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We prove that for a simply laced group, the closure of the Borel conjugacy class of any nilpotent element of height 2 in its conjugacy class is normal and admits a rational resolution. We extend this, using Frobenius splitting techniques, to the closure in the whole Lie algebra if either the group has type A or the element has rank 2.

InTRODUCTIOn

We work over an algebraically closed field k. Let G be a reductive group and g be its Lie algebra. An element x ∈ g is called nilpotent if ad x is a nilpotent operator on g. This property is preserved under the adjoint action of the group G on g. Nilpotent orbits are the orbits G • x under this action when x is nilpotent.

These orbits have been classified via the existence of so called sl 2 -triples. More precisely, for x nilpotent, there always exists a sl 2 -triple (x, h, y) of elements in g such that the span of these elements is a subalgebra of g isomorphic to sl 2 and such that these elements satisfy the Serre relations. In particular h is semisimple. The eigenspace decomposition of h on g is of the form g

Definition 0.0.1. The height ht(x) of x is the maximal weight n in the above decomposition. It does not depend on the choice of a sl 2 -triple.

Since x lies in g [START_REF] Boos | B-orbits of 2-nilpotent matrices and generalizations[END_REF] we always have ht(x) ≥ 2. Nilpotent orbits which are spherical were first classified by D. Panyushev [START_REF] Panyushev | Complexity and nilpotent orbits[END_REF] in characteristic 0. The results were extented in positive characteristic by Fowler and Röhrle [START_REF] Fowler | Spherical nilpotent orbits in positive characteristic[END_REF]. The classification is especially simple in terms of the height of x if the characteristic is a good prime. Recall that a prime p is good for G if p does not divide any coefficient in the expression of roots in terms of simple roots (see [START_REF] Springer | Seminar on Algebraic Groups and Related Finite Groups (The Institute for Advanced Study[END_REF]Definition 4.1]). Theorem 0.0.2 ([24], [START_REF] Fowler | Spherical nilpotent orbits in positive characteristic[END_REF]). Assume that the characteristic of k is good for G. Then G • x is spherical if and only if ht(x) ≤ 3.

The geometry of B-orbit closures is very simple in G-varieties which are spherical. In this paper we consider B-orbit closures in spherical nilpotent orbits. We focus on the case of height 2 since the G-orbits share a simple geometric structure in that case: they are obtained via parabolic induction from Jordan algebras (see Section Date: April 8, 2016. 2000 Mathematics Subject Classification. Primary: 14M27,14M17,14M15. Secondary: 20G15, 14M12.
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2). Note also that in type A, all spherical elements have height 2. Using this structure we prove the following result (see Theorem 4.2.1).

Theorem 0.0.3. Assume that the characteristic of k is large enough. Let G be a reductive group having only simply laced simple factors, let B be a Borel subgroup of G and x ∈ g be nilpotent of height 2. Then the orbit closure B • x in g is normal and has a rational resolution outside the G-orbits it contains. Furthermore B • x is homeomorphic to its normalisation. Corollary 0.0.4. For x and G as above, the closure of B • x in G • x is normal and has a rational resolution.

Our assumption on the characteristic of k comes from the fact that we need the nilpotent orbit G • x to be normal. Since this is true in characteristic zero, this also holds true for large enough characteristics. We give more precise bounds in the text.

We actually produce a resolution of singularities with connected fibers of B • x giving the last assertion of the above theorem and we are able to prove our regularity result outside G-orbits in B • x. Using Frobenius splitting techniques applied to the Jordan algebra of matrices or to the rank 2 Jordan algebras, we are able to extend the above result to the closure in the whole Lie algebra (see Corollary 6.0.2): Theorem 0.0.5. Assume that the characteristic of k is not 2. Let G be a reductive group having only simply laced simple factors, let B be a Borel subgroup of G and x ∈ g nilpotent of height 2 such that x is of rank 2 in any simple factor not of type A. Then the closure in g of the B-orbit B • x is normal and has a rational resolution.

The assumption on the characteristic comes from the fact that the nilpotent orbit G • x is normal for k of characteristic different from 2 with the above assumption. Actually in type A there is no assumption needed.

The proof goes as follows. By classical arguments for example from [START_REF] Fowler | Spherical nilpotent orbits in positive characteristic[END_REF], it is easy to reduce to the case where G is simple. We then prove that for nilpotent orbits of height 2, the orbit can be obtained by parabolic induction from the dense orbit of a Jordan algebra. For simply laced groups, this dense orbit is of minimal rank. By a result of Ressayre [START_REF] Ressayre | Spherical homogeneous spaces of minimal rank[END_REF] it has a unique closed B-orbit and we prove that this B-orbit is an affine space. Using classical techniques we construct this way resolutions of singularities and prove our first result. Constructing Frobenius splittings in type A and in rank 2 we get the second result above. We also give explicit descriptions of B-orbit closures for classical groups and give an example where the B-orbit closures are non normal and non Cohen-Macaulay when G is of type C and obtain more normality results in type B.

B-ORBITS In SPHERICAL VARIETIES

In this section, we recall classical results on the structure of B-orbits in spherical varieties (see for example [START_REF] Perrin | Geometry of spherical varieties[END_REF]Section 4.4]). First recall the following result due to Brion [START_REF] Brion | Quelques propriétés des espaces homogènes sphériques[END_REF] and Vinberg [START_REF] Vinberg | Complexity of actions of reductive groups[END_REF].

Proposition 1.0.1. A spherical variety has finitely many B-orbits.

Let Z be a spherical G-variety. We denote by B(Z) its finite set of B-orbits.

1.1. Weak order. We define the weak Bruhat order on B(Z) as follows. Let Y ∈ B(Z). If P is a minimal parabolic subgroup of G containing B such that Y Ç PY , we write Y ′ for the dense B-orbit in PY and say that P raises Y to Y ′ . In this case we write Y " Y ′ . These relations are the covering relations of the weak Bruhat order. For Y " Y ′ raised by P , consider the proper morphism q : P × B Y → PY . The following result is proved in [START_REF] Richardson | The Bruhat order on symmetric varieties[END_REF] for symmetric varieties and extends readily to the general case. Proposition 1.1.1. One of the following occurs.

• Type U: PY = Y ∪ Y ′ and q is birational. • Type N: PY = Y ∪ Y ′ and q has degree 2. • Type T: PY = Y ∪ Y ′ ∪ Y ′′ with dim Y ′′ = dim Y
and q is birational. If furthermore all G-orbits of Z are of minimal rank, then the above resolution has connected fibers.

Proof. Since the dense B-orbits of Y and Y 0 are in G • x and since the dense B-orbit in Y 0 is the only minimal orbit for the weak order in G • x, there exists a sequence of minimal parabolic subgroups P 1 , • • • , P m raising Y 0 to Y . Since case (N) does not occur, we see that the surjective and projective map

f : P 1 × B . . . × B P m × B Y 0 → Y is birational. The map f is a resolution of singularities if and only if P 1 × B . . . × B P m × B Y 0 is smooth.
We now prove that f has connected fibers. By induction it suffices to prove that for any B-orbit Y ′ in Y which is raised by a parabolic P , the map q

: P × B Y ′ → P • } Y ′ has connected fibers. We have the equality q -1 (x) ≃ p ∈ P | p -1 • x ∈ Y ′ /B ⊆ P/B. Note that q is P -equivariant. If P • x ⊆ Y ′ , then q -1 (x) = P/B is connected.
Else, since we are in type U , q is birational and x is in the dense open orbit of PY ′ therefore q -1 (x) consists of one point. Q

NILPOTEnT ORBITS Of HEIgHT 2

Most of the results on nilpotent orbits of height 2 in this section are based on the paper [14, Section 3] (see also [START_REF] Panyushev | Complexity and nilpotent orbits[END_REF]).

