
HAL Id: hal-03993060
https://hal.science/hal-03993060

Submitted on 12 Apr 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Path-conservative in-cell discontinuous reconstruction
schemes for non conservative hyperbolic systems

Christophe Chalons

To cite this version:
Christophe Chalons. Path-conservative in-cell discontinuous reconstruction schemes for non con-
servative hyperbolic systems. Communications in Mathematical Sciences, 2020, 18 (1), pp.1-30.
�10.4310/CMS.2020.v18.n1.a1�. �hal-03993060�

https://hal.science/hal-03993060
https://hal.archives-ouvertes.fr


HAL Id: hal-02263335
https://hal.science/hal-02263335

Preprint submitted on 4 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Path-conservative In-cell Discontinuous Reconstruction
schemes for non conservative hyperbolic systems

Christophe Chalons

To cite this version:
Christophe Chalons. Path-conservative In-cell Discontinuous Reconstruction schemes for non conser-
vative hyperbolic systems. 2019. �hal-02263335�

https://hal.science/hal-02263335
https://hal.archives-ouvertes.fr


Path-conservative In-cell Discontinuous Reconstruction schemes

for non conservative hyperbolic systems

Christophe Chalons∗

Abstract

We are interested in the numerical approximation of discontinuous solutions in non conserva-
tive hyperbolic systems. We introduce the basics of a new strategy based on in-cell discontinuous
reconstructions to deal with this challenging topic, and apply it to a 2x2 non conservative toy
model, and a 3x3 gas dynamics system in Lagrangian coordinates. The strategy allows in partic-
ular to compute exactly isolated shocks. Numerical evidences are proposed.

1 Introduction

In this paper, we are interested in the numerical approximation of non conservative hyperbolic systems
of the form {

∂tu+A(u)∂xu = 0, x ∈ R, t ∈ R+,⋆,
u(x, 0) = u0(x),

(1.1)

where u(x, t) ∈ Rp is the unknown and u0 the initial data, supplemented with an initial condition

u(x, 0) = u0(x), x ∈ R, (1.2)

and the validity of an entropy inequality

∂tU(u) + ∂xF(u) ≤ 0. (1.3)

Here (U ,F) is an entropy-entropy flux pair, that is to say T∇UA = T∇F with U strictly convex.
By non conservative, we mean that A is not a Jacobian matrix. This does not prevent some of the
equations of (1.1) from being in conservation form, but we assume that they are not all conservation
laws. It turns out that the theoretical and numerical study of such systems is a very difficult task as
briefly recalled now.

Theoretical aspects. Let us first review the main theoretical aspects of non conservative hyperbolic
systems. Generally speaking, hyperbolic systems develop discontinuous solutions for large times (see
[28]), so that solutions in a weak sense are considered. When the model is made of conservation
laws, solutions are usually defined in the sense of distributions and, under the validity of an entropy
inequality, existence and uniqueness results are proved for initial data close to a constant state (see
for instance Liu [32], [33], Glimm [22], Lax [27], [28], or LeFloch [31] for a review and extensions). In
the case of a non conservative system made of one or several non conservation laws, the distribution
theory does not apply anymore. Dal Maso, LeFloch and Murat proposed in [19] a definition of
the non conservative product A(u)∂xu which extends the notion of weak solution of conservation
laws. More precisely, they introduce the paths theory to define A(u)∂xu thanks to a family of paths
ϕ : [0, 1]× Ω× Ω → Ω satisfying the consistency property

ϕ(0,u,u) = u, ϕ(1,u,u) = u, for all (u,u) ∈ Ω× Ω.
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Under specific assumptions given in [19], the non conservative product A(u)∂xu at a given point x0

separating two constant states u0 = (u0, v0) and u1 = (u1, v1) is defined by

[A(u)∂xu]ϕ =

∫ 1

0

A(ϕ(s,u0,u1))
∂ϕ

∂s
(s,u0,u1)ds δx0

. (1.4)

Said differently, the shock is admissible provided that the generalized Rankine-Hugoniot relation

− σ(u1 − u0) +

∫ 1

0

A(ϕ(s,u0,u1))
∂ϕ

∂s
(s,u0,u1)ds = 0 (1.5)

holds true, where σ denotes the speed of propagation of the shock. Similarly to the conservative
setting, this definition leads to existence and uniqueness results of weak solutions to (1)-(2) but a
first difficutly is clearly to define the relevant path according to the physics of the model under
consideration.

Numerical aspects (in brief). The numerical approximation of discontinuous solutions in non
conservative systems is a very difficult task. The main reasons are the deep sensitiveness of the
standard methods with respect to the choice of the path and the usual discretisation parameters,
see for instance [24], [12], [9], [29] and the references therein, as well as the lack of a Lax-Wendroff
type convergence result. In particular, it is not guaranteed that the converged solution satisfies the
path theoretical requirement (1.5). The literature is large on the topic but the proposed schemes
are often not satisfying in the sense that either they work only for some very particular systems
or small amplitude shocks, or they involve some random sampling techniques which are difficult to
extend in several space dimensions. Without any attempt to be exhaustive, we refer for instance the
reader to [7], [5], [13], [4], [11], [21], [35], [15] and the references therein where different models and
numerical approaches have been considered. Among these methods, the most recent and complete
theory is probably the so-called path-conservative schemes theory, developed by C. Pares [35] and
collaborators. However, it was proved in [1], [12] that the consistency defnition provided by the path-
conservative formalism is not always enough to ensure the convergence to the expected solution. This
is especially true in the case of small-scale dependent solutions of interest in the present paper, again
because of a lack of control of the numerical diffusion. Nevertheless, we will see that when combined
with a suitable in-cell discontinuous reconstruction strategy, the path-conservative formalism allows
to control the numerical diffusion in numerical shocks.

General context. The present contribution follows a series of recent works on this topic, and more
precisely the two comments on the computation of non conservative products recently given in [1] and
[15]. In a few words, the authors consider in [1] the gas dynamics equations in Lagrangian coordinates
and show numerically that path-conservative schemes are not convergent to the correct solution when
applied to a non conservative version of these equations. This fact was explained theoretically in [12].
In [15], the authors consider the same set of equations and show how to slightly modify the usual
path-conservative schemes to compute correctly the solutions of this non conservative formulation.
The proposed modification is based on a new averaging procedure of the path-conservative schemes
and relies on both the introduction of modified averaging cells and a random sampling at each time
step. The numerical results are really convincing and a convergence result is proved for isolated shocks.
This shows that if the averaging procedure is dealt with care, then the path-conservative approximate
Riemann solvers can be a powerful tool for the purpose of computing non conservative shocks. This
was actually the main message of [15]. However and as already stated above, the averaging procedure
proposed in [15] relies on a random sampling and it is well-known from the work by Collela [18] that
the computation a shocks with Glimm’s random choice type methods is difficult to extend in several
space dimensions. Therefore it could be a strong limitation for future works.

Objective of the paper. The aim of the present contribution is to propose a new averaging strategy
based on in-cell discontinuous reconstruction in order to get rid of random sampling and modified
cells. As we will see, it allows to follow isolated shocks exactly, and provides convergent results to
the correct solution for more general initial data. In-cell discontinuous reconstruction techniques
used in the present paper were developed by F. Lagoutière and B. Després to reduce the numerical
diffusion in the transport of discontinuous solutions of linear and non linear equations, see for instance
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[20], [25], [26] before being extended to different setting. In particular, in [10] and [3], the authors
define a conservative scheme which is based on in-cell discontinuous reconstructions of non classical
shocks for approximating the solutions of non convex scalar conservation laws and non genuinely
non linear systems of conservation laws. Again, the striking feature of the strategy is to allow for
a perfect control of the numerical diffusion associated with the non classical discontinuities. More
precisely, it allows for the exact computation of such isolated simple waves. In [17], [16] and [39], the
authors succeeded in extending this approach based on in-cell reconstructions to constrained (scalar or
systems of) conservation laws in traffic modeling. In the present contribution, we aim at considering
a first step towards the extension of in-cell discontinuous reconstructions towards non conservative
systems. Despite the present contribution is only the very beginning in the development of this
strategy applied to non conservative systems, we believe that it might be considered as a relevant
alternative to numerical methods involving random sampling, which are so far the only ones for which
convergence results can be proved.

