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Abstract
In this article, we investigate the Gevrey and summability properties of the formal power
series solutions of some inhomogeneous linear Cauchy-Goursat problems with analytic
coefficients in a neighborhood of (0, 0) ∈ C

2. In particular, we give necessary and sufficient
conditions under which these solutions are convergent or are k-summable, for a convenient
positive rational number k, in a given direction.

Keywords Linear partial differential equation · Linear integro-differential equation ·
Divergent power series · Newton polygon · Gevrey order · Gevrey asymptotic ·
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1 Setting the Problem

For several years, various works have been done on the divergent solutions of some classes
of linear (see [1, 3–6, 8, 11, 17, 18, 27–34, 36, 42–45] etc.), nonlinear (see [12–14, 19,
20, 23, 24, 38] etc.), or singular (see [9, 10, 21, 22, 37] etc.) partial differential equations
or integro-differential equations in two variables or more, allowing thus to formulate many
results on Gevrey properties, summability, or multisummability.

In this paper, we are interested in the formal power series solutions of linear Cauchy-
Goursat problems of the form:

⎧
⎨

⎩

LU = q̃(t, x), L := ∂κ
t ∂

p
x −

∑

i∈K

∑

q∈Qi

tvi,q a(i,q)(t, x)∂κ−i
t ∂

q
x

U(t, x) − w(t, x) = O(tκxp),

(1.1)

where
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– the partial differential operator L satisfies conditions:

(C1) κ � 1 is a positive integer and p � 0 is a nonnegative integer,
(C2) K is a subset of {0, ..., κ} which contains at least one positive element and which

does not contain 0 if p = 0,
(C3) Q0 is a non-empty subset of {0, ..., p − 1} if 0 ∈ K,
(C4) Qi is a non-empty finite subset of N (= the set of nonnegative integers) for all

i ∈ K, i �= 0,
(C5) vi,q � 0 is a nonnegative integer and the coefficients a(i,q)(t, x) are holomor-

phic in the two variables t and x in a polydisc Dρ1 × Dρ2 centered at the origin
(0, 0) ∈ C

2 (Dρj
denotes the disc with center 0 and radius ρj > 0) for all i ∈ K and

q ∈ Qi ,
(C6) a(i,q)(0, x) �≡ 0 for all i ∈ K and q ∈ Qi .

– the inhomogeneity q̃(t, x) ∈ O(Dρ2)[[t]] 1 is a formal series in t with coefficients in
O(Dρ2) which may be smooth, or not,

– the Cauchy-Goursat data w(t, x) is holomorphic in Dρ1 × Dρ2 .

Under more or less restrictive conditions on valuations vi,q , coefficients a(i,q)(t, x), degrees
Qi , inhomogeneity q̃(t, x), and initial data w(t, x), problem (1.1) was already investigated
by many authors (see [1, 3–6, 8, 11, 17, 18, 32–34, 36, 42–45] etc.). Here, we consider the
very general problem of the form (1.1), where no generic assumption is made.

For both practical and notational conveniences, we now change the unknown function U

to u by:
U(t, x) = w(t, x) + ∂−κ

t ∂
−p
x u(t, x).

Then, problem (1.1) is equivalent to the following integro-differential equation

Du = f̃ (t, x), D := 1 −
∑

i∈K

∑

q∈Qi

tvi,q a(i,q)(t, x)∂−i
t ∂

q−p
x (1.2)

where the inhomogeneity f̃ (t, x) ∈ O(Dρ2)[[t]] is defined by

f̃ (t, x) := q̃(t, x) − Lw(t, x).

Notation ∂−1
t u stands for the anti-derivative

∫ t

0
u(s, x)ds of u with respect to t which van-

ishes at t = 0. Recall that the Cauchy formula for repeated integration implies ∂−�
t u =

∫ t

0
u(s, x)

(t − s)�−1

(� − 1)! ds for all � � 1; hence, in particular, ∂−�
t

(
tj

j !
)

= tj+�

(j + �)! for all

� � 1 and j � 0. It is the same for ∂−�
x with � � 1.

Notation 1 For any series ũ(t, x) ∈ O(Dρ2)[[t]], we denote in the sequel:

ũ(t, x) =
∑

j�0

uj,∗(x)
tj

j ! =
∑

n�0

ũ∗,n(t)
xn

n! .

The organization of the paper is as follows. In Section 2, we prove that the linear integro-
differential Eq. (1.2) admits a unique formal series solution ũ(t, x) inO(Dρ2)[[t]] (Theorem
1) and we give a characterization of its coefficients in O(Dρ2). In Section 3, we introduce

1We denote q̃ with a tilde to emphasize the possible divergence of the series q̃.
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the Newton polygon Nt(D) of the operator D at t = 0 and we give some properties of this
one. In Section 4, we show that ũ(t, x) and the inhomogeneity f̃ (t, x) are together either
convergent or 1/k-Gevrey, where k denotes the smallest positive slope of Nt(D) (Theorem
2). Then, in the latter case, and under four additional conditions on D, we investigate the
summability of ũ(t, x). In particular, we prove in Section 5 (Theorem 3) a necessary and
sufficient condition under which ũ(t, x) is k-summable in a given direction arg(t) = θ ,
generalizing thus the results already obtained by the author in [42, 43].

2 Formal Series Solutions

In this section, we shall be concerned with the formal series solutions in O(Dρ2)[[t]] of the
linear integro-differential Eq. (1.2).

Let us first observe that the operator D is a linear operator acting inside O(Dρ2)[[t]].
Indeed, (O(Dρ2)[[t]], ∂t , ∂x) is a C-differential algebra stable under anti-derivations ∂−1

t

and ∂−1
x and the coefficients a(i,q)(t, x) belong to O(Dρ1 × Dρ2) ⊂ O(Dρ2)[[t]] for all i

and q. More precisely, we have the following.

Theorem 1 D is a linear automorphism of O(Dρ2)[[t]].

Proof Let f̃ (t, x) ∈ O(Dρ2)[[t]]. Then, a series ũ(t, x) =
∑

j�0

uj,∗(x)
tj

j ! is a solution of

Dũ = f̃ (t, x) if and only if its coefficients uj,∗(x) satisfy, for all j � 0, the identities:

uj,∗(x) = fj,∗(x)

+
∑

i∈K

∑

q∈Qi

j−vi,q−i
∑

m=0

j !
(j − vi,q − m)!

a
(i,q)
m,∗ (x)

m! ∂
q−p
x uj−vi,q−i−m,∗(x) (2.1)

where, as usual, the third sum is 0 as soon as j < vi,q+i. Observe that the index j−vi,q−i−
m is < j when (i, vi,q ,m) �= (0, 0, 0) and is j otherwise. Thereby, some terms ∂

q−p
x uj,∗(x)

may occur in the right-hand side of (2.1) and this, only for the q ∈ Q0 satisfying v0,q = 0. In
particular, when terms ∂

q−p
x uj,∗(x) occur, we necessarily have q−p ∈ {−p, ..., −1}. Then,

Lemma 1 below proves that equation Dũ = f̃ (t, x) admits a unique solution ũ(t, x) ∈
O(Dρ2)[[t]]. Hence, the bijectivity of D, which completes the proof.

Lemma 1 The linear integro-differential equation

y + α1(x)∂−1
x y + α2(x)∂−2

x y + ... + αp(x)∂
−p
x y = g(x), (2.2)

whose coefficients αq(x) and inhomogeneity g(x) are holomorphic in Dρ2 , possesses
exactly one solution y(x). Moreover, this solution is holomorphic in Dρ2 .

Proof Let z = ∂
−p
x y. Then, y(x) is a solution of Eq. (2.2) if and only if z(x) is a solution

of the Cauchy problem:
{

∂
p
x z + α1(x)∂

p−1
x z + α2(x)∂

p−2
x z + ... + αp(x)z = g(x),

z(0) = ∂xz(0) = ... = ∂
p−1
x z(0) = 0.

The result follows then from the Cauchy-Kovalevskaı̈a theorem for the ordinary differential
equations.
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As a direct consequence of Theorem 1, we deduce in particular that Eq. (1.2) is uniquely
solvable in O(Dρ2)[[t]].

Corollary 1 The linear integro-differential Eq. (1.2) admits a unique formal series solu-
tion ũ(t, x) ∈ O(Dρ2)[[t]]. Moreover, its coefficients uj,∗(x) ∈ O(Dρ2) are recursively
determined for all j � 0 by identities (2.1).

Observe that the formal solution ũ(t, x) is divergent in general. In Section 4, we
shall investigate its Gevrey properties. We propose in particular to prove a necessary and
sufficient condition under which it is s-Gevrey with a convenient nonnegative rational number s.

Before stating our main result (see Theorem 2), let us first introduce the t-Newton
polygon of the operator D.

3 Newton Polygon

As a definition of the t-Newton polygon of the operator D (or Newton polygon of D with
respect to t), we choose the definition of M. Miyake [32] (see also A. Yonemura [45] or S.
Ouchi [36]) which is an analogue to the one given by J.-P. Ramis [41] for the linear ordinary
differential operators. Recall that H. Tahara and H. Yamazawa use in [44] a slightly different
one.

For any (a, b) ∈ R
2, we denote by C(a, b) the domain:

C(a, b) = {(x, y) ∈ R
2; x � a and y � b}.

Then, the t-Newton polygon of D is defined as follows.

Definition 1 One calls t-Newton polygon of D the convex hull Nt(D) of the union of the
sets C(0, 0) and C(q − p − i, vi,q + i) for i ∈ K and q ∈ Qi :

Nt(D) = CH

⎡

⎢
⎢
⎣C(0, 0) ∪

⋃

i∈K
q∈Qi

C(q − p − i, vi,q + i)

⎤

⎥
⎥
⎦ ,

where CH [·] denotes the convex hull of the elements in [·].

The following lemma specifies the geometric structure of Nt(D).

Lemma 2 Let S := {(i, q) ; i ∈ K, q ∈ Qi and q − p − i > 0} be.
1. Suppose S = ∅. Then, Nt(D) = C(0, 0). In particular, Nt(D) has no side with a

positive slope.
2. Suppose S �= ∅. Then, Nt(D) has (at least) one side with a positive slope. Moreover,

its smallest positive slope k is given by:

k = min
(i,q)∈S

(
vi,q + i

q − p − i

)

.

Proof Point 1 is straightforward from the fact that condition S = ∅ implies C(q − p −
i, vi,q + i) ⊂ C(0, 0) for all i and q. As for point 2, it suffices to remark, on one hand, that
C(q − p − i, vi,q + i) ⊂ C(0, 0) for all (i, q) /∈ S and, on the other hand, that the segment
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with two end points (0, 0) and (q − p − i, vi,q + i) has, for all (i, q) ∈ S , a positive slope
equal to (vi,q + i)/(q − p − i) (the positivity stems from the fact that q − p < 0 for all
q ∈ Q0; hence, (i, q) ∈ S implies i � 1 and then vi,q + i > 0).

Notation 2 When S �= ∅, we choose, and fix once and for all, one of the pairs (i, q) ∈ S
such that the side of slope k of Nt(D) is the segment with end points (0, 0) and (q − p −
i, vi,q + i) (see Fig. 1 below). In the sequel, we denote this pair by (i∗, q∗).

Remark 1 Of course, we have k = vi∗,q∗ + i∗

q∗ − p − i∗
. Moreover, according to the proof of

Lemma 2, we also have q∗ − p > i∗ � 1.

Let us now turn to the Gevrey properties of ũ(t, x).

4 Gevrey Order

The aim of this section is to investigate the Gevrey properties of the unique formal series
ũ(t, x) of Eq. (1.2) (see Corollary 1). In particular, we propose to give necessary and
sufficient conditions under which it is s-Gevrey for some s � 0.

Before stating our main result (see Theorem 2 below), let us first recall for the
convenience of the reader, some definitions and properties about the s-Gevrey formal series.

4.1 s-Gevrey Formal Series

All along the article, we consider t as the variable and x as a parameter. Thereby, to define
the notion of Gevrey classes of formal power series in O(Dρ2)[[t]], one extends the classi-
cal notion of Gevrey classes of elements in C[[t]] to families parametrized by x in requiring
similar conditions, the estimates being however uniform with respect to x. Doing that, any

Fig. 1 Definition of the pair (i∗, q∗)
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formal power series of O(Dρ2)[[t]] can be seen as a formal power series in t with coeffi-
cients in a convenient Banach space defined as the space of functions that are holomorphic
on a disc Dρ (0 < ρ � ρ2) and continuous up to its boundary, equipped with the usual
supremum norm. For a general study of series with coefficients in a Banach space, we refer
for instance to [2].