Reductive case.

Let G be a reductive group. Since the kernel of the adjoint action is the center of G, we can mod out the center and assume that G is semisimple of adjoint type. Applying Lemma 3.2 from [START_REF] Fowler | Spherical nilpotent orbits in positive characteristic[END_REF] we get the following result. In particular it is enough to deal with the case of simple groups. From now on we therefore assume that the group G is simple.

Lemma 2.1.1. The group G is a product G = G 1 × • • • × G r of simple groups and any nilpotent element x ∈ g is a sum x = x 1 +• • •+ x r of nilpotent elements x i ∈ g i .
Lemma 2.1.3. Let x ∈ g with ht(x) = 2. Then ht(y) = 2 for any y ∈ G • x -{0}.
Proof. Since G• y lies in the closure of G• x, the order of nilpotency of ad y is smaller than that of ad x . But ad x has order at most 3 and elements of height bigger than 2 have order at least 4. Q

2.2.

Structure of the G-orbits. Let x ∈ g be nilpotent of height 2. Then using a sl 2 -triple, we have a decomposition of the Lie algebra g = g(-2) ⊕ g(-1) ⊕ g(0) ⊕ g(1) ⊕ g(2) with x ∈ g [START_REF] Boos | B-orbits of 2-nilpotent matrices and generalizations[END_REF]. Let P be the parabolic subgroup of G with Lie algebra g(0) ⊕ g(1) ⊕ g [START_REF] Boos | B-orbits of 2-nilpotent matrices and generalizations[END_REF]. Its unipotent radical R u (P ) has Lie algebra g(1) ⊕ g [START_REF] Boos | B-orbits of 2-nilpotent matrices and generalizations[END_REF]. Let L be the Levi factor of P with Lie algebra g(0). [START_REF] Fowler | Spherical nilpotent orbits in positive characteristic[END_REF]Lemma 2.31]). We also have C G (x) = C P (x) (see [START_REF] Fowler | Spherical nilpotent orbits in positive characteristic[END_REF]Theorem 2.14]). We get an isomorphism G • x = G/C G (x) = G/C P (x) = G × P P/C P (x). Furthermore, R u (P ) acts trivially on x and C P (x) is the semidirect product of C L (x) with R u (P ) (see [START_REF] Fowler | Spherical nilpotent orbits in positive characteristic[END_REF]Proposition 2.24]). We get an isomorphism G • x = G × P L/C L (x). Since L • x is dense in g [START_REF] Boos | B-orbits of 2-nilpotent matrices and generalizations[END_REF] (see [14, Corollary 2.21]) we get a birational morphism

The closure of G • x in g is G • g(2) (see
G × P g(2) → G • x
given by [g, y] ›→ g • y. This morphism is an isomorphism on the G-orbit which is therefore obtained from L • x via parabolic induction:

G • x ≃ G × P L • x.
2.3. Structure of the L-orbits. In this subsection we want to understand the possible pairs (L, g(2)) occuring in the above discussion. Consider the Lie subalgebra g E = g(-2)⊕g(0)⊕g [START_REF] Boos | B-orbits of 2-nilpotent matrices and generalizations[END_REF]. There is a closed reductive subgroup G E of G with Lie algebra g E . It contains a parabolic subgroup P E whose Lie algebra is g(0) ⊕ g [START_REF] Boos | B-orbits of 2-nilpotent matrices and generalizations[END_REF]. Furthermore, the unipotent radical R u (P E ) of P E has Lie algebra g [START_REF] Boos | B-orbits of 2-nilpotent matrices and generalizations[END_REF] and P E contains L as a Levi subgroup. Note that the unipotent radical of P E is abelian. This is quite restrictive, indeed the type of the pair (G E , P E ) is one the pairs given in the following list (we eventually mod out factors acting trivially and give a list modulo isomorphism of the Dynkin diagram). In this list P m corresponds to the maximal parabolic subgroup associated to the m-th node of the Dynkin diagram with notation as in Bourbaki [START_REF] Bourbaki | Groupes et algèbres de Lie[END_REF]: (A n , P m ), (B n , P 1 ),(C n , P n ), (D n , P 1 ), (D n , P n ), (E 6 , P 6 ), (E 7 , P 7 ).

An easy check proves that the cases (A n , P m ) with m n-m, the cases (D n , P n ) with n odd and the case (E 6 , P 6 ) never occur. Indeed, if we compute the decomposition of the sl 2 -triple (y, h, x) in g E , we get g E [START_REF] Achinger | Spherical multiple flags[END_REF] 0 for these cases. A contradiction. In the next table we list the possibilities. In the last column we describe the centraliser of our nilpotent element x ∈ g(2) (recall that x has a dense L-orbit in g(2) -these stabilisers are well known, see for example [START_REF] Kac | Some remarks on nilpotent orbits[END_REF] or [START_REF] Ressayre | Spherical homogeneous spaces of minimal rank[END_REF]).

Case

G E P E L g(2) C L (x) 1 2 3 4 5 6 A 2n-1 B n C n D n D 2n E 7 P n P 1 P n P 1 P 2n P 7 A n-1 × A n-1 B n-1 A n-1 D n-1 A 2n-1 E 6 M n (k) k 2n-1 M s (k) n k 2n-2 M a (k) 2n k 27 A n-1 B n-2 Bn-1 or Dn 2 2 D n-2 C n F 4
Table 1. Pairs (G E , P E ).

In the above table, we write M n (k) for the Jordan algebra of square matrices of size n over k, M s (k) for the subalgebra of symmetric matrices and M a (k) for the n n subalgebra of antisymmetric matrices. The vector space k 27 is endowed with the structure of the unique exceptional semisimple Jordan algebra (of antisymmetric matrices of rank 3 over the octonions). Adding a unit to the vector space k n -2 we get the rank 2 Jordan algebra associated to any non-degenerate quadratic form on k n-2 . 

2.4.

f : P 1 × B . . . × B P m × B Y 0 → Y, [p 1 , . . . , p m , x] ›→ p 1 . . . p m • x,
is birational, projective with connected fibers. In particular, f is a resolution of singularities if and only if Y 0 is a smooth variety.

Proof. By Lemma 1.2.3, it is enough to check that for y in the dense B-orbit of Y , the orbit G • y is of minimal rank. This is the content of the previous result. Q

MInIMAL B-ORBITS

3.1. Structure of minimal B-orbits. We first prove that the closure of a minimal B-orbit is always a vector space.

Proposition 3.1.1. Let L and g(2) be as in Subsection 2.3. Let x such that L • x is dense in g( 2) and let Y 0 be the closure in g( 2) of the minimal B-orbit in L • x. Then Y 0 is a vector subspace of g [START_REF] Boos | B-orbits of 2-nilpotent matrices and generalizations[END_REF].

Proof. This is easily checked in most cases. In all cases, the vector space Y 0 is a sum of weight spaces. For case 1 for example, the closure of the minimal B-orbit is the subspace of upper triangular matrices. We only discuss case 6 with more details.

