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Abstract

We revisit the estimation of the extreme value index for randomly censored data from a heavy tailed dis-
tribution. We introduce a new class of estimators which encompasses earlier proposals given in Worms and
Worms (2014) and Beirlant et al. (2018), which were shown to have good bias properties compared with
the pseudo maximum likelihood estimator proposed in Beirlant et al. (2007) and Einmahl et al. (2008).
However the asymptotic normality of the type of estimators first proposed in Worms and Worms (2014) was
still lacking. We derive an asymptotic representation and the asymptotic normality of the larger class of es-
timators and consider their finite sample behaviour. Special attention is paid to the case of heavy censoring,
i.e. where the amount of censoring in the tail is at least 50%. We obtain the asymptotic normality with a
classical vk rate where k denotes the number of top data used in the estimation, depending on the degree
of censoring.
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1. Introduction

Starting from [Beirlant et al. | (2007)), the estimation of the extreme value index in a censorship framework
is of growing interest. Suppose we observe a sample of n independent couples (Z;,d;)1<i<n Where

Zi = mln(X“Cz) and (51 = HXiSCi'

The i.i.d. samples (X;);<n and (C;);<n, of respective continuous distribution functions F' and G, are samples
from the variable of interest X and of the censoring variable C, measured on n individual items (insurance
claims, hospitalized patients, ...). The variables X and C are supposed to be independent and, for convenience
only, we will suppose in this work that they are non-negative. We will denote by Z;, < ... < Z;, <
... < Z, n the order statistics associated to the observed sample, and by (61, ...,0, ) the corresponding
indicators of non-censorship.

Einmahl et al. | (2008) presented a general method for adapting estimators of the extreme value index in
this censorship framework. Worms and Worms | (2014]) proposed a more survival analysis-oriented approach
restricted to the heavy tail case, while Diop et al. | (2014) extended the framework to data with covariate
information. Beirlant et al. | (2016)) and Beirlant et al. [(2018) proposed bias-reduced versions of two existing
estimators. See also Brahimi et al. | (2015)), Brahimi et al. | (2016) and [Brahimi et al. | (2018) for other papers
on the subject.

In this paper, we propose a new class of estimators that encompasses one of the estimators proposed
in [Worms and Worms | (2014) and propose a novel approach to prove the asymptotic normality of these
estimators which was unknown up to now for the case 5 = 0. We consider here that the distributions F' and
G are heavy-tailed, with positive and respective extreme value indices (EVI) v, and s, i.e.

F(z)=1—F(z) =2 "p(x) and G(y) =1-G(y) =y "lc(y),

where [rp and lg are slowly varying at infinity. Our target is the EVI ~7, which we try to recover from our
randomly censored observations.

Denoting the distribution function of Z with H, by independence of X and C we readily obtain H(z) =
1 — H(2) = 27"y (2), where Iy = Iplg and the EVI v of Z is related to those of X and C via the
important relation 1/y = 1/9; + 1/42. Further in this paper, we will denote by p the crucial quantity
p =7/71 = v2/(71 + ¥2) €]0, 1[, which has to be interpreted as the asymptotic proportion of non-censored
observations in the tail.

We assume in this work that the slowly varying functions [z and lg satisfy the second order condition
first proposed by Hall and Welsh | (1985)). This yields the so called ”Hall-type” model, i.e. as x,y — +00,

F(z) = Cia " (1 + Dia= " (1 + 0(1))) (1)
G(y) = Coy™ /2 (14 Doy (1 + 0(1))) (2)
where (1, 82, C1,C5 are positive constants and Dy, Dy are real constants. Then, setting
D, if B < fa,
C =010y, By =min(py, ), and Dy=13 D if e < i,

Di+ Dy it pi=pa,
we have, as z — o0, -
H(z)=Cz" (14 Dyz % (1 +0(1))). (3)
Correspondingly, with H~ (u) = inf{z : H(2) = u} (0 < u < 1) the quantile function corresponding to H, we
consider Uy (z) = H~ (1 — 1/z), the right-tail function of H, for which as x — o0,

Up(z) = C727 (1 +yDyC~ 7777 (1 4 0(1))) . (4)

Let us now explain how we build our new family of estimators of ;. For some real number 3, consider
the Box-Cox transform k_g(u) = § t7#~1dt for u > 1, with the case 3 = 0 leading to ko(u) = log(u). Based
on the relation B
F(ut)
F(t)

Fop(u) = — (5)

0
i Bk 5000 X > 11 = iy | T



and estimating F' by the Kaplan-Meier estimator FXM defined for ¢ < Znm bY
. din
FEM(1) = Sl 6
o= 11 (7 ©)
we introduce the following class of statistics
E KM
= F (Zn—'+1 n) Zn—'+1 n Zn—'n
T, = TS Sk ot st LA Oy O kLN RN P ~Zn—jn 7
) jZ:Q FfM(ank,n) ’ Zn—kn ? Zn—k,n @)

where k = k,, denotes an integer sequence satisfying k,, — o0 and k,, = o(n). With 5 = 0 we thus obtain the
estimator

k mrM
(W) 7 Fn (Z”*]”rl,n) Zn7j+1,n
i 1= Tk(0) = = log (8)
1,k ; FgM(Zn—k,n) Zn—jm
of 71 which was considered in Worms and Worms (2014) and Beirlant et al. (2018). In fact %V,[:) turns

FKM(Z; j+1,n
J 1 FK]W(ZH k, n)
Worms | (2014) based on ideas issued from the so-called Leurgans approach in survival regression analysis.

The difference concerns a different way to circumvent the use of FXM at Z,, ,,: whether using left-limits or
deleting FXM(Z, ,,) as in %Vg)

out to be very close to the estimator Z

) log Zg’ifl’" defined in equation (12) of [Worms and

Note that the statistics T} (8) were used in [Beirlant et al. | (2018) to obtain a bias-reduced version of the

estimator %Vkv) :

e (1+ BAN)2(1 +2840)) (fk(ﬁl) A ) "

; W ~(W
(B )? L+ BiAty)
where (31 denotes the second order parameter of F' in assumption .

Now, it is clear from that we can construct the following estimator of y; when the tuning parameter
B is supposed to be larger than —1/~;:

T, (B)
1—BTL(8)

We will compare these estimators with the pseudo maximum likelihood estimator which was first proposed

Yk(B) = (10)

in the random censoring context by Beirlant et al. | (2007) and Einmahl et al. | (2008):

k
. ~ 1
Hk =5 kZl Znitln where p,, = E;5n_i+17n. (11)

nkn

In Beirlant et al. | (2018) a small sample simulation study was performed using all those available
estimators and it was found that %VZ) overall shows quite good bias and MSE performance. However, since
no results on the asymptotic normaﬂlity of this estimator were available yet, these authors proposed the use
of a bootstrap algorithm to construct confidence intervals. In this paper we prove the asymptotic normality

of 41 x(8) in the case p + vy > % Hence this paper provides the first complete proof of the asymptotic

normality for %VZ) in case p > %, issued from an explicit asymptotic development stated in Theorem [1| of
(

the next section. In the deterministic threshold case, this central limit result (for *Aylf/,‘:)) had already been
obtained in [Worms and Worms | (2018), where a more general competing risks setting was considered, and
using a different approach from the present proof.

The restriction p > % is rather restrictive for instance in insurance problems such as those discussed in
Beirlant et al. | (2018]) where heavy censoring appears. The introduction of the class of estimators 7y 1 (5)
helps to circumvent this problem when considering 5 > 0.

Finally, in the next section, we will see that our results also lead to the statement of the asymptotic

normality of the bias-reduced estimator %ZR), which was not known so far.

Our paper is organized as follows: in Section [2, we state and discuss the asymptotic normality result
3



for A1,5(8) and fyiim. Section [3| is devoted to the proof. Technical aspects of the proof are postponed to

the Appendix. In Section 4| we discuss the finite sample behavior of the different estimators 71 ,(8) with
B> —1/v1, and of %im.

2. Results

Our first and main result states the asymptotic behavior of the statistics T & (8) defined in . This result
entails the asymptotic normality of the estimator %Vg) of 71 by considering the particular case § = 0. The
main condition is that the heaviness of the tail of the censoring variable C should be sufficiently high with
respect to the one of the variable X. More precisely, introducing the notation pg = p+ 8 = p(1+v18), the
condition is be that pg must be larger than 1/2 (i.e. v2 > v1/(1 + 271 8)).

Theorem 1. Let conditions and hold. We assume further that ps > 5, and

PR
VE (k/n)"P* 23\, (12)
and, if A\ = 0, that n = O(kZ) for some large enough B > 0. We then have, as n — o0,

. 1 & e
\/E<T __n >=Gn+)\m +op(1) where Gnil— WP (B — 1) — (T, <)) —
8) - 13 g+ or(1) b v 2t 0B =) = (uisy = p)

with (E;) and (U;) denoting independent iid samples with, respectively, standard exponential and standard
uniform distributions, and

- —?B1D1C Pt (ps +4B1) "t if Br < Ba,
T lo if B > Ba.

Therefore, as n — o0,

A 2 2 2p—1
\/%(Tkﬁ __n )—d>N)\m ,02)  where 2= _P =2 PP )
(8) 1+mp (Amg, ) Popips—1 M2p—1pi2ps—1

Since G, is a sum of independent random variables, it is then easy, using Lyapunov’s CLT and the
delta-method, to derive the following asymptotic normality result for the family of estimators 4y 1 (5) of 71

defined by .