Outline of the paper. The outline of the paper is as follows. In section 2, we consider a non
conservative toy model and show how the in-cell discontinuous reconstruction strategy can be used to
define a relevant projection onto the set of piecewise constant solutions at each time step and therefore
to properly compute the shock discontinuities. Note that for this toy model, the exact Riemann solver
will be used to define the in-cell reconstructions. At last, Section 3 considers the non conservative
gas dynamics equations in Lagrangian coordinates and show how the discontinuous reconstruction
strategy can be combined with the use of an approximate Riemann solver while keeping the same
accuracy in the shocks computations. The last section gives the main conclusions and perspectives of
this work.

2 Application to a non conservative toy model

In this section, we are interested in the numerical approximation of the weak solutions of the following
non conservative system of two partial differential equations :

∂tu+ ∂x
u2

2
+ u∂xv = 0,

∂tv + ∂x
v2

2
+ v∂xu = 0,

(x, t) ∈ R× R+, (2.1)

where u = (u, v)t belongs to the state space Ω = {u ∈ R2, u+ v > 0}. This system can be given the
condensed form (1.1) where the non Jacobian matrix A is defined by

A(u) =

(
u u
v v

)
. (2.2)

Such a model, which consists of two coupled Burgers equations, is probably the simplest example of
non conservative model. It has already been studied for instance in [5] and can be understood as a
simplified two-fluid model where u and v denote the velocity of each fluid.

Let us state useful properties of the model (see again [5], or [23] for the basic definitions), the proof
of which is left to the reader.

Lemma 2.1. System (1.1) is strictly hyperbolic over Ω with eigenvalues

λ1(u) = 0 < λ2(u) = u+ v,

and eigenvectors
r1(u) = (1,−1)t, r2(u) = (u, v)t.

The first characteristic field is linearly degenerate and the second characteristic field is genuinely
nonlinear. Moreover, the Riemann invariants are respectively given by

I1(u) = u+ v, I2(u) = u/v.
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Remark. We have implicitly assumed v ̸= 0 in the definition of I2. In the case v = 0 and for u ∈ Ω,
the Riemann invariant is given by I2(u) = v/u.

Lemma 2.2. Smooth solutions of (1.1) obey the following additional conservation laws

∂t(u+ v) + ∂x
(u+ v)2

2
= 0, ∂t

( v

u+ v

)
= 0. (2.3)

More generally, for any convex function f from R to R, smooth solutions of (1.1) satisfy

∂tf(u+ v) + ∂x
( ∫ u+v

sf ′(s)ds
)
= 0. (2.4)

In other words, the mapping (u, v) → f(u+ v) is an entropy of (1.1).

In the forthcoming developments, the initial-value problem (1.1)-(1.2) is supplemented with the va-
lidity of the entropy inequality

∂tf(u+ v) + ∂x
( ∫ u+v

sf ′(s)ds
)
≤ 0 (2.5)

in the usual distributional sense and for any convex function f from R to R. As discussed in the
introduction, such an entropy inequality is sufficient to prove existence and uniqueness of solutions
close to a constant states when the system is conservative. Here, we are clearly in a non conserva-
tive setting and according to the path theory of [19], an additional information encompassed in the
so-called paths is needed for the problem to be well-posed.

A first example of family of paths. Following Volpert [40], one can choose for ϕ the straight lines
family given by

ϕ(s,u,u) = u+ s(u− u), ∀ u,v ∈ Ω, ∀ s ∈ [0, 1].

In this case, (1.5) writes
−σ(u1 − u0) +

(u1 + u0)

2

(
(u1 + v1)− (u0 + v0)

)
= 0,

−σ(v1 − v0) +
(v1 + v0)

2

(
(u1 + v1)− (u0 + v0)

)
= 0.

(2.6)

Let us assume that u0 ̸= u1. Then, if u0+v0 ̸= u1+v1, it is easy to check that (2.6) can be equivalently
written {

v1u0 = v0u1,
σ = 1

2

(
(u0 + v0) + (u1 + v1)

)
,

(2.7)

while in the case u0+v0 = u1+v1, meaning that the value of the first Riemann invariant I1 is the same,
we get σ = 0 and the discontinuity is a contact discontinuity associated with the first characteristic
field.
Note that the condition u0 + v0 > 0 implies existence and uniqueness of u1 = (u1, v1) satisfying (2.7)
for any given u0 = (u0, v0) and σ. Conversely, condition u1 + v1 > 0 implies existence and uniqueness
of u0 = (u0, v0) satisfying (2.7) for any given u1 = (u1, v1) and σ. In the following, we will use the
notation {

u0 = φ(u1, σ),
σ = 1

2

(
(u0 + v0) + (u1 + v1)

)
,

where φ will be called a kinetic function.

A second example of family of paths. Following LeFloch [30] and Sainsaulieu [37], ϕ can also be
implicitly defined by adding a second-order diffusion tensor to (2.1) :

∂tu+ ∂x
u2

2
+ u∂xv = ε1∂xx(u+ v), ε1 > 0,

∂tv + ∂x
v2

2
+ v∂xu = ε2∂xx(u+ v), ε2 > 0.

(2.8)
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In this case, a shock discontinuity (σ,u0,u1) is said to be admissible if there exists a travelling wave
solution of (2.8) such that :

u(x, t) = u(ξ), ξ = x− σt,

lim
ξ→−∞

u(ξ) = u0, lim
ξ→+∞

u(ξ) = u1.
(2.9)

It is shown in LeFloch [30] how to derive a family of paths consistant with this definition. Berthon [5]
used this definition and showed for system (2.1) that for any u0 in Ω and σ in ](u0 + v0)/2, (u0 + v0)[,
there exists a unique state u1 ̸= u0 in Ω and a unique travelling wave solution (up to a translation)
satisfying (2.9) and such that the generalized Rankine-Hugoniot conditions (1.5) write

v1 =
ε2

ε1 + ε2

(
2σ − (u0 + v0)

)
+

ε1v0 − ε2u0

ε1 + ε2
e

(
2−2(u0+v0)/σ

)
,

σ =
1

2

(
(u0 + v0) + (u1 + v1)

)
,

(2.10)

or equivalently 
v0 =

ε2
ε1 + ε2

(
2σ − (u1 + v1)

)
+

ε1v1 − ε2u1

ε1 + ε2
e

(
2−2(u1+v1)/σ

)
,

σ =
1

2

(
(u0 + v0) + (u1 + v1)

)
.

(2.11)

We note in particular that the exit state u1 actually depends on the shape of the diffusion tensor, and
more precisely on the ration ε2/ε1. This is a characteristic of non conservative systems as illustrated
in various contributions on this subject, see for instance Raviart and Sainsaulieu [36], Sainsaulieu [37],
Berthon and Coquel [8], [6], Chalons and Coquel [14], [13]... We alsor refer to Berthon, Coquel and
LeFloch [9]. Here again, we will use the notation{

u0 = φ(u1, σ),
σ = 1

2

(
(u0 + v0) + (u1 + v1)

)
.

2.1 A path-conservative in-cell discontinuous numerical scheme

Let us now turn to the numerical approximation of the solutions of our toy model. We first introduce
some notations and briefly recall the usual Godunov scheme. As we will see, this scheme fails in
approximating the correct shock solutions defined by a family of paths ϕ, but it will be useful for
approximating the smooth parts of the solutions, in particular the rarefaction waves. We thus motivate
and describe the proposed in-cell discontinuous reconstruction strategy which allows in particular to
compute exactly any isolated admissible shock. This property is the key property to explain the
success of the approach for general initial data.
We introduce a constant space step ∆x and constant time step ∆t and we set ν = ∆t/∆x. The mesh
interfaces are defined by xj+1/2 = j∆x for j ∈ Z and the intermediate times by tn = n∆t for n ∈ N.
As usual in the finite volume framework, we seek at each time tn for an approximation un

j of the
solution in the interval [xj−1/2, xj+1/2), j ∈ Z. Therefore, a piecewise constant approximate solution
x → uν(x, t

n) of the solution u is given by

uν(x, t
n) = un

j for all x ∈ Cj = [xj−1/2;xj+1/2), j ∈ Z, n ∈ N.