According to [START_REF] Fowler | Spherical nilpotent orbits in positive characteristic[END_REF]Theorem 4.14], any spherical nilpotent orbit can be represented by a sum y = y 1 + • • • + y r with y i ∈ g βi (here g β is the root space associated to the root β) and such that the root (β i ) i∈ [1,r] are pairwise orthogonal. Producing the dense B-orbit is then easy, for case 6 we get β 1 = (2234321), β 2 = (0112221) and β 3 = (0000001) (here we write β = (abcdefg) for β = aα 1 + bα 2 + cα 3 + dα 4 + eα 5 + fα 6 + gα 7 where (α 1 , α 2 , α 3 , α 4 , α 5 , α 6 , α 7 ) are the simple roots of E 7 with notation as in [START_REF] Bourbaki | Groupes et algèbres de Lie[END_REF]). To get the minimal B-orbit apply the longest element in W E6 /W F4 . We get : β 1 = (0112221), β 2 = (1112211) and β 3 = (1122111). The minimal B-orbit is therefore contained in the vector space V spanned by the g β with β ≤ β i for some i ∈ [START_REF] Achinger | Spherical multiple flags[END_REF][START_REF] Bourbaki | Groupes et algèbres de Lie[END_REF]. But an easy checks proves that [,y], the image of the tangent action, is exactly V proving the result. ¯ Q 3.2. Resolution. Applying Corollary 2.4.3 and the above result on the structure of minimal B-orbits, we get, for simply laced groups, a resolution of singularities for any nilpotent orbit of height 2 .

Corollary 3.2.1.

Let G be a simple simply laced group, let x ∈ g nilpotent of height 2 and let Y be a B-orbit closure. Then there exists a sequence of minimal parabolics P 1 , . . . , P m and a vector space Y 0 such that

f : P 1 × B . . . × B P m × B Y 0 → Y, [p 1 , . . . , p m , x] ›→ p 1 . . . p m • x,
is birational and projective.

Remark 3.2.2. Note that, since Proposition 3.1.1 is true in any case, the above proof works as soon as the spherical conjugacy class is of minimal rank or even with the weaker assumption that the spherical conjugacy class has no type N map (see Proposition 1.1.1). We shall use this remark to get more precise results in type B in the next section.

SIngULARITIES OUTSIDE G-ORBITS

In this section we prove our first results on the singularities of B-orbit closures.

4.1. Singularities of nilpotent orbits of height 2. In this subsection, we summarise existing regularity results for nilpotent orbits of height 2. We expect the above B-orbit closures to be also normal in G-orbits but we were not able to prove this result in general. In the next two sections, we give a proof of this in type A and for nilpotent element of rank 2. Note however that the fact that we have a resolution with connected fibers implies that the orbit closure B • x is homeomorphic to its normalisation: the normalisation map is finite thus proper and bijective.

G • x in g is normal. In Type A the map G × P g(2) → G • x is a rational resolution.

Singularities of B-orbit closures outside

FROBEnIUS SPLITTIng

In this section we prove Frobenius splitting results for G-and B-orbit closures.

5.1. Frobenius splitting. In this subsection, we prove that if x ∈ g has height 2 and if the closure of the nilpotent orbit G • x is normal, then it is Frobenius split.

Proposition 5.1.1. Let k be of characteristic p a good prime for G. The variety G × P g( 2) is (p -1)D-Frobenius split for D an ample divisor. Furthermore the splitting compatibly splits the G-orbits.

Proof. Recall the construction of the group G E as well as the parabolic P E of G E . Recall also that L is the Levi subgroup of P and P E containing T the maximal torus. Let

B E = B ∩ G E (recall that B is a Borel subgroup of G contained in P and containing T ). This is a Borel subgroup of G E . Let B L = B ∩ L, this is a Borel subgroup of L.
Since p is a good prime for G, it is also a good prime for G E . In particular, we have a L-equivariant isomorphism g( 2 is the parabolic subgroup opposite to P E with respect to T ). Its open subset P E w E P E /P E is therefore B E -canonically split compatibly with its intersection with the P --orbits. It is therefore also B L -canonically split (see [START_REF] Brion | Frobenius splitting methods in geometry and representation theory[END_REF]Lemma 4.1.6]) compatibly with its intersection with the P --orbits. It follows that R u (P E ) ≃ g( 2) is B L -canonically Frobenius split compatibly with its intersection with the P --orbits which exactly correspond to the L-orbits (this is a well known fact, i the description of these intersections is for example given by the distance used in [START_REF] Chaput | Quantum cohomology of minuscule homogeneous spaces[END_REF][START_REF]Quantum cohomology of minuscule homogeneous spaces. II. Hidden symmetries[END_REF][START_REF]Quantum cohomology of minuscule homogeneous spaces III : semi-simplicity and consequences[END_REF] see also [START_REF] Achinger | Spherical multiple flags[END_REF]). Now since x is of height 2, the weights appearing in P are bounded above by 2 so P acts on g(2) via its Levi factor L which is also contained in P E so the action of P on g(2) coincides with the action of P E . This implies that the B-action on g [START_REF] Boos | B-orbits of 2-nilpotent matrices and generalizations[END_REF] coincides with the B E -action, therefore g( 2) is also B-canonically Frobenius split compatibly with the L-orbits.

By [7, Theorem 4.1.17], we obtain that G × B g( 2) is B-canonically Frobenius split. Furthermore by [START_REF] Brion | Frobenius splitting methods in geometry and representation theory[END_REF]Exercice 4.1.4], this splitting compatibly splits all Schubert divisors Bw 0 s α B × B g [START_REF] Boos | B-orbits of 2-nilpotent matrices and generalizations[END_REF], with w 0 the longest element in the Weyl group of G and α any simple root. This splitting also compatibly splits the G-orbits (the G-orbits are obtained by induction from the L-orbits in g( 2)).

But we have a natural projection q : G × B g(2) → G × P g( 2) obtained from G/B → G/P by base extension. In particular, we have

q * O G× B g(2) = O G× P g(2)
and we get by [7, 2. The compatibly split subvarieties for the above splittings are described in [START_REF] Perrin | Compatibly split subvarieties of group embeddings[END_REF]. The B L -orbit closures in M n (k) are matrix Schubert varieties. For such a variety Z, there exists a Schubert variety Z ′ in GL 2n (k) and a smooth and surjective morphism Z ′ → Z (see [START_REF] Fulton | Schubert varieties, degeneracy loci and determinantal varieties[END_REF]). In particular, Z has rational singularities, as this holds for Schubert varieties.

Let us now consider rank 2 nilpotent orbits. In this case G E = SO 2n+2 . Let T be a maximal torus. Let (e i ) i∈ [1,2n+2] be the basis of k 2n+2 such that the quadratic form q is associated to the bilinear form b(e i , e j ) = δ i,2n+3-j . Write (e * ) i∈ [1,2n+2] for the dual basis. Let B E be a Borel subgroup containing T and P E be the maximal parabolic subgroup of G E containing B E and associated to the simple root α 1 (with notation as in Bourbaki [START_REF] Bourbaki | Groupes et algèbres de Lie[END_REF]). The unipotent radical of P E is V and 2n+2 n+1 2n+2 2n+2 is isomorphic to an open Schubert variety in G E /P E (a smooth 2n-dimensional quadric). Note that we have V ≃ k 2n and the embeding in the quadric is given by

(x 2 , • • • , x 2n+1 ) ›→ [1, x 2 , • • • , x 2n+1 , -(x 2 x 2n+1 + • • • + x n x n+1 ))].
Let ψ be the B E canonical splitting of k 2n obtained from the restriction of the B E -canonical splitting φ on G E /P E . Since φ splits the hypersurfaces given by the following equations: e * , e *

, and e * e * + • • • + e * e * for i ∈ [2, n + 1] (see Proof. Indeed, the B L -stability is clear. We check that Y 0 can be obtained via taking irreducible components and intersections of the above hypersurfaces. This will prove that it is compatibly split. 