Corollary 1. Under the conditions of Theorem[l, as n — 0,

~ d
VE@1LK(B) = 1) == N(Amy, 5,02, 5)
where
9 2p—1
ng —1

p

(14 Bm) 712p—1

(1+ B71)

o2 L
1.8 p%QPB_l

and
m., 5 = { —2B1D1C P p (pp +9B81) THA + Bn)? if B < B,
Y1,P T

0 if B1 > [a.

Remark 1. Since %Vg) = fk(O) = A1,%(0), taking 8 = 0 in Theorem or in Corollary entails the

asymptotic normality for ﬂvz) when p > 1/2, i.e. when v2 > y1. When 8 > 0, the asymptotic normality

for 41 k(B) holds under the weaker assumption pg > 1/2, i.e. v2 > v1/(1+ 271 8), and therefore allowing for
stronger censoring in the tail. On the other hand the restriction becomes worse for negative [3.

When 81 < B2 the absolute value of the asymptotic bias of 41,,(8) is increasing in B. For a bias comparison
for the case 1 > B2 one needs third order assumptions. On the other hand the asymptotic variance of 31 1 (5)
is decreasing in B as long as pg < 1 and is increasing as pg > 1. It is difficult to say anything in general
about the comparison of the asymptotic mean-squared error of A1 1(8) with respect to %VZ) It is of course,
when B> 0 and p gets close to the value 1/2, in favor of 41 x(B), at least from a theoretical point of view.



Remark 2. From Einmahl et al. | (2008) it follows that the asymptotlc variance of 71 k s given by %

)

SIS

which, for all 1/2 < p < 1 is lower than the asymptotic variance k ml fﬁmj)
On the other hand, in case B1 < Bo it follows from |Beirlant et al. (2016) that the absolute value of the

asymptotic bias of %Hk) equals (k/n)"P*|m., o 111'1/1511, which is larger than (k/n)YP*|m., o| stated in the
above theorem.
(W)

Remark 3. The asymptotic distribution of ’?Lk i case p < %, and in general of A1 1(8) in case pg < %,
s not known. The authors conjecture that asymptotic normality still holds, however with a slower rate than
k=12, presumably k=P when p < 1/2, but the method of proof outlined below could not be carried through in
that case.

Combining the asymptotic developments of %Vg) and fk(ﬁ) for 8 = 1, which are both weighted sums
of the same 1.i.d. random variables p(E; — 1) — (Iy,<p — p), and relying on the two-dimensional Lyapunov’s
CLT and the delta-method, it is now possible to deduce the following asymptotic normality result for the

)

bias-reduced version of %VZ introduced in Beirlant et al. | (2018). The proof is omitted for brevity.

Corollary 2. Under the conditions of Theorem and assuming that p > 1/2, as n — o0, we have
~(BR d
VEGLLY =) =5 N(0.075p)
where, with § = pg, —p = vf,

2 s p P+ +(1—p)2+6+68)
9(BR) ‘= M5 ST —
2p—1  62(2p—1+0)(2p—1+20)

Remark 4. While the asymptotic bias of%im 18 always 0, its asymptotic variance is in general larger than
those of the competing estimators.

3. Proof of Theorem (1l

Let us introduce the following important notations with 1 <i,7 < k:

Ly it )
_ ilog Zn=itln - 1
& = jlog . and  u; R (13)
as well as the ratios — ( ) ,( )
. FEM(z. .. /A
RF; = —n \“n-g+ln/ d RF, = —22n—j+iln/ 14
FKM(Zn—k,n) ! F(Zn—k,n) ( )

If we also define ;1 3 = §; if 8 = 0 and otherwise

Eing = ]<k (Z"_ﬁ‘lv">k <Z”—j7">) — l <Z" jn)_ﬁ(zn—j-i-l,n)_ﬁ
g,k B —B ank,n -8 Z’nfk,n B n e ank;,n

then, from , we have

KM
71 n]"rl’ﬂ)gjkﬂ

n k,n) ]

0= g

where, using a Taylor expansion (of order 2) ,

~ -8B
. z . -8B 2
j —81 n—j,n —B1 n—j+1,n Zn—' n 5 Z',n
gj,k,ﬂ = E <exp Og(Z”,k,n) — exp Og( Zn—k,n )) = gj (Z];:l) +Bi ﬁ y (15)

for some variables Z; ,, satisfying Z,_j, < Zjn < Zpn—j+1,n-

The overall objective is to appropriately use the relation between the variables ¢; and standard exponential

order statistics E;") defined below, as well as between the ratios RF; and (anjﬂ,n/ank,n)*B and uniform
order statistics Vj (With mean u; ;) also defined below, in order to prove Theorem 1] Indeed, let (Y;) denote
ii.d. standard Pareto rv’s defined by Z; = Uy (Y;), and let

Viejr1k = Yoojetn/Yookm,  Vik =1/Yieji1k, and Ej(n) = jlog(Yn—j+1,n/Yn—jn), 1 <j<k. (16)
5



Vi.re) follows the distribution of the vector of order statistics of
E(n)) are jointl ] i
LBy jointly equal in

It is then known that (Vik,...,Vjk,...,
a standard uniform random sample of size k, and that the variables (E(n)

distribution to a sample of size k of independent standard exponential rv’s

Beirlant et. al. | (2002) showed that the rv’s ¢; and EJ(-n) are related as follows
(,y+u7ﬁ*bn k)l;]j(_”)7 (17)

V8
where b,, 1. is asymptotically equivalent to —y23, D, C 7Bx (L) T as k,n — o0 and k/n — 0. Properties
of the remainder term R,, ; will be detailed in Subsection [3.1]. Equation thus implies that
f},kﬁ + Ry,j.8 (18)

§j =& + R, j, where we define & =

kg =
where
-B
7.
_ / n—j+1,n
S0 = 5(322) 1)
_B 2 fad ﬁ
Ln—it1 &5 Z;
R, . R, . nJ+") 4 g2l | Zin _ 20
9b 7 ( Zn—k,n 62] Zn—k,n ( )
We can now start breaking down fk B) — into several terms by writing:
1+7 1+mB
7 M : jik,B g g ,‘kﬁ 71 b B
T - =Y RF; %2 1B RE 23R8 RE,2ond:
() L+mp ;2 Tj o 14+mp <;2 T 1+715> Zﬂ T
RF,; ot
= — 1| RF; 2%
okt T et
Sik, Ps—
+ (ZRF] ; k+12u3”“ )
j=2 j=2
Y pg—1 Y
O e N/
<k+1j22 Ik m)
kR y
+ Y RF; =%
i=2 J
— 7" + T + RO 4+ R (21)
with
) k 5/k k RE RE. ¢,
7 = Z(logRF logRFj) RN —10g 1 - i | b gy ekt
j=2 ] RFJ ]
(22)

Jj=2
_ (1) (1,2)
=T, + Ty, -
L1 s introduced in order to make logarithms of the Kaplan-Meier product appear, leading to

The term T,E M
manageable sums. Indeed, by definition of FX* we find that

k k
— i 1 & 1 1
log RF; = ) 0n_is1nlog (52) and  log RF; = - Z 7 + <log RF; + %bg W) .
1=] )

=7

Consequently, defining the following important notations
Zpivin\ "
Rﬂﬁ=RE(’“”“) i=2,...k (23)
Zn—k,n
and _
1¢ &
Sik,p = fZRFj,g—,, i=2,...,k,
i j



by inverting sums we obtain

k k !
(1,1) 1 L Znjiinm &
Ty, = —(& =) + (Op—it1,nilog +p] i (logRFtJrlog RF; g—
k, 1—22 [’Yl( ) ( +1, ( ) i k.8 ; J " Zo—om 7.8 j
1,1,1 1,1,2
Tli n )~ Tlg,ﬁ )' (25)
To summarize,
T(8) — — 12— = LY (b2 o2 )y ROy RO, (26)
L+mp ’ ’
Introducing now the additional notations
i —1 n 1
¢, =1+1ilog ! . Aip = p(EZ( ) 1) = (0p—it1.n —p), and B, = —by,, kuB*VE( ")
) it
and using (17)), one readily obtains the following formula for the main term T(l’l’l)
Tlg,l;ll’l Z AinSikps + Z BinSikp+ Z On—it1,nCiSi kg + — Z R..iSi k.5 (27)
1=2 =2 1=2 =2
In the sequel, we will show that the variables S; » s can be approximated appropriately by - 5 A1 +1 f b !
Also, as it is explained in [Einmahl et al. | (2008)), on one hand the parameter p = ~v/y; = —22— is the

Yi+72
limit of p(z) = P(6 = 1|Z = z) as z — 0, and on the other hand the original observations (Z;,d;)i<n

have the same distribution as the variables (Z 8!)i<n, where (Z!);<n is an independent copy of the sequence

1771

(Zi)isn, 0; = Ty, <p( 71y and (U;)i<n denotes some given i.i.d. sequence of standard uniform random variables
(shortened to rv’s), which are independent of the sequence (Z});<n. We thus carry on the proof by considering
from now on that the observations §; and Z; are related by the formula

6 = I[Ui<17(zi)'
Mimicking what is done in [Einmahl et al. | (2008]), we will later (see proof of Lemma [§) approximate the
rv’s dp—it1,n by i.i.d Bernoulli rv’s Iy, <.

The main goal will thus be to prove that the term 2522 A; »Si kg above is (up to a bias term) close to
the main random term appearing in Theorem

BkﬂZ (p(Ei — 1) — (lvigp — P}l (28)

The other terms in will be bias or remainder terms, noting that the coefficients ¢; are close to 0.
The second term T(1’1’2) in turns out to be adding to the bias since it only involves the slowly varying

function [r. The treatment of the third term T( 2) above is very important since it strongly participates to

the approximation of a ratio of the form FKM( )/FKM( ) by the ratio F(x)/F(y), for very large values of

2 and y. Such approximation is delicate. Invoking results from survival analysis, we will show however that
T,il;f) is a remainder term.