When n = 0, we set

u0
j =

1

∆x

∫ xj+1/2

xj−1/2

u0(x)dx, for all j ∈ Z.

2.1.1 Failure of the classical Godunov scheme

The classical Godunov scheme is composed of two steps : a first step in which the solution evolves in
time according to the PDE model under consideration, and a second step of projection onto piecewise
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constant functions.
Step 1 : Evolution in time
In this first step, one solves the following Cauchy problem{

∂tu(x, t) +A(u(x, t))∂xu(x, t) = 0, x ∈ R,
u(x, 0) = uν(x, t

n),
(2.12)

with the given family of paths for times t ∈ [0,∆t]. Recall that x → uν(x, t
n) is piecewise constant.

Then, under the usual CFL restriction

∆t

∆x
max{|λi(u)|, i = 1, 2} ≤ 1

2
, (2.13)

for all the u under consideration, the solution of (2.12) is known by gluing together the solutions of
the Riemann problems set at each interface :

u(x, t) = ur(
x− xj+1/2

t
;un

j ,u
n
j+1) for all (x, t) ∈ [xj , xj+1]× [0,∆t], (2.14)

where (x, t) → ur(
x
t ;uL,uR) denotes the self-similar solution of the Riemann problem ∂tu(x, t) +A(u(x, t))∂xu(x, t) = 0, x ∈ R, t ∈ R+,⋆

u(x, 0) =

{
uL if x < 0,
uR if x > 0,

given appendix A whatever uL and uR are in the phase space Ω. Recall that this solution actually
depends on the family of paths under consideration.

Step 2 : Projection
In order to get a piecewise constant approximate solution on each cell Cj at time tn+1, the solution
x → u(x,∆t) given by (2.14) is simply averaged on Cj , as expressed by the following update formula:

un+1
j =

1

∆x

∫ xj+1/2

xj−1/2

u(x,∆t)dt, j ∈ Z. (2.15)

In the following, it will be useful to write (2.15) equivalently as

un+1
j =

1

2

(
un+1
j,L + un+1

j,R

)
, j ∈ Z, (2.16)

with

un+1
j,L =

2

∆x

∫ xj

xj−1/2

ur(
x− xj−1/2

∆t
;un

j−1,u
n
j )dx (2.17)

and

un+1
j,R =

2

∆x

∫ xj+1/2

xj

ur(
x− xj+1/2

∆t
;un

j ,u
n
j+1)dx. (2.18)

As illustrated on Figure 1 obtained with initial data

u0(x) = (u, v)0(x) =

{
(6, 5) if x < 0.5,

(0.7, 0.3) if x > 0.5,
(2.19)

and the second family of path with ϵ2 = ϵ1, the numerical results provided by this scheme are not
satisfactory when a shock is present in the solution in the sense that the intermediate state is different
from the exact one. On the contrary, if we consider for instance ϵ2 = 10ϵ1 and

u0(x) = (u, v)0(x) =

{
(1, 2) if x < 0.5,
(5, 1) if x > 0.5,

(2.20)
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Figure 1: u (left) and v (right) - Contact discontinuity followed by a shock wave - Final time t = 0.05
- 1000-point mesh
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Figure 2: u (left) and v (right) - Contact discontinuity followed by a rarefaction wave - Final time
t = 0.05 - 1000-point mesh
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leading to a rarefaction wave, it works correctly in the sense that the intermediate state is correct
now, see Figure 2.
As clearly explained for instance in [8], [6], [5], [14], [13],the main reason of this failure is the excessive
numerical diffusion of the Godunov scheme across the shocks, which disagrees with the underlying
regularization operator at the discrete level. In other words, the numerical diffusion plays a crucial
role and must be controlled to make the approximate and exact solutions coincide. If the numerical
diffusion does not exactly mimic the action of the regularization operator, the numerical solutions
disagree with the exact solutions. This is observed with the usual Godunov scheme but also with any
standard finite volume scheme.
The sensitiveness with respect to the numerical diffusion is typical of non conservative systems, but
also appear in conservative systems (when the matrix A is the Jacobian matrix of a flux function),
when the system is hyperbolic but has at least one characteristic field that is neither genuinely non-
linear, nor linearly degenerate, or when it is not hyperbolic but mixed hyperbolic-elliptic. Such systems
need also to be closed by a kinetic relation, which is similar to the previous notion of path, and can
give rise to the so-called non classical shock waves, see for instance [31]. From a numerical point
of view, similar issues to those already discussed come out and approximating non classical shocks
is challenging because of the dependence on the underlying diffusion mechanisms. Again, standard
techniques are useless and a deeper analysis shows that the failure can be related to the (un)control
of the numerical diffusion.

In order to overcome this difficulty, a new numerical approach was first proposed in [10] (see also [3])
compute non classical solutions to scalar conservation laws. The proposed scheme is fully conservative
on fixed meshes and has the property of exactly capturing isolated non classical shocks. For such
isolated discontinuities, the underlying numerical diffusion thus reduces at the minimum, namely at
one point, unlike standard finite difference schemes. The method is based on an in-cell discontinuous
reconstruction technique performed in each computational cell that may contain a non classical shock.
The next section proposes to extend this approach to the present setting of a non conservative system
in order to properly compute the underlying (in some sense non classical) shocks on a fixed mesh and
satisfy at the same time the family of path.

2.1.2 In-cell discontinuous reconstruction

Overview of the strategy. In the previous sections, it was shown that the Godunov scheme is not
a good candidate when shocks are present in the solution, but it works correctly when the solution
is smooth. Therefore, we will first propose to keep on using the Godunov scheme ”far away” from
shock discontinuities. On the contrary, in the vicinity of shock discontinuities, we will follow the same
approach as in [10] which consists in adding details in the piecewise constant representation of the ap-
proximate solution on each cell Cj . More precisely, we will reconstruct discontinuities in the relevant
cells Cj and use them to define un+1

j instead of simply using the constant values un
j−1, u

n
j and un

j+1

like in the Godunov scheme. As we will see hereafter, such an approach will allow to exactly compute
isolated shock discontinuities in the sense that for such solutions un

j will equal the average of the
exact solution on the cell Cj . The corresponding numerical discontinuity will then be diffused on one
cell at most. Such a sharp control of the numerical diffusion is at the core of the success of the strategy.

The reconstruction procedure. It is now a matter of defining which cells are to be concerned with the
reconstruction procedure as well as the reconstructed discontinuities themselves, but also the strategy
to evaluate un+1

j using the new details provided by the discontinuous reconstructions. Let us consider
the cell Cj and proceed as follows. Assume that at time tn,

(u+ v)nj−1 > (u+ v)nj+1. (2.21)

According to the Riemann solver, we consider that a shock discontinuity is expected to appear locally
around the cell Cj and to develop at the next times t > tn. Indeed, such a shock is present in the
Riemann solution associated with the inital states un

j−1 and un
j+1. Hence and with clear notations, we

are tempted to introduce in the cell Cj the left and right states uj,l = u∗(u
n
j−1,u

n
j+1) and un

j,r = un
j+1
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xn
j−1 xn

j+1xn
j

dn,u

un
j−1

un
j+1

un
j

u∗(u
n
j−1,u

n
j+1)

Figure 3: Reconstruction of a shock in cell Cj . Example of the u component, assuming that the cell
j starts at 0 and has length 1; otherwise, just replace dn,u by xj−1/2 + dn,u∆x. A similar drawing
could be done for the v component.

of the shock which is expected to be present in the Riemann solution associated with un
j−1 and un

j+1.
Since we are considering the cell Cj , we require that the reconstructed discontinuity between uj,l and
uj,r is located inside Cj at a position

x̄u
j = xj−1/2 + dn,uj ∆x, (2.22)

for the u component, and
x̄v
j = xj−1/2 + dn,vj ∆x, (2.23)

for the v component, for some dn,uj and dn,vj in [0, 1]. Note indeed that in general, we will consider
that the positions of the discontinuities may be different for both components u and v, see Figure 3.
Regarding the position of the discontinuities in the cell, it is natural to impose that the reconstruction
procedure has to be conservative, which writes

dn,uj un
j,l + (1− dn,uj )un

j,r = un
j , (2.24)

or equivalently,

dn,uj =
un
j,r − un

j

un
j,r − un

j,l

, (2.25)

for the u component, and
dn,vj vnj,l + (1− dn,vj )vnj,r = vnj , (2.26)

or equivalently,

dn,vj =
vnj,r − vnj
vnj,r − vnj,l

, (2.27)

for the v component. Clearly, it is possible to reconstruct such discontinuities inside the cell Cj

provided that

0 ≤ dn,uj =
un
j,r − un

j

un
j,r − un

j,l

≤ 1, (2.28)

and

0 ≤ dn,vj =
vnj,r − vnj
vnj,r − vnj,l

≤ 1, (2.29)

which gives two additional conditions for the in-cell reconstruction procedure to make sense.
To conclude the definition of the reconstruction strategy, let us mention that still according to the
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Riemann solver, it is natural to consider that the speed of propagation σj,l,r of the reconstructed dis-
continuity equals σ(un

j−1,u
n
j+1) for both components u and v, where of course σ(un

j−1,u
n
j+1) denotes

the exact value of the speed of propagation of the shock in the Riemann solution associated with un
j−1

and un
j+1.