1 2n+2 1 2n+2 i 2n+3-i [ 20 
:= B • X ρ | ρ ∈ Φ lg }. (3) O ρ ⊆ O ρ ′ if
W P → Φ lg , w ›→ w(β)
is an anti-isomorphism of partially ordered sets. Q Remark 6.1.2. These results are mostly well known. The reader will find more details on the parametrisation by long roots of B-orbits and the Bruhat order in the projectivisation of the minimal nilpotent orbit in [START_REF] Chaput | On the quantum cohomology of adjoint varieties[END_REF].

ExPLICIT DESCRIPTIOn Of B-cOnjUgACy clASS CLOSURES

In this section, we explicitly describe, for classical groups, the nilpotent conjugacy classes which are spherical as well as the B-orbit closures. In non simply laced groups, we give examples of non-normal B-orbit closures and in type B we precisely describe which conjugacy classes are of minimal rank and deduce more normality results.

7.1. On classical Lie algebras. The Lie algebra sl n is the Lie algebra of trace free square n by n matrices. Denoting by J n ∈ GL n (k) the matrix whose anti-diagonal entries equal one and all other entries are zero, we set

K n = ! 0 J n -J n 0
and we define the symplectic groups and special orthogonal groups

Sp 2n = g ∈ SL 2n | g T } K n g = K n and SO n = g ∈ SO n | g T } J n g = J n .
The subgroups of upper-triangular (resp. diagonal) matrices form a Borel subgroup (resp. a maximal torus) and will be denoted by B (resp. by T ). The corresponding Lie algebras are } } sp

T T 2n = x ∈ sl 2n | x = K n xK n and so n = x ∈ sl n | x = -J n xJ n .
The Weyl group of Sp 2n and the simple reflections in it we identify with

W Cn = {σ ∈ S 2n | σ(1) + σ(2n) = . . . = σ(n) + σ(n + 1) = 2n + 1}, ∆ Cn = {c i := s i s 2n-i | i ∈ [n -1]} ∪ {c n := s n } .
For n = 2r + 1, the Weyl group of SO n and its simple reflections are

W Br = {σ ∈ S n | σ(1) + σ(n) = . . . = σ(r) + σ(r + 2) = n + 1, σ(r + 1) = r + 1}, ∆ Br = {b i := s i s n-i | i ∈ [r -1]} ∪ {b r := s r s r+1 s r } ,
and if n = 2r we will use

W Dr = {σ ∈ S n | σ(1) + σ(n) = . . . = σ(r) + σ(r + 1) = n + 1, | neg(σ) |≡ 0 mod 2}, ∆ Dr = {d i = s i s n-i | i ∈ [r -1]} ∪ {d r := s r s r-1 s r+1 s r } , where neg(σ) = {i ∈ [r] | σ(i) > r}.

Spherical nilpotent orbits.

In classical Lie algebras one can also describe spherical nilpotent elements directly from their matrices. This was observed by D. Panyushev in [START_REF] Panyushev | Complexity and nilpotent orbits[END_REF] and generalised in any good characteristic in [START_REF] Fowler | Spherical nilpotent orbits in positive characteristic[END_REF]. The height 2 spherical nilpotent elements are:

(1) conjugacy classes of a 2-nilpotent element in sl n , sp 2n and so n ;

(2) conjugacy classes of a 3-nilpotent element of rank 2 in so n . In the next subsection we shall consider the different cases. [1,n] be the canonical basis of k n and for

The group

G = SL n . Let (e i ) i∈
m ≤ n, let V m = ⟨ e i | i ∈ [1, m]
⟩ be the span of the first m basis vectors. Let N 2 be the set of nilpotent elements of order at most 2 in g = sl n . The conjugacy classes of 2-nilpotent matrices are indexed by the rank. Note that the rank r of a nilpotent element of order 2 in satisfies 2r ≤ n. Denoting by O r the subscheme of nilpotent elements of order 2 and rank r we get that the conjugacy classes are (O r ) 2r≤n . For 2r ≤ n, let P r be the parabolic subgroup of G stabilising the flag V r ⊂ V n-r . We have a natural morphism p : O r → G/P r defined by p(x) = (Im(x), Ker(x)). This morphism extends to a birational transform of the closure of O r as follows. Let X r be the variety of pairs

X r = {(x, (I, K)) ∈ g × G/P r | Im(x) ⊂ I ⊂ K ⊂ Ker(x)}. r r r r
There is a natural G-equivariant morphism p : X r → G/P r given by the second projection as well as a G-equivariant morphism π : X r → g given by the first projection. This last morphism is birational onto the closure of O r :

O r = {x ∈ g | x 2 = 0 and rk(x) ≤ r}.
The above morphism p is the induction over G/P r described in the previous sections. Let A r be the fiber of p over the flag V r ⊂ V n-r i.e.

A r = {x ∈ g | Im(x) ⊂ V r ⊂ V n-r ⊂ Ker(x)}.
For the adjoint action by conjugation, the parabolic subgroup P r stabilises A r . We may therefore define the contracted product G × P r A and an easy check gives an isomorphism G × P r A ≃ X r . If we identify these two varieties and write [g, x] for the class of an element (g, x) ∈ G × A r in the contracted product, we can describe the morphisms p and π as follows: 

p([g, x]) = g • P r and π([g, x]) = g.x = gxg -1 .
′ w ′ W (C r ) = τ W (C r ). r+1 (3) dim Bσw.x = l(σ) + l(w) + r 2 . Proof. With A 0 := {x ∈ A r | rk(x) = r} we have an B-equivariant isomorphism G × P r A 0 → O , [g, x] ›→ g.x. r r
The identification A 0 ≃ GL r (k) provides a Bruhat decomposition

A 0 = a w∈Wr Bw.x r .
The first claim and the minimality of the B-orbit B.x r follow from [5, Lemma 6]. Now, choose a reduced expression σw = s i1 . . . s ir . Using that all covering relations are of type U (again by [START_REF]On orbit closures of spherical subgroups in flag varieties[END_REF]Lemma 6]) we see that the closure of Bσw.x r in O r is given by P i1 . . . P ir .x r = [ τ ≺σw

Bτ.x r .

The second claim follows, because τ ′ .x r = τ.x r if and only if For the third claim, note that l(σw) = l(σ) + l(w) since w ∈ W r ⊆ W P r . Therewith dim Bσw.x r = dim P i1 . . . P ir .x r = l(σw

τ ′ W (C r ) = τ W (C r ).
) + dim(B.x r ) = l(σw) + dim(B r ) = l(σ) + l(w) + r + 1 2
and the last claim follows. Q Remark 7.3.2. The results of [START_REF]On orbit closures of spherical subgroups in flag varieties[END_REF]Lemma 6] give a description of the B-orbits in X = G × P r A as well: They are indexed by W P r × P(r), where P(r) is the set of partial permutation matrices in M r (k).