Next, T,f) is decomposed using the variables (V; 1) introduced in :

k k !
2 _ 7 P P Pﬁ 7 Ds §
Tk,nle_2(V}k_“gk> J’_ngk - ;(RFaﬁ_VJk)7~ (29)

According to the definition of f;, we can see that the second term of this decomposition is close to

%HZ’?:Q(EJ- - 1)u§iﬁl, While this is part of the main term described in 7 we will find in Proposi-
tion |3 that this term is neutralized by another part of T,E so that T( ) is just a bias term. Finally R%O ) and

RS ) will also turn out to be remainder terms.

The rest of the section is organised as follows. In subsection we set additional notations and state

7



some preliminary approximation results needed in the sequel. In subsection we state the asymptotic
results for all terms in and conclude the proof.

3.1. Additional notations and important preliminary results

e First, in the sequel we will regularly work under the following event, for some « > 1 arbitrary close to 1,
Ena ={V1<j<k, o ujp < Vjr <oujp }, (30)

where u; , and Vj j are defined in and . According to [Shorack and Wellner | (1986) (chapter 8), for
every a > 1 we have lim,,_,o P(&,,o) = 1. In the proof section, working ”on the event &, ,” will thus mean
stating bounds or results which are valid with an arbitrary large probability.

e Secondly, the remainder term R, ; defined in the second-order exponential representation of the log-
spacings satisfy, according to Theorem 2.1 in Beirlant et. al. | (2002),

[ | = op(buk log (51)): (31)

Ui,k

e Thirdly, under assumptions and , since Z; = Uy (Y;), one can show using and that

.= FEZn—j—ﬁ-l,n) Zn—j+1,n
o F(ank,n)

where C; 15 = ¥, "% DaC 5 (V7% | —1)(1+ 0p(1)) and Dy = D — 43Dy with D = =L D, if 85 < fy,
D =Dy~ 2D, if f < fa.

-8
Z ) = st(l +Cjra), (32)

e Finally, using Rényi representation (see for example (4.3) in Beirlant et. al. | (2004)) and a Taylor ex-
pansion, one obtains that for every 2 < j < k,

k (n) k 2
EM™ 1 1 k41 P
Vi —ulh = —ppujy, (Z ) — ppuly, (ZZ — log (j >> + ?,8‘/;0]5 (log(Vjn/ujk))?, (33)

iz i=j
where V. lies between Vjj and u;jj. The combination of and thus means that the ratio RF} g

will be appropriately approximated by the deterministic weights ujﬁ“.

3.2. Asymptotics for the terms in and conclusion of the proof

The first result stated concerns the term T,E’lr’Ll’l), which contains the main term of the decomposition of

Ti(8) — 1755 (see relations and )

Proposition 1. Under the conditions of Theorem[l], as n — o0, we have
(@) VEYS 5 AinSins = Gn + Nbg +0p(1), where

P 7 D1 if b1 <pa
bg = —7=—(1 = p)(DV)«B+C "% /(ps +¥B+) and (Dy)sx = —32D2 if  Ba<pr
Ps nD1—v2Ds if 1= B2

and G, is equal in distribution to

k
v 1 pp—1
——= D Uy 0B —1) = (lu;<p —p)),
Ds \/E = i,k g P
where (E;) and (6;) are independent iid samples with distributions standard exponential and standard
2
uniform. The variable G, is asymptotically centred gaussian distributed with variance 0% = ;—zwp_l.
B

() VRS, BinSiks = Abs +08(1) , where by = =2 LDy B0 [(pg +7By).

(€) S 5 0n—it1.nCiSing = op(k~Y/?)



(d) Zfzg Ry.iSikp = op(k™1/?)

The following proposition concerns the terms R,(zo), R%l), T,glf) and T,g}ﬁl’Q). The last two of these terms

result from the replacement of the ratios of Kaplan-Meier estimates RF j by the ratios of the true survival
function values RFj.

Proposition 2. Under the conditions of Theorem[1], as n — o,

(a) RgLO) = O(k_1/2)7 (b) RS) = OIP’(k_l/2)a (C) T}E,l/f) = OIF’(k_l/Q)a
(17172) _ 7ﬂ1 k Zn7j+1,n _Bl . f; k . . 53
(d) Ty, ™ = Di(L+0p(1) 2,5}, 2055 Znom — 1) RFjp5 + ijan,JRFJﬁT’ where
0< Lo < DXZ 0 = 2,50,)° (14 0p(1)).

Moreover, T,E’lr’ll’Q) = brcar (k/n)"* + op(k=1/2), where by is equal to —%Dlﬁlc’_'ml/(pg +vB1) if B1 < B
and to 0 if 51 > Ps.

2)

The last result concerns the behaviour of T,g’n : it turns out that it only generates a bias term.

Proposition 3. We have

(2) pgY 4 ) 1< ps—1 1 ps1 psY 4 (n) pp—1 o BV -1
B 58— 58— n B— [
Ten == 7 -0\ GLu - i | - g LB -0 L

—~
X5R
3

j=2 j=2 i=j
buk N, pa—ttabs p(n) , Onk 0L Be g L N &
n, ps—1+7B% m(n n, P8 ps \, VB (n P~ Si
T 2 B+ U (Vi = winJujp B+ 2, Vi Cing=
=2 2 ’ Jj=2
k k 5k 2
_ b7 pg—1 } _1 k+1 E(n) (p,@) Y 1 ‘N/'PB 1 ‘/j’k E(”) 34
e DILA DIF j it 2(k+1)zu4k ik \ "%\ ;o (B34
j=2 i=j j=2"7 B

Moreover, under the conditions of Theorem[1], when n — o0 we have
T3 = by (k/n)"™* + op(k™1/2),

2B, C~VBx% D
— PO T *+p7§)

where by = P

The proofs of all these results can be found in the Appendix. Now, since
vk (fk (B -1 jl% B) = VRTSPY w VETSD — VERTSY + VRTEYY + VRTSE) + VERY + VERY

and assumption holds, by combination of relation and propositions and (3} we have proved that
Theorem [T holds, i.e. that

ES Y1 d 2
VE (Tk(ﬁ) 13 ’)’15) = Gp + Amg + op(1) — N(Amg,03),
because it can be checked that bg 4 by —bg pr + by is actually equal to the value mg described in the statement
of Theorem [I]

4. Finite sample comparisons

In this section, we consider a comparison (using finite sample simulations) in terms of observed bias and

D 30 = 3151(0), A1,4(8) with

8 # 0, and %im. For 41 (8), we consider three different values of 5 (—1, 0.5 and 1.5). In the expression

of %BILR), the second order parameter 31 of F' should be estimated. Instead, we proceed as in [Beirlant et

mean squared error (MSE) of the estimators considered in this paper : 5

al. | (2018)) (see equations (13) and (14) therein) by reparametrizing Bﬁﬂ/z) by —p1 and we consider two
different values of p; (—1.5 and —2) in the following formula

~(W)
~(BR oy (1=p1)2(1—2p1) [ 4 ~(W Y1,k
A (o) = A1y~ > Tk(—m/ﬂ,k))—il_pl :
9




For the study of the sensitivity of this definition of %iR)(pl) with respect to the choice of p1, we refer to

Beirlant et al. | (2018)).
We consider two classes of heavy-tailed distributions for the target and censoring variables X and C' :

e Burr(f, 5, \) with d.f. 1 — (efxﬁ )*, which extreme value index is ﬁ

e Fréchet(y) with d.f. exp(—z~'/7), which extreme value index is .

For each considered distribution, 2000 random samples of length n = 500 were generated ; median bias
and MSE of the above-mentioned estimators are plotted against different values of k,,, the number of excesses
used.

We considered two cases : a Burr distribution censored by another Burr distribution (Fig.1), a Fréchet
distribution censored by another Fréchet distribution (Fig.2). In each case, we considered a situation with
p > 1/2, which corresponds to weak censoring in the tail, and the reverse situation with p < 1/2, which
corresponds to strong censoring. In the Burr case, we also considered situations with 81 < 2, and reverse
situations with 81 > B5. Indeed, for Fréchet distibutions, 3, is always larger that 85 in the case p > 1/2 and
B is always lower that S5 in the case p < 1/2.