Definition 2 (s-Gevrey formal series) Let s � 0 be.

A formal series ũ(t, x) =
∑

j�0

uj,∗(x)
tj

j ! ∈ O(Dρ2)[[t]] is said to be Gevrey of order s

(in short, s-Gevrey) if there exist three positive constants 0 < r2 < ρ2, C > 0 and K > 0
such that the inequalities

sup
|x|�r2

|uj,∗(x)| � CKj�(1 + (s + 1)j)

hold for all j � 0.

In other words, Definition 2 means that ũ(t, x) is s-Gevrey in t , uniformly in x on a
neighborhood of x = 0.

We denote by O(Dρ2)[[t]]s the set of all the formal series in O(Dρ2)[[t]] which are s-
Gevrey. Observe that the set C{t, x} of germs of analytic functions at the origin (0, 0) ∈ C

2

coincides with the union
⋃

ρ>0 O(Dρ)[[t]]0; in particular, any element of O(Dρ2)[[t]]0
is convergent and C{t, x} ∩ O(Dρ2)[[t]] = O(Dρ2)[[t]]0. Observe also that the sets
O(Dρ2)[[t]]s are filtered as follows:

O(Dρ2)[[t]]0 ⊂ O(Dρ2)[[t]]s ⊂ O(Dρ2)[[t]]s′ ⊂ O(Dρ2)[[t]]
for all s and s′ satisfying 0 < s < s′ < +∞.

Following Proposition 1 specifies the algebraic structure of the O(Dρ2)[[t]]s’s.

Proposition 1 Let s � 0 be. Then, (O(Dρ2)[[t]]s , ∂t , ∂x) is a C-differential algebra stable
under the anti-derivations ∂−1

t and ∂−1
x .

Proof See for instance [42, Prop. 1] or [2, p. 64].

4.2 Main Result

Let us first begin by observing that Proposition 1 implies the following.

Lemma 3 D(O(Dρ2)[[t]]s ) ⊂ O(Dρ2)[[t]]s for all s � 0.

Theorem 2 below specifies this statement by showing more especially that the operator
D is actually a linear automorphism of O(Dρ2)[[t]]s for some s � 0.

Theorem 2 Let S := {(i, q) ; i ∈ K, q ∈ Qiand q − p − i > 0} and s be the rational
number defined by:

s :=
⎧
⎨

⎩

0 if S = ∅
1

k
= q∗ − p − i∗

vi∗,q∗ + i∗
if S �= ∅
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Then, D is a linear automorphism of O(Dρ2)[[t]]s .

In particular, Theorem 2 gives us the Gevrey properties of ũ(t, x) in view of this section.
More precisely, it provides, in the case S = ∅, a necessary and sufficient condition under
which ũ(t, x) is convergent and, in the opposite case S �= ∅, a necessary and sufficient
condition under which ũ(t, x) is s-Gevrey with s as above.

Corollary 2 Let S := {(i, q) ; i ∈ K, q ∈ Qi and q − p − i > 0} be.
1. Assume S = ∅. Then, ũ(t, x) is convergent if and only if the inhomogeneity f̃ (t, x) is

convergent.

2. Assume S �= ∅ and set s = q∗ − p − i∗

vi∗,q∗ + i∗
. Then, ũ(t, x) is s-Gevrey if and only if the

inhomogeneity f̃ (t, x) is s-Gevrey.

As a consequence of Corollary 2, we deduce in particular a result similar to the Maillet-
Ramis theorem for the ordinary linear differential equations [39, 41] (see also [16, Thm.
4.2.7]).

Corollary 3 Assume that the inhomogeneity f̃ (t, x) is convergent. Then, ũ(t, x) is either
convergent or s-Gevrey, where k = 1/s is the smallest positive slope of the Newton polygon
Nt(D) of D with respect to t .

4.3 Proof of Theorem 2

According to Theorem 1 and Lemma 3, the operator D is an injective linear operator acting
inside O(Dρ2)[[t]]s . To prove the surjectivity of D, we shall use below an approach based
on Nagumo norms [7, 35] and majorant series; an approach which is similar to the ones
developed by W. Balser and M. Loday-Richaud in [4] and by the author in [42, 43] for some
classes of linear integro-differential equations.

4.3.1 Nagumo Norms

For the convenience of the reader, we recall in this section the definition of the Nagumo
norms and some of their properties which are needed in the sequel.

Definition 3 (Nagumo norms) Let f ∈ O(Dρ), n � 0 and 0 < r < ρ be. Let dr(x) =
r − |x| denote the Euclidian distance of x ∈ Dr to the boundary of the disc Dr . Then, the
Nagumo norm ‖f ‖n,r of f is defined by:

‖f ‖n,r := sup
|x|<r

∣
∣f (x)dr(x)n

∣
∣ .

Following Proposition 2 gives us some properties of the Nagumo norms.

Proposition 2 (Properties of Nagumo norms) Let f, g ∈ O(Dρ), n, n′ � 0 and 0 < r < ρ

be. Then,

1. ‖·‖n,r is a norm on O(Dρ).
2. For all x ∈ Dr , |f (x)| � ‖f ‖n,r dr (x)−n.
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3. ‖f ‖0,r = sup
|x|<r

|f (x)| is the usual sup-norm on Dr .

4. ‖fg‖n+n′,r � ‖f ‖n,r ‖g‖n′,r .
5. ‖∂f ‖n+1,r � e(n + 1) ‖f ‖n,r .
6.

∥
∥∂−1f

∥
∥

n,r
� r ‖f ‖n,r .

Proof Properties 1–4 are straightforward and are left to the reader.
To prove Property 5, we proceed as follows. Let x ∈ Dr and 0 < R < dr(x) be. Using

the Cauchy integral formula, we have

|∂f (x)| = 1

2π

∣
∣
∣
∣

∫

|x′−x|=R

f (x′)
(x′ − x)2

dx′
∣
∣
∣
∣ �

1

R
max

|x′−x|=R

∣
∣f (x′)

∣
∣

and then,

|∂f (x)| � ‖f ‖n,r

1

R
max

|x′−x|=R
dr(x

′)−n = ‖f ‖n,r

1

R
(dr(x) − R)−n

by applying Property 2. Let us now assume n > 0 and let us choose:

R = dr(x)

n + 1
.

Then, using the inequality

(

1 − 1

n + 1

)−n

=
(

1 + 1

n

)n

< e, we get

|∂f (x)| � ‖f ‖n,r dr (x)−n−1(n + 1)

(

1 − 1

n + 1

)−n

� (n + 1)e ‖f ‖n,r dr (x)−n−1;
hence, the result:

‖∂f ‖n+1,r = sup
|x|<r

∣
∣
∣∂f (x)dr (x)n+1

∣
∣
∣ � (n + 1)e ‖f ‖n,r .

For n = 0, we set

R = dr(x)

c
with an arbitrary constant c > 1; hence, the inequality

|∂f (x)| � c ‖f ‖0,r dr (x)−1

and then
‖∂f ‖1,r = sup

|x|<r

|∂f (x)dr (x)| � c ‖f ‖0,r .

The result follows by choosing c = e.
We are left to prove Property 6. Let x ∈ Dr be. Using Property 2, we obtain

∣
∣∂−1f (x)

∣
∣ =

∣
∣
∣
∣

∫ x

0
f (t)dt

∣
∣
∣
∣ � ‖f ‖n,r

∫ |x|

0

du

(r − u)n
(4.1)

for all n � 0 and, consequently, the following discussion.

– Case n = 0. Due to inequality (4.1) above, we straightaway have
∣
∣
∣∂

−1f (x)

∣
∣
∣ � ‖f ‖0,r

∫ |x|

0
du = |x| ‖f ‖0,r � r ‖f ‖0,r

and then, ∥
∥
∥∂−1f

∥
∥
∥

0,r
= sup

|x|<r

∣
∣
∣∂

−1f (x)

∣
∣
∣ � r ‖f ‖0,r .
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– Case n = 1. Using inequalities (4.1) and ln(t) � t for all t > 0, we have
∣
∣
∣∂

−1f (x)

∣
∣
∣ � ‖f ‖1,r

∫ |x|

0

du

r − u
= ‖f ‖1,r ln

(
r

dr (x)

)

� r

dr (x)
‖f ‖1,r .

Hence, the result:
∥
∥
∥∂−1f

∥
∥
∥

1,r
= sup

|x|<r

∣
∣
∣∂

−1f (x)dr(x)

∣
∣
∣ � r ‖f ‖1,r .

– Case n � 2. Since
∫ |x|

0

du

(r − u)n
= 1

(n − 1)dr (x)n−1
− 1

(n − 1)rn−1
� 1

dr(x)n−1
,

inequality (4.1) implies
∣
∣
∣∂

−1f (x)dr(x)n
∣
∣
∣ � ‖f ‖n,r dr (x) � r ‖f ‖n,r .

Hence, the result again:
∥
∥
∥∂−1f

∥
∥
∥

n,r
= sup

|x|<r

∣
∣
∣∂

−1f (x)dr(x)n
∣
∣
∣ � r ‖f ‖n,r .

This achieves the proof of Proposition 2.

Remark 2 Inequalities 4–6 are the most important properties. Observe that the same index
r occurs on both their sides, allowing thus to get estimates for the product fg in terms of
f and g, for the derivative ∂f in terms of f and for the anti-derivative ∂−1f in terms of f

without having to shrink the disc Dr .

Let us now turn to the proof of Theorem 2.

4.3.2 Proof of Theorem 2

� First step: a fundamental technical lemma Before starting the calculations, let us first
begin with the following technical lemma which will play a central role in our proof.

Lemma 4 Assume S �= ∅. Then, the inequalities
(s + 1)(vi,q + i) � q − p + vi,q (4.2)

hold for all i ∈ K and q ∈ Qi .

Proof Inequalities (4.2) are clear when i = vi,q = 0 (indeed, q − p < 0 for all q ∈ Q0).
When (i, vi,q) �= (0, 0), we have vi,q + i � 1 and the inequality

s = 1

k
� q − p − i

vi,q + i
(4.3)

which stems, on one hand, from the definition of k when (i, q) ∈ S and, on the other hand,
from the fact that q − p − i � 0 when (i, q) /∈ S . Lemma 4 follows then by adding “+1”
to both sides of (4.3).

Remark 3 In fact, inequalities (4.2) still hold when S = ∅. Indeed, we have s = 0 and
q − p � i for all i ∈ K and q ∈ Qi . Nevertheless, we shall only use subsequently these
inequalities in the case where S �= ∅. Hence, the statement of Lemma 4 as it is written.
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We are now able to prove Theorem 2.

� Second step: preliminaries As we said at the beginning of Section 4.3, we are left to
prove the surjectivity of the linear integro-differential operator D. To do that, let us fix

f̃ (t, x) =
∑

j�0

fj,∗(x)
tj

j ! ∈ O(Dρ2)[[t]]s

and let us write the solution ũ(t, x) ∈ O(Dρ2)[[t]] of Eq. (1.2) in the same form:

ũ(t, x) =
∑

j�0

uj,∗(x)
tj

j ! .

By assumption, the coefficients fj,∗(x) satisfy the following two conditions

– fj,∗(x) ∈ O(Dρ2) for all j � 0,
– there exist three positive constants 0 < r2 < ρ2, C > 0 and K > 0 such that∣

∣fj,∗(x)
∣
∣ � CKj�(1 + (s + 1)j) for all j � 0 and |x| � r2.

We shall now prove that the coefficients uj,∗(x) satisfy similar conditions. The calculations
below are analogous to those detailed in [4, 42, 43], but are much more complicated because
of the terms ∂−i

t ∂
q−p
x with q − p ∈ Z.

� Third step: some inequalities From identities (2.1), we obtain the relations

uj,∗(x)

�(1 + (s + 1)j)
= fj,∗(x)

�(1 + (s + 1)j)

+
∑

i∈K

∑

q∈Qi

j−vi,q−i
∑

m=0

j !
(j − vi,q − m)!

a
(i,q)
m,∗ (x)

m!
∂

q−p
x uj−vi,q−i−m,∗(x)

�(1 + (s + 1)j)

for all j � 0 (as before, we use the classical convention that the third sum is 0 if j < vi,q+i).