Remark 7.3.3. Borel orbits in 2-nilpotent matrices have been investigated before in [START_REF] Boos | B-orbits of 2-nilpotent matrices and generalizations[END_REF]. In order to compare our results with these previous results, denote for (i, j)

∈ [n]
2 by E i,j ∈ g the corresponding elementary matrix. Then

Σ r σw.x r = σwx r (σw) -1 = j=1 E σw(j),σ(n-r+j) .
This is the 2-nilpotent matrix associated to the oriented link pattern on r arcs (σ(nr + 1), σw(1)), . . . , (σ(n), σw(r)), as in [START_REF] Boos | B-orbits of 2-nilpotent matrices and generalizations[END_REF]. It was there shown that oriented link patterns parametrize B-orbits in O r by using representation theory of quivers. The closure order on B\O r (and not only on B\O r as in Lemma 7.3.1 (2)) was determined in [START_REF] Boos | B-orbits of 2-nilpotent matrices and generalizations[END_REF] as well. The term oriented link pattern refers to an extension of the term link pattern which appeared first in physical literature (cf. [START_REF] Di Francesco | From orbital varieties to alternating sign matrices[END_REF]). It was shown in [START_REF] Melnikov | Description of B-orbit closures of order 2 in upper triangular matrices[END_REF] that link patterns parametrize B-orbits of 2-nilpotent upper-triangular matrices. 

Example 7.3.4. For (n, r) = (4, 2) we have W r = ⟨ s 1 ⟩ , W (C r ) = ⟨ s 1 , s 3 ⟩ and W P r = {σ ∈ W | σ(1) < σ(2), σ(3) < σ(4)} = {id,
/ ❅ / ❅ / ❅ (s2 , id) ❛ ❛ ✏ ✏ (id, s1) / ❅ ❛ ✏❛ ✏ / ❅ / ✏ ✏ ❅ ✏ ✏ ❛ / ❛ ❛ ❅ / ✏ ✏ ❅ / ❛ ❛ ❛ ❅ (s1 s2 , i ❳ d ❳ ) (s3 s2, id) ❳ ❳ ❳ ✟ ❳ ✟ ✟ (s2, s1) ✟ ✟ ✟ ✟ ❳ ❳ ❳ ❳ ❳ ✟ ✟ ✟ ✟ (s1 s3s2 , id) ❛ ❛ ✟ ✟ ✟ ❳ ❳ ❳ ❳ (s3 s2, s1) (s1s2 , s1 ) ❅ ❛ ❛ / ❅ ✟ ✟ ✟ / ❅ ❛ ❛ ✟ / ❅ / ❛ ❛✟ ❅ ✟ / ❅ / ✟ ❛ ❛ ❅ ❅ / / ✟ ✟ (s2 s1s3 s2, id) ❅ ❅ ❅ ❅ (s1s3 s2, s1) / / / (s2 s1s3 s2, s1) Figure 1. Type A n-1 closure graph for (n, r) = (4, 2) .

B-orbit closures as sets of linear maps. Recall that V i ⊆ k

n denotes the coordinate subspace generated by e , . . . , e . For 0 ≤ 2r ≤ n and (σ, w) ∈ W P r ×W

1 i r
we consider Z(σ, w) = Bσw.x r ⊆ N 2 . All B-conjugacy class closures in N 2 are of this form. In order to describe Z(σ, w) explicitly, we define

r(i, j, x) := dim (x(V i ) + V j ) , for (i, j) ∈ [n] × [n] ∪ {0},
where we have set V 0 := {0}.

Lemma 7.3.5. As a set of linear maps,

Z(σ, w) = {x ∈ N 2 | r(i, j, x) ≤ r(i, j, σw.x r ), for all (i, j) ∈ [n] × [n] ∪ {0}} .
Proof. This result appears in [START_REF] Rothbach | Borel Orbits of X 2 = 0 in gl[END_REF]. We give a shorter proof. The space g = M n (k) is the disjoint union of (B, B)-double cosets of partial permutation matrices. Further, for x, y ∈ g one has BxB = ByB if and only if

r(i, j, x) = r(i, j, y), for all (i, j) ∈ [n] × [n] ∪ {0}. From Lemma 7.3.1 we derive that Bσw.x r = O r ∩ B(σw.x r )B. Consequently, Bσw.x r = {x ∈ O r | r(i, j, x) = r(i, j, σw.x r ), for all (i, j) ∈ [n] × [n] ∪ {0}} .
Taking the closure in N 2 we obtain the wanted description of Z(σ, w). Q Example 7.3.6. Let (n, r) = (3, 1). Then W r = {1} and W P r = W . Take (σ, w) = (s 1 s 2 , 1). Then Z(s 1 s 2 , 1) is 3-dimensional. Using Lemma 7.3.5 we see it is isomorphic to

( ! A v Z = 0 0 ) | (A, v) ∈ M 2 (k) × k 2 , A 2 = 0 and Av = 0 . ❳ 2n r r n n
This is a toric variety: The open torus is

( ! ! ) T := Z ∩ (M (k * ) × (k * ) 2 ) = t 1 -t 2 , t 3 | t , t , t ∈ k * . Z 2 t 1 t2 -t 1 t1t3 t2 1 2 3
By considering 1-parameter subgroups of T Z we see that Z is the toric variety associated with the cone

≥0

We conclude that Z is not Gorenstein, as the generators of this cone are not contained in an affine hyperplane in Q 3 .

7.4.

The group Sp 2n .

7.4.1. Symplectic 2-nilpotent elements. A 2-nilpotent element in sp 2n is of rank 1 ≤ r ≤ n. These elements form a Sp 2n -conjugacy class we denote by C r . Further we will be dealing with

S r = {x ∈ C r | V r = Im(x) ⊆ Ker(x) = V 2n-r } ,
and P r ⊆ Sp 2n the parabolic subgroup given by elements stabilizing the vector subspace V r , which acts on S r . Denoting by L r ⊆ P r the Levi factor, we see that the P r -action on S r factors through P r → L r and that the multiplication map

Sp × P r S → C , [g, x] ›→ g.x,
is an isomorphism. So C r is obtained by parabolic induction on the L r -variety S r . Denote by S (2) the set of involutions in S and by R := {τ ∈ S | J τ ∈ S (2) }. 

E στ (i),σ(2n-r+i) - Σ τ (j)∈neg(σ) E στ (j),σ(2n-r+j) , with (σ, τ ) ∈ W r × R r .
Proof. An element σ ∈ W Cn = N (T )/T is represented by the element σ ˙ ∈ N (T ) given by (

σ ˙ (e i ) = ) e σ(i) , if i ∈ pos(σ) ∪ {n + 1, . . . , 2n}
, -e σ(i) , if i ∈ neg(σ). and for any τ ∈ R r one computes that

0 0 τ x(σ, τ ) = σ ˙ . 0 0 0 0 0 0 2 . . 0 1 1 1 Q 0 + Q ≥0 0 + Q≥ 0 1 + Q≥ 0 2 1 0 0 1
The morphism which maps an element of sp 2n to its upper-right-hand r × r-block induces an equivariant isomorphism between the L r -variety S r and the GL r -variety Y r = {h ∈ GL r | h T = J r hJ r }, where GL r acts via g.h = ghJ r g T J r , g ∈ GL r , h ∈ Y r .

By [START_REF] Richardson | The Bruhat order on symmetric varieties[END_REF] B r -orbits in the symmetric space Y r ≃ GL r /O r are indexed by R r . As we have seen, C r is obtained by parabolic induction on the L r -variety S r . Hence the claim follows from [5, Lemma 6].

Q Lemma 7.4.2. Let (σ, τ ) ∈ W r × R r . Then } B • x(σ, τ ) = x ∈ C r | r(i, j, x) ≤ r(i, j, x(σ, τ )), for all (i, j) ∈ [2n] × [2n] ∪ {0} .
Proof. The claim will follow from Lemma 7.3.5 once we have seen that B • x(σ, τ ) = B 2n • x(σ, τ ) ∩ sp 2n , where B 2n denotes the Borel subgroup of SL 2n containing B. Clearly the LHS is contained in the RHS. To see the other inclusion, use that x(σ ′ , τ ′ ) = x(σ, τ ) if and only if r(i, j, x(σ ′ , τ ′ )) = r(i, j, x(σ, τ )), for all i, j.