< ®
° - — ° — —
3 g
o 9.() (=05) 9(8) (=05) 9.(8) (=05) $(p) (B=05)
3 3
~ We) (B=15) Ue) (=15) ue (=15) W) (B=15)
e nd
4 &c
0o 9uB) (B=-1) B (B=-1) @ (B (B=-1) 9:6) (B=-1)
s o
\ 3
3 V=8 w2 — 8 @=-2) o — " (=-2) — 4§ (pi=-2)
' ¢
S (BR) A(BR) A(BR) A(BR)
? | -8 eu=as) =4 u=18) = oW s -4 =18
3
‘
3 g ] g g w
0 100 200 300 400 500 ' 0 100 200 300 400 500 : 0 100 200 300 400 500 : 0 100 200 300 400 500 :
(a) Burr(10,2,5) censored by Burr(10,4,1) (b) Burr(10,2,2) censored by Burr(10, 5, 2)
< ®
° W o ° W W
) A Vi Y
@ ©
o o
« (e (B=05) %) (B=05) %@ (B=05) 9(0) (8=05)
3 3
- 9.(6) (B=15) () (p=1.5) 9.(p) (B=15) $.(p) (=15
0S 0
8 g
Pg 9.(0) (B=-1) @) (B=-1) o 9%.0) (B=-1) () (B=-1)
=1
3 =8 =2 — 8 (=-2) o — 5 (ou=-2) — 5 (or=-2)
o~ | T
5 Ve et =4 (=-18) < - =18 - i=-18)
' ?
$ L o 2 —qe N AH) —q
0 100 200 300 400 500 ' 0 100 200 300 400 500 ' 0 100 200 300 400 500 : 0 100 200 300 400 500 :
(¢) Burr(10,5,2) censored by Burr(10, 2, 2) (d) Burr(10,4,1) censored by Burr(10,2,5)

Figure 1: Comparison of bias and MSE for %I?, ")\/EVZ) = 71,k(0), 1,x(B) and 'AyiB;R) (p1) for a Burr distribution censored by

another Burr distribution : (a) f1 =2 < f2 =4and p>1/2, (b) f1 =2 <f2=5andp <1/2, (c) fr =5> 2 =2 and
p>1/2, (d)f1=4>p2=2andp<1/2

This small simulation study shows that the MSE of 71 () is globally decreasing with lower values of
B, even when the condition pg > % for the above asymptotic normality result is not met, as in the case
with 8 = —1 and p < % This is probably due to the decreasing bias with decreasing 3, the bias being the
dominating component in the MSE.

On the other hand %im overall reduces the MSE for most k, except in the heavy censoring Fréchet case.
The non-optimal behavior for small values of k is a well-known characteristic of bias reduced estimators. In

Beirlant et al. | (2018) a penalized bias reduction technique was proposed to remedy this fact.
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5. Appendix

5.1. Useful Lemmas

Some of the following ten Lemmas are used several times in the proof of Propositions and

[—1,0] (35)
2 k k+1_ [0, 1] (36)

Moreover, for any given a €0, 1[, there exist some positive constants Cy < Co such that, for all 2 < i < k

— 1 : —a 1 —a 02 Cl
e <z DI 1— aui’k> - [ uig(k+ 1)1 g (k + 1)1“] ’ e

j=2

Lemma 1. For any integer i = 2 and every k =1 , we have

i — 1
Cizl—i—ilogl €
i

as well as, if a < 0,

1 ¢ 1 1 —a
dix=1- R T - ’ ’
R (Z Z Uik T auz,k> € [ wir(k+ 1) uig(k + 1)] 38)

Jj=2

Lemma 2. For any a < 1, we have, as n — o0,

1S, 1
EZ“M_’ 1—a’ (39)
j=1
and, under assumptions and ,
k
1 —a s P
%];1 Uik & 1—a’ (40)

(equation also holds for &; instead of &;) and, if X; denotes either Ej;, E; — 1 or |E; — 1|, where (Ej)
are standard exponential iid random variables, then we have

k

1 E(X

EZUJZ in» 1(_;), as n — +00. (41)
~

Lemma 3. For any a > 1, we have, as n — o0,
Z J ¢ —><C¢(a) ask— 4o, (42)
where ( is the Riemann Zeta function. Moreover, for any § > 0, under and ,
ka+62 £J—>O as n — 4o, (43)

(equation also holds for & instead of §;) and, if (X;) is a sequence of i.i.d. random variables such that
E(|X1|) < 400, then

k
k“+52 X—>0 as n — 4. (44)

Lemma 4. If (V,,)1<j<k are the order statistics of k standard uniform random variables then, for any
0<d<1anda >0, we have, as k — 0,

Va — 2
Vk max Wik — il = Op(1). (45)

s<sok o a—1/2-6/2
IS U

Lemma 5. If (E;) are standard exponential iid random variables, then maxaj<i |E;| = Op(log k).
12



Lemma 6. (See|de Haan and Ferreira | (2000) Proposition B.1.9)
Suppose f € RV,,. If v > 0 and 01,92 > 0 are given, then there exists to = to(01,92) such that for any t = tg
satisfying tx = tg, we have

t
(1 — 01)z min(2%2, 27%) < ff((f)) < (1+ 61)a® max(a®, 27%).
If x = 1, then there exists to = to(€) such that for every t > to,
4
(1—ez°°< ff((f)) < (14 ezt (46)
Lemma 7. If (E;)i<k are standard exponential iid random variables, then if ps > 1/2, as n — 0,
1 & = )
72(&—1) {ZZu% (E; —1)}—>0 (47)
i=3 j=2
1 & = potdt .
- MUE—1) { =Y Wl E =50 (for any d > 0) (48)
i=3 Lz
1 & 1=t ) .
- M ultE; {Z Duli T (B — 1)} —0 (49)
i=3 j=2
1 = = ) ,
?Z(Ei—l) {z Z(Elfl) (l u;ﬁk E]>} —0 (50)
i=4 1=3 j=2

Lemma 8. With 0p—ij+1, and E( ") being respectwely defined in the introduction and in equation 1) if
pg > 1/2 then, we have, under assumptzons and (2] . as n — oo,

k i—1
1 —1 n P

:2 j=2
1 = o
= 2 Gnmirrn —P) { > E >} =0 (for any d>0). (52)
i=2 j=2
k—1 i—1 k (n)
1 1 1) E™ -1
> > (Gnitin —p) (z b’ Ej”) ( P : -
i=3 j=2 I=i+1
k i—1 -1
1 n 1 1 —1 ~(n P
72(]51( ) 1) {12(6" I1n — D) (l u, Ej( >>} o0 (53)
i—4 1=3 j=2
1 11_1 (n) 1 = pg—1 7a(n) P
T Z(5n—z+1 n—p) n (£, —1) 7 Z u;y B 0 (54)
i=4 =3 =2

Lemma 9. Let p(z) = P(§ = 1|Z = z). Under the Hall model (conditions and (2)),
poUn(z) = p+p(l—p)(Dy)sB:C " 52775 (1 + o(1)). (55)
Moreover, and imply that

Zupﬁ 1 (poUg(n/i) —p) — dag, (56)

1—p) (D'Y)*ﬁ*civﬁ* .

1
where ag = mp(

Lemma 10. Using the notations introduced earlier, we have, under assumptions and 2) and if pg > 1/2,

as n — o,
k 1 % E(”) P
VE Yt (D0 - P ) Lo
13

j=2



We now prove one after the other the Propositions and [3] then we will deal with the proofs of the
different Lemmas in subsections [5.5] to 5.9l

5.2. Proof of Proposition
5.2.1. Proof of part (a)
This subsection is devoted to the study of Zf=2Ai7nSi,k7 8, which we divide in three parts, using statement

(32) :

I _ : 1 VP Pﬁ 5, S Pe &

1,n+12,n+13,n—214i,n ;Z +ZAzn 72 +ZAZTL 2‘/]]@ Jkﬁj
=2

Jj=2

From I ,, will come the asymptotically gaussian part of Zi:2Ai7nSi,k7 8, plus a bias term, and the other two
I, and I3, will be remainder terms. We will first give details about I ,,, and then come back to I ,, and I3 ,,

later. In order to deal with I3 ,,, we begin by using relation to write £} as 7+7(E(n) 1) +u;i* bn,kEj(-n)7
which divides I ,, in three different terms I ,, = I(l) + 1(2) + 1(3)

Our first task will be to deal with the main term of the theorem, Il(l,)L Recalling that A; , = p(Ei(") -1)—
(0n—iv1,n — p), where §; = Iy, <,(z,) with (U;) uniformly distributed and independent of (Z;) and Up—i11,n
denotes the uniform variable associated to 6,,—;+1,,, this first term is equal to

k %
(1) _ Y . 1 pp—1
2= (i)

j=2
v 1 1
= L Sl (B = 1) = (s — D)
=2

v 1 pp—1 gl
Ps E+1 = Uj k (HUv»—i+1,n<p(Zn7¢+1,n) -1y, i+1, n\p + Erl ;Ai,ndi,k

Wk,n+Bkn+Rkn

) 1 PB 1 1, ps—1
where we define d; ,, = ZJ 2 Ujlg o5 ik - To sum up what we have found so far,

Y AinSikg = Win + Brn + Rin) + I+ IO + Ly + Ispe
i=2
Introducing a sequence (E;) of independent standard exponential variables, independent of the sequence
(Z;), we can write that
d 7 k 1 d Y 1 k 1
u? ps—
Win = —7—= ; "  —1) — (Iv;<p —p)) and By = LS Z Uk Toi<p(Zoisrn) — Iuis
We prove easily that Var(\/EWk,n) is equivalent to the variance 0[23 defined in the statement of Theorem
and that, using Lyapunov’s CLT, we have vEWj,,, — N(0, o3).

Let us now deal with the term By, ,, 4 B,(ClZL + B(z) where

k,n’
(1) v 1N 1
1 pg—
Bk,n = _% kE+1 = uz’,/;c (]IU1<POUH(Yn7i+1.n) - HUiiIJOUH(n/i))
2 Y 1 S g
2 pPg—
Bkyn = _% E+1 ;uiﬁ@ (]IUiSpoUH(n/i) - HUiép) .

Following the method used for the treatment of the terms T} , and T5 ; in|Einmahl et al. | (2008)), and using
the LLN result found for instance in |(Chow and Teicher | (1997) page 356, we can prove that \/EB,(CIZ 50

and that (using , wherein constant ag is defined) \/%Bl(fi 2, —%)\ag = Abg.
Concerning now the last term Ry, of I 517)” if pg < 1, according to inequality in Lemma there
14



exists some constant ¢ > 0 such that

1
VE| Ryl < VE (1)k (o =1/2=0) Z|Am|um,

1=2

k
cy 1
Tt D [ Ain
s 2 Ml

for a given 6 > 0. But |Aln\ < p|Ei(") 1+1 < E(n)+2 and therefore, taking § small enough, vVkRy, ,, = op(1)
according to properties (41) and (39) (in Lemmal 2l with a =1—4) and to the assumption pg > 1/2. When
ps > 1, the treatment is similar, using instead of We have thus finished to prove that vk kI (1)

converges in distribution to N (Abg, UB) All the remaining terms in this subsection will now be proved to be
negligible.