Notation 3 In the sequel, we denote by σ the positive integer2 defined by:

σ :=
{

v + κ if S = ∅
(s + 1)(vi∗,q∗ + i∗) if S �= ∅ (4.4)

where v is the nonnegative integer v := max{vi,q ; i ∈ K and q ∈ Qi}.

Let us now apply the Nagumo norm of indices (σj, r2). From Property 4 of Proposition
2, we first obtain:

∥
∥uj,∗(x)

∥
∥

σj,r2

�(1 + (s + 1)j)
�

∥
∥fj,∗(x)

∥
∥

σj,r2

�(1 + (s + 1)j)
+

∑

i∈K

∑

q∈Qi

j−vi,q−i
∑

m=0

Aj,i,q,m(x)

2See Remark 1.
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with

Aj,i,q,m(x) := j !
(j − vi,q − m)!

∥
∥
∥a

(i,q)
m,∗ (x)

∥
∥
∥

σ(vi,q+i+m)−δq ,r2

m!

×

∥
∥
∥∂

q−p
x uj−vi,q−i−m,∗(x)

∥
∥
∥

σ(j−vi,q−i−m)+δq ,r2

�(1 + (s + 1)j)
,

where δq is the nonnegative integer defined by

δq :=
{

0 if q − p � 0,

q − p if q − p > 0.

Then, Properties 5–6 of Proposition 2 imply the inequality
∥
∥uj,∗(x)

∥
∥

σj,r2

�(1 + (s + 1)j)
�

∥
∥fj,∗(x)

∥
∥

σj,r2

�(1 + (s + 1)j)
+

∑

i∈K

∑

q∈Qi

j−vi,q−i
∑

m=0

Bj,i,q,m(x)

with

Bj,i,q,m(x) := βj,i,q,m

∥
∥
∥a

(i,q)
m,∗ (x)

∥
∥
∥

σ(vi,q+i+m)−δq ,r2

m!
× ∥

∥uj−vi,q−i−m,∗(x)
∥
∥

σ(j−vi,q−i−m),r2
,

where βj,i,q,m is the nonnegative integer defined by

βj,i,q,m :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

j !rp−q

2

(j − vi,q − m)!�(1 + (s + 1)j)
if q − p � 0,

j !
⎛

⎝
q−p−1∏

�=0

(σ (j − vi,q − i − m) + q − p − �)

⎞

⎠ eq−p

(j − vi,q − m)!�(1 + (s + 1)j)
if q − p > 0.

Remark 4 Norms
∥
∥
∥a

(i,q)
m,∗ (x)

∥
∥
∥

σ(vi,q+i+m),r2
and

∥
∥uj−vi,q−i−m,∗(x)

∥
∥

σ(j−vi,q−i−m),r2
are both

clearly well-defined. Norms
∥
∥
∥a

(i,q)
m,∗ (x)

∥
∥
∥

σ(vi,q+i+m)−(q−p),r2
are well-defined too when q −

p > 0. Indeed, in the case S = ∅, conditions κ � 1, i � 0, vi,q � 0 and q − p � i imply

σ(vi,q + i + m) − (q − p) � σ i − (q − p) � κi − (q − p) � κi − i = i(κ − 1) � 0

and, in the opposite case S �= ∅, Lemma 4 and conditions i∗ � 1 (see Remark 1) and
vi,q � 0 imply

σ(vi,q + i + m) − (q − p) � σ(vi,q + i) − (q − p)

= (s + 1)(vi∗,q∗ + i∗)(vi,q + i) − (q − p)

� (q − p + vi,q)(vi∗,q∗ + i∗) − (q − p)

= (q − p)(vi∗,q∗ + i∗ − 1) + vi,q(vi∗,q∗ + i∗)
� 0

Following the proposition allows us to bound the βj,i,q,m’s.
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Proposition 3 Let i ∈ K, q ∈ Qi , j � vi,q + i and m ∈ {0, ..., j − vi,q − i} be. Then,
j !

(j − vi,q − m)!�(1 + (s + 1)j)
� 1

�(1 + (s + 1)(j − vi,q − i − m))
.

Moreover, if q − p > 0, we have

j !
⎛

⎝
q−p−1∏

�=0

(σ (j − vi,q − i − m) + q − p − �)

⎞

⎠

(j − vi,q − m)!�(1 + (s + 1)j)
� (v + κ)q−p

�(1 + (s + 1)(j − vi,q − i − m))
.

Proof The first inequality stems from Lemma 5 (inequality (4.5)) and Lemma 6 and the
second one from Lemma 5 (inequality (4.6)) and Lemma 7.

Remark 5 Observe that the second inequality of Proposition 3 may occur only when i � 1.
Indeed, we have q < p for all q ∈ Q0 (see Condition (C3)).

Lemma 5 Let i ∈ K, q ∈ Qi , j � vi,q + i and m ∈ {0, ..., j − vi,q − i} be. Then,
j !

(j − vi,q − m)!
1

�(1 + (s + 1)j)
� 1

�(1 + (s + 1)(j − vi,q − m))
. (4.5)

Moreover, if i � 1, we also have:

j !
(j − vi,q − m)!

1

�(1 + (s + 1)j)
� 1

�(1 + (s + 1)(j − m) − vi,q)
. (4.6)

Proof Lemma 5 is clear when vi,q + m = 0. Let us now suppose vi,q + m � 1.

• Proof of inequality (4.5). For (i,m) �= (0, j − v0,q ), let us write the two factors of the
left-hand side of inequality (4.5) as follows:

j !
(j − vi,q − m)! =

vi,q+m−1
∏

�=0

(j − �),

�(1 + (s + 1)j) = �(1 + (s + 1)j − vi,q − m)

vi,q+m−1
∏

�=0

((s + 1)j − �).

Then,

j !
(j − vi,q − m)!

1

�(1 + (s + 1)j)
=

vi,q+m−1
∏

�=0

j − �

(s + 1)j − �

�(1 + (s + 1)j − vi,q − m)

� 1

�(1 + (s + 1)j − vi,q − m)
.

Observe that these relations make sense since the following inequalities

(s + 1)j − � � 1 + (s + 1)j − vi,q − m � 1 + sj + i � 1
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hold for all � ∈ {0, ..., vi,q + m − 1}. Inequality (4.5) follows then from the increase of
the Gamma function on [2, +∞[. Indeed, we have the inequalities

1 + (s + 1)j − vi,q − m � 1 + (s + 1)(j − vi,q − m) � 1 + (s + 1)i � 2

for i � 1 and the inequalities

1 + (s + 1)j − v0,q − m � 1 + (s + 1)(j − v0,q − m) � 2 + s � 2

for i = 0 and m ∈ {0, ..., j − v0,q − 1}.
We are left to prove inequality (4.5) for (i, m) = (0, j − v0,q ), that is the inequality

j !
�(1 + (s + 1)j)

= �(1 + j)

�(1 + (s + 1)j)
� 1.

This latter is clear for j = 0 and stems from the inequalities 1 + (s + 1)j � 1 + j � 2
and from the increase of the Gamma function on [2, +∞[ for j � 1.

• Proof of inequality (4.6). Let i � 1 be. From calculations above, we have

j !
(j − vi,q − m)!

1

�(1 + (s + 1)j)
� 1

�(1 + (s + 1)j − vi,q − m)
.

Then, inequality (4.6) stems as previously from the increase of the Gamma function on
[2, +∞[ applied to the inequalities

1 + (s + 1)j − vi,q − m � 1 + (s + 1)(j − m) − vi,q � 1 + (s + 1)i + svi,q � 2.

This ends the proof of Lemma 5.

Lemma 6 Let i ∈ K, q ∈ Qi , j � vi,q + i and m ∈ {0, ..., j − vi,q − i} be. Then,
1

�(1 + (s + 1)(j − vi,q − m))
� 1

�(1 + (s + 1)(j − vi,q − i − m))
.

Proof For m � j − vi,q − i − 1, we have

1 + (s + 1)(j − vi,q − m) � 1 + (s + 1)(j − vi,q − i − m) � 2 + s � 2

and Lemma 6 follows from the increase of the Gamma function on [2, +∞[. For m =
j − vi,q − i, we must prove the inequality

1

�(1 + (s + 1)i)
� 1.

This latter is clear for i = 0 and stems again from the increase of the Gamma function on
[2, +∞[ for i � 1. Indeed, we have the inequalities 1 + (s + 1)i � 2 + s � 2; hence,
�(1 + (s + 1)i) � �(2) = 1. This achieves the proof.

Lemma 7 Let i ∈ K, i �= 0,3 q ∈ Qi , j � vi,q + i and m ∈ {0, ..., j − vi,q − i} be. Assume
q − p > 0. Then,

q−p−1∏

�=0

(σ (j − vi,q − i − m) + q − p − �)

�(1 + (s + 1)(j − m) − vi,q)
� (v + κ)q−p

�(1 + (s + 1)(j − vi,q − i − m))
.

3See Remark 5.
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Proof • Let us first assume S = ∅ (hence, σ = v + κ and s = 0). From the relations
0 < q − p � i � κ � v + κ and from the identities

q−p−1∏

�=0

(σ (j − vi,q − i − m) + q − p − �)

= (v + κ)q−p

q−p−1∏

�=0

(

j − vi,q − i − m + q − p − �

v + κ

)

and

�(1 + (s + 1)(j − m) − vi,q) = �(1 + j − m − vi,q)

= �(1 + j − vi,q − i − m)

i−1∏

�=0

(j − vi,q − m − �)

we deduce the inequality

q−p−1∏

�=0

(σ (j − vi,q − i − m) + q − p − �)

�(1 + (s + 1)(j − m) − vi,q)
� (v + κ)q−p

�(1 + j − vi,q − i − m)

×

q−p−1∏

�=0

j − vi,q − i − m + q − p − �

v + κ

j − vi,q − m − �

i−1∏

�=q−p

(j − vi,q − m − �)

with the convention that the product
i−1∏

�=q−p

(j − vi,q − m − �) is 1 when q − p = i.

Observe that j − vi,q − m − � � 1 for all �. Indeed, we have m � j − vi,q − i and
� � i − 1. In particular, we obtain

i−1∏

�=q−p

(j − vi,q − m − �) � 1.

On the other hand, inequalities 0 � � � q − p − 1 � i − 1 and q − p � v + κ imply
(

j − vi,q − i − m + q − p − �

v + κ

)

− (j − vi,q − m − �) = −i + q − p − �

v + κ
+ �

� −i + q − p

v + κ
+ i − 1

� 0.

Thereby, the following inequality

q−p−1∏

�=0

j − vi,q − i − m + q − p − �

v + κ

j − vi,q − m − �
� 1
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holds; hence,

q−p−1∏

�=0

(σ (j − vi,q − i − m) + q − p − �)

�(1 + (s + 1)(j − m) − vi,q)
� (v + κ)q−p

�(1 + j − vi,q − i − m)

= (v + κ)q−p

�(1 + (s + 1)(j − vi,q − i − m))
,

which proves Lemma 7 for S = ∅.

• Let us now assume S �= ∅. Thanks to the relation s + 1 = σ

vi∗,q∗ + i∗
� σ

v + κ
, we

have the following inequality:

q−p−1∏

�=0

(σ (j − vi,q − i − m) + q − p − �)

� (v + κ)q−p

q−p−1∏

�=0

(

(s + 1)(j − vi,q − i − m) + q − p − �

v + κ

)

. (4.7)

Let us now write �(1 + (s + 1)(j − m) − vi,q) in the form

�(1 + (s + 1)(j − m) − vi,q) = �(1 + (s + 1)(j − m) − vi,q − (q − p))

×
q−p−1∏

�=0

((s + 1)(j − m) − vi,q − �). (4.8)

Observe that the term �(1+(s+1)(j −m)−vi,q −(q−p)) is already well-defined. Indeed,
condition m � j − vi,q − i and Lemma 4 imply

1 + (s + 1)(j − m) − vi,q − (q − p) � 1 + (s + 1)(vi,q + i) − (q − p + vi,q) � 1.