Q Lemma 7.4.3. Let O(σ, τ ) = B.
x(σ, τ ), for a pair (σ, τ ) ∈ W r × R r and P i ⊇ B a minimal parabolic corresponding to a simple refelction c i ∈ ∆ Cn . Assume that P i raises O(σ, τ ). Then three cases occur:

(

1) P O(σ, τ ) = O(c σ, τ ) `O(σ, τ ) iff c σ ∈ W r . i i i
This gives a covering relatio ǹ of type U . (2) P i O(σ, τ ) = O(σ, s i τ J r s i J r ) O(σ, τ ) iff i ∈ [r -1] and s i τ J r s i J r τ. This gives a covering relation of type U .

(3

) P i O(σ, τ ) = O(σ, s i τ ) O(σ, τ ) iff i ∈ [r -1] and s i τ J r s i J r = τ.
This gives a covering relation of type N.

Proof. Follows again from [5, Lemma 6] and B. J. Wyser's and Richardson-Springer's results [START_REF] Richardson | The Bruhat order on symmetric varieties[END_REF][START_REF] Wyser | Symmetric subgroup orbit closures on flag varieties: Their equivariant geometry, combinatorics, and connections with degeneracy loci[END_REF] for the weak order on B r \Y r . Q

A consequence of Zariski's main theorem is the following (1, 1) 

, P ♣ ♣ ♣ ♣ ◆ ◆ ◆ ◆◆ P 2 ♣ ♣ ♣ (c 2 , 1) P1 1 ◆ ◆ ◆ ◆ ◆ (1, s 1 ) P2 (c 1 c 2 , 1) P2 (c 2 , s 1 ) P1 (c 2 c 1 c 2 , 1) ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆◆ (c 1 c 2 , s 1 ) ♣ ♣ ♣ ♣ ♣ ♣ P1 ◆ ◆ ♣ P2 (c 2 c 1 c 2 , s 1 )
O(c 1 c 2 , 1) = x y 0 -J 2 x t J 2 ! ) | x 2 = 0, xy = J 2 y t J 2 and O(c 2 c 1 c 2 , 1) = {z | z 4,1 = 0} ⊆ N 2 (sp 4
). The non-normal and the singular loci agree and are in both cases given by S 2 = O(1, s 1 ) ≃ A 3 . So, O(c 1 c 2 , 1) is singular in codimension 1, whereas O(c 2 c 1 c 2 , 1) is not. By Serre's criterion for normality, we may conclude that the latter is not Cohen-Macaulay.

7.5.

The group SO n . 7.5.1. Orthogonal 2-nilpotent elements. A 2-nilpotent element in an orthogonal Lie algebra has even rank, hence we are dealing with 2-nilpotent elements of rank 2s where 4s ≤ n. The corresponding nilpotent orbits are denoted by B 2s with the exception of the very even case n = 4s; then, 2-nilpotent elements of rank 2s form a O n -conjugacy class, which is the union of two SO n -conjugacy classes. We treat this case later on. 

We will use

K 2s = {x ∈ B 2s | Im(x) = V 2s ⊆ V n-2s = Ker(x)
(ρ) = {i ∈ [f ] | ρ(i) + i > f + 1}.
:= - Σ i∈def(τ ) E σ(n+1-τ (i)),σ(n-2s+i) + Σ i∈ /def(τ ) E σ(n+1-i),σ(n-2s+τ (i)) , with (σ, τ ) ∈ W s × F s , parametrizes Borel conjugacy classes in B 2s .
Proof. This is similar to the proof of Lemma 7.4.1. The morphism which maps an element of so n to its upper-right-hand (2s × 2s)-block induces an equivariant isomorphism ϕ : K 2s → Z 2s between the L s -variety K 2s and the GL 2s -variety Z 2s = {h ∈ GL 2s | h T = -J 2s hJ 2s }, where GL 2s acts via

g.h = ghJ 2s g T J 2s , g ∈ GL 2s , h ∈ Z 2s .
By [START_REF] Richardson | The Bruhat order on symmetric varieties[END_REF][START_REF] Wyser | Symmetric subgroup orbit closures on flag varieties: Their equivariant geometry, combinatorics, and connections with degeneracy loci[END_REF] B 2s -orbits in the symmetric space Y 2s are indexed by F s as follows: An element τ ∈ F s is identified with the B 2s -orbit through

τ˜ := - Σ i∈def(τ ) E 2s+1-τ (i),i + Σ i∈ /def(τ ) E 2s+1-i,τ (i) ∈ Z 2s .
If n = 2r is even, the Weyl group W D consists of even permutations, hence σ ∈ W s is represented by the ordinary permutation matrix σ ˙ ∈ N (T ). If n = 2r + 1 and σ ∈ W s is not an even permutation, we choose the representative given by (

σ ˙ (e i ) = e σ(i) , if i ) r + 1 . -e r+1 , if i = r + 1
In any case we compute that σ ˙ .ϕ -1 (τ ˜) = y(σ, τ ). Now, the claim follows from Proof. Follows from the above statement and Remark 3.2.2. Q Remark 7.5.4. We believe that the above statement is also true for the SO n -orbits in Y .

◆ ♣ ♣

1

Proof. We have the decomposition into SO n -orbits

O n = O n a O min a {0} .
O n consists of elements of rank 2 and is of minimal rank (Lemma 7.5.5). O min consists of elements of rank 1 and is of minimal rank (Lemma 6.1.1). We conclude that any B-orbit closure of O n is Frobenius split (Corollary 5.2.4) and admits a resolution with connected fibers (Remark 3. 

2 + 2X 2 X 3 and X 1 Y 2 -X 2 Y 3 -X 3 Y 1 .
Hence Z is a complete intersection which is singular along the 3-dimensional affine space Y = V (X 1 , X 2 , X 3 ) ⊆ Z. 

Corollary 2 . 1 . 2 .

 212 The B-orbit closures in G • x are products of orbit closures of Borel subgroups in nilpotent orbits of simple groups.

Proposition 4 . 1 . 1 .Corollary 4 . 1 . 2 .EProposition 4 . 1 . 3 (

 411412413 Assume char(k) = 0. Let G be reductive and x ∈ g with ht(x) = 2. Then the closure of G • x in g is normal and has a rational resolution.Proof. Follows directly from [17, Theorem, page 108] since g(2) is a completely reducible P -representation (the unipotent part of P acts trivially).Q Assume char(k) = p > 0. Let G be reductive and x ∈ g with ht(x) = 2. Then the closure of G • x in g is normal and has a rational resolution for p large enough.There exists more precise results for classical groups. Donkin[START_REF] Donkin | The normality of closures of conjugacy classes of matrices[END_REF], Mehta -van der Kallen[START_REF] Mehta | A simultaneous Frobenius splitting for closures of conjugacy classes of nilpotent matrices[END_REF], Xiao -Shu[START_REF] Xiao | Normality of orthogonal and symplectic nilpotent orbit closures in positive characteristic[END_REF]). Assume char(k) = p > 0 and let G be reductive of classical type ( i.e. A, B, C or D). Assume furthermore p /= 2 for G of type different from A.Let x ∈ g with ht(x) = 2. Then the closure of

Proposition 5 . 2 . 3 .