Let us now consider the second term I (2 ) of I . Separating j < ¢ and j = 4, we have
k i—1 L (n ) 2 )
pp— Pp—2( a(n
o et (S - 0) + g Syt <),
i=3 j=2

The first term is shown to be op(ky 1z ) by separating A;,, in its (Ez(n) —1) and (dn—i+1,n — p) parts and
relying on properties and stated in Lemmas |7 and |8 The second one is easy to handle using
and pg > 1/2 ; it is then omitted.

Similarly, the third term 11(37)1 of I ;, is, again seperating j < ¢ and j = 1,

k i—1
k 1 pa+784—1 p(n) PO 2B p(n).
1;,AZ z(Z Fs k+122A”’”“ £

b
) -

Since Vkb,, J. converges to a constant, the first term is op(ky, Y %) by using properties and (with
d = vp4) stated in Lemmas |7|and [8] Again, the second one is easy to handle using .

Now that we have finished with I; ,,, we turn to the term I5 ,,. The decomposition of f; in and the
fact that \/Ebn,k converges imply that

k i (n) (n)
VEI, = m/EEAZ-,n% (2(1/;?,5 - uff;)E. ) ZAZ "= <2 (V7 - u?i)u}i*%) .
i=2 j=2 Jj=2

The first term of the right-hand side is very tedious and delicate to deal with, so we delayed its treatment by
stating in Lemma [L0| that it tends to 0 in probability when pg > 1/2; the proof of this statement is detailed
in subsection Let us then turn to the second term, and prove that it tends to 0, and so will \/EIQJL as
well. Applying (45) with a = pg, we have, for § > 0 sufficiently small such that € = (pg — § + v04)/2 is
positive,

5. By
bt (S0 - 2 )

Jj=2

k k
—€ 1 E §/2—1 1 —3/24ps+Bx—5
< O]P’(l)k (k |AZ,’I’L|U1/ ) <k3/26 § u] k»/ PTYPxk— EJ( )
=2

j=2
and we conclude using properties and with a = 1 — /2 as well as property with a = 3/2 — 2e.

It remains to consider the last term I3 ,, of Zf oAi.nSi kg, and to prove that it is o]p(kgl/Q). According to
the definition of Cj 5 in relation and using the fact that VkY, 76* = VE (k/n)"* (Yn_p.n/(n/k)) %
12)),

converges (thanks to assumption we have

/

k
f-
V%Iy,,n—oﬂ»(l)ZAi,n( ZVfE Vi =0 | = 0e) (10 - B3+ B - 1)
=2

where ) = yka, (% S uli e 15')
I?() ) = ﬁZfﬂAixn (1 Z; 2 51 16,)
1(3) _ %HZfZQAi,n (% 23 Q(Vf;jmﬂ* _ fiﬂﬂ*) ;kf’.)
I?() ) = i12f=2Aixn (% Z;=2(Vyp1? - fi) 7’“8)



Relying on property (stated in Lemma |4} and applied to a = pg + 78) and on the fact that |A; .| <
Ei(") + 2, we deduce that, for some given ¢ > 0,

k k
1 n 146 1 -3/2 5
1] < O (1) <k§}<E“+2> - “) (kg/z D £]>~

i=2 j=2

Hence, properties ! ' and 1 3)) imply that Ié »» tends to 0. Completely similarly, we have Ié QL = op(1).
Is

Let us prove that also tends to 0 (I?()l) is handled similarly). Separating the cases j < ¢ and j = ¢ and
using the definition of § in relation (17) yield

1—1

k
n b’ﬂ n
= g Y g 2B 1 S ] T B+ e St

The convergence to 0 of the first (resp. the second) term is due to properties and (52) with d = 0 (resp.
d = f4) in Lemmas|7|and |8 For the third term, we use |4; | < Ei(") + 2 with Lemma

given § > 0,
1 Pg—2 (logk pp—2
(k+122Azn 7[,; OP( ) 0 <k2 62 ; :

The right-hand side tends to 0 according to , for 0 < § < pg. This concludes the proof for the term
SimaAinSik,5-

to write, for some

5.2.2. Proof of part (b)

Recall that B;,, = —bn kuﬁ*ﬂ’E( ). Since Z; = Uy (Y;), using Potter-Bounds @ for (F o UH)UI}B €
RV_,, and working on the event &, . defined in , which satisfies limy,_,o P(&},,o) = 1, we have, for e > 0
(remind that the sign of b, ;, is not known),

k

— k i
S s 0 0™ St (15 witg).

=2 Jj=2

We are going to prove below that this upper bound, when multiplied by \/%bn,k, tends to a quantity arbitrary
close to by A (for e small and « close to 1). A very similar job can be done for the lower bound issued from
the application of lower Potter-bounds for (F o UH)UI;B and from the lower bound in the definition of &, q,
and hence we will have proved that \/EZf:QBi’nSi,kﬁ tends to b\, as announced. Using to split 5;
into three parts v+ 'y(E§n> -1+ uzi* bn,kEJ(”), we obtain a decomposition of \/Ebn_’k times the upper bound
above into three terms T](;)n + T1(3221 + T](;Zl.

Let us prove that the limit of the first term T(1 = VEby i (1+€)ar» = 23 iV E E™ (% P u%—l_E),

as n — o0, is arbitrarily close to by (taking e sufficiently small and « sufficiently close to 1). Indeed, if
pg < 1, inequality (37) (applied with @ = 1 — pg + €) implies that, for some positive constants C; and Cs,

’yﬁ (n) i pp—1l—e 73 +ps—1—€ 1a(n) ’Yﬁ 1 7~(n)
k+1 Zz 2 U *Ez ( Z] QU’]k ) pﬁ k+1 Zz 2 U ¥ E -Gy (k+1) pﬁ eF1 Zz 2 U - E

N

vﬁ*ﬂm 1—era(n) vﬁ* L)
= pB k+1 Zz 2 U L C2(k+1 pg—etl Zz 2 U E;

Using with a = 1 — pg — B« + € for the first term and @ = 1 — 8, for the second one, as well as the
B
fact that b, is equivalent to —2 B4 Dy C~ 7B (’%}) *, we obtain via assumption the desired limit

by A, by making € tend to 0 and « tend to 1, since —y234 Dy C 7% £ s pa+1vﬁ* bs. In the case pg > 1, the
treatment is similar, using instead of (3 . ) above.

Secondly, in order to prove that T = \Vkby, 1, (14+€)aPs~ ekﬂzz QU’B*'YE (1 ZJ — fi - 6(E(") - 1))
tends to 0, we separate the terms j = ¢ (easy to handle and omitted) and j < i : in the latter case, we use
property in Lemmalﬂ (with pg — 1 — € instead of pg — 1) and the fact that \/Ebn L converges.

Finally, let us prove that T3 = \/Ebi’k(lJre)apﬁ*EijrlZf QUff’ E™ ( Z; 9 ?fjjﬁ*'y - 6E(n)) tends

3
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to 0. Using the fact that fb2  tends to 0, we bound this term from above by :

k k
1 1—e n
Op(l) (k - 1 uﬁ*’Y g E! ) (k - 12 pptBsxv— E( ))

We conclude the treatment of this term by using .

5.2.3. Proof of parts (c¢) and (d)
By the definition of S; s in (24)), and the inequality in Lemma (1} use of Potter-bounds for (F o
UH)UI}*B € RV_,, yields that, for ¢ > 0,

Zk: d ¢S 1+¢€) Zk: L i P 65/

1=2 ook 1=2 Z2 j=2 B

Now, working on the event &, o, which satisfies lim,,_,oc P(&, o) = 1, we have, for e > 0 and ¢ > 0,
; : d 2— 1
Z;én i+1nCiSikp| < aPPT(1+€) Z 27_] < cst( Z ﬁ e) (kzzzu;s?g;)
T = ] = 1=

Using (42) and ., we see that this expression is lower than Op(1) x k~Ps+€+% 5o that part (c) is proved
as soon as pg > 1/2, since ¢ and ¢ can be chosen arbitrarily small.

Finally, the definition of S; g in on one hand, and the relation satisfied by the remainder term
R,,; on the other hand, imply that (by inverting sums)

k
Y RniSing| <o

=2

nk: ZR § log+(1/uj /C)

As usual, Potter-bounds for (F o UH)UIZ,B € RV_,, yield that, for € > 0, on the event &, ., we have

k
2 b - €ilog, (1/ujk).

Now property and the fact that \/Ebnvk converges conclude the proof.