From relations (4.7) and (4.8), we obtain

q−p−1∏

�=0

(σ (j − vi,q − i − m) + q − p − �)

�(1 + (s + 1)(j − m) − vi,q )
� (v + κ)q−p

�(1 + (s + 1)(j − m) − vi,q − (q − p))

×
q−p−1∏

�=0

(s + 1)(j − vi,q − i − m) + q − p − �

v + κ

(s + 1)(j − m) − vi,q − �
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where the product on the right-hand side is � 1. Indeed, Lemma 4 and the conditions
� < q − p and v + κ � 1 imply relations
(

(s + 1)(j − vi,q − i − m) + q − p − �

v + κ

)

− ((s + 1)(j − m) − vi,q − �)

= −(s + 1)(vi,q + i)+ q − p − �

v + κ
+ vi,q + �

� −(q − p + vi,q) + q − p − �

v + κ
+ vi,q + �

= (q − p − �)

(
1

v + κ
− 1

)

� 0

Let us now assume m < j − vi,q − i. Then, Lemma 7 follows from inequalities:

1 + (s + 1)(j − m) − vi,q − (q − p) = 1 + (s + 1)(j − m) − (q − p + vi,q)

� 1 + (s + 1)(j − m) − (s + 1)(vi,q + i)

= 1 + (s + 1)(j − vi,q − i − m)

� 2 + s

� 2

and from the increase of the Gamma function on [2, +∞[. Observe that the first inequality
stems from Lemma 4 and that the second inequality stems from the condition m < j −
vi,q − i. In particular, this latter inequality shows that the calculations above do not allow
proof of Lemma 7 when m = j − vi,q − i, since it fails in this case.

To get around this problem, we shall proceed as follows. Let us first recall we must prove
the inequality:

q−p−1∏

�=0

(q − p − �)

�(1 + (s + 1)(vi,q + i) − vi,q)
� (v + κ)q−p

�(1)
= (v + κ)q−p .

From Lemma 4 and the condition q − p > 0, we obtain

1 + (s + 1)(vi,q + i) − vi,q � 1 + q − p � 2;
hence, applying the increase of the Gamma function on [2, +∞[, the relation

�(1 + (s + 1)(vi,q + i) − vi,q) � �(1 + q − p) =
q−p−1∏

�=0

(q − p − �)

and, consequently, the following inequality

q−p−1∏

�=0

(q − p − �)

�(1 + (s + 1)(vi,q + i) − vi,q)
� 1.

This achieves the proof since v + κ � 1.
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Let us now apply Proposition 3. We get

βj,i,q,m �

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

r
p−q

2

�(1 + (s + 1)(j − vi,q − i − m))
if q − p � 0,

(e(v + κ))q−p

�(1 + (s + 1)(j − vi,q − i − m))
if q − p > 0.

Then, the following inequalities
∥
∥uj,∗(x)

∥
∥

σj,r2

�(1 + (s + 1)j)
� gj

+
∑

i∈K

∑

q∈Qi

j−vi,q−i
∑

m=0

γi,q,m

∥
∥uj−vi,q−i−m,∗(x)

∥
∥

σ(j−vi,q−i−m),r2

�(1 + (s + 1)(j − vi,q − i − m))
(4.9)

hold for all j � 0 with

gj :=
∥
∥fj,∗(x)

∥
∥

σj,r2

�(1 + (s + 1)j)

and

γi,q,m :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

r
p−q

2

∥
∥
∥a

(i,q)
m,∗ (x)

∥
∥
∥

σ(vi,q+i+m),r2

m! if q − p � 0,

(e(v + κ))q−p

∥
∥
∥a

(i,q)
m,∗ (x)

∥
∥
∥

σ(vi,q+i+m)−(q−p),r2

m! if q − p > 0.

We now shall bound the Nagumo norms
∥
∥uj,∗(x)

∥
∥

σj,r2
. To do that, we shall proceed as in

[4, 42, 43] by using a technique of majorant series.

Remark 6 Like in relation (2.1), some terms

∥
∥uj,∗(x)

∥
∥

σj,r2

�(1 + (s + 1)j)
may occur in the right-hand

side of inequalities (4.9). More precisely, such terms exist only for the q ∈ Q0 such that
v0,q = 0 and are obtained when (i, vi,q ,m) = (0, 0, 0). Consequently, we suppose in the
sequel that the positive number r2 ∈]0, ρ2[ has been chosen, so that

∑

q∈Q0
v0,q=0

γ0,q,0 =
∑

q∈Q0
v0,q=0

r
p−q

2

∥
∥
∥a

(0,q)

0,∗ (x)

∥
∥
∥

0,r2
< 1.

Observe that such a choice is already possible since p−q > 0 for all q ∈ Q0 (see Condition
(C3)).

� Fourth step: majorant series Let us consider the nonnegative numerical sequence (wj )

defined for all j � 0 by the recurrence relations

wj = gj +
∑

i∈K

∑

q∈Qi

j−vi,q−i
∑

m=0

γi,q,mwj−vi,q−i−m
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where, as previously, the third sum is 0 when j < vi,q + i. Observe that the fact that wj � 0
for all j stems from the choice of r2 (see Remark 6). Observe also we have

0 �
∥
∥uj,∗(x)

∥
∥

σj,r2

�(1 + (s + 1)j)
� wj

for all j � 0 by construction (proceed by induction on j ). Let us now bound the wj ’s. To
this end, we proceed as follows.

By assumption on the fj,∗’s (see the beginning of section 4.3.2), we have

0 � gj � CKj�(1 + (s + 1)j)

�(1 + (s + 1)j)
r
σj

2 = C(Krσ
2 )j

for all j � 0 and the series g(X) :=
∑

j�0

gjX
j is thereby convergent.

On the other hand, all the terms a(i,q)(t, x) belong to O(Dρ2){t}. Then, there exist two

positive constants C′,K ′ > 0 such that |a(i,q)
m,∗ (x)| � C′K ′mm! for all i ∈ {0, ..., κ}, q ∈ Qi ,

m � 0 and x ∈ Dr2 . Hence,

0 � γi,q,m �
{

C′
1(K

′rσ
2 )m if q − p � 0,

C′
2(K

′rσ
2 )m if q − p > 0,

with C′
1 = C′rσ(vi,q+i)−(q−p)

2 = C′
2

(e(v + κ))q−p
and, thereby, the series Ai,q(X) :=

∑

m�0

γi,q,mXm are convergent for all i ∈ {0, ..., κ} and q ∈ Qi .

Consequently, since the series w(X) :=
∑

j�0

wjX
j satisfies the identity

⎛

⎝1 −
∑

i∈K

∑

q∈Qi

Xvi,q+iAi,q(X)

⎞

⎠w(X) = g(X),

it is convergent too. Indeed, since the constant term

1 −
∑

q∈Q0
v0,q=0

A0,q (0) = 1 −
∑

q∈Q0
v0,q=0

γ0,q,0

is not null by construction (see Remark 6), the series 1 −
∑

i∈K

∑

q∈Qi

Xvi,q+iAi,q(X) is

invertible in C{X}. Therefore, there exist two positive constants C′′, K ′′ > 0 such that
wj � C′′K ′′j for all j � 0. Hence, the following inequalities

∥
∥uj,∗(x)

∥
∥

σj,r2
� C′′K ′′j�(1 + (s + 1)j)

hold for all j � 0.

� Fifth step: conclusion We are left to prove similar estimates on the sup-norm of the
uj,∗(x)’s. To this end, we proceed by shrinking the domain Dr2 . Let 0 < r ′

2 < r2 be. Then,
for all j � 0 and |x| � r ′

2, we have

∣
∣uj,∗(x)

∣
∣ =

∣
∣
∣
∣uj,∗(x)dr2(x)σj 1

dr2(x)σj

∣
∣
∣
∣ �

∣
∣uj,∗(x)dr2(x)σj

∣
∣

(r2 − r ′
2)

σj
�

∥
∥uj,∗(x)

∥
∥

σj,r2

(r2 − r ′
2)

σj
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and, consequently,

sup
|x|�r ′

2

∣
∣uj,∗(x)

∣
∣ � C′′

(
K ′′

(r2 − r ′
2)

σ

)j

�(1 + (s + 1)j).

This achieves the proof of Theorem 2.

5 Summability

In the previous Section 4, we have shown that the formal series solution ũ(t, x) and the
inhomogeneity f̃ (t, x) of Eq. (1.2) are together s-Gevrey for a convenient s � 0 (see Theo-
rem 2). In particular, when S = ∅, that is when the Newton polygon Nt(D) of the operator
D has no side of positive slope, this has allowed us to display a necessary and sufficient
condition under which ũ(t, x) is convergent (see Corollary 2).

In the present section, we are interested in the opposite case S �= ∅, that is in the case
where Nt(D) has at least one side of positive slope. As previously, we denote by k its
smallest positive slope and we set s = 1/k. For all i ∈ K, we also denote by pi the
maximum of the q ∈ Qi . Moreover, we assume from now on that Eq. (1.2) satisfies the four
following additional conditions:

(A1) p = 0; hence, K is a non-empty subset of {1, ..., κ},
(A2) vi,pi

= 0 for all i ∈ K,
(A3) pi∗ > pi for all i �= i∗,
(A4) a(i∗,pi∗ )(0, 0) �= 0.

Observe that Assumptions (A1) − (A2) imply q∗ = pi∗ and, consequently,

k = i∗

pi∗ − i∗
and s = pi∗

i∗
− 1. (5.1)

Indeed, the domains C(q − i, vi,q + i) are included in C(pi − i, i) for all i ∈ K and q ∈ Qi

(see Definition 1 for the definition of Nt(D) and page 4 for the definition of the domain
C(a, b)).

Observe also that Assumption (A3) tells us that k is the unique positive slope of the
Newton polygon Nt(D).

The aim of this section is to answer to the following question:

Under Assumptions (A1) − (A4), how to characterize the k-summability of ũ(t, x)?

A response to this question has already been done by the author in [43] when i∗ = κ the
maximum of the i ∈ K. In the present paper, we consider a much more general situation,
where the smallest slope k > 0 of Nt(D) is given by some i∗ � κ and, in particular, i∗ < κ .
As we shall see in the sequel, our approach is similar to the one developed in [43], but the
calculations are much more complicated because of i∗ is not necessarily the maximum of
the i ∈ K.

Before stating our main result (see Theorem 3), let us first begin with some recalls about
the k-summability of formal series in O(Dρ2)[[t]].

5.1 k -summability

Still considering t as the variable and x as a parameter, one extends, in the similar way
as the s-Gevrey formal series (see Definition 2), the classical notion of k-summability of
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formal series in C[[t]] to the notion of k-summability of formal series in O(Dρ2)[[t]] in
requiring similar conditions, the estimates being however uniform with respect to x. Among
the many equivalent definitions of the k-summability in a given direction arg(t) = θ at
t = 0, we choose here a generalization of Ramis’ definition which states that a formal series
g̃(t) ∈ C[[t]] is k-summable in the direction θ if there exists a holomorphic function g

which is s-Gevrey asymptotic to g̃ in an open sector �θ,>πs bisected by θ and with opening
larger than πs [40, Def. 3.1]. To express the s-Gevrey asymptotic, there also exist various
equivalent ways. We choose here the one which sets conditions on the successive derivatives
of g (see [25, p. 171] or [40, Thm. 2.4] for instance).4

Definition 4 (k-summability) A formal series ũ(t, x) ∈ O(Dρ2)[[t]] is said to be k-
summable in the direction arg(t) = θ if there exist a sector �θ,>πs , a radius 0 < r2 < ρ2,
and a function u(t, x) called k-sum of ũ(t, x) in the direction θ such that

1. u is defined and holomorphic on �θ,>πs × Dr2+ε for some ε > 0;

2. for any |x| � r2, the map t → u(t, x) has ũ(t, x) =
∑

j�0

uj,∗(x)
tj

j ! as Taylor series at 0

on �θ,>πs ;
3. for any proper5 subsector � � �θ,>πs , there exist two positive constants C > 0 and

K > 0 such that, for all � � 0 and all t ∈ �,

sup
|x|�r2

∣
∣
∣∂

�
t u(t, x)

∣
∣
∣ � CK��(1 + (s + 1)�).

We denote by O(Dρ2){t}k;θ the subset of O(Dρ2)[[t]] made of all the k-summable formal
series in the direction arg(t) = θ . Obviously, O(Dρ2){t}k;θ is included in O(Dρ2)[[t]]s .

Observe that, for any fixed x, the k-summability of ũ(t, x) coincides with the classical
k-summability. Consequently, Watson’s lemma implies the unicity of its k-sum, if any exists.

Observe also that the k-sum of a k-summable formal series ũ(t, x) ∈ O(Dρ2){t}k;θ may
be analytic with respect to x on a disc smaller than the common disc Dρ2 of analyticity of
the coefficients uj,∗(x) of ũ(t, x).

Proposition 4 ([43, Prop. 2]) (O(Dρ2){t}k;θ , ∂t , ∂x) is a C-differential algebra stable
under anti-derivations ∂−1

t and ∂−1
x .

