invariants for classical knots and links from the Yokonuma-Hecke algebras[END_REF]Theorem B.1]. A specialisation of the above formula for z = -E D (q 3 + 1) -1 yields a similar result for the invariant θ d,D,q [GoLa, Corollary 2]. Lickorish's formula for Θ d,D,q,z was independently obtained by Poulain d'Andecy and Wagner [PdAWa] with the use of Theorem 3.1. In this section, we will obtain the corresponding formula for θ d,D,q with the use of our Theorem 3.6.

First of all, due to property (P1), we can restrict our study to θ d,q := θ d,Z/dZ,q . In this case, E D = 1/d. We have already seen that the stabilised Jones-Ocneanu traces defined in Theorem 4.4 factor through the Temperley-Lieb algebra. Thus, one can define on

µ∈Comp d (n) Mat mµ (TL µ (q)) = µ∈Comp d (n) Mat mµ (TL µ1 (q) ⊗ TL µ2 (q) ⊗ • • • ⊗ TL µ d (q)) the trace µ∈Comp d (n) (τ µ1 ⊗ τ µ2 ⊗ • • • ⊗ τ µ d ) • Tr Matm µ
where Tr Matm µ denotes the usual trace of a matrix. By [START_REF] Jacon | An isomorphism Theorem for Yokonuma-Hecke algebras and applications to link invariants[END_REF]§6], the map

T d,q : L → R, α → µ∈Comp d (n) (τ µ1 ⊗ τ µ2 ⊗ • • • ⊗ τ µ d ) • Tr Matm µ • (ψ d,n • d,n • γ d,n )(α)
is an 1-variable invariant of oriented classical links. This in turn implies that, for a given oriented link L, we have [START_REF] Poulain D'andecy | The HOMFLYPT polynomials of sublinks and the Yokonuma-Hecke algebras[END_REF]Corollary 4.2

]: (4.8) T d,q (L) = d! π q 4ν(π) V q (πL)
where the sum is over all partitions π of the components of L into d (unordered) subsets, V q (πL) is the product of the Jones polynomials of the d sublinks of L defined by π and ν(π) is the sum of all linking numbers of pairs of components that are in distinct sets of π.

Remark 4.17. Note that the sum of linking numbers appearing in [START_REF] Poulain D'andecy | The HOMFLYPT polynomials of sublinks and the Yokonuma-Hecke algebras[END_REF]Corollary 4.2] is twice the sum of linking numbers ν(π), as defined in [START_REF] Chlouveraki | Identifying the invariants for classical knots and links from the Yokonuma-Hecke algebras[END_REF]Theorem B.1] and here.

We then obtain the following closed combinatorial formula for θ d,q .

Proposition 4.18. Let L be an oriented link with m components. Then (4.9)

θ d,q (L) = m k=1 (d -1)(d -2) • • • (d -k + 1)
k! (-q -q -1 ) k-1 T k,q (L)

Proof. Recall that θ d,q (L) = (tr n d,Z/dZ • d,n • γ d,n )(α), where α ∈ B n is such that α = L. Then, by [START_REF] Poulain D'andecy | Invariants for links from classical and affine Yokonuma-Hecke algebras[END_REF]Proposition 5.5], we have

θ d,q (L) = 1 d m k=1 d k (-q -q -1 ) k-1 T k,q (L) = m k=1 (d -1)! k!(d -k)!
(-q -q -1 ) k-1 T k,q (L), and so (4.9) holds.