5.3. Proof of Proposition[g
5.8.1. Proof of parts (a) and (b)

U — .
Concerning the remainder term RY. since - = S uPs~dy = ZJ 2S ITLE s~y 4 ugfgk/pg, we obtain
0) _ uPe 1~ Ujt1, k Pﬁ 1 pg—1  42PB
Rn” = k+1ZJ 2Uj k pﬁ 721 ZS —u )du ps(k+1)78 *

Using the mean value theorem leads to

k

1 Pb’ 2+O(/{)1/2 pB)

(0) < 1— _
\/E|Rn | 7( pﬁ)\/E(k+1)2 ~ ]k

and we conclude using property (42)) and the condition pg > 1/2.
Recall that RS = Zj 2RF B =28 where Ry, j  is defined in . We write EZ\TJ- = Zz=2(§l\7i—§l\7i,1),

where we note RF 1 = 0. Hence, 1nvert1ng sums, we obtain
-8B

k k 2 ~
1) _ %(ﬁ'l _ ﬁ‘ifl) Z % (Z”JJFL") ﬁZRF 5 (ann> )

=i Zn—k:,n

where Z,,_ Jngzjnan itln-
The definition of FXM implies that RF — RFl 1 = RF m for ¢ > 2. Thus, using |) and
SUp;o RF]/RFJ = Op(1) (see the proof of part (¢) below for detaﬂs), we have, if we suppose 8 = 0

17



(the case 8 < 0 is very similar and thus ommited),

5\ RF; 7
‘Rg” < Op(l)Op(bn,k)Z i log+( ) + Op(1 ZR ( n—j, n) .

=2 n—k,n

Now, using the fact that Z; = Ug(Y;), Potter bounds @ applied to F o Uy € RV_, and UI;B = RV_.p
enable us to write that for any given € > 0,
k P € 62

1 e ¢
S| < 0p(buk) Y7757 B (=) + Ol ZVf’k S5 (Vi)
=2 j=2

Working on the event &), , which satisfies lim,,_,, P(&),,o) = 1, for every o > 1, and using the fact that
\/Ebmk converges, imply that

€e— —2e— 2
\/7|R(1)| Z r 110g+ k3/22 uh”

We conclude by and with pg > 1/2.

5.8.2. Proof of part (c)

Let us now deal with the term T( , which is defined in relation and is a delicate part of the
proof, and the only one which will requlre survival analysis arguments. We start by applying the bounds
0< —log(l—z)—z<2?/(1-2) (Vz<1)tox =1— RF]/RF for every j > 2 (which ensures that RF; > 0

and so z < 1), yielding
k D 2 /
I Jol ,
0< TP < il (1 & J) Rij—?.
j=2RFj RFJ J

We then rely on the so-called Daniels bounds proved in |Gill | (1980) (page 39) and |Zhou | (1991) (Theorem
2.2), which state that both FXM (¢)/F(t) and its inverse are bounded in probability uniformly for ¢t < Z,, ,,.

Since the index j is at least equal to 2, this implies that sup;-, RFj/ﬁj = Op(1). Then (as in the previous

subsection ) using the fact that Z; = Ug(Y;), Potter bounds applied to (F o UH)U;Iﬁ € RV_,, enable
us to write that for any given € > 0,

E 2
0 < 75 Z ( ) W T (V)P
Now, Theorem 2.1 in |Gill | (1983)) applied to the function h(t) = (H(t))+9/? guarantees that
FEMt) — F(t
sup ()| 00 o) (57)
t<Zn,n F(t)
a property which will be applied to t = Z,,_j 1., for every 2 < j < k below. Now writing RF]/RF —-1=

(F(Zn—kn)/FEM(Zpy— k1)) (Wa—j41 — Wiy—g) where W; = (FKM(ZML) F(Zi))/F(Z;.»), the combination
of the crucial statement with the fact that A=2 is nondecreasing, leads to the followmg bound, working
on the set &, .4,

0< T <o

3\>—‘

k
1—e Pﬁ—l—G /
Z Zn—jr1n)) " “ugy &
1=
H~

Applying then Potter-bounds @ to the function (
we have, for any § > 0,

~¢)oUpn € RVi4, then implies that, on the set &, 4,

< VRT?D < Op(W)(H(Zug ) (’“)

n

g236
k3/2— 62 J

First, due to in Lemma (3] the expression in brackets in the rlght—hand side of the previous relation is
op(1) when pg > 1/2, as soon as § and ¢ are sufficiently small so that pg > 1/2 4+ ¢ 4+ 3e. Therefore, since
H(Zp—k.n)/(k/n) 5 1 asn — oo, all that is left to prove is that (n/k)k=% — 0 as n — co. This is true when
assumption (12)) holds with X # 0, since the latter quantity is equivalent to A=2%(n/k) ~27%%% which indeed
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converges to 0 for e sufficiently small. When assumption holds with A = 0, then we use the additional
assumption that n = O(k®) for some b > 1, which immediately yields (n/k)*k=% — 0 for € small enough.
Part (b) of Proposition [2|is thus proved.

5.8.3. Proof of part (d)
Recall that T]g}r;l,2) _ Z§=2 (log RF; + % log Zg%:l") RFjﬁ%' Assumption implies that

Et) _ i (14 Dyt (2 — 1)(1 + 0y(1))) .

F(t)
Hence,
L Zn—j+in 1 b1
log RFJ + a IOg m = IOg (1 + Dl(ZnijJrl’n — ank,n)(l + Ok(l)))
= DiZ 510 = 2200+ 0k(D) + L,

where 0 < L,, ; < D%(Z;_B;Hm - Z;f}cﬁn)Q(l + 0x(1)). Consequently,
(1,1,2) PR Zn—jiin\ j d &
e _ —B1 n—j+1ln _ 20 . a2
Ty = Di(1 +0P(1))Zn—k,nj222 <Zn—kn> 1 RFJ,B]- + ;LWRFMJ,

_ (1,1,2,1) (1,1,2,2)
- Tk,n + Tk,n :

Now, in order to prove that \/ET,ST’:’ZU tends to Abg s, which is defined in the statement of Proposition

we deal with the following non-negative quantity, which is equivalent in probability to T,il;lm’l) /(=Dy)

~(1,1,2,1) -3 a Zn—jtin i &

Jj=2

Using lower and upper Potter-bounds for U;Iﬂl € RV_.5, and (F o UH)UI;5 € RV_,, yields, for € > 0,

k 2 k
_ 1—¢ Clte 1+e€ —1-2¢
\/EZ B1 { Vf}f 1+ fl‘ _ ( ) Vj’:/]fﬁ-ms 1-2 fl}

n—k,n J J
hr14 Frl &
< \/%CZN"(LLQJ) < \/EZfﬁl I+e : Vpﬁflfﬁ / (1 _6)2 : V’Yﬁl+p/3*1+25 /
= k,n = n—kmn ) L4 1j:2 7.k éh]' - E+1 32:32 J.k gj

But Z;;B}HL = C~ "1 (1+0(1))(£)7 (the constant C appears in formula )7 so VEZ % tends to 0 when

n—k,n

1 > B9 (due to (12)) and, when 87 < Bo \/%fo1 is equivalent to AC~7P* = AC~781. Moreover, usin
Br> P2 ( ; ik 1S €q , using
30) with lim,,_,o P(&,.«) = 1 and property (40), we prove that + ]?: yPeltvbit2ee conds to

) k&dj=2"j,k J
and %Z;LZVJP ziliefé tends to ﬁ. After some simplifications, we prove that \/ET,S;:’Q’D
in Porbability, by making ¢ — 0.

Finally, concerning T,ST’LM’Q) = Z?zan,jRFjﬁ%, where 0 < L,, j < D%(Z;fjl-ﬂm - Z;f,lcﬂl)z(l + op(1)),
we use Potter-bounds as previously to find that , for any given € > 0,

v
pp+yB1t2e
tends to bx s,

k 2 ’
VEITG D < OWVRZ 2, 3 (L4 vt —1) v i

=2
and we proceed as for T,glr’tl’Z’l) to prove that \/ET,&’:"Q’Q) tends to 0, in Probability.

5.4. Proof of Proposition[3
Let us first establish formula (34). Recall that (see (29))

k

k k / /

@ _ 7 1 &— &
T = = (Vi =i ) usk + Vi + Y (RFis — Vi) =

k + 1 =2 =2 J =2 J
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The definition of 5( as well as decompositions and yield

k k
(2 _ L e _ o pe \ g v ps—1 ()
T; Z i Vi = )BT+ 2 (B =1)

] J]1=

i —147Bx pp(n) | bn i S ,(3 fl

YPx n 7, P P 'Y * PB
E Vir— E + V2 C -,
= k+1j§2um(ﬂk i, ), ]22 ik Jkﬁj

The last three terms of the right-hand side are left unchanged. By applying decomposition to the
first term, we obtain the desired decomposition . In particular, we can see that the second term of the
right-hand side above vanishes.

Now, in order to prove the asymptotic result for 7T, ,5 )7 we rely of course on the development in7
dlfferent terms. These terms will be treated separately, one at a time.
(a) Concerning the first term, when pg < 1, relation implies that
J

k
by (n) 1 po—1_ 1 ps1
ijQ(Ej -1 (Z“zk T gk

Jis

T =

k
— 1 n _
<Ok Pﬁ)%Zm](. ) —1lu; L < O(kPP7)
j=2 j=2
Property (41) yields that this quantity is op(k~/?) when pp > 1/2 for ¢ small enough. When pg > 1,
we use (38) instead of above.

_ (n) _
(b) Concerning the second term 725 4];:2(E](»") - Dujy ! (Zf_j E; ; 1> separating i = j from i > j + 1

in the sum yields that it is equal to
P8 2 | W N ) L\, o1 o0)
n 2 Pfi E n) 1 - pg— E n) .
(k+1)% & +k+1 ( )<1J22 S )>
Properties and prove that this quantity is OP(kfl/ %) when pg > 1/2.