 523 ]). It follows, that ψ splits the hypersurfaces in k 2n defined by e * , and for i ∈ [2, n + 1] by the equation e * e * + • • • + e * e * . 1 2n+2 i 2n+3-i Let Y 0 ⊂ k 2n be the subspace defined by e * = • • • = e * = 0. Let L be the Levi subgroup of P E containing T and B L = B E ∩ L. The subspace Y 0 is B L -stable and compatibly split.

7. 3 . 1 .Lemma 7 . 3 . 1 .

 31731 Closure order on O r . In this section we use the results of[START_REF]On orbit closures of spherical subgroups in flag varieties[END_REF] Lemma 6] to give a complete description of the B-orbits in O r . W = S n is the Weyl group of G, considered as a subgroup of G. We denote byP rW the set of minimal length representatives in W of the quotient W/W P r and by W r the Weyl group of GL r (k). Let B r be the Borel subgroup of upper triangular matrices of GL r (k). Define x r ∈ A r by (x r (e i ) = 0 if i = 1, . . . , nr e i-(n-r) if i = nr + 1, . . . , nDenote the stabilizer of x r in G by C r . A direct computation shows that C r is the subgroup of P r consisting of the matrices whose upper-left and lower-right block coincide. Denote by ≺ the Bruhat-Chevalley order on W . The minimal parabolic subgroup generated by B and s i is denoted by P i . Further, we set W (C r ) := W ∩C r . The following holds: ` (1) O r = (σ,w)∈W P r ×Wr Bσw.x r .(2) Bσ ′ w ′ .x r ⊆ Bσw.x r ⊆ O r if and only if there exists τ ≺ σw with σ

  {σ ∈ W C | σ(1) < . . . < σ(r), σ(r + 1) < . . . < σ(2nr)}, forming the set of minimal length representatives of W C /W (L r ). Finally, for a permutation σ ∈ S 2n we set pos(σ) = {i ∈ [n] | σ(i) < n} and neg(σ) = [n]-pos(σ). Lemma 7.4.1. A set of representatives for the B-conjugacy classes in C r is given by the elements x(σ, τ ) := Σ τ (i)∈pos(σ)

Lemma 7 . 4 . 4 . 2 . 7 . 4 . 5 .

 7442745 [25, Corollary 4.4.4] Let X be a G-spherical variety, Y a B-orbit and P 1 , P 2 ⊇ B minimal parabolics. Assume that P 1 raises Y to Y 1 with Type U or T, P 2 raises Y to Y 2 with Type N and P 2 raises Y 1 to Y 3 with Type U or T. Then, the B-orbit closure Y 3 is not normal along Y Remark S. Pin in [27] has investigated the singularities in B r -orbit closures in the symmetric space GL r /O r ≃ Y r . He gave a criterion for them to be regular in codimension 1. Furthermore he found non-normal orbit closures which are regular in codimension 1, hence examples of orbit closures which are neither normal nor Cohen-Macaulay. Likewise, in C r there occur B-conjugacy closures with similar properties, as the next example shows. Example 7.4.6. Let (n, r) = (2, 2). Then R 2 = S 2 and W 2 = {1, c 2 , c 1 c 2 , c 2 c 1 c 2 }. Denote by P i ⊇ B the minimal parabolic corresponding to the simple reflection c i . ♣ ♣ ♣ ♣ ♣ ♣ ♣ Using Lemma 7.4.3, the covering relations are the following:

Figure 2 .

 2 Figure 2. Type C n weak order for (n, r) = (2, 2). where a double edge means that the covering relation is of type N . With Lemma 7.4.4 we find two non-normal B-conjugacy class closures: (

1 .

 1 The set consisting of the elements y(σ, τ )

[ 5 ,Corollary 7 . 5 . 2 .Corollary 7 . 5 . 3 .

 5752753 Lemma 6], as B 2s is obtained from Z 2s by parabolic induction. Q It remains to investigate the very even 2-nilpotent case, i.e. the case where n = 4s. Then V = {x ∈ so n | Im(x) = Ker(x)} is a O n -conjugacy class which consists of two SO n -conjugacy classes. Denote by m ∈ O n the permutation matrix switching 2s with 2s + 1. Then SO n and mSO n are the connected components of O n . We conclude that V is the union of the two SO n ′ -conjugacy classes B 2s ≃ SO n P 2s and B = m.B 2s . Now mBm = B, whence with Lemma 7.5.1 we see the elements ′ m.y(σ, τ ), where (σ, τ ) ∈ W s × F s , parametrize B-conjugacy classes in B . N 2 (so n ) := imal rank.} x ∈ so n | x 2 = 0 is a SO n -spherical variety of min-Proof.For n not a multiple of 4, the non-zero SO n -orbits in N 2 (so n ) are B 2s , where 1 ≤ 4s < n. These are spherical varieties of minimal rank as they are obtained by parabolic induction on the L s -spherical varieties Z 2s , which are of minimal rank (cf.′[START_REF] Richardson | The Bruhat order on symmetric varieties[END_REF]). For n = 4s, in addition one has the SO n -orbit B which is B-equivariantly isomorphic to B 2s . Hence N 2 (so n ) has the asserted property. Q Any B-orbit closure Y of a 2-nilpotent orbit in so n is normal and has a rational resolution of singularities outside of SO n -orbits in Y .

Corollary 7 . 5 . 7 .Example 7 . 5 . 8 . 2 ◆Figure 3 .

 75775823 Figure 3. Excerpt of weak order in case (B r , [3, 1 2r -2 ]) A simple (resp. double) edge indicates that the covering relation is of type U (resp. of type N ). By Lemma 7.4.4 the orbit closureZ = B • b 2 b 1 • f r is non-normal along Y = B • f r-1 . As subsets of so n one may compute 0 -y T J 3 0 Z = 0 C y | C ∈ N(so ), C 2 y = 0 , Y = {(C, y) ∈ Z | C = 0} . 0 0 0 Variety Z is 4-dimensional. The reduced ideal for Z is generated by the polynomials X 2 + 2X 2 X 3 and X 1 Y 2 -X 2 Y 3 -X 3 Y 1 .Hence Z is a complete intersection which is singular along the 3-dimensional affine space Y = V (X 1 , X 2 , X 3 ) ⊆ Z.

Remark 7 . 5 . 9 .

 759 The variety O(c 1 c 2 , 1) from Example 7.4.6 is isomorphic to Z.

8 . 4 8. 1 . 3 ♣ 2 ❖ ❖ ❖ ❖ ❖ Pα 1 ❖ 2 X 4 XFigure 4 .

 841321244 Figure 4. Excerpt of weak order in case (F 4 , O 2 ) A double edge (resp. single edge) indicates that the covering relation is of Type N (resp. Type U ). From Lemma 7.4.4 we derive that the closure of the orbit B • X (1221) is not normal along B • (X (2421) + X (2221) ).

Minimal rank and resolutions. Lemma 2.4.1. If

  

	G E is simply laced, the L-orbit L • x in g(2) is of minimal rank.
	Proof. Follows from the above description and [28].	Q
	Corollary 2.4.2. If G is simply laced, for any x ∈ g nilpotent of height 2, the
	G-orbit in G • x is of minimal rank.	
	Proof. Let y ∈ G • x. Then ht(y) = 2. Replacing x by y, we may assume y = x. Since G • x = G × P L • x, it is enough to prove that L • x is of minimal rank (see [5,
	Lemma 6]).	