Update formulas. At this stage, the reconstructed discontinuity is completely defined, as well as the
reconstruction criterion (2.21), (2.28) and (2.29) for this reconstruction to take place. It thus remains
to define the update formula for un+1

j , as well as the influence of the reconstruction on the update

formulas of un+1
j−1 and un+1

j+1 . Since σ(u
n
j−1,u

n
j+1) > 0, note from now on that for the sake of simplicity

and in order to avoid dealing with the interaction of two reconstructed discontinuities in adjacent
cells, no reconstruction will be considered in the cell Cj+1.

The cell Cj. In this cell, we consider that the system under consideration is completely solved by the
reconstructed discontinuity, and thus writes

∂tu = −[A(u)∂xu]
u
ϕδx−x̄u

j =σ(un
j−1,u

n
j+1)t

for the u component, and
∂tv = −[A(u)∂xu]

v
ϕδx−x̄v

j=σ(un
j−1,u

n
j+1)t

for the v component, where with clear notations [A(u)∂xu]
u,v
ϕ is given by

−[A(u)∂xu]
u
ϕ = −σ(un

j−1,u
n
j+1)(u

n
j,r − un

j,l)

for the u component, and

−[A(u)∂xu]
v
ϕ = −σ(un

j−1,u
n
j+1)(v

n
j,r − vnj,l)

for the v component. Integrating in space and time, we get for the u component

un+1
j = un

j − 1

∆x

∫ xj+1/2

xj−1/2

∫ tn+∆t

tn
[A(u)∂xu]

u
ϕδx−x̄u

j =σ(un
j−1,u

n
j+1)t

,

namely

un+1
j = un

j −
σ(un

j−1,u
n
j+1)(u

n
j,r − un

j,l)

∆x
×min(∆t,∆tu) (2.30)

where ∆tu is the time needed by the reconstructed discontinuity in u to reach the interface xj+1/2,
that is to say

∆tu =
1− dn,uj

σ(un
j−1,u

n
j+1)

∆x.

For the v component

vn+1
j = vnj − 1

∆x

∫ xj+1/2

xj−1/2

∫ tn+∆t

tn
[A(u)∂xu]

v
ϕδx−x̄v

j=σ(un
j−1,u

n
j+1)t

,

namely

vn+1
j = vnj −

σ(un
j−1,u

n
j+1)(v

n
j,r − vnj,l)

∆x
×min(∆t,∆tv) (2.31)

where ∆tv is the time needed by the reconstructed discontinuity in v to reach the interface xj+1/2,

∆tv =
1− dn,vj

σ(un
j−1,u

n
j+1)

∆x.

Formulas (2.30) and (2.31) are equivalent to set un+1
j = un

j,l if ∆t is greater than the times needed by
the reconstructed discontinuities on u and v to reach the interface xj+1/2. If not, they are equivalent

10



to average the reconstructed discontinuities at their new position in the cell Cj after moving at velocity
σj,l,r for a time of length ∆t.

The cell Cj+1. If ∆t is greater than the times needed by the reconstructed discontinuities on u and v
to reach the interface xj+1/2, it is clear that the reconstructed discontinuities are expected to influence
the update formulas on the cell Cj+1. However, under the CFL condition (2.13), the reconstructed
discontinuities in u and v in the cell Cj cannot reach the middle point xj+1 of the cell Cj+1 and may
thus influence the half interval [xj+1/2, xj+1) only. Since no reconstruction is considered in the cell
Cj+1, we consider the usual update formula

un+1
j+1 =

1

2

(
un+1
j+1,L + un+1

j+1,R

)
but with (component by component)

un+1
j+1,L = un

j+1 −
2σ(un

j−1,u
n
j+1)(u

n
j,r − un

j,l)

∆x
×

(
∆t−min(∆t,∆tu)

)
in order to take into account the propagation of the reconstructed discontinuities inside the half
interval [xj+1/2, xj+1). Note that compared to the usual Godunov scheme, the value of un+1

j+1,R is
unchanged.

To conclude the proposed numerical scheme, let us underline that when no reconstruction takes place
in the cells Cj−1 and Cj , we use the classical Godunov scheme, namely

un+1
j =

1

2

(
un+1
j,L + un+1

j,R

)
with the definitions (2.17) and (2.18).

Summary. To sum up, the update value of a given cell Cj is kept unchanged with respect to the
Godunov scheme if no reconstruction takes place in the cells Cj−1 and Cj , the update value of a given
cell Cj is completely changed if a reconstruction takes place in the cell Cj , and the update value of a
given cell Cj is partially changed if no reconstruction takes place in the cell Cj but a reconstruction
takes place in the cell Cj−1. In this case, un+1

j,L is changed but not un+1
j,R .

At last, recall that a reconstruction is considered in the cell Cj if and only if the criterion (2.21),
(2.28) and (2.29) are satisfied and the criterion (2.21), (2.28) and (2.29) adapted to the cell Cj−1 are
not satisfied.

Following [10], let us prove an important property of the proposed scheme, which explains the very
good results obtained in the next section. The result states that isolated shock discontinuities are
exactly captured by the scheme and contain no spurious numerical diffusion.

Theorem. Assume that u0
j = uL if j ≤ 0, u0

j = uR if j ≥ 1 and that uL and uR are two con-
stant states in the phase space Ω such that they can be joined by an admissible shock discontinuity. In
other words, the Riemann solution associated with these left and right states is given by u(x, t) = uL

if x < σt and u(x, t) = uR if x > σt where σ is the speed of propagation given by

σ =
1

2

(
(uL + vL) + (uR + vR)

)
according to the exact Riemann solver. Then the proposed scheme provides an exact numerical solution
on each cell Cj in the sense that

un
j =

1

∆x

∫ xj+1/2

xj−1/2

u(x, tn)dx, j ∈ Z, n ∈ N. (2.32)
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In particular, the numerical discontinuity is diffused on one cell at most.

Proof. Let us first notice that there is no relevant reconstruction in the first time iteration since
the only cells which could be affected are j = 0 and j = 1 but by conservation we necessarily have
d0,u0 = d0,v0 = 1 and d0,u1 = d0,v1 = 0. In other words, considering a reconstructed discontinuity in
these cells gives back the original averaged value. The Godunov scheme is then used during the first
step and as an immediate consequence, equality (3.13) is proved for the first iterate by definition of
the Godunov scheme. Note that we have in particular

u1
1 = uR − σ

∆t

∆x
(uR − uL)

component by component.
Let us now see what happens in the next time iteration. It is first clear from above that only C1 is to be
concerned with a reconstructed discontinuity between uL and uR. Interestingly, by conservativity the
reconstructed discontinuities in u and v are necessarily located at the exact position of the solution,
namely at the position x = xj−1/2 + σ∆t. In other words, we reconstruct the exact solution at time
t = ∆t. To get the required identity (2.32) for the second iterate, it is sufficient to focus on the two
cells C1 and C2 (the other ones are trivial) and for instance on the u variable (the v variable can be
dealt with in a similar way). Let us first assume that ∆tu ≤ ∆t. The numerical schemes gives

u2
1 = u1

1 −
σ(uR − uL)

∆x
×∆t,

that is to say

u2
1 = uR − σ

∆t

∆x
(uR − uL)−

σ(uR − uL)

∆x
×∆t = uR − σ

2∆t

∆x
(uR − uL)

and
u2
2 = u1

2 = uR,

which clearly coincides with the average of the exact solution after two time steps ∆t on the cells C1

and C2. Let us now assume that ∆tu ≥ ∆t so that the exact shock will pass through the interface
x1+1/2 and be located at position

x = x1+1/2 + σ(∆t−∆tu)

in the cell C2. On the other hand, the numerical schemes gives

u2
1 = u1

1 −
σ(uR − uL)

∆x
×∆tu,

that is to say

u2
1 = uR − σ

∆t

∆x
(uR − uL)−

σ(uR − uL)

∆x
× ∆x− σ∆t

σ
= uL

and

u2
2 =

1

2

(
uR − 2σ(uR − uL)

∆x
× (∆t−∆tu) + uR

)
,

or equivalently

u2
2 = uR − σ

(∆t−∆tu)

∆x
(uR − uL)

which again clearly coincides with the average of the exact solution on the cells C1 and C2 after two
time steps. And the process is going on in a similar way for the next time iterations, which proves
the result.
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2.2 Numerical experiments

In this section, we illustrate the behavior of the proposed scheme based on in-cell discontinuous re-
constructions.