With respect to t , the k-sum u(t, x) of a k-summable series ũ(t, x) ∈ O(Dρ2){t}k;θ is
analytic on an open sector for which there is no control on the angular opening except that
it must be larger than πs (hence, it contains a closed sector �θ,πs bisected by θ and with
opening πs) and no control on the radius except that it must be positive. Thereby, the k-sum
u(t, x) is well-defined as a section of the sheaf of analytic functions in (t, x) on a germ of
closed sector of opening πs (that is, a closed interval I θ,πs of length πs on the circle S1 of
directions issuing from 0; see [26, 1.1] or [15, I.2]) times {0} (in the plane C of the variable
x). We denote by OI θ,πs×{0} the space of such sections.

4In Appendix page 32, we present various results of the general theory of the Gevrey asymptotic expansions
in the framework of the formal power series in O(Dρ2 )[[t]].
5A subsector � of a sector �′ is said to be a proper subsector and one denotes � � �′ if its closure in C is
contained in �′ ∪ {0}.
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Corollary 4 The operator of k-summation

Sk;θ : O(Dρ2){t}k;θ −→ OI θ,πs×{0}
ũ(t, x) −→ u(t, x)

is a homomorphism of C-differential algebras for the derivations ∂t and ∂x . Moreover, it
commutes with the anti-derivations ∂−1

t and ∂−1
x .

Let us now turn to the study of our formal series solution ũ(t, x).

5.2 Main Result

5.2.1 A Preliminary Remark

Before stating the main result of this section, let us first begin with a preliminary remark
on the series ũ(t, x). According to Notation 1, let us write the coefficients a(i,q)(t, x) on

the form a(i,q)(t, x) =
∑

n�0

a
(i,q)∗,n (t)

xn

n! with a
(i,q)∗,n (t) ∈ O(Dρ1) for all i ∈ K, q ∈ Qi and

n � 0. Then, an identification of the powers in x in the equation

D

⎛

⎝
∑

n�0

ũ∗,n(t)
xn

n!

⎞

⎠ =
∑

n�0

f̃∗,n(t)
xn

n!

provides for all n � 0 the recurrence relations

a
(i∗,pi∗ )

∗,0 (t)∂−i∗
t ũ∗,n+pi∗ (t) = ũ∗,n(t) − f̃∗,n(t)

−
n∑

m=1

(
n

m

)

a
(i∗,pi∗ )
∗,m (t)∂−i∗

t ũ∗,n−m+pi∗ (t)

−
∑

i∈K

∑

q∈Qi

n∑

m=0

(
n

m

)

tvi,q a
(i,q)∗,m (t)∂−i

t ũ∗,n−m+q(t)

where the Qis are defined by Qi∗ = Qi∗\{pi∗ } and Qi = Qi if i �= i∗. In particular, these
relations tell us that each ũ∗,�(t) (hence, ũ(t, x) too) is uniquely determined from f̃ (t, x)

and from the ũ∗,n(t) with n = 0, ..., pi∗ − 1. Indeed, Assumption (A3) implies q < pi∗

for all i ∈ K and q ∈ Qi , and Assumption (A4) implies that the quotient 1/a
(i∗,pi∗ )

∗,0 (t) is
well-defined in C[[t]].

5.2.2 Main Result

We are now able to state the main result in view of this section.

Theorem 3 Let a direction arg(t) = θ issuing from 0 be given. Then,

1. The formal series ũ(t, x) ∈ O(Dρ2)[[t]] is k-summable in the direction θ if and
only if the inhomogeneity f̃ (t, x) and the pi∗ coefficients ũ∗,n(t) ∈ C[[t]] with
n ∈ {0, ..., pi∗ − 1} are k-summable in the direction θ .

2. Moreover, the k-sum u(t, x) in the direction θ , if any exists, satisfies Eq. (1.2) in which
f̃ (t, x) is replaced by its k-sum f (t, x) in the direction θ .
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Remark 7 The necessary condition of Point 1 is straigthforward from Proposition 4. Indeed,
we have ũ∗,n(t) = ∂n

x ũ(t, x)|x=0 and f̃ = Dũ. Moreover, Point 2 stems obviously from
Corollary 4. Thereby, we are left to prove the sufficient condition of Point 1.

Remark 8 Theorem 3 generalizes the results of summability already proved by W. Balser
and M. Loday-Richaud in [4] and by the author in [42, 43].

5.3 Proof of Theorem 3

As we said in Remark 7 just above, it remains to prove the sufficient condition of Point
1. Consequently, we fix from now on a direction θ and we suppose that the inhomogene-
ity f̃ (t, x) and the coefficients ũ∗,n(t) for n ∈ {0, ..., pi∗−1} are all k-summable in this
direction.

� First step: the associated equation.
Let us first begin by introducing the functions b(i,q)(t, x) defined, for all i ∈ K and

q ∈ Qi , by:

b(i,q)(t, x) =

⎧
⎪⎪⎨

⎪⎪⎩

1

a(i∗,pi∗ )(t, x)
if (i, q) = (i∗, pi∗),

tvi,q a(i,q)(t, x)

a(i∗,pi∗ )(t, x)
if (i, q) �= (i∗, pi∗).

Thanks to Assumption (A4), all these functions are holomorphic on a common domain
Dρ′

1
× Dρ′

2
of (0, 0) ∈ C

2 for two suitable radiuses ρ′
1, ρ

′
2 > 0.

Let us now write ũ(t, x) on the form

ũ(t, x) =
pi∗−1∑

n=0

ũ∗,n(t)
xn

n! + ∂
−pi∗
x ṽ(t, x)

with ṽ(t, x) ∈ O(Dρ2)[[t]] and let us set w̃ := ∂−i∗
t ṽ. Then, Eq. (1.2) becomes

�w̃ = g̃(t, x), (5.2)

where � is the linear integro-differential operator

� := 1 − b(i∗,pi∗ )(t, x)∂
−pi∗
x ∂i∗

t +
∑

i∈K

∑

q∈Qi

b(i,q)(t, x)∂
q−pi∗
x ∂i∗−i

t

and where the inhomogeneity g̃(t, x) is defined by

g̃(t, x) := b(i∗,pi∗ )(t, x)

⎛

⎝

pi∗−1∑

n=0

ũ∗,n(t)
xn

n! − f̃ (t, x)

⎞

⎠

−
∑

i∈K

∑

q∈Qi

pi∗−1−q∑

n=0

b(i,q)(t, x)̃u∗,n+q(t)
xn

n! .

Indeed, we have ∂i∗−i
t ∂−i∗

t = ∂−i
t for all i ∈ K. The sets Qi are the sets introduced in the

preliminary remark of Section 5.2: Qi∗ = Qi∗\{pi∗ } and Qi = Qi if i �= i∗.
According to our assumption (see the beginning of Section 5.3) and Proposition 4, the

inhomogeneity g̃(t, x) of Eq. (5.2) is k-summable in the direction θ . Thereby, to prove our
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result, it suffices to prove that the formal power series w̃(t, x) ∈ O(Dρ2)[[t]] is also k-
summable in the direction θ . To do that, we shall proceed similarly as in [4, 42, 43] by using
a standard fixed point procedure.

� Second step: the fixed point procedure Let us set w̃(t, x) =
∑

m�0

w̃m(t, x) and let us

consider the solution of Eq. (5.2), where the w̃m(t, x)’s belong to O(Dρ)[[t]] for a suitable
common ρ > 0 and are recursively determined, for all m � 0, by the relations

⎧
⎨

⎩

w̃0 = g̃,

w̃m+1 = b(i∗,pi∗ )(t, x)∂
−pi∗
x ∂i∗

t w̃m −
∑

i∈K

∑

q∈Qi

b(i,q)(t, x)∂
q−pi∗
x ∂i∗−i

t w̃m. (5.3)

Observe that, for all m � 0, the formal series w̃m(t, x) are of order O(xm) in x and, con-
sequently, the series w̃(t, x) itself makes sense as a formal series in t and x. Indeed, the
definition of the Qi’s and Assumption (A3) imply q − pi∗ < 0 for all i ∈ K and q ∈ Qi .

Let us now denote by w0(t, x) the k-sum of w̃0 = g̃ in the direction θ and, for all m � 0,
let wm(t, x) be determined as the solution of system (5.3) in which all the w̃m are replaced
by wm. By construction, all the wm(t, x) are defined and holomorphic on a common domain
�θ,>πs × Dρ′′

2
, where the radius ρ′′

1 of �θ,>πs and the radius ρ′′
2 of Dρ′′

2
can always be

chosen so that 0 < ρ′′
1 < min(1, ρ′

1) and 0 < ρ′′
2 < min(1, ρ2, ρ

′
2).

To end the proof, it remains to prove that the series
∑

m�0

wm(t, x) is convergent and that

its sum w(t, x) is the k-sum of w̃(t, x) in the direction θ .

� Third step: some estimations onwm(t , x) According to Definition 4, the k-summability
of w̃0 = g̃ implies that there exists a radius 0 < r2 < ρ′′

2 with the following property: for
any proper subsector � � �θ,>πs , there exist two positive constants C > 0 and K > 0
such that, for all � � 0 and all (t, x) ∈ � × Dr2 , the function w0 satisfies the conditions

∣
∣
∣∂

�
t w0(t, x)

∣
∣
∣ � CK��(1 + (s + 1)�). (5.4)

Let us now fix a proper subsector � � �θ,>πs . Let r1 denote the radius of � and let

us choose for the constant K of the previous property a constant � max

(

1,
1

ρ′′
1 − r1

)

.

Observe that such a choice is already possible since conditions (5.4) still hold for any con-
stant K ′ � K . Observe also that the quotient 1/(ρ′′

1 − r1) makes sense since the definition
of a proper subsector (see Footnote 5) implies 0 < r1 < ρ′′

1 .

Proposition 5 Let us denote by

– I :=
⌊ κ

i∗
⌋
, where �·� denotes the lower integer part of ·,

– B := max
i∈K
q∈Qi

⎛

⎝ max
(t,x)∈Dρ′′

1
×Dρ′′

2

∣
∣
∣b

(i,q)(t, x)

∣
∣
∣

⎞

⎠ the maximum of the functions
∣
∣b(i,q)(t, x)

∣
∣ on

Dρ′′
1

× Dρ′′
2
, where Dρ denotes the closed disc with center 0 and radius ρ > 0,

– B ′ := (κ + 1)(I i∗ + 1)B.
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Let (Pm(x)) be the sequence of polynomials in R
+[x] recursively determined by

⎧
⎪⎪⎨

⎪⎪⎩

P0(x) = 1,

Pm+1(x) =
⎛

⎝∂
−pi∗
x +

∑

i∈K′

∑

q∈Q′
i

(mpi∗)!
(mpi∗ + pi)!∂

−q
x

⎞

⎠Pm(x) f orm � 0,

withK′ := {i ∈ K ; pi � 1} andQ′
i := {max(pi∗ −pi, 1), ..., pi∗ −1}. Then, the following

inequalities
∣
∣
∣∂

�
t wm(t, x)

∣
∣
∣ � CB ′mKi∗m+��(1 + (s + 1)(i∗m + �))Pm(|x|) (5.5)

hold for all m, � � 0 and all (t, x) ∈ � × Dr2 .

Remark 9 Since 1 � i∗ � κ , we have 1 � I � κ and I i∗ � 1. More precisely, and thanks
to the definition of the lower integer part, we have I i∗ > κ − i∗.

Remark 10 The constant B is well-defined since the functions b(i,q)(t, x) are all holomor-
phic on Dρ′

1
× Dρ′

2
and the radiuses ρ′′

j satisfy 0 < ρ′′
j < ρ′

j for j = 1, 2.

Remark 11 The set K′ already contains i∗ and, therefore, is never empty. We have indeed
the inequalities pi∗ > i∗ � 1.

Proof The proof proceeds by recursion on m � 0.
The case m = 0 is straightforward from inequality (5.4). Let us now suppose that

inequalities (5.5) hold for a certain m � 0.
From identities (5.3) and the Leibniz formula, we first derive the inequalities

∣
∣
∣∂

�
t wm+1(t, x)

∣
∣
∣ �

�∑

j=0

(
�

j

) ∣
∣
∣∂

�−j
t b(i∗,pi∗ )(t, x)

∣
∣
∣

∣
∣
∣∂

−pi∗
x ∂

i∗+j
t wm(t, x)

∣
∣
∣

+
∑

i∈K

∑

q∈Qi

�∑

j=0

(
�

j

) ∣
∣
∣∂

�−j
t b(i,q)(t, x)

∣
∣
∣

∣
∣
∣∂

q−pi∗
x ∂

i∗−i+j
t wm(t, x)

∣
∣
∣

for all � � 0 and (t, x) ∈ � × Dr2 . On the other hand, for all i ∈ K, q ∈ Qi , k � 0 and
(t, x) ∈ �×Dr2 , the Cauchy integral formula allows us to write the derivative ∂k

t b(i,q)(t, x)

on the form

∂k
t b(i,q)(t, x) = k!

