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STABILITY OF BOTT–SAMELSON CLASSES IN ALGEBRAIC

COBORDISM

THOMAS HUDSON, TOMOO MATSUMURA AND NICOLAS PERRIN

Abstract. In this paper, we construct stable Bott–Samelson classes in the projective limit

of the algebraic cobordism rings of full flag varieties, upon an initial choice of a reduced

word in a given dimension. Each stable Bott–Samelson class is represented by a bounded

formal power series modulo symmetric functions in positive degree. We make some explicit

computations for those power series in the case of infinitesimal cohomology. We also obtain

a formula of the restriction of Bott–Samelson classes to smaller flag varieties.

1. Introduction

Let k be an algebraically closed field of characteristic 0. Let Fln be the flag variety of

complete flags in k
n. It can be identified with the homogeneous space GLn(k)/B where

B is the Borel subgroup of upper triangular matrices. For each permutation w ∈ Sn, the

corresponding Schubert variety X
(n)
w ⊂ Fln is defined as B−wB, the closure of the orbits of

wB by the action of the opposite Borel subgroup B−. If ιn : Fln → Fln+1 is the natural

embedding, the cohomology fundamental classes of these Schubert varieties have the property

that ι∗n[X
(n+1)
w ] = [X

(n)
w ], i.e., the Schubert classes are stable under the pullback maps. The

exact analogue of this property also holds in K-theory, in which one defines the Schubert

classes as the K-theory classes of the structure sheaves of Schubert varieties.

In this paper, we attempt to generalize the above notion of stability to Bott-Samelson

classes in algebraic cobordism. The algebraic cobordism, denoted by Ω∗, was introduced

by Levine–Morel in [16] and represents the universal object among oriented cohomology

theories, a family of functors which includes both the Chow ring CH∗ and K0[β, β−1], a

graded version of the Grothendieck ring of vector bundles. In recent years a lot of energy

has been spent to lift results of Schubert calculus to Ω∗, in the same way in which Bressler–

Evens did in [1, 2] for topological cobordism. The first works in this direction were those of

Calmés–Petrov–Zanoulline [3] and Hornbostel–Kiritchenko [6] who investigated the algebraic

cobordism of flag manifolds. Later, the interest shifted to Grassmann and flag bundles (cf.

[13], [4], [12],[11], [10], [7], [8], [9]). One of the main difficulty of Schubert calculus in algebraic

cobordism is caused by the fact that the fundamental classes of Schubert varieties are not

well-defined in general oriented cohomology theories. A candidate for the replacement of

Schubert classes is the family of the push-forward classes of Bott–Samelson resolutions of

Schubert varieties.
1
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Since a Bott–Samelson variety is defined upon a choice of a reduced word, thus our stability

of Bott–Samelson classes depends on a particular choice of a sequence of reduced words. The

followings are the main results in this paper: (1) For a given Bott–Samelson variety Yn in Fln,

we construct a sequence of Bott-Samelson varieties Ym over Flm for m ≥ n such that their

push-forward classes in algebraic cobordism are stable under pullbacks, namely, the identity

ι∗m[Ym+1 → Flm+1] = [Ym → Flm] holds in Ω∗(Flm) for all m ≥ n; (2) For a given Bott–

Samelson variety Yn over Fln, we find an explicit formula for the pullback ι∗n−1[Yn → Fln]

of its push-forward class in Ω∗(Fln−1).

The pullback maps ι∗n : Ω∗(Fln+1) → Ω∗(Fln) give rise to a projective system of graded

rings. Based on the ring presentation of Ω∗(Fln) obtained by Hornbostel–Kiritchenko [6],

we observe that their graded projective limit, denoted by R, is isomorphic to the graded

ring of bounded formal power series in an infinite sequence of variables x = (xi)i∈Z>0 with

coefficients in the Lazard ring L modulo the ideal of symmetric functions of positive degrees

in x. Our stable sequence of Bott–Samelson classes determine a class in this limit, which we

call a stable Bott–Samelson class. On each Ω∗(Fln) the divided difference operators commute

with the pullback maps and therefore lift to the limit R. This gives a method of computing

the power series representing stable Bott–Samelson classes, which we apply to the case of

a chosen infinitesimal cohomology theory. In particular, we obtain a formula for the power

series representing stable Bott–Samelson classes associated to dominant permutations.

In [12, 11], the first and second authors obtained determinant formula of the cobordism

push-forward classes of so-called Damon–Kempf–Laksov resolutions, generalizing the classi-

cal Damon–Kempf–Laksov determinant formula of Schubert classes. In [10], more explicit

formula of Damon–Kempf–Laksov classes were obtained for infinitesimal cohomology. While

these resolutions only exist for Schubert varieties associated to vexillary permutations (like

for instance Grassmannian elements), their push-forward classes are stable and so is their

determinantal formula. On the other hand, Naruse–Nakagawa [17, 20, 18, 19] achieved, by

considering a different resolution, a stable generalization of the Hall–Littlewood type formula

for Schur polynomials in the context of topological cobordism. The differences among these

stable expressions, including the ones obtained in this paper, should reflect the geometric

nature of the different resolutions, each of which gives a different class in cobordism.