Test 1. In this first test case, we consider an isolated shock associated with the second family of path
with ϵ1 = ϵ2 and associated with the left and right states of the following initial data,

u0(x) = (u, v)0(x) =

{
(uL, vL) if x < 0.5,
(uR, vR) if x > 0.5,

=

{
(0, 1) if x < 0.5,

(−0.00670855951629595, 0.50670855951629590) if x > 0.5.
(2.33)

The speed of propagation is σ = 3/4. As we can see on Figure 4, and in agreement with our theorem,
the numerical solution is exact and contains only one point of numerical diffusion. On Figure 5, we
plot the numerical entropy dissipation Dn with respect to the time tn and defined by

Dn =
1

2

(∑
j

∆x(un+1
j + vn+1

j )
)2 −∑

j

∆x
(un

j + vnj )
2

2
+ ∆t

( (uR + vR)
3

3
− (uL + vL)

3

3

)
(2.34)

where the sum is taken over the mesh cells. We observe that it is nonpositive as expected.
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Figure 4: u (left) and v (right) - Isolated shock - Final time t = 0.2 - 100-point mesh
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Figure 5: Dn - Isolated shock - 100-point mesh

Test 2. The second test case is the same as the one considered on Figure 1, and we now clearly see
the proposed strategy allows to properly compute the non conservative shock and the intermediate
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state, even with a coarse mesh made of 100 points. The results are given on Figures 6.
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Figure 6: u (left) and v (right) - Contact discontinuity followed by a shock - Final time t = 0.05 -
100-point mesh

Test 3. The last test case considers a periodic simulation associated with the initial data given by

u0(x) = (u, v)0(x) =

{
(uL, vL) if x < 0.4 orx > 0.6,
(uR, vR) if otherwise,

(2.35)

with (uL, vL) = (0, 1) and (uR, vR) = (5, 2), and again the second family of path with ϵ1 = ϵ2.
On Figure 7 we compare the numerical quantities u + v obtained with our scheme and the classical
Godunov scheme. Recall that this quantity is conserved so that both methods are expected to give
the same solution. Again, we clearly see that the new scheme is less diffusive than the Godunov one
at the point of discontinuity of the N -wave profile.

 4

 4.5

 5

 5.5

 6

 6.5

 7

 0  0.2  0.4  0.6  0.8  1

u+v Godunov
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Figure 7: u+ v - Periodic simulation - Final time t = 1 - 600-point mesh
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3 Application to the gas dynamics equations in Lagrangian
coordinates

In this section, we apply the in-cell reconstruction technique to the following gas dynamics equations
in Lagrangian coordinates :  ∂tτ − ∂xu = 0,

∂tu+ ∂xp = 0,
∂tE + ∂xpu = 0,

(3.1)

where τ > 0 represents the inverse of a density, u is the velocity and p = p(τ, e) > 0 is the pressure.
Here e > 0 denotes the internal energy and satisfies E = e + u2/2. For the sake of simplicity, we
consider a perfect gas equation of state p(τ, e) = (γ − 1)e/τ where γ > 1. Recall that (3.1) is strictly
hyperbolic with eigenvalues λ0 = 0 and λ± = ±c, c =

√
γp/τ , and that the characteristic field

associated with λ0 is linearly degenerate and the ones associated with λ± are genuinely nonlinear
[23]. On the other hand, the admissible solutions of (3.1) are selected by the Lax entropy inequalities,
which here are equivalent to σ(τ+ − τ−) > 0 where τ+ and τ− are the left and right states of the
underlying discontinuity, and σ its speed of propagation.

At this stage, (3.1) is written in a classic conservative form which does not raise any difficulty from a
numerical point of view since usual Godunov-type schemes can be used, see [23] again. However, the
following non conservative formulation of (3.1) can be easily obtained ∂tτ − ∂xu = 0,

∂tu+ ∂xp = 0,
∂te+ p∂xu = 0,

(3.2)

where only the last equation on the total energy has been replaced with a last equation on the internal
energy. Setting u = (τ, u, e), the matrix A(u) is given by

A(u) =

 0 −1 0
∂τp(τ, e) 0 ∂ep(τ, e)

0 p(τ, e) 0

 .

In order to define the admissible solutions of (3.2), we consider again the path theory of Dal Maso,
LeFloch and Murat. Here, a very simple choice of path is defined for all u0 and u1 such that
σ(τ1 − τ0) > 0 in a linear ay with respect to τ , u and p, namely τ(s) = τ0 + s(τ1 − τ0),

u(s) = u0 + s(u1 − u0),
p(s) = p0 + s(p1 − p0),

for all s ∈ [0, 1]. Actually, it turns out that easy calculations show that the generalized jump relations
(1.5) of the path theory boil down to the classic Rankine-Hugoniot relations applied to (3.1), namely σ(τ1 − τ0) + (u1 − u0) = 0,

−σ(u1 − u0) + (p1 − p0) = 0,
−σ(E1 − E0) + (p1u1 − p0u0) = 0,

(3.3)

or equivalently 
σ(τ1 − τ0) + (u1 − u0) = 0,
−σ(u1 − u0) + (p1 − p0) = 0,

−σ(e1 − e0) +
1

2
(p1 + p0)(u1 − u0) = 0.

(3.4)

In other words and with such a choice of path, both conservative and non conservative formulations
(3.1) and (3.2) select the same solutions.
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3.1 A Roe-type path-conservative approximate Riemann solver

We begin with the definition of a Roe-type path-conservative approximate Riemann solver associated
with (3.2) and a given path ϕ. According to [38] and [35], it is based on a Roe linearization Aϕ such
that
1. for all uL and uR, Aϕ(uL,uR) has 3 distinct eigenvalues,
2. for all u, Aϕ(u,u) = A(u),
3. for all uL and uR,

Aϕ(uL,uR)(uR − uL) =

∫ 1

0

A(ϕ(s,uL,uR))∂sϕ(s,uL,uR)ds.

The three properties are satisfied if we set

Aϕ(uL,uR) = A(u), u = u(uL,uR) = (τ , u, e)

with

τ =
τL + τR

2
, u =

uL + uR

2
, e =

p τ

γ − 1
and p =

pL + pR
2

,

see [34]. The approximate Riemann solution constructed from the Roe linearization is the solution of ∂tu(x, t) +Aϕ(uL,uR)∂xu(x, t) = 0,

u(x, t = 0) =

{
uL if x < 0,
uR if x > 0,

given by

u(x/t;uL,uR) =


uL if x/t < −σ(uL,uR),
u∗
L if −σ(uL,uR) < x/t < 0,

u∗
R if 0 < x/t < σ(uL,uR),

uR if x/t > σ(uL,uR),

(3.5)

where the left and right intermediate states are easily obtained from the left and right eigenvectors lk
and rk, k = 1, 2, 3 of Aϕ(uL,uR), respectively, namely

u∗
L = (uR, l1)r1 +

3∑
k=2

(uL, lk)rk, u∗
R =

2∑
k=1

(uR, lk)rk + (uL, l3)r3,

and σ(uL,uR) = c(u(uL,uR)) =
√

γp/τ(uL,uR). For the sake of clarity, it will be useful to have in
mind the wave pattern of this solution, which is recalled on the next figure.