(2iπ)2

∫

|t ′−t |=ρ′′
1 −r1

|x′−x|=ρ′′
2 −r2

b(i,q)(t ′, x′)
(t ′ − t)k+1(x′ − x)

dt ′dx′

(we have indeed 0 < r1 < ρ′′
1 and 0 < r2 < ρ′′

2 ), which yields the estimates
∣
∣
∣∂

k
t b(i,q)(t, x)

∣
∣
∣ � k!B

(
1

ρ′′
1 − r1

)k

� k!BKk .

Hence, according to the fact that 0 < r1 < 1 and K � 1, the following inequalities: for all
� � 0 and (t, x) ∈ � × Dr2 ,

∣
∣
∣∂

�
t wm+1(t, x)

∣
∣
∣ � CBB ′mKi∗(m+1)+�

∑

i∈K∪{0}

⎛

⎝Si,�,m

∑

q∈Qi

(∂
q−pi∗
x Pm)(|x|)

⎞

⎠ ,
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where we set Q0 := {p0 = 0} and where Si,�,m is the sum defined by:

– Case i ∈ {0, ..., i∗}:

Si,�,m :=
�∑

j=0

�!
j !�(1 + (s + 1)(i∗m + i∗ − i + j)).

– Case i ∈ {i∗ + 1, ..., κ}:

Si,�,m :=
Ji,i∗,�∑

j=0

�!
j !�(1 + (s + 1)i∗m) +

�∑

j=Ji,i∗,�+1

�!
j !�(1 + (s + 1)(i∗m + i∗ − i + j)),

with Ji,i∗,� = min(i − i∗ − 1, �). Of course, the second sum is 0 as soon as Ji,i∗,� = �,
that is � � i − i∗ − 1.

Applying then Lemma 8 below, we get
∣
∣
∣∂

�
t wm+1(t, x)

∣
∣
∣ � C(I i∗ + 1)BB ′mKi∗(m+1)+��(1 + (s + 1)(i∗(m + 1) + �))

×
∑

i∈K∪{0}

∑

q∈Qi

(mpi∗)!
(mpi∗ + pi)! (∂

q−pi∗
x Pm)(|x|)

and inequalities (5.5) follow by observing that the double-sum of the right-hand side
satisfies

∑

i∈K∪{0}

∑

q∈Qi

(mpi∗)!
(mpi∗ + pi)! (∂

q−pi∗
x Pm)(|x|) � (κ + 1)(∂

−pi∗
x Pm)(|x|)

+
∑

i∈K′

∑

q∈Q′
i

(mpi∗)!
(mpi∗ + pi)! (∂

−q
x Pm)(|x|);

hence,
∑

i∈K∪{0}

∑

q∈Qi

(mpi∗)!
(mpi∗ + pi)! (∂

q−pi∗
x Pm)(|x|) � (κ + 1)Pm+1(|x|).

Indeed, K ⊂ {1, ..., κ}, the coefficients of the polynomial Pm are positive and the quotients
(mpi∗)!/(mpi∗ + pi)! are � 1 for all i ∈ K. This ends the proof of Proposition 5.

Lemma 8 Let i ∈ K ∪ {0}, � � 0 and m � 0 be. Then,

Si,�,m � (I i∗ + 1)
(mpi∗)!

(mpi∗ + pi)!�(1 + (s + 1)(i∗(m + 1) + �)). (5.6)

This technical lemma will be proved later in Section 5.4. For the moment, let us end the
proof of Theorem 3.

The following proposition, already proved in [43], allows to bound the Pm(|x|)’s.

Proposition 6 ([43, Prop. 5]) Let m � 0 be. Then,

Pm(|x|) �
(
κpi∗2pi∗ (1 + pi∗)pi∗−1

)m

(mpi∗)! |x|m

for all x ∈ Dr2 .
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Let us set B ′′ := B ′Ki∗κpi∗2pi∗ (1 +pi∗)pi∗−1. Then, Propositions 5 and 6 imply, for all
� � 0 and (t, x) ∈ � × Dr2 , the inequalities

∣
∣
∣∂

�
t wm(t, x)

∣
∣
∣ � CK��(1 + (s + 1)(i∗m + �))

(B ′′ |x|)m
(mpi∗)! ;

hence, the inequalities
∣
∣
∣∂

�
t wm(t, x)

∣
∣
∣ � C(2pi∗ K)��(1 + (s + 1)�)(2pi∗ B ′′ |x|)m. (5.7)

Indeed, the conditions (s + 1)i∗ = pi∗ and s + 1 � pi∗ (see relations (5.1)) imply

�(1 + (s + 1)(i∗m + �)) = �(1 + (s + 1)� + mpi∗)

= �(1 + (s + 1)�)

mpi∗∏

j=1

((s + 1)� + j)

� �(1 + (s + 1)�)

mpi∗∏

j=1

(�pi∗ + j)

= �(1 + (s + 1)�)
(�pi∗ + mpi∗)!

(�pi∗)!
and, consequently,

�(1 + (s + 1)(i∗m + �))

(mpi∗)! � �(1 + (s + 1)�)

(
�pi∗ + mpi∗

mpi∗

)

� 2�pi∗+mpi∗ �(1 + (s + 1)�).

We are now able to complete the proof of Theorem 3.

� Fourth step: conclusion Let us choose for � a sector containing a proper subsector �′
bisected by the direction θ and opening larger than πs (such a choice is already possible by
definition of a proper subsector, see Footnote 5).

Let us also choose r, ε > 0 so that 0 < r < r + ε < min(r2, 2−pi∗ /B ′′) and let us set
C′ := C

∑

m�0

(2pi∗ B ′′r)m ∈ R
+ and K ′ := 2pi∗ K .

Thanks to inequalities (5.7), the series
∑

m�0

∂�
t wm(t, x) are normally convergent on � ×

Dr+ε for all � � 0 and satisfy the inequalities
∑

m�0

∣
∣
∣∂

�
t wm(t, x)

∣
∣
∣ � C′K ′��(1 + (s + 1)�)

for all (t, x) ∈ � × Dr+ε . In particular, the sum w(t, x) of the series
∑

m�0

wm(t, x) is

well-defined, holomorphic on � × Dr+ε and satisfies the inequalities
∣
∣
∣∂

�
t w(t, x)

∣
∣
∣ � C′K ′��(1 + (s + 1)�)

for all � � 0 and (t, x) ∈ � × Dr+ε . Hence, Conditions 1 and 3 of Definition 4 hold.
To prove the second condition of Definition 4, we proceed as follows. The removable

singularities theorem implies the existence of lim
t→0
t∈�′

∂�
t w(t, x) for all x ∈ Dr and, thereby,

the existence of the Taylor series of w at 0 on �′ for all x ∈ Dr (see for instance [25, Cor.
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1.1.3.3]; see also [16, Prop. 1.1.11]). On the other hand, considering recurrence relations
(5.3) with wm and the k-sum g(t, x) instead of w̃m and g̃(t, x), it is clear that w(t, x)

satisfies Eq. (5.2) with right-hand side g(t, x) in place of g̃(t, x) and, consequently, so does
its Taylor series. Then, since Eq. (5.2) has a unique formal series solution w̃(t, x) (proceed
similarly as Theorem 1 by exchanging the roles of x and t), we then conclude that the Taylor
expansion of w(t, x) is w̃(t, x). Hence, Condition 2 of Definition 4 holds.

This achieves the proof of the k-summability of w̃(t, x) and, thereby, the sufficient
condition of point 1 of Theorem 3.

5.4 Proof of Lemma 8

We are left to prove the technical Lemma 8. Before starting the calculations, let us first
recall a classical result on the Gamma function which will be useful in the sequel.

Lemma 9 Let a and b be two nonnegative numbers satisfying b � max(2, 1 + a).
Then, �(1 + a) � �(b).

Proof Lemma 9 stems from the increase of the Gamma function on [2, +∞[ and from the
fact that �(c) � 1 = �(2) for all c ∈ [1, 2]. Indeed, we have the inequalities 2 � 1 + a � b

for all a � 1 and the inequalities 1 � 1 + a � 2 � b for all a ∈ [0, 1].

Let us also recall that, according to our assumptions (A1) and (A2), Lemma 4 implies
the following inequalities:

(s + 1)i � pi for all i ∈ K. (5.8)

Observe that these latter still hold when i = 0 since p0 = 0.
As we shall see below, inequalities (5.8) will play a crucial role in our proof.
Let us now prove Lemma 8.

� First case When i ∈ {0, ..., i∗}, inequalities (5.6) are a consequence of the three following
lemmas.

Lemma 10 Let � � 0, j ∈ {0, ..., �} and m � 0 be. Then,

�!
j !�(1 + (s + 1)(i∗m + i∗ − i + j)) � �(1 + (s + 1)(i∗m + i∗ − i + j) + � − j).

Proof Lemma 10 is clear when j = � and stems obvious from the inequality

�!
j ! =

�−j∏

n=1

(j + n) �
�−j∏

n=1

((s + 1)(i∗m + i∗ − i + j) + n)

and from the relation

�(1 + (s + 1)(i∗m + i∗ − i + j) + � − j)

= �(1 + (s + 1)(i∗m + i∗ − i + j))

�−j∏

n=1

((s + 1)(i∗m + i∗ − i + j) + n)

when j < �.
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Lemma 11 Let � � 0 and m � 0 be. Then,

�∑

j=0

�(1 + (s + 1)(i∗m + i∗ − i + j) + � − j)

�(1 + (s + 1)(i∗m + i∗ − i + �))
� I i∗ + 1. (5.9)

Proof • Let us first suppose � � I i∗. Inequality (5.9) is clear when (�,m, i) = (0, 0, i∗).
Otherwise, we have

1 + (s + 1)(i∗m + i∗ − i + j) + � − j
︸ ︷︷ ︸

�0

= 1 + (s + 1)(i∗m + i∗ − i) + � + sj

� 1 + (s + 1)(i∗m + i∗ − i + �)
︸ ︷︷ ︸

�2

for all j ∈ {0, ..., �}, and inequality (5.9) stems from Lemma 9:

�∑

j=0

�(1 + (s + 1)(i∗m + i∗ − i + j) + � − j)

�(1 + (s + 1)(i∗m + i∗ − i + �))
�

�∑

j=0

1 = � + 1 � I i∗ + 1.

• Let us now suppose � > Ii∗ and let us write the sum of (5.9) on the form

�∑

j=0

(...) =
�−I i∗∑

j=0

(...) +
�∑

j=�−I i∗+1

(...). (5.10)

Similarly to the previous case, we get

�∑

j=�−I i∗+1

(...) �
�∑

j=�−I i∗+1

1 = I i∗

On the other hand, we have the inequalities

2 � 1 + I i∗

� 1 + (s + 1)(i∗m + i∗ − i + j) + � − j

� 1 + (s + 1)(i∗m + i∗ − i + �) − sI i∗

� 1 + (s + 1)(i∗m + i∗ − i + �) − 1

for all j ∈ {0, ..., �− I i∗}. Indeed, the relation (s +1)i∗ = pi∗ (see (5.1)) and the definition
of i∗ (see Remark 1) imply

sI i∗ = I ((s + 1)i∗ − i∗) = I (pi∗ − i∗) � I � 1.

Consequently, by applying Lemma 9, the first sum of the right-hand side of (5.10) is
bounded as follows:

�−I i∗∑

j=0

(...) � (� − I i∗ + 1)
�(1 + (s + 1)(i∗m + i∗ − i + �) − sI i∗)

�(1 + (s + 1)(i∗m + i∗ − i + �))

= � − I i∗ + 1

(s + 1)(i∗m + i∗ − i + �)
× �(1 + (s + 1)(i∗m + i∗ − i + �) − sI i∗)

�(1 + (s + 1)(i∗m + i∗ − i + �) − 1)

� � − I i∗ + 1

(s + 1)(i∗m + i∗ − i + �)
.
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Inequality (5.9) follows then by observing that

� − I i∗ + 1

(s + 1)(i∗m + i∗ − i + �)
� 1

s + 1
� 1

for all � > Ii∗. This ends the proof of Lemma 11.