By the above lemma, it is enough to prove that G E is simply laced. But the Dynkin diagram of G E is a subdiagram of that of G. Q Corollary 2.4.3. Let

  

	G be a simple simply laced group, let x ∈ g nilpotent of height
	2 and let Y be a B-orbit closure.
	Then there exists a unique minimal B-orbit Y 0 in the dense G-orbit of GY and
	a sequence of minimal parabolics P 1 , . . . , P m such that

  G-orbits.

	Theorem 4.2.1. Let G be simply laced and x ∈ g be nilpotent with ht(x) = 2.
	The B-orbit closure Y of x in g is normal with rational singularities outside the
	G-orbits in Y .

Proof. The closure of G • x is of minimal rank. Hence Y is a multiplicity-free Bsubvariety of G • x. The result now follows from a result of Brion [6, Theorem 2] (for rational resolutions, see loc. cit., Section 3, last remarks). Q Remark 4.2.2.

  ) ≃ R u (P E ). Now we have a L-equivariant isomorphism R u (P E ) ≃ P E w E P E /P E where L acts on R u (P E ) by conjugation and w E is the longest element in the Weyl group of G E . Since G E /P E is B E -canonically Frobenius split ([7, Theorem 4.1.15]) compatibly splitting the P --orbits (here P -

	E	E

  Lemma 1.1.8] that G × In particular, if D 0 is the sum of all Schubert divisors in G/P , then its inverse image D in G ×

P g

[START_REF] Boos | B-orbits of 2-nilpotent matrices and generalizations[END_REF] 

is Frobenius split compatibly splitting all Schubert divisors in G × P g

[START_REF] Boos | B-orbits of 2-nilpotent matrices and generalizations[END_REF] 

and compatibly splitting the G-orbits. P g(2) via the map f : G × P g(2) → G/P induced by the first projection, is compatible Frobenius split. Since D = f * D 0 , since D 0 is ample on G/P and since f is a vector bundle, we get that D is ample on G × P g(2). Now apply [7, Theorem 1.4.10] to get the result. Q Corollary 5.1.2. Let G be reductive, p be a good prime for G and x ∈ g of height 2. Assume that the closure of G • x is normal, then the closure of G • x is Frobenius split. Proof. Consider the birational map π : G × P g(2) → G • x. By normality we have π * O G× P g(2) = O G•x . The result follows from [7, Lemma 1.1.8]. Q 5.2. Compatibly split B-orbits. For G of type A or for x of rank at most 2, we prove that the above splitting compatibly splits the B-orbit closures. We start with type A. In this case L = GL n (k) × GL n (k). Let B L be a Borel subgroup of L. The following result is proved in [16, Proposition 7.1]. Proposition 5.2.1. The GL n (k)-embedding M n (k) has a B L -canonical splitting compatibly splitting all the B L -orbit closures. Remark 5.2.2. 1. The above splitting is actually the splitting obtained from Proposition 5.1.1. We will not use this.

Theorem 6.0.1. Let

  Consider the intersection of the locus where e SIngULARITIES Of B-ORBIT CLOSURESIn this section we prove our results on the singularities of B-orbit closures of nilpotent orbits of height 2 in type A or of rank at most 2. G be simple and simply laced, let x ∈ g nilpotent of height 2. Assume that G is of type A or that x is of rank 2 and let Y be a B-orbit closure. Let G be simple with Lie algebra g. Pick a Cartan subalgebra h, Φ ⊆ h * the set of roots and a set of simple roots ∆ ⊆ Φ. The set ∆ determines a partial ordering on Φ, and a Borel subgroupB ⊆ G. Let (H α , X ρ | α ∈ ∆, ρ ∈ Φ)be a Chevalley basis of g. Denote by β ∈ Φ + the highest root. Then O min = G • X β is the minimal non-trivial nilpotent orbit of G. Denote by P ⊇ B the parabolic group corresponding to ∆(β) = {α ∈ ∆ | (α, β) = 0}, by Φ lg ⊆ Φ the set of long roots, and by W the Weyl group of G which is generated by the simple reflections s α , α ∈ ∆. The set of B-orbits of O min is {O ρ

	Lemma 6.1.1. The following holds.
	(1) Any B-orbit closure in O min admits a rational resolution of singularities.
	(2)	
	2n+2 locus where e * 1 2n+2	2 2n+1 *
	Then Y is normal.	
	Proof. We first prove that Y is normal. But Y is Frobenius split (Corollary 5.2.4)
	and admits a resolution with connected fibers (Corollary 3.2.1). The result follows
	from [7, Proposition 1.2.5].	Q
	Corollary 6.0.2. Let G be a reductive group with simply laced simple factors. Let
	x ∈ g be nilpotent of height 2, and of rank at most 2 in all simple factors of type
	different from A, then any B-orbit closure in G • x is normal.
	Proof. Follows from the above result and Corollary 2.1.2.

* and e * e * + e * e * vanish. It contains as an irreducible component the 2n+1 vanish. By induction the result follows. Q Corollary 5.2.4. Let x ∈ g be nilpotent of height 2. Assume that G is of type A or that x has rank at most 2. Then G • x is B-canonically Frobenius split compatibly with all B-orbits. Proof. It follows since any B-orbit is obtained via parabolic induction from the closed B-orbit Y 0 , since Y 0 is B-canonically split (B acts via B L ) and by [7, Theorem 4.17]. Note that for the case of rank 1, Y 0 = g(2) is B canonically split. Q 6. Q Remark 6.0.3. If G • x admits a rational resolution, then by general results of M. Brion (see [6, Section 3, last remarks]) it follows that the resolution constructed in Corollary 3.2.1 is a rational resolution. This holds in particular for G of type A. and e 6.1. On the minimal nilpotent orbit.

  } and P s , the parabolic subgroup of SO n given as the stabilizer of the partial flag V 2s ⊆ V n-2s .

	The P Levi factor of P s -action on K s factors through the morphism P s ) and we have that B 2s is obtained by parabolic induction on the s → L s (L s denoting the L s -variety K 2s , since the multiplication map
	SO n × P s K 2s → B 2s , [p, x] ›→ p.x
	is an isomorphism. Denote by F s the set of permutations τ ∈ S 2s such that J 2s τ is a fixed-point free involution, and by W s the set of minimal length representatives
	of W (L

s ) right cosets in W (SO n ). For a permutation ρ ∈ S f we will regard the set def

7.5.2. 3-nilpotent element. We are dealing with the orbits

We assume that n ≥ 4, as we already treated the case so 3 ≃ sl 2 . We fix x := E 1,2 + E 1,n-1 -E 2,n -E n-1,n ∈ O n . A sl 2 -triple is then given by {x, y, h}, where y := E 2,1 + E n-1,1 -E n,2 -E n,n-1 and h := [x, y] = 2E 1,1 -2E n,n . One computes that the ad h -eigenspace decomposition is

Define 

The centralizer of x is contained in P . Hence this map is an isomorphism. Therefore, O n is obtained by parabolic induction on F n , which identifies L-equivariantly with

The B ∩ L-orbits in U n-2 are given by

We derive that B ∩ L-orbits in F n are parametrized by the set

if n = 2r is even, and 

We have an equivariant resolution G × P α 1 g(2) → O . Let us apply the results from paragraph 7.5.2. In particular, we saw that g(2) is not of minimal rank. Denote by L = Spin(7) × G m the Levi factor of P α 1 . There are four B L -orbits in the dense L-orbit L • X (2321) of g [START_REF] Boos | B-orbits of 2-nilpotent matrices and generalizations[END_REF]. They are of dimension 4, 5, 6 and 7. The minimal B L -orbit is Σ B L • X (2321) = k * X (2321) + ρ≻(2321)