−σ(uL,uR) σ(uL,uR)0

u∗
L u∗

RuL uR

x = 0
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Note that once the solution is defined, one can denote by x → ũ(x, t) the piecewise constant approxi-
mate solution obtained by glueing together the Roe-type approximate solutions at each interface, that
is to say

ũ(x, t) = u((x− xj+1/2)/t;u
n
j ,u

n
j+1)

for all (x, t) ∈ [xj , xj+1) × [0,∆t), j ∈ Z, n ∈ N. One can also define a Roe-type path-conservative
scheme according to [35] as any Godunov-type scheme by averaging the solution on each cell [xj−1/2, xj+1/2),
namely

un+1
j =

1

∆x

∫ xj+1/2

xj−1/2

ũ(x,∆t)dx =
1

2
(un+1

j,L + un+1
j,R ), (3.6)

with

un+1
j,L =

2

∆x

∫ xj

xj−1/2

ũ(x,∆t)dx =

2

∆x

(
σ(un

j−1,u
n
j )∆tu∗

R(u
n
j−1,u

n
j ) + (

∆x

2
− σ(un

j−1,u
n
j )∆t)un

j

)
and

un+1
j,R =

2

∆x

∫ xj+1/2

xj

ũ(x,∆t)dx =

2

∆x

(
σ(un

j ,u
n
j+1)∆tu∗

L(u
n
j ,u

n
j+1) + (

∆x

2
− σ(un

j ,u
n
j+1)∆t)un

j

)
,

under the CFL restriction

∆tmax
j∈Z

|σ(un
j ,u

n
j+1)| ≤

∆x

2
. (3.7)

In the sequel, we will also use the notation σn
j+1/2 = σ(un

j ,u
n
j+1). However, such a Roe-type path

conservative scheme fails in computing correctly the discontinuous solutions of our system, see [1],
and we now aim at applying the in-cell discontinuous reconstruction method instead. As we will see,
such a strategy allows to obtain a perfect agreement between the exact and numerical solutions, and
even the exact capture of isolated discontinuities.

3.2 A path-conservative in-cell discontinuous numerical scheme

The design principle is the same as for the toy model in section 2.1. The main differences here are the
following. First, the exact Riemann solver will be replaced with a Roe-type approximate Riemann
solver and second, the local Riemann solutions at each interface may contain two discontinuities prop-
agating with velocities having opposite signs, unlike the toy model for which only one discontinuity
propagating with a positive speed could occur. Apart from this, the idea is actually the same, namely
to keep on using the classic Godunov type scheme given above ”far away” from shock discontinuities,
and to add details in the piecewise constant representation of the approximate solution in the vicinity
of shock discontinuities.

Reconstruction procedure. Let us first define which cells j are to be concerned with the reconstruction
procedure. We consider the cell Cj and proceed as follows. Assume that at time tn,

un
j−1 > un

j+1. (3.8)

According to the entropy condition σ(τ+ − τ−) > 0 and the Rankine-Hugoniot relation σ(τ+ − τ−) =
−(u+−u−) across a shock discontinuity, we consider that a shock discontinuity is expected to appear
locally around the cell Cj when (3.8) holds true. This is quite natural since such a shock is actually
present in the Riemann solution associated with the inital states un

j−1 and un
j+1 and which will develop

at the next times t > tn. Hence, we are tempted to introduce in the cell Cj a discontinuity given by
the Roe-type path-conservative approximate Riemann solver proposed in the previous section. More
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precisely and with clear notations the left and right states uj,l and uj,r of the reconstructed solution
are defined by

uj,l = un
j−1 and un

j,r = u∗
L(u

n
j−1,u

n
j+1) if (τnj+1 − τnj−1) < 0,

and
uj,l = u∗

R(u
n
j−1,u

n
j+1) and un

j,r = un
j+1 if (τnj+1 − τnj−1) > 0.

The speed of propagation σj,l,r of the reconstructed discontinuity on the cell j is naturally defined
by −σ(un

j−1,u
n
j+1) if (τnj+1 − τnj−1) < 0 and σ(un

j−1,u
n
j+1) if (τnj+1 − τnj−1) > 0, where of course

±σ(un
j−1,u

n
j+1) refer to the speeds of propagation of the discontinuities in the Roe-type approximate

Riemann solver associated with the initial states un
j−1 and un

j+1.
Since we are considering the cell Cj , we also require that the reconstructed discontinuity associated
with those left and right states is located inside Cj at a position

x̄α
j = xj−1/2 + dn,αj ∆x, (3.9)

with α = τ, u, e and for some dn,αj in [0, 1] which may vary with α. In order to define dn,αj , it is natural
to impose that the reconstruction procedure is conservative, namely

dn,αj αn
j,l + (1− dn,αj )αn

j,r = αn
j , (3.10)

or equivalently,

dn,αj =
αn
j,r − αn

j

αn
j,r − αn

j,l

, (3.11)

for the α = τ, u, e component. Clearly, it is possible to reconstruct the discontinuities provided that

0 ≤ dn,αj ≤ 1, (3.12)

which gives three additional conditions for the in-cell reconstruction procedure to make sense.

At last, for the sake of simplicity and in order to avoid dealing with the interaction of two reconstructed
discontinuities in adjacent cells, no reconstruction will be considered in the cell Cj if (3.8) and (3.12)
adapted to the cell Cj+1 hold true and σj+1,l,r < 0, while no reconstruction will be considered in the
cell Cj−1 if (3.8) and (3.12) adapted to the cell Cj−1 hold true and σj−1,l,r > 0.

Remark. In practice, we also impose to the reconstructed states to be admissible in the sense τ > 0
and e > 0, which is not guaranteed by the Roe approximate solver.

Update formulas. Let us now give the update formulas for un+1
j , as well as the influence of the in-cell

reconstruction on the update formulas for un+1
j−1 and un+1

j+1 since σj,l,r may be positive or negative. We
follow exactly the same approach as for the toy model, which leads to the reconstructed discontinuity
propagates with a positive speed in the cell Cj , and that no reconstruction will be considered in the
cell Cj−1 if the reconstructed discontinuity propagates with a negative speed in the cell Cj .

The case σj,l,r > 0 and the cell Cj. We set

αn+1
j = αn

j −
σj,l,r(α

n
j,r − αn

j,l)

∆x
×min(∆t,∆tα)

where ∆tα is the time needed by the reconstructed discontinuity in α = τ, u, e to reach the interface
xj+1/2, namely

∆tα =
1− dn,αj

σj,l,r
∆x.

The case σj,l,r > 0 and the cell Cj+1. Under the CFL condition (2.13), the reconstructed discontinu-
ities in the cell Cj cannot reach the middle point xj+1 of the cell Cj+1 and may thus influence only
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the half interval [xj+1/2, xj+1). Since no reconstruction is considered in the cell Cj+1, we consider the
usual update formula

un+1
j+1 =

1

2

(
un+1
j+1,L + un+1

j+1,R

)
but with (component by component)

αn+1
j+1,L = αn

j+1 −
2σj,l,r(α

n
j,r − αn

j,l)

∆x
×
(
∆t−min(∆t,∆tα)

)
.

Note that compared to the usual Godunov scheme, the value of αn+1
j+1,R will be changed if and only if

an in-cell reconstruction takes place in cell Cj+2.

The case σj,l,r > 0 and the cell Cj−1 (and no reconstruction in this cell). Under the CFL condition
(2.13), the reconstructed discontinuities in the cell Cj cannot influence the cell Cj−1 farther than
xj−1. Since we consider the case where no reconstruction is considered in the cell Cj−1, we consider
the usual update formula

un+1
j−1 =

1

2

(
un+1
j−1,L + un+1

j−1,R

)
but with (component by component)

αn+1
j−1,R = αn

j−1 −
2σj,l,r(α

n
j−1 − αn

j,l)

∆x
∆t.