Remark 4.19. Because of property (P2), Formula (4.9) is still valid if we replace the integer d by an indeterminate (corresponding to E -1 D ). The standard notation used for this generalised invariant is θ (cf. [GoLa]). Example 4.20. We will use Formula (4.9) to compute the value of θ d,q on the Hopf link with two positive crossings. The Hopf link has two components, each of them being an unknot, and linking number ln(Hopf ) = 1. Formula (4.9) in combination with Equation (4.8) reads: θ d,q (Hopf ) = V q (Hopf ) + (d -1)(-q -q -1 )q 4ln(Hopf ) V q (U nknot) 2 = -q 5 -q + d(-q 5 -q 3 ) + q 5 + q 3 = q 3 -q -d(q 5 + q 3 ) since V q (U nknot) = 1. This coincides with the value that we found in Example 4.9 for E D = 1/d. Example 4.21. We will now use Formula (4.9) to compute the value of θ d,q on L := LLL(0) of Figure 2. We will denote by TU1 (respectively TU2) the 2-component link obtained when removing the component U2 (respectively U1) from L, and by U 1,2 the 2-component link obtained when removing the component T from L. We have used the programming language SAGE [Sage] to compute the Jones polynomials of these three 2-component links, while it is easy to determine their linking numbers by hand. We have: (4.10)

V q (TU1) = -q -3 (q 10 + q 6 + q 2 -1) and ln(TU1) = 2 V q (TU2) = -q -15 (q 10 + q 6 + q 2 -1) and ln(TU2) = -2 V q (U 1,2 ) = q -3 (q 10 + q 6 + q 2 -1) -2(q 5 + q) and ln(U 1,2 ) = 0. Formula (4.9) in combination with Equation (4.8) reads: θ d,q (L) = V q (L)+ +(d -1)(-q -q -1 )q 4(ln(TU2)+ln(U 1,2 )) V q (TU1)V q (U2)+ +(d -1)(-q -q -1 )q 4(ln(TU1)+ln(U 1,2 )) V q (TU2)V q (U1)+ +(d -1)(-q -q -1 )q 4(ln(TU1)+ln(TU2)) V q (U 1,2 )V q (T)+ +(d -1)(d -2)(-q -q -1 ) 2 q 4(ln(TU1)+ln(TU2)+ln(U 1,2 )) V q (T)V q (U1)V q (U2) Using the fact that V q (U1) = V q (U2) = 1, since U1 and U2 are unknots, and replacing the linking numbers with their values from (4.10), we obtain that θ d,q (L) is equal to:

V q (L) -(d -1)(q + q -1 )(q -8 V q (TU1) + q 8 V q (TU2) + V q (U 1,2 )V q (T)) + (d -1)(d -2)(q + q -1 ) 2 V q (T).

Moreover, since T is a left-handed trefoil knot, we have V q (T) = q -2 + q -6 -q -8 . Using also the values for V q (TU1), V q (TU2) and V q (U 1,2 ) from (4.10), we calculate: θ d,q (L) = V q (L) -(d -1)(q + q -1 )(q 5 -3q 3 + 2q -7q -1 + 4q -3 -6q -5 + 4q -7 -3q -9 + 2q -11 ) +(d -1)(d -2)(q + q -1 )(q -1 + q -3 + q -5 -q -9 ) which in turn is equal to:

V q (L) -(d -1)(q + q -1 )q -11 q 16 -3q 14 + 2q 12 -5q 10 + 6q 8 -4q 6 + 4q 4 -5q 2 + 2 -d(q 10 + q 8 + q 6 -q 2 ) .

This coincides with the value that we found in Example 4.16 for E D = 1/d. Remark 4.22. It is obvious from the examples that, as the number of components becomes larger, the algebraic definition of θ d,q directly from the Markov trace (or traces) on FTL d,n (q) is more efficient computationally than its combinatorial definition with the use of Formula (4.9).
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 4 The stabilised Jacon-Poulain d'Andecy traces. Similarly to the Jones-Ocneanu trace, instead of normalising and re-scaling tr d,D , we can consider a family of traces tr n d,D : Y d,n (q) → R for n ∈ N that are stabilised by definition. However, for any a ∈ Y d,n (q), we have tr n d,D (a) = tr n+1 d,D (a).

  (ae n ) = (-q -q -1 )tr n d,D (a) = E D tr n+1 d,D (a(at s n t d-s n ) = tr n d,D (a).

  and we define a family of stabilised Jones-Ocneanu traces (tr n d,D,z ) n∈N as in Theorem 4.13, with tr n+1 d,D,z (a) = ( √ zλ D ) -1 tr n d,D,z (a) and with values in R[z ±1 , z • γ d,n

Figure 2 .