Lemma 12 Let � � 0 and m � 0 be. Then,

�(1 + (s + 1)(i∗m + i∗ − i + �)) � (mpi∗)!
(mpi∗ + pi)!�(1 + (s + 1)(i∗(m + 1) + �)).

Proof Thanks to the relations (5.8), we have the inequalities:

1 + (s + 1)(i∗(m + 1) + �)
︸ ︷︷ ︸

�2

= 1 + (s + 1)(i∗m + i∗ − i + �) + (s + 1)i

� 1 + (s + 1)(i∗m + i∗ − i + �) + pi
︸ ︷︷ ︸

�0

.

Hence, the inequalities

�(1 + (s + 1)(i∗(m + 1) + �)) � �(1 + (s + 1)(i∗m + i∗ − i + �) + pi)

by applying Lemma 9. Lemma 12 is then proved when pi = 0 and follows from the identity

�(1 + (s + 1)(i∗m + i∗ − i + �) + pi)

= �(1 + (s + 1)(i∗m + i∗ − i + �))

pi∏

n=1

((s + 1)(i∗m + i∗ − i + �) + n)

and from the relations
pi∏

n=1

((s + 1)(i∗m + i∗ − i + �) + n) �
pi∏

n=1

((s + 1)i∗m + n) (since i∗ − i � 0)

=
pi∏

n=1

(mpi∗ + n) (since (s + 1)i∗ = pi∗ )

= (mpi∗ + pi)!
(mpi∗)!

when pi � 1.

� Second case When i ∈ {i∗ + 1, ..., κ},6 Lemma 8 is proved in a similar way as the
previous case. However, the calculations are much more complicated because of the term
Ji,i∗,� = min(i − i∗ − 1, �) and of the fact that i∗ − i is negative.

Lemma 13 Let � � 0, j ∈ {0, ..., �} and m � 0 be. Then,

�!
j !�(1 + (s + 1)i∗m) � �(1 + (s + 1)(i∗m + j) + � − j). (5.11)

6Of course, this case occurs if and only if i∗ < κ .
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Moreover, if i − i∗ � j � �, then

�!
j !�(1 + (s + 1)(i∗m + i∗ − i + j))

� �(1 + (s + 1)(i∗m + i∗ − i + j) + � − j + i − i∗). (5.12)

Proof Lemma 13 is proved in a similar way as Lemma 10 by respectively using the relation

�(1 + (s + 1)i∗m) � �(1 + (s + 1)(i∗m + j))

for inequality (5.11) and the relations

�!
j ! =

�−j∏

n=1

(j + n) =
�−j∏

n=1

(i∗ − i + j
︸ ︷︷ ︸

�0

+ n + i − i∗
︸ ︷︷ ︸

>0

)

=
�−j+i−i∗∏

n=1+i−i∗
(i∗ − i + j + n)

�
�−j+i−i∗∏

n=1

(i∗ − i + j + n)

�
�−j+i−i∗∏

n=1

((s + 1)(i∗m + i∗ − i + j) + n)

for inequality (5.12). Observe that the two conditions j � i − i∗ and i − i∗ > 0 play a key
role in these various calculations.

Lemma 14 Let � � 0 and m � 0 be. Then,

Ji,i∗,�∑

j=0

�(1 + (s + 1)(i∗m + j) + � − j)

�(1 + (s + 1)(i∗m + �))
� i − i∗. (5.13)

Moreover, if � � i − i∗ (hence, Ji,i∗,� = i − i∗ − 1), then

�∑

j=i−i∗

�(1 + (s + 1)(i∗m + i∗ − i + j) + � − j + i − i∗)
�(1 + (s + 1)(i∗m + �))

� I i∗ + i∗ − i + 1. (5.14)

Proof • Inequality (5.13) is clear when m = � = 0 (we have indeed Ji,i∗,� = 0; hence,
j = 0 too) and stems from the relations

1 + (s + 1)(i∗m + j) + � − j
︸ ︷︷ ︸

�0

= 1 + (s + 1)i∗m + � + sj � 1 + (s + 1)(i∗m + �)
︸ ︷︷ ︸

�2

and Lemma 9 otherwise. Indeed, we have in this case

Ji,i∗,�∑

j=0

�(1 + (s + 1)(i∗m + j) + � − j)

�(1 + (s + 1)(i∗m + �))
�

Ji,i∗,�∑

j=0

1 = Ji,i∗,� + 1 � i − i∗.
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• Let us now prove inequality (5.14) and let us suppose for the moment that � ∈ {i −
i∗, ..., I i∗}.7 Then, the condition � � i − i∗ > 0 implies

1+(s+1)(i∗m+i∗ − i+j)+�−j+i − i∗
︸ ︷︷ ︸

�0

= 1 + (s + 1)i∗m + � + s(i∗ − i + j
︸ ︷︷ ︸

�j��

)

� 1 + (s + 1)(i∗m + �)
︸ ︷︷ ︸

�2

for all j ∈ {i − i∗, ..., �} and inequality (5.14) follows from Lemma 9:

�∑

j=i−i∗

�(1 + (s + 1)(i∗m + i∗ − i + j) + � − j + i − i∗)
�(1 + (s + 1)(i∗m + �))

�
�∑

j=i−i∗
1

= � + i∗ − i + 1

� I i∗ + i∗ − i + 1.

When � > Ii∗, we proceed similarly as in Lemma 11 by writing the sum of (5.14) on the
form

�∑

j=i−i∗
(...) =

�−I i∗+i−i∗∑

j=i−i∗
(...) +

�∑

j=�−I i∗+i−i∗+1

(...)

and by observing that the two sums of the right-hand side can be respectively bounded as
follows:

�−I i∗+i−i∗∑

j=i−i∗
(...) � 1 and

�∑

j=�−I i∗+i−i∗+1

(...) � I i∗ + i∗ − i.

The first inequality is proved as in Lemma 11 by using Lemma 9 and the relations

2 � 1 + I i∗

� 1 + (s + 1)(i∗m + i∗ − i + j) + � − j + i − i∗

= 1 + (s + 1)i∗m + � + s(i∗ − i + j)

� 1 + (s + 1)(i∗m + �) − sI i∗

� 1 + (s + 1)(i∗m + �) − 1

for all j ∈ {i − i∗, ..., � − I i∗ + i − i∗}. As for the second inequality, it stems from Lemma
9 and the relation

1 + (s + 1)(i∗m + i∗ − i + j) + � − j + i − i∗ � 1 + (s + 1)(i∗m + �)

proved just above. This ends the proof of Lemma 14.

Let us now apply Lemmas 13 and 14:

– Case � � i − i∗ − 1. Then,

Si,�,m � (i − i∗)�(1 + (s + 1)(i∗m + �)) � (I i∗ + 1)�(1 + (s + 1)(i∗m + �)).

Indeed, the second sum of Si,�,m is 0 (we have Ji,i∗,� = �) and Remark 9 implies
I i∗ > κ − i∗ � i − i∗.

7This set makes sense since, thanks to Remark 9, we have I i∗ > κ − i∗ � i − i∗.
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– Case � � i − i∗. Then,

Si,�,m � (i − i∗ + I i∗ − i + i∗ + 1)�(1 + (s + 1)(i∗m + �))

= (I i∗ + 1)�(1 + (s + 1)(i∗m + �)).

Thereby, to end the proof of Lemma 8, we are left to prove the following.

Lemma 15 Let � � 0 and m � 0 be. Then,

�(1 + (s + 1)(i∗m + �)) � (mpi∗)!
(mpi∗ + pi)!�(1 + (s + 1)(i∗(m + 1) + �)).

Proof Using the relation (s + 1)i∗ = pi∗ (see (5.1)) and the fact that pi∗ is the maximum
of the pi (see Assumption (A3)), we successively have

1 + (s + 1)(i∗(m + 1) + �)
︸ ︷︷ ︸

�2

= 1 + (s + 1)(i∗m + �) + pi∗

� 1 + (s + 1)(i∗m + �) + pi
︸ ︷︷ ︸

�0

and the inequalities

�(1 + (s + 1)(i∗(m + 1) + �)) � �(1 + (s + 1)(i∗m + �) + pi)

by applying Lemma 9. Then, we conclude as in Lemma 12.

Appendix: Gevrey asymptotic

In this Appendix, we present various results of the general theory of the Gevrey asymptotic
expansions in the framework of the formal power series in O(Dρ2)[[t]].

s-Gevrey asymptotic

Still considering t as the variable and x as a parameter, one extends, in the similar way as
the s-Gevrey formal series (see Definition 2), the classical notion of Gevrey asymptotic to a
formal series in C[[t]] to the one of Gevrey asymptotic to a formal series in O(Dρ2)[[t]] in
requiring similar conditions, the estimates being however uniform with respect to x.

Definition 5 (s-Gevrey asymptotic) Let s � 0 and � be an open sector with vertex 0 ∈ C.
A function u(t, x) holomorphic on a domain � × Dρ for some ρ > 0 is said to be Gevrey

asymptotic of order s (in short, s-Gevrey asymptotic) to a formal series
∑

j�0

uj,∗(x)
tj

j ! ∈

O(Dρ2)[[t]] on � if there exists 0 < r2 < min(ρ, ρ2) such that, for any proper subsector
�′ � �, there exist two positive constants C > 0 and K > 0 such that, for all J � 1 and
all t ∈ �′:

sup
|x|�r2

∣
∣
∣
∣
∣
∣
u(t, x) −

J−1∑

j=0

uj,∗(x)
tj

j !

∣
∣
∣
∣
∣
∣
� CKJ �(1 + sJ ) |t |J . (1)

A series which is the s-Gevrey asymptotic expansion of a function is said to be an s-Gevrey
asymptotic series on �.
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Remark 12 If any exists, the s-Gevrey asymptotic series is unique.

Proposition 7 Let s � 0 be. Then, a s-Gevrey asymptotic series on a sector � is a s-Gevrey
series.

Proof Let ũ(t, x) =
∑

j�0

uj,∗(x)
tj

j ! ∈ O(Dρ2)[[t]] be a s-Gevrey asymptotic series of a

function u(t, x) on �. We want to prove that there exist positive constants 0 < r ′′
2 < ρ2,

C′′ > 0 and K ′′ > 0 such that, for all J � 0,

sup
|x|�r ′′

2

∣
∣uJ,∗(x)

∣
∣ � C′′K ′′J �(1 + (s + 1)J ). (2)

Let r2 > 0 be as in Definition 5 and let us choose �′ � � a proper subsector of �. For any
J � 1, we derive from condition (1) applied twice to the relation

uJ,∗(x)
tJ

J ! =
⎛

⎝u(t, x) −
J−1∑

j=0

uj,∗(x)
tj

j !

⎞

⎠ −
⎛

⎝u(t, x) −
J∑

j=0

uj,∗(x)
tj

j !

⎞

⎠

the following inequality

sup
|x|�r2

∣
∣uJ,∗(x)

∣
∣ � CKJ �(1 + sJ )J ! + CKJ+1�(1 + s(J + 1))J !R,

where R > 0 denotes the radius of �′. Applying then the relation between the Gamma and
the Beta functions to �(1 + sJ )J ! = �(1 + sJ )�(1 + J ), we get

�(1 + sJ )J ! = �(2 + (s + 1)J )

∫ 1

0
t sJ (1 − t)J dt � �(2 + (s + 1)J );

hence, the inequalities

�(1 + sJ )J ! � (1 + (s + 1)J )�(1 + (s + 1)J ) � e
(
es+1

)J

�(1 + (s + 1)J ).

In the same way, and using besides the increase of the Gamma function on [2, +∞[, we
have

�(1 + s(J + 1))J ! � �(2 + (s + 1)J + s) � �(2 + (s + 1)J + S),

where S is an integer � s; hence,

�(1 + s(J + 1))J ! � �(1 + (s + 1)J )

S+1∏

�=1

((s + 1)J + �) � ABJ �(1 + (s + 1)J )

with convenient constants A,B > 0 independent of J . Consequently, there exist C′,K ′ > 0
such that the following inequalities

sup
|x|�r2

∣
∣uJ,∗(x)

∣
∣ � C′K ′J �(1 + (s + 1)J )

hold for all J � 1. Condition (2) follows then by choosing

r ′′
2 = r2, C′′ = max

(

C′, sup
|x|�r2

∣
∣u0,∗(x)

∣
∣

)

and K ′′ = K ′.