The case σj,l,r < 0 and the cell Cj. We follow the same lines as above which leads to the same update
formulas for τ , u and e, namely

αn+1
j = αn

j −
σj,l,r(α

n
j,r − αn

j,l)

∆x
×min(∆t,∆tα)

component by component, where ∆tα is now the time needed by the reconstructed discontinuity in α
to reach the interface xj−1/2, namely

∆tα =
dn,αj

|σj,l,r|
∆x.

The case σj,l,r < 0 and the cell Cj−1. Under the CFL condition (2.13) and as before, the reconstructed
discontinuities in the cell Cj cannot reach the middle point xj−1 of the cell Cj−1 and may thus influence
the half interval [xj−1, xj−1/2) only. Since no reconstruction is considered in the cell Cj−1, we consider
the usual update formula

un+1
j−1 =

1

2

(
un+1
j−1,L + un+1

j−1,R

)
but with (component by component)

αn+1
j−1,R = αn

j−1 −
2σj,l,r(α

n
j,r − αn

j,l)

∆x
×

(
∆t−min(∆t,∆tα)

)
.

Note that compared to the usual Godunov scheme, the value of αn+1
j−1,L will be changed if and only if

an in-cell reconstruction with positive speed of propagation takes place in cell Cj−2.

The case σj,l,r < 0 and the cell Cj+1 (and no reconstruction in this cell). Under the CFL condi-
tion (2.13), the reconstructed discontinuities in the cell Cj cannot influence the cell Cj+1 farther than
xj+1. Since we consider the case where no reconstruction is considered in the cell Cj+1, we consider
the usual update formula

un+1
j−1 =

1

2

(
un+1
j−1,L + un+1

j−1,R

)
but with (component by component)

αn+1
j+1,L = αn

j,r −
2σj,l,r(α

n
j+1 − αn

j,r)

∆x
∆t.
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The case with no reconstruction in the cells Cj and Cj±1. At last and to conclude the proposed
numerical scheme, let us mention that when no reconstruction takes place in the cells Cj−1, Cj and
Cj+1, we use the classical Godunov-type scheme, namely

un+1
j =

1

2

(
un+1
j,L + un+1

j,R

)
.

Similarly to the toy model, one can easily prove that the scheme satisfies by construction the following
theorem.

Theorem. Assume that u0
j = uL if j ≤ 0, u0

j = uR if j ≥ 1 and that uL and uR are two con-
stant states in the phase space Ω such that they can be joined by an admissible (entropic) shock
discontinuity. In other words, the Riemann solution associated with these left and right states is given
by u(x, t) = uL if x < σt and u(x, t) = uR if x > σt where σ is the speed of propagation given by

σ = ±
√

−pR − pL
τR − τL

.

Then the proposed scheme provides an exact numerical solution on each cell Cj in the sense that

un
j =

1

∆x

∫ xj+1/2

xj−1/2

u(x, tn)dx, j ∈ Z, n ∈ N. (3.13)

In particular, the numerical discontinuity is diffused on one cell at most.

3.3 Numerical experiments

We now propose several test cases to illustrate the behavior of the scheme. The adiabatic coefficient
is set to γ = 1.4. We compare the solutions with the ones given by the original path-conservative
scheme applied to (3.1) or by a classical conservative scheme applied to (3.2). The domain is [0, 1]
and the CFL restriction is 0.45. The first two cases are such that exact solutions are either an isolated
discontinuity or two shock discontinuities starting from the same right state. The last test case is
inspired from the first test case of [2] and has a large pressure jump.

Test 1. The first test case is an isolated shock associated with the initial data

(τ, u, p)0(x) =
(2.09836065573770281, 2.3046638387921279, 1.0) if x < 0.5,

(8.0, 0.0, 0.1) otherwise.

The speed of propagation is 0.3905124837953326544238 and the final time of the simulation is t = 0.5.
We clearly see on Figure 8 that the original path-conservative scheme fails while Figure 9 shows a
perfect agreement between our scheme and the exact solution. Recall that our scheme is exact in this
case and therefore captures the discontinuity with only one point of numerical diffusion.

Test 2. The second test case is a Riemann problem leading to three waves, namely two shocks and
one contact discontinuity, and corresponds to the following initial data,

(τ, u, p)0(x) =
(5.0, 3.323013993227, 0.481481481481) if x < 0.5,

(8.0, 0.0, 0.1) otherwise.

The 3-shock is the same as in the previous test case. The density of the first shock goes from 5.0 to 3.0
and its speed of propagation is 0.509175077217. The final time is 0.5. Again, we observe on Figures
10 and 11 that the original path-conservative scheme fails and the new one succeeds and properly
computes the shocks without numerical diffusion.
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Figure 8: τ - Test 1 - Classical path-conservative scheme - Final time t = 0.5 - 300-point mesh
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Figure 9: τ (top left), u (top right) and p (bottom) - Test 1 - Our scheme - Final time t = 0.5 -
300-point mesh

21



 0

 2

 4

 6

 8

 10

 0  0.2  0.4  0.6  0.8  1

tau exact
tau classique

Figure 10: τ - Test 2 - Classical path-conservative scheme - Final time t = 0.5 - 300-point mesh
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Figure 11: τ (top left), u (top right) and p (bottom) - Test 2 - Our scheme - Final time t = 0.5 -
300-point mesh
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On Figure 12, we plot the numerical energy dissipation with respect to time and defined by

Dn =
∑
j

∆xEn+1
j −

∑
j

∆xEn
j +∆t (pRuR − pLuL) (3.14)

where the sum is taken over the mesh cells. This quantity is clearly zero for a conservative scheme.
It is also expected to converge to zero with the mesh size for a convergent non conservative scheme
since our choice of path is equivalent to the classical Rankine-Hugoniot relations applied to the con-
servative system. It is actually the case for our scheme based on in-cell reconstructions. Interestingly,
we observe that the energy dissipation oscillates around zero for a given mesh (the amplitude goes to
zero with the mesh size).

-0.01
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 0.005

 0.01

 0  0.1  0.2  0.3  0.4  0.5

’entropie.dat’ u 1:3

Figure 12: Energy dissipation - Test 2 - Our scheme - Final time t = 0.5 - 300-point mesh

Test 3. At last, we conclude this section with a more difficult test case taken from [2] and with a large
pressure jump in the initial data given by

(τ, u, p)0(x) =
(1/1185, 0, 2.0e11) if x < 0.5,
(1/1185, 0, 1.0e5) otherwise,

where the density, velocity and pressure units are respectively kg/m3, m/s, and Pa. The final time of
simulation is 2e−8 and the mesh is made of 1000 points. We compare on Figure 13 the solution given
by our scheme with the one given by the classical path-conservative scheme but applied directly to the
conservative variable τ , u and E, so that it approximates correctly the solution in this case since both
the system and the scheme are conservative. Here again, we see that our (non conservative) scheme
gives similar results and thus is also able to properly approximate the exact solution.

4 Conclusion and perspectives

We have introduced the basics of the so-called path-conservative in-cell discontinuous reconstruction
schemes for the numerical approximation of shock solutions in non conservative systems. By basics, we
mean that it has been applied to quite simple systems, namely a toy model and the non conservative
gas dynamics equations in Lagrangian coordinates. The first (respectively second) system has one
(resp. two) characteristic fields leading to shocks, but in both cases the sign of the corresponding
characteristic speed is known a priori. The next steps are to consider systems for which the sign of
the characteristic speeds depends on the state value, like for instance the gas dynamics equations in
Eulerian coordinates, but also to consider non conservative systems which do not admit an equivalent
conservative formulation like the one considered in the present paper. One can think for instance of
systems arising in turbulence modeling or geophysical flows.
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Figure 13: τ (top left), u (top right) and p (bottom) - Test 3 - Final time t = 2e−8 - 1000-point mesh
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It is also important to note that a key property to make the in-cell discontinuous reconstruction
approach successful, and in particular to have the validity of the theorem stating that it gives the
exact solution in the case of isolated shocks, lies in the fact that the underlying Riemann solver (exact
or of path-conservative Roe type) is able to provide an exact solution in such a case of an isolated
shock discontinuity. This therefore emphasizes the need for the development of approximate and
entropy-satisfying Riemann solvers which are able to exactly reproduce isolated shocks, which is to
be proposed in a forthcoming contribution too.
At last, the scheme is first-order accurate in its present form, although it is ∞-accurate for isolated
shocks. The extension to higher order of accuracy is also a current investigation. In particular, using
the general high-order path-conservative formalism provides a nice opportunity to extend the present
approach and design new high-order finite volume solvers that do not introduce any numerical viscos-
ity on the propagation of isolated shocks, and to explore the extension to multidimensional problems.