 2 Figure 2. The link LLL(0).

Example 3.5. Let us consider the case d = 2 and n = 4. We have (µ, m µ ) ∈ {((4, 0), 1), ((3, 1), 4), ((2, 2), 6), ((1, 3), 4), ((0, 4), 1)}.

Then where we take π (1,3),4 = s 3 s 2 s 1 . Now, recall the surjective R-algebra homomorphism ρ µ : H µ (q) TL µ (q) defined in §3.1. The map ρ µ induces a surjective R-algebra homomorphism Mat mµ (H µ (q)) Mat mµ (TL µ (q)), which we also denote by ρ µ . We obtain that

is a surjective R-algebra homomorphism.

In order for

q), all elements of E µ I d,n have to belong to the kernel of ρ µ • Ψ µ . Since I d,n is the ideal generated by the element e 1 e 2 g 1,2 , it is enough to show that (ρ µ • Ψ µ )(e 1 e 2 g 1,2 ) = 0. This is immediate by Proposition 3.4. Hence, if we denote by µ the natural surjection

, there exists a unique R-algebra homomorphism ψ µ : E µ FTL d,n (q) → Mat mµ (TL µ (q)) such that the following diagram is commutative:

Since ρ µ • Ψ µ is surjective, ψ µ is also surjective.

3.4. From Temperley-Lieb to FTL d,n (q). We now consider the surjective R-algebra homomorphism:

where Φ µ is the inverse of Ψ µ . In order for µ • Φ µ to factor through Mat mµ (TL µ (q)), we have to show that G i,i+1 M k,l belongs to the kernel of µ • Φ µ for all i = 1, . . . , n -2 such that G i,i+1 ∈ H µ (q) (that is, {i, i + 1} ⊆ J µ ) and for all k, l ∈ {1, . . . , m µ }. Since

. By definition of Φ µ , and since π µ,1 = 1, we have

We conclude that there exists a unique R-algebra homomorphism φ µ : Mat mµ (TL µ (q)) → E µ FTL d,n (q) such that the following diagram is commutative:

Since µ • Φ µ is surjective, φ µ is also surjective.

3.5. An isomorphism theorem for the Framisation of the Temperley-Lieb algebra FTL d,n (q). We are now ready to prove the main result of this section.

Theorem 3.6. Let µ ∈ Comp d (n). The linear map ψ µ is an isomorphism of R-algebras with inverse map φ µ . As a consequence, the map

is also an isomorphism of R-algebras, with inverse map

Proof. Since the diagrams (3.5) and (3.7) are commutative, we have

This implies that

By Theorem 3.1, Ψ µ • Φ µ = id Matm µ (H µ (q)) and Φ µ • Ψ µ = id EµY d,n (q) , whence

Since the maps ρ µ and µ are surjective, we obtain

as desired.

Remark 3.7. In [START_REF] Chlouveraki | Representation theory and an isomorphism theorem for the Framisation of the Temperley-Lieb algebra[END_REF], we show that we can construct similar isomorphisms over the smaller ring C[q 2 , q -2 ] when we consider the generators g i = qg i and G i = qG i . For this, we use the presentation of FTL d,n (q) given in Remark 2.10 and the isomorphisms Ψ µ and Φ µ defined in Remark 3.2.

3.6.

A basis for the Framisation of the Temperley-Lieb algebra FTL d,n (q). We recall that in §2.2 we defined a basis B TLn(q) for the Temperley-Lieb algebra TL n (q). Thanks to Theorem 3.6, we obtain the following basis for FTL d,n (q) as an R-module:

Proposition 3.8. The set q) for all i = 1, . . . , d, 1 ≤ k, l ≤ m µ is a basis of FTL d,n (q) as an R-module. In particular, FTL d,n (q) is a free R-module of rank