This ends the proof.
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Following Proposition 8 gives us a characterization of the s-Gevrey asymptotic in terms
of conditions on the successive derivatives ∂J

t u of the function u with respect to t .

Proposition 8 Let s � 0 and � be an open sector with vertex 0 ∈ C. Then, a function
u(t, x) holomorphic on a domain � × Dρ for some ρ > 0 is s-Gevrey asymptotic to a

formal series ũ(t, x) =
∑

j�0

uj,∗(x)
tj

j ! ∈ O(Dρ2)[[t]] on � if and only if there exists 0 <

r2 < min(ρ, ρ2) such that

1. For any |x| � r2, the map t → u(t, x) has ũ(t, x) as Taylor series at 0 on �,
2. For any proper subsector �′ � �, there exist two positive constants C > 0 and K > 0

such that, for all J � 0 and all t ∈ �′,

sup
|x|�r2

∣
∣
∣∂

J
t u(t, x)

∣
∣
∣ � CKJ �(1 + (s + 1)J ).

Proof � Necessary condition. Let us suppose that u(t, x) is s-Gevrey asymptotic to ũ(t, x)

on � and let us prove Conditions 1 and 2 of Proposition 8.
Due to Definition 5, Condition 1 is straightforward. To prove Condition 2, we consider

0 < r2 < min(ρ, ρ2) as in Definition 5 and a proper subsector �′ � � and we choose a
radius 0 < r ′

2 < r2, a sector �′′ such that �′ � �′′ � � and a positive constant δ > 0 small
enough so that, for all t ∈ �′, the closed disc centered at t with radius |t | δ be contained in
�′′. Then, the Cauchy integral formula implies

∂J
t u(t, x) = J !

(2iπ)2

∫

|t ′−t |=|t |δ
|x′−x|=r2−r ′

2

u(t ′, x′)
(t ′ − t)J+1(x′ − x)

dt ′dx′

= J !
(2iπ)2

∫

|t ′−t |=|t |δ
|x′−x|=r2−r ′

2

⎛

⎝u(t ′, x′) −
J−1∑

j=0

uj,∗(x′) t
′j

j !

⎞

⎠
dt ′dx′

(t ′ − t)J+1(x′ − x)

for all J � 0, all t ∈ �′ and all |x| � r ′
2. Indeed, the sum is 0 when J = 0 and the J -th

derivative of a polynomial of degree J − 1 is 0 too when J � 1. Hence,

∣
∣
∣∂

J
t u(t, x)

∣
∣
∣ � CKJ �(1 + sJ )J ! |t |

J (1 + δ)J

|t |J δJ

� C′K ′J �(1 + (s + 1)J )

with C′ = eC and K ′ = es+1K

(

1 + 1

δ

)

. Indeed, we have previously seen in the proof of

Proposition 7 that �(1 + sJ )J ! � e1+(s+1)J �(1 + (s + 1)J ). This proves Condition 2 and,
consequently, the necessary condition.

� Sufficient condition. Let us now suppose that Conditions 1 and 2 are satisfied and let us
prove condition (1) of Definition 5. To do that, let us consider a proper subsector �′ � �.
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For any fixed |x| � r2, the map t → u(t, x) admits the Taylor expansion with integral
remainder

u(t, x) −
J−1∑

j=0

∂ju

∂tj
(t0, x)

(t − t0)
j

j ! =
∫ t

t0

(t − t ′)J−1

(J − 1)!
∂J u

∂tJ
(t ′, x)dt ′ (3)

for all J � 1, all t ∈ �′ and all t0 ∈ �′. Due to Condition 1, lim
t0→0
t0∈�′

∂ju

∂tj
(t0, x) exists for all

j � 0 and is equal to uj,∗(x). Therefore, the limits of the left-hand and of the right-hand
sides of (3) both exist when t0 → 0 and we have

u(t, x) −
J−1∑

j=0

uj,∗(x)
tj

j ! =
∫ t

0

(t − t ′)J−1

(J − 1)!
∂J u

∂tJ
(t ′, x)dt ′

for all J � 1, all t ∈ �′ and all |x| � r2. Hence, applying Condition 2:

sup
|x|�r2

∣
∣
∣
∣
∣
∣
u(t, x) −

J−1∑

j=0

uj,∗(x)
tj

j !

∣
∣
∣
∣
∣
∣
� sup

t ′∈�′
|x|�r2

∣
∣
∣
∣
∂J u

∂tJ
(t ′, x)

∣
∣
∣
∣
|t |J
J ! � CKJ �(1 + (s + 1)J )

J ! |t |J

for all J � 1 and all t ∈ �′. Condition (3) follows then from the inequality

�(1 + (s + 1)J )

J ! � 2(S+1)J �(1 + sJ ) , S ∈ N, S � s

which stems from the relations

�(1 + (s + 1)J ) = �(1 + sj)

J∏

j=1

(sJ + j) � �(1 + sJ )

J∏

j=1

(SJ + j)

and
J∏

j=1

(SJ + j)

J ! =
(

(S + 1)J

J

)

�
(S+1)J∑

k=0

(
(S + 1)J

k

)

= 2(S+1)J .

This proves the sufficient condition; hence, Proposition 8.

In the sequel, we denote by

– As(�,Dρ2) the set of all the functions which are s-Gevrey asymptotic on � to a formal
series of O(Dρ2)[[t]];

– Ts;�,Dρ2
: As(�, Dρ2) −→ O(Dρ2)[[t]]s the map which assigns to each u(t, x) ∈

As(�,Dρ2) its s-Gevrey asymptotic series.

Observe that Ts;�,Dρ2
is well-defined due to Remark 12 and Proposition 8. Following

Proposition 9 specifies the algebraic properties of As(�,Dρ2) and Ts;�,Dρ2
.

Proposition 9 Let s � 0 and � be an open sector with vertex 0 ∈ C.

1. (As(�,Dρ2), ∂t , ∂x) is a C-differential algebra stable under the anti-derivations ∂−1
t

and ∂−1
x .
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2. The map Ts;�,Dρ2
: As(�, Dρ2) −→ O(Dρ2)[[t]]s is a homomorphism of C-

differential algebras for the derivations ∂t and ∂x . Moreover, it commutes with the
anti-derivations ∂−1

t and ∂−1
x .

Proof The proof is the same that the one given in [43, Prop. 2].

The s-Gevrey Borel-Ritt Theorem

Theorem 4 Supposing that � has opening � πs. Then, the map Ts;�,Dρ2
is onto.

Proof It is sufficient to consider a sector � with opening πs. Moreover, by means of a
rotation, we can besides assume that � is bisected by the direction θ = 0. We denote by R

its radius.

• Let ũ(t, x) =
∑

j�0

uj,∗(x)
tj

j ! ∈ O(Dρ2)[[t]]s a s-Gevrey formal series. By assumption,

the coefficients uj,∗(x) satisfy the following two conditions:

– uj,∗(x) ∈ O(Dρ2) for all j � 0,
– There exist 0 < r2 < ρ2, C > 0 and K > 0 such that

∣
∣uj,∗(x)

∣
∣ � CKj�(1 +

(s + 1)j) for all j � 0 and |x| � r2.

Therefore, the series û(τ, x) =
∑

j�0

uj,∗(x)τ j

�(1 + sj)j ! converges for all (τ, x) ∈ Dρ × Dr2 ,

where ρ is the radius of convergence of
∑

j�0

�(1 + (s + 1)j)

�(1 + sj)j ! (Kτ)j .

• Let us now fix b ∈ Dρ , b > 0, and let us consider the holomorphic function u(t, x) ∈
O(� × Dr2) defined by

u(t, x) = t−k

∫ bk

0
û(ξ s, x)e−ξ/tk dξ , where s = 1

k
and ξ = τ k .

We shall prove below that u(t, x) is s-Gevrey asymptotic to ũ(t, x) on �.
• Let 0 < r ′

2 < r2. For any 0 < δ <
π

2
and 0 < R′ < R, we denote by �δ the proper

subsector of � defined by

�δ =
{

t ∈ C; |arg(t)| <
π

2k
− δ

k
and 0 < |t | < R′

}

.

Let J � 1 and (t, x) ∈ �δ × Dr ′
2

be. From the relation

tj = t−k

∫ +∞

0

ξ sj

�(1 + sj)
e−ξ/tk dξ , j � 0
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(see [2, pp. 78–79] for instance), we first have

u(t, x) −
J−1∑

j=0

uj,∗(x)
tj

j ! = t−k

∫ bk

0

⎛

⎝
∑

j�0

uj,∗(x)

�(1 + sj)j !ξ
sj e−ξ/tk

⎞

⎠ dξ

−
J−1∑

j=0

uj,∗(x)

j ! t−k

∫ +∞

0

ξ sj

�(1 + sj)
e−ξ/tk dξ .

Since

t ∈ �δ ⇒ | arg(t)| <
π

2
⇒ �(t) > 0 ⇒

∣
∣
∣ξ

sj e−ξ/tk
∣
∣
∣ = |ξ |sj e−ξ

�(tk )

|t |2k � bj

for all ξ ∈ [0, bk], the series
∑

j�0

uj,∗(x)

�(1 + sj)j !ξ
sj e−ξ/tk converges normally on [0, bk].

Therefore, we can permute the sum and the integral. Hence,

u(t, x) −
J−1∑

j=0

uj,∗(x)
tj

j ! =
∑

j�J

uj,∗(x)

�(1 + sj)j ! t
−k

∫ bk

0
ξ sj e−ξ/tk dξ

−
J−1∑

j=0

uj,∗(x)

�(1 + sj)j ! t
−k

∫ +∞

bk

ξ sj e−ξ/tk dξ .

Let us now observe that the inequalities (ξ/bk)sj � (ξ/bk)J s hold both when ξ � bk and
j � J and when ξ � bk and j < J . This brings us then to the following:

∣
∣
∣
∣
∣
∣
u(t, x) −

J−1∑

j=0

uj,∗(x)
tj

j !

∣
∣
∣
∣
∣
∣
�

∑

j�J

bj−J
∣
∣uj,∗(x)

∣
∣

�(1 + sj)j ! |t |−k

∫ bk

0
ξ sJ e−ξ�(1/tk)dξ

+
J−1∑

j=0

bj−J
∣
∣uj,∗(x)

∣
∣

�(1 + sj)j ! |t |−k

∫ +∞

bk

ξ sJ e−ξ�(1/tk)dξ

=
∑

j�0

bj−J
∣
∣uj,∗(x)

∣
∣

�(1 + sj)j ! |t |−k

∫ +∞

0
ξ sJ e−ξ�(1/tk)dξ

�
∑

j�0

bj−J
∣
∣uj,∗(x)

∣
∣

�(1 + sj)j ! |t |−k

∫ +∞

0
ξ sJ e−ξ sin(δ)/|t |k)dξ .

Observe that the last inequality stems from the fact that t ∈ �δ implies

�
(

1

tk

)

= cos
(
arg(tk)

)

|t |k �
cos

(π

2
− δ

)

|t |k = sin(δ)

|t |k .
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Setting then u = ξ sin(δ)

|t |k , we obtain

∣
∣
∣
∣
∣
∣
u(t, x) −

J−1∑

j=0

uj,∗(x)
tj

j !

∣
∣
∣
∣
∣
∣
�

∑

j�0

bj−J
∣
∣uj,∗(x)

∣
∣ |t |J

�(1 + sj)j !(sin(δ))sJ+1

∫ +∞

0
usJ e−udu

=
∑

j�0

bj−J
∣
∣uj,∗(x)

∣
∣

�(1 + sj)j !(sin(δ))sJ+1
�(1 + sJ )|t |J ,

where, according to the choice of b (see the beginning of the proof), we have

∑

j�0

bj
∣
∣uj,∗(x)

∣
∣

�(1 + sj)j ! � C
∑

j�0

�(1 + (s + 1)j)

�(1 + sj)j ! (Kb)j < +∞.

Consequently, we finally get
∣
∣
∣
∣
∣
∣
u(t, x) −

J−1∑

j=0

uj,∗(x)
tj

j !

∣
∣
∣
∣
∣
∣
� C′K ′J �(1 + sJ )|t |J ,

with C′ = C

sin(δ)

∑

j�0

�(1 + (s + 1)j)

�(1 + sj)j ! (Kb)j and K ′ = 1

b(sin(δ))s
. The constants C′ and

K ′ depend on �δ and on the choice of b, but are independent of t and x. This achieves the
proof.
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