(¢) The third term in formula is a bias term. Indeed, the expression of by, ;, and property show
that

n 2. D —vby k VB
Vb kg Z ps1+18u () _ Y 0uDyC T (1+0P(1))\/E<> :

g + Ybx n

which yields a part of the bias term appearing in the statement of Proposition

(d) The fourth term is Ry, = 2% i Q(VJp,’j - uf‘z )uzi*_lEJ(n) Since Vkby, ), = O(1), we have,

E+1
Vi —uli ] 1 9B —3/2-8/2 p(n)
[Rin| < O(1) \/E;él?é(k s 1/2— 5/2 2 . J:k By
Js j=

and properties and imply that VAR, = op(1).

(e) The fifth term By, = Z§=2 Vi Cj,kg% = (1+op(1 ))wa’:DﬂC’_'Vﬁ* B, will provide the second bias

V’Y/B* _

term, where we have noted Bk,n = Z] 9 Vjpfj( )i—J, which is equal to the sum of 2 terms

k k /

- 1 1 - £

Bl = g Lk (i —Dg and B =) (Vi = 1) =@l - 1) -
Jj=2 j=2

(1) Yy =Ba
Property shows that B k. COnverges to 23T Bs b5 = palos +7 ﬁ*) On the other hand, we obviously

have
k

(2) ps+7B p+75 -1
|Bkn|\ Z V'J? - ]i * ka +k+12‘ 7“]’6 J.k ;
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If we show that ﬁ Z?:Q | i fu;’k|u]_,1 & tends to 0 for a = pg and a = pg + 7%, then, since Y, _ s

n—k,n
2 -8
Y2 DBy C 7% (VB
Loty ()

is equivalent to (%)Wﬂ*, according to 1' we will have proved that By, = — 55 (P3 F7B%)

o]p(f) To do so, we write

2<j<k ua a—1/2-5/2 }3/2
3.k

1 & a o | — IWE |V]k Jk| 1 a- 3/2 6/2
1 2 Vi — uflug s & < O()VE max Z
=2 ‘

Since a = pg or pg+7f4 are both > 1/2, properties and (45]) conclude the proof for the fifth term.

(f) The absolute value of the sixth term is shown, thanks to inequality (36)), to be lower than

1 2 n
pﬁ’V(k+122UpB E( )|

Use of (44) with a = 2 — pg and assumption ps > 1/2 yields that this term is op(k~1/2).

(g) Finally, we deal with the seventh and last term Ry, ,, = é’giflﬂ; f X Vfﬂ (log(Vj x/uj k)’ E](n), where

Vj i lies between V; . and u; ;. On the event &, ., we have

B togk & 1 - 10 k
(R < st max <2 2223 — V7 (log (Vi /uza)” < > Z —uyp)?,

2<j<k logk k+

2
where the mean value theorem and Lemma [5] were used for the second bound. Therefore, for § > 0,

[Vik — ujk] : ps-2-0
|Rie.n| < op(1) <\F2rgja§k WIS k+1 Z

7;

and properties and (with a = 1) yield VkRy, , = op(1).

5.5. Proof of Lemma

Lemma [I] contains a number of different statements, the third and fourth ones being the most relevant
in the context of this paper.

Relation is a simple consequence of the inequality —a? < log( +x < 0 (Vz € [0,1/2])
applied to x = 1/i. Then, since U(j) := Zf:j 1/i = k%rl Zf:j 1/u; i, relation comes from the fact that
log((k+1)/j) = Zi;j SZ:;“‘ 27 1dx is included in the interval

| e S Ve by S Vi | = [UG) = 1/ + 525.0G) | € [0G) = 1/3,UG)).

The spirit of the proof of relation is similar : for a given 0 < a < 1, setting A, = w; d;  and
noting that u;*/(1 — a) = §"* u=%du, we have

1 &, a
Aip = leZ””“* — ZL ) du —u; /(11— a)

1—a _4—a _ 1
- Zu Lwl t=) dt (P

et [ ((5) - 0-59) -

Applying, for each j, the Taylor formula of order 2 to the function # — (1 —x)!=* — (1 — (1 — a)x) between
0 and 1/j (which is lower than 1/2) leads to the following bounds

a : c—1—a 1—a a(l_a’) : —1—a
~1-a(l-a)2")j < 1—a)(k+ 1) A < —1—TZJ

Jj=2 j=2
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and therefore we have shown that, when 0 < a < 1, statement holds for instance with the constants
C;=1/(1-a)and Cy = [1+a(l —a)2*({(1 +a) —1)]/(1 — a). This means in particular that the values
d; ,, are always negative, which is a fact often used in the proofs of this paper.

The proof of when a < 0 is performed similarly : we come up to
1 a :

1
di = — — - —1l—a 1 — ¢, —1—a
. Ui,k(l - CL)(/{ + 1)1_’1 Q(k + 1)—(1 ij;zj ( C])

where ¢; are values between 0 and 1/j for each 2 < j < ¢ (thus lower than 1/2). The second term in the
right-hand side of the formula above being positive, and since (k + 1)*~% > k + 1, we have proved the lower
bound for d; ;. For the upper bound, we bound the right-hand side above by zero plus the positive value
(—a/(k+1))L ZJ 2u;i . Distinguishing the cases a < —1, a = —1 and —1 < a < 0 then leads easily to the
desired upper bound.

5.6. Proof of Lemma @

We first deal with . Letting W;_; denote % Z ufh” 1(Ei — 1), we remark that E; — 1 and W;_
are independent and centered and it is easy to check that the products (E; — 1)W,_1 (j = 3...k) are
then centered and uncorrelated. Therefore, it suffices to prove that %Z?:g ]E(Wj2 1) (Which is equal to the

variance of the left-hand side of || converges to 0. By construction, IE(W2 ) Ly pﬁ Yo
5 < 1, by using the inequality li with a = 2(1 —pB) [0,1[, we have 1 Z pﬁ 1) < 2p;71u5(7pf’;1).

If pg > 1, we have simply (via uir < uj-1x) ; 15 Q(W V< u??’f)kl). We can thus deduce that

(W2 1) < CTStuf(pf kl) < cztujp ‘31_,3 Finally, we obtam that our quantity of interest %25:3]E(W2

lower than a constant times k2 ZJ 3 jpﬁl ,j, which converges to 0 because pg > 1/2.

1) is

L ZJ T ub 54471 g the difference with the previous case is that

Concerning (48)), defining now W;_; as
W;_1 is not centred However the products (E — 1)W] 1 are still uncorrelated, and it again suffices to prove

the convergence to 0 of the variance of the left-hand side of , which is now equal to 75 Z;C:d ]E(Wf_l).
By the Cauchy-Schwarz inequality, we have here

= o i1
E(W; ) <E l(] Z uz(pﬁ 1)> ( Z E2>] <5 Z 12(55 D < est uj(pfkl)
i=2 i=2

where the last inequality was shown in the treatment of above. Therefore, we deduce that ,3—2 25:3 ]E(VVj2 1)

is lower than a constant times 7% Z f(,fﬁ 2 , which is O(k™!) since pg > 1/2.

Concerning (4 , we invert the two sums and then, we have to deal with

k
LS, {z}
j=2

1=j7+1

Defining now W, as Zz —j+1 Zi*flEi which is independent of E; —1, it is easy to check that (E; —1)W, 14

(j = 2...k) are then centred and uncorrelated. Therefore it suffices to prove the convergence to 0 of the
variance of the left-hand side of (4 7 which is equal to k4 Z =2 f(lf s=Ug (WJZH) By the Cauchy-Schwarz
inequality, we have

E(W]2+1 _ _7 Z ,U/Q('Yﬁ* 1) <k 2 ’Yﬂ*_l
i=j+1 i=7+1
Inverting the two sums we deduce that 7 f 5 ui(,f VR E(W?, ) is lower than 75 Zf=3 ukaﬁ *72 (Z;;lz ui(,f s _1)) )
which is lower than ¢ 7% w277 7% 12(,5’5 V< st S u ¢ (€ > 0), which converges to 0.

Concerning finally , the method developed above works similarly. By noting I/I/ll, =71 Z =2 f nE 'E i

and W;,, = i1 Z;;;(El — I)W/l”n, the variables VVl”n are not centred but their variance can be shown to be

lower than a constant times u2(p #=Y  Since W, and E; — 1 are independent, the variables (£, — 1)W) ,

—1-2(1—pp)

are centred and uncorrelated, and thus W; , has a variance lower than a constant times k~ ul k ,
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and is independent of (E; — 1), so the variance of the left-hand side of is lower than a constant times
221 LU _1 207P5) Wwhere 1+ 2(1 — pg) < 2 when pg > 1/2. The proof is then over via relation .

5.7. Proof of Lemmal[§

First, let us recall that §; = Iy, <p(z,) with (U;) uniformly distributed and independent of the Z;’s. Then,
let us settle the following notations. First, the difference §,—;j+1,,» — p will be systematically cut in three
terms

d Agl) = ]IU’iSp - P
Oncivin —p 2 AN + AN £ A where AP = Ty cpounnsiy — Ivi<p,
3
AS ) = I[UiS;DOUH(Yn,—i+1,n) - HUiSPOUH(n/i)'

The first of these terms will be the less negligible one, but the easiest to deal with. The second one will still

be simple to handle, but leads to non-centered factors. The third one, AES), will be the ”"smallest”, but the
most difficult to deal with, since it is correlated with the observations (Z;) (and therefore with the variables

Ej(")) In the sequel, cst will design an absolute positive constant which varies from line to line.

We start by proving (51). Setting W;, = Z; 12 fi; 1(Ej(n) 1) and A 12 ZZ 5 A Win, we

intend to prove that V(A(l)) and V(A )) go to 0 ab n — oo, and that A converges to 0 in probability.