The paper is organized as follows. In Section 2, we recall basic facts about the algebraic

cobordism ring of flag varieties and, in particular, we identify their projective limit. In Section

3, we review the definition of Bott–Samelson resolutions and show the stability of their push-

forward classes in cobordism based on the choice of a sequence of reduced words. We then

focus on infinitesimal cohomology theory and compute, using divided difference operators,

the power series representing the limits of the classes associated to dominant permutations.
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In Section 4, we prove a formula for the product of any Bott–Samelson class with the class

[Fln−1 → Fln], generalizing the restriction formula given in Section 3.

2. Preliminary

Let k be an algebraic closed field of characteristic 0.

2.1. Basics on algebraic cobordisms. For the reader’s convenience, we will briefly recall

some basic facts about algebraic cobordism and infinitesimal theories. More details on the

construction and the properties of Ω∗ can be found in [16], while a more comprehensive

description of I∗n is given in [10].

Both Ω∗ and I∗n are examples of oriented cohomology theories, a family of contravariant

functors A∗ : Smk → R∗ from the category of smooth schemes to graded rings, which are

furthermore endowed with push-forward maps for projective morphisms. Such functors are

required to satisfy, together with some expected functorial compatibilities, the projective

bundle formula and the extended homotopy property. These imply that, for every vector

bundle E → X, one is able to describe the evaluation of A∗ on the associated projective

bundle P(E) → X as well as on every E-torsor V → X. The Chow ring CH∗ is probably the

most well-known example of oriented cohomology theory and it should be kept in mind as a

first approximation to the general concept.

As a direct consequence of the projective bundle formula one has that every oriented coho-

mology theory admits a theory of Chern classes, which can be defined using Grothendieck’s

method. These satisfy most of the expected properties, like for instance the Whitney sum

formula, however it is no longer true that the first Chern class behaves linearly with respect

to tensor product: this is a key difference with CH∗. For a pair of line bundles L and M

defined over the same base, classically one has

cCH1 (L⊗M) = cCH1 (L) + cCH1 (M) and cCH1 (L∨) = −cCH1 (L), (2.1)

but these equalities in general fail for cA1 . Instead, in order to describe cA1 (L⊗M), it becomes

necessary to introduce a formal group law, a power series in two variables defined over the

coefficient ring FA ∈ A∗(Spec k)[[u, v]] satisfying some requirements. Similarly, expressing

cA1 (L
∨) in terms of cA1 (L) requires one to consider the formal inverse χA ∈ A∗(Spec k)[[u]].

The analogues of (2.1) then become

cA1 (L⊗M) = FA(c
A
1 (L), c

A
1 (M)) and cA1 (L

∨) = χA(c
A
1 (L)). (2.2)

It is a classical result of Lazard [15] that every formal group law (R,FR) can be obtained from

the universal one (L, FL), which is defined over a ring later named after him. He also proved

that, as a graded ring, L =
⊕

m≤0 L
m is isomorphic to a polynomial ring in countably many

variables yi, each appearing in degree −i for i ≥ 1. In the case of a field of characteristic

0, Levine and Morel were able to prove that the coefficient ring of algebraic cobordism is
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isomorphic to L and that its formal group law FΩ coincides with the universal one, which

from now on we will simply denote F . The universality of Ω∗ does not restrict itself only to

its coefficient ring, in fact, Levine and Morel were able to prove the following theorem.

Theorem 2.1 ([16, Theorem 1.2.6]). Ω∗ is universal among oriented cohomology theories on

Smk. That is, for any other oriented cohomology theory A∗ there exists a unique morphism

ϑA : Ω∗ → A∗

of oriented cohomology theories.

It essentially follows formally from this result that for any given formal group law (R,FR)

the functor Ω∗⊗LR is universal among the oriented cohomology theories with R as coefficient

ring and FR as associated law. This procedure can be used to produce functors, like the

infinitesimal theories I∗n, whose formal group laws are far simpler than the universal one

and as a consequence more suitable for explicit computations. More precisely the projection

L → Z[yn]/(y
2
n), which maps yi to 0 unless i = n, gives rise to the following formal group

law FIn on Z[yn]/(y
2
n):

FIn(u, v) = u+ v + yn ·
1

dn

n
∑

j=1

(

n+ 1

j

)

ujvn+1−j . (2.3)

Here one has dn = p, if n + 1 is a power of a prime p, and dn = 1 otherwise. In our

computations we will only consider the case n = 2, for which (2.3) becomes

u⊞ v := FI2(u, v) = u+ v + y2(u
2v + uv2) = (u+ v)(1 + y2uv)

with the formal inverse being ⊟u := χI2(u) = −u. For the remainder of the paper we will

write