Acknowledgments. The author is thankful to Frédéric Coquel and Pascal Jaisson for useful discus-
sions on this work. The author is also very grateful to Manuel J. Castro Dı́az and Tomás Morales
de Luna for pointing out strong connections between the path-conservative methods and the numer-
ical methods proposed here, and suggesting extensions to high-order accuracy and multidimensional
setting in that direction.

A Appendix : exact Riemann solver for the non conservative
toy model

In this appendix, we briefly give the solution to the Riemann problem (1.1)-(2.5) with initial condition
given by

u(x, 0) = u0(x) =

{
uL if x < 0,
uR if x > 0,

(A.1)

for two constant states uL and uR in Ω. By Lemma 2.1, this solution is expected to be made of two
simple waves, namely a stationary contact discontinuity associated with λ1 from uL to an interme-
diate state u⋆ and a nonlinear wave associated with λ2 from u⋆ to uR. The latter is either a shock
discontinuity satisfying the generalized Rankine-Hugoniot relations (1.5) and the entropy inequality
(2.5) in the sense of distributions, or a rarefaction wave. Let us go further into details.

Contact discontinuities. As is customary, the set C1(uL) of admissible states u⋆ that can be joined
to uL on the right by a contact discontinuity associated with λ1 is defined thanks to the Riemann
invariants. Here we get

C1(uL) = {u⋆ = (u⋆, v⋆)
t ∈ Ω, I1(u⋆) = I1(uL)}

or equivalently
C1(uL) = {u⋆ = (u⋆, v⋆)

t ∈ Ω, u⋆ + v⋆ = uL + vL}.

Given u⋆ in C1(uL), the stationary contact discontinuity solution of (1.1) is then defined by

u(x, t) =

{
uL if x < 0,
u⋆ if x > 0.

Rarefaction waves. The set R1(uR) of admissible states u⋆ that can be joined to uR on the left by a
rarefaction wave associated with λ2 is also defined thanks to the Riemann invariants, together with
the compatibility condition λ2(u⋆) ≤ λ2(uR). More precisely, we have

R1(uR) = {u⋆ = (u⋆, v⋆)
t ∈ Ω, I2(u⋆) = I2(uR), λ2(u⋆) ≤ λ2(uR)}

or equivalently

R1(uR) = {u⋆ = (u⋆, v⋆)
t ∈ Ω, vRu⋆ = uRv⋆, u⋆ + v⋆ ≤ uR + vR}.
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Given u⋆ in R1(uR), the rarefaction fan solution of (1.1) is then defined by

u(x, t) =

 u⋆ if ξ ≤ λ2(u⋆) = u⋆ + v⋆,
u⋆(ξ) if λ2(u⋆) ≤ ξ ≤ λ2(uR),
uR if ξ ≥ λ2(uR) = uR + vR,

where we have set ξ = x/t for t > 0 and where u⋆(ξ) is defined by{
ξ = λ2(u⋆(ξ))
I2(u⋆(ξ)) = I2(uR)

or equivalently {
ξ = u⋆(ξ) + v⋆(ξ)
vRu⋆(ξ) = uRv⋆(ξ).

We refer for instance to [23] for more details.

Shock discontinuities. As motivated above, the set S2(uR) of admissible states u⋆ in Ω that can
be joined to uR on the left by a shock discontinuity propagating at velocity σ is admissible provided
that both the generalized Rankine-Hugoniot relations (1.5) and the entropy inequality (2.5) in the
distributional sense hold true. More precisely, u⋆ has to satisfy

−σ(uR − u⋆) +

∫ 1

0

A(ϕ(s,u⋆,uR))
∂ϕ

∂s
(s,u⋆,uR)ds = 0,

−σ
(
f(uR + vR)− f(u⋆ + v⋆)

)
+

∫ uR+vR

u⋆+v⋆

sf ′(s)ds ≤ 0,

(A.2)

where ϕ and f respectively denote a family of paths and any convex function. Adding the two
components of the generalized Rankine-Hugoniot relations in (A.2) gives

−σ
(
(uR + vR)− (u⋆ + v⋆)

)
+

1

2

(
(uR + vR)

2 − (u⋆ + v⋆)
2
)
,

which in passing does not depend on the family of paths ϕ anymore, and then

σ =
(u⋆ + v⋆) + (uR + vR)

2
.

Note that we have implicitly assumed that u⋆ + v⋆ ̸= uR + vR in order to deal with a true shock
discontinuity and not a contact discontinuity. Then, since

−σ
(
f(uR + vR)− f(u⋆ + v⋆)

)
+

∫ uR+vR

u⋆+v⋆

sf ′(s)ds =

=

∫ uR+vR

u⋆+v⋆

(s− σ)f ′(s)ds = −
∫ uR+vR

u⋆+v⋆

(s− σ)2

2
f ′′(s)ds+

+
(uR + vR − σ)2

2
f ′(uR + vR)−

(u⋆ + v⋆ − σ)2

2
f ′(u⋆ + v⋆),

the definition of σ above and the mean value theorem give

−σ
(
f(uR + vR)− f(u⋆ + v⋆)

)
+

∫ uR+vR

u⋆+v⋆

sf ′(s)ds =

= − (s̃− σ)2

2

(
f ′(uR + vR)− f ′(u⋆ + v⋆)

)
+

+
1

8

(
(uR + vR)− (u⋆ + v⋆)

)2(
f ′(uR + vR)− f ′(u⋆ + v⋆)

)
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for some s̃ in between (u⋆ + v⋆) and (uR + vR), that is to say

−σ
(
f(uR + vR)− f(u⋆ + v⋆)

)
+

∫ uR+vR

u⋆+v⋆

sf ′(s)ds =

= −1

2

(
f ′(uR + vR)− f ′(u⋆ + v⋆)

)
×

(
s̃− (u⋆ + v⋆)

)
×

(
s̃− (uR + vR)

)
.

By convexity of f , it is thus clear that the entropy inequality in (A.2) is equivalent to

u⋆ + v⋆ ≥ uR + vR.

The set S2(uR) is then defined by

S2(uR) = {u⋆ = (u⋆, v⋆)
t ∈ Ω, u⋆ + v⋆ ≥ uR + vR,

−σ(uR − u⋆) +

∫ 1

0

A(ϕ(s,u⋆,uR))
∂ϕ

∂s
(s,u⋆,uR)ds = 0}

for a given family of paths. Given u⋆ in S2(uR), the shock solution of (1.1) is then defined by

u(x, t) =

{
u⋆ if x < σt,
uR if x > σt.

The Riemann solution. Glueing together the simple waves associated with λ1 and λ2 and for a given
family of paths ϕ, we get that the Riemann solution to (2.1)-(2.5)-(A.1) is given as follows :
– if (uL + vL) ≤ (uR + vR)

u(x, t) =


uL if ξ < 0,
u⋆ if 0 < ξ < λ2(u⋆) = u⋆ + v⋆,

u⋆(ξ) if λ2(u⋆) ≤ ξ ≤ λ2(uR),
uR if ξ ≥ λ2(uR) = uR + vR,

with ξ = x/t and where u⋆ and u⋆(ξ) are respectively defined by{
uL + vL = u⋆ + v⋆,
vRu⋆ = uRv⋆,

which gives in particular

u⋆ = uR
uL + vL
uR + vR

, v⋆ = vR
uL + vL
uR + vR

,

and {
ξ = u⋆(ξ) + v⋆(ξ),
vRu⋆(ξ) = uRv⋆(ξ).

– if (uL + vL) ≥ (uR + vR)

u(x, t) =

 uL if ξ < 0,
u⋆ if 0 < ξ < σ,
uR if ξ ≥ σ,

with ξ = x/t and where σ and u⋆ are defined by
uL + vL = u⋆ + v⋆,

−σ(uR − u⋆) +

∫ 1

0

A(ϕ(s,u⋆,uR))
∂ϕ

∂s
(s,u⋆,uR)ds = 0.

In particular, we still have σ = (u⋆+v⋆)+(uR+vR)
2 .
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