(1)

Concerning first Ay, ’, we note that the variables A Y are i.i.d. centered and independent of the variables

(EJ(”)) and thus of the centered W;, : therefore, the product A( W, is centered and uncorrelated with

Ag,l )Wi/n for any i # i/, and consequently

1 (1)W 1 & cst & ~1-2(1-pg) n—p 0

E Z zn - E Z ) kQ 3Uz k
because 1+ 2(1 — pg) < 2 when pg > 1/2. Above we have bounded V(WW;,,) with similar tools as those used
in the proof of Lemma by a constant times %Hu“i 2(1=pe)

Concerning now ASL ), we note that the variables Az(?) are not centered but are still independent, and
independent of the W;,,. Since W, is centered, the products Agz)Wm are still centered but are now correlated,
since, for ¢’ < 1,

Coo( AP Wi, ADW,,) = BAPEAD)EW,, Win) # 0.
Using relation of Lemma |9 both the variance and the absolute value of the expectation of Az(?) turn

out to be lower than cst (i/n)77#*, which, due to assumption , is itself lower than cst k~'/2. On the other
hand, we have, for ¢ < 1,

. i—1 .
i 2 1 ps—1/1(n) i 2
CO’U(Win, Wz’n) = E(lenWm) = ;E (Wlln) +E (Wi/n.i Z uji (Ej - 1) = ;E (Wz’n)
j=
Therefore, we may write that (using the bound E(AZ@)) < estk~'/2 in the second term below, but simply
bounding |A§2)| by 1 in the first term)

1 & g kiz
V(AD) = EZ (a@2wz) + EZ Z E(AP)E(AP)Cov(Win, Wirn)
- zkl cst = (W2 - cst —1-2(1—pp)
= - k:2 o i’n) = ﬁ‘—SULk

and this converges to 0 when pg > 1/2, as desired.

In order to finish the proof of , we have to justify that the last part, ASIS), converges to 0 in probability.
Our proof is based on the important fact that, for any value p €]1/2, pg],

k k
1 3), -1 P
ﬁ Z |A£ )| u;f,k = \/* Z |HU1<IJOUH( Yo—iti,n) HU’LSPOUH(n/l)| fk — 0. (58)
=3
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This result is very close to the one stating that \/EB,(:EL = op(1) in subsection it is proved completely
similarly, therefore details are omitted. Therefore, in view of relation , convergence in probability to 0

of AS’) will follow from the following statement : for every A > 0,

P (rnax |Wm/u > A) ZF0. (59)

3<i<

Considering the sum of independent variables S; = ZZ _LjPs Y (E; — 1) (where E; denote iid standard

exponential variables), we have I/Vm/ufi ;1 L pp—ps S;/iP, and therefore, application of the Hajek-Rényi
maximal inequality (see for instance Section 7.4 of [Chow and Teicher | (1997))) leads to

P | max |W; /u 'I>A (AkPs—P) Z (e '_1))2) = 2(ps—p) zk: —2+2(ps—p)
3<Z< m

which goes to 0 as n — o0, since 0 < pg — p < 1/2, and this proves . This ends the justification of

relation .

Concerning now relation tb we again divide 6,,—;4+1,, — p in three parts as above, and the Agg’) part is
proved by combining relation (58)) with Lemma |5} the other two parts are easy to deal with.
Concerning relation , we proceed similarly as for , defining now

Jj—1

- k

1 -
Z " ( > 1E§”)> and AU =k V2N AW, form =1,2,3.
- ig?

=2 i=4

@M—l

These variables Wm are still centered, and their variance and covariances can be bounded in exactly the same

way as were those of =~ '; Y — 1w, : therefore, convergence to 0 of the variances of the corresponding
those of L Y7L (EM ~1)us " theref t0 0 of th f th d

terms A(l) and A(z) is proved as above. And since W, also possesses an appropriate martingale structure
to which the Hajek Rényi maximal inequality can be applied, convergence in probability to 0 of A holds
and so does ([54)).

Concerning ﬁnally relation , we write its left-hand side as the sum of the following three expressions,

. 1
noting Wl'n= Z] 5 fi ](»),

k i—1 k P—
AV = L EOoniyabu b 4w o Ly oIS APy,
\/Ei=4 ¢ =3 k ) ¢

k (n)
(3) PB 1E(n) B -1
w - g (i) (3 5)
j=2 I=i+1

As sums of centered and uncorrelated terms, the quantities AS) and Ag)

and

can be handled similarly as

previously (with a bit more efforts for Ag)) and their variances shown to go to zero. Concerning now AS’),
. & k n 1 n ~

setting S; = Zl=i+1(El( ) 1)/l and W;, = Zj 5 f‘;c (Ej( ) 1), we have, for p €]1/2, pg],

t
AP < max ul}7|Wi,Sil. \FZN” WPyt + max |52 Z|A P!

3<i<k—1 3<i<k—1

In view of statements 1) and , we thus have to prove that max;<g |S~’l| is bounded in probability . But
since max;<y |Si| < |Sk| + max;<y |Si| where S; = Z;=1(El(n) —1)/1, and V(Si) = Zf=1 1/1? < 7%/6, the
Markov inequality and the usual maximal inequality of Kolmogorov yield the desired result, for any A > 0,
P[maxs<i<k_1|Si| > A] < 8V(Sy)/A? < cst/A?, which is as small as desired.

5.8. Proof of Lemma
Formula yields

k 1 % E(”)
Z Z Z V]Ijlf - uf;ﬂk,) ; - Rl,n + R27n + R37n7

Jj=2
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with

. (n) (n)
B k 1 i (E -1\ E;
Ry, = —pﬁzz':zAi:nZ Z] 2 Jk (Zl =7 ]J
RS k1) B
Rom = —Pplii—afing 2o jk Zz =7 7 — log j J
) , 2 p(n)
_ Pixk 4 1\ (rPs Vie\* Ej

where f/j,k lies between Vj;, and ;5. The main term is R, ,, but we consider Ry, and R3, first. Inequality
in Lemma [1| implies that, for § > 0,

1a _ SHFTE '
VE|Ryn| < O(1) <kZ|Azn|ufkl> (kg/z 2 i '

Hence VkR, n tends to 0 thanks to and ., with pg > 1/2. Now, concerning R3 ,, we proceed as in
the proof of Proposition |3 I part (g). Usmg the mean value theorem Lemma |5 I and then applying property
(#5) (with a = 1), then, working on the event &, o defined in (30), we have, for § > 0,

L. —2-25
\/E|R3,n| <o ( Z|Azn zk ) (k_g/g Z ufﬁc )
j=2

and we conclude using and (2). We thus have to deal with the first term Rj,, and we start by
separating the cases [ = j and [ > j to obtain

:_pﬁEAzn pﬁ]i zn.Z 2 L ] J. .

] =2 '7 j=2 l=j5+1 J

We prove easily that the first term of the right-hand side is O[P(l/\/E), using and . For the second
term, we separate the cases j = ¢ and j < ¢ and obtain

k—1 k (n) (n) k i—1 (n) k (n)
1 ] (El — 1) Ei pg Ej (El — 1)
D B e s

l=i+1 =3 j=2 l=j+1

—_

We prove easily, using and , that the first term of the right-hand side is op(1/ Vk). The second term
is split in two by separating the cases j+ 1 <[l <iand i+ 1 <[ < k. We obtain the following two terms

E("L) ; EB™M _q
/ 1 pp z 1
1n = Zz 3 Ain Z] 2 Uk, j <Zl=j+1 1
/ - 1 E('n) k El(n)fl
J
2n T Z = 'L N Z] 2 j k i Zl:i+1 l :

Inverting the sum in 7 and the sum in [, we see that vk kR, ., tends to 0 thanks to properties (50) and
in Lemmas [7] and [§] Now, inverting the sum in [ and the sum in j yields

1 & E™ 1 (i EM
A - -1t = pg J
e Sa (S BT
i=3 v j=2

=3 J

Separating finally the cases [ =i and | < i, we obtain the following two terms :
(n) . (n)
1 _ k E;" -1 i-1 pg E;
1n = 2icadin—m— <Zj—2 U, 5 ) 5
1 _ A Lyl E! )—1 -1 ps E;.”)
2n = Zz s Aimg 23 Zj=2 Uik, ~5 |-

VERY . tends to 0 thanks to properties (50) and (54) in Lemmas |7 and We now conclude the proof of
2,n
this lemma by proving that vkR/ ,, tends to 0. Since |4; | < Ei(n) +2,

E(R]) < Z y 2 o

and the right-hand side tends to 0 using (37)) (or (38| . and .
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5.9. Elements of proof for the other lemmas

Concerning Lemmas [2| and [3] relation is just the convergence of a Riemann sum, is just one
definition of the Zeta function, statements (40) and (43]) have been proved in Lemma 2 of Worms and Worms|
|] 2014)) respectively for 0 < a < 1 and a > 1 (for the treatment of the case a < 0 is similar). Property
11]) is a simple application of the triangular law of large numbers, whereas property @ is deduced easily
from . Details are omitted.

Lemmal[5is a simple consequence of the fact that the exponential distribution admit a finite exponential
moment. Proof of Lemma [9] is omitted (see Beirlant et al. | (2016)) for (57))).

Lemma [4] is based on the fact that the uniform empirical quantile process based on a uniform sample of
size k satisfies vV supy o1 1)<r<n/ern) (T (8) — 8)/8/272| = Op(1) (see, for example, |Shorack and Wellner
Il sections 10.3 and 11.5). Since I'; ! (t) = Vj, for % <t < %, this yields relation for a = 1.
From the mean value theorem and working on the event &, . defined in , relation for a general
a > 0 follows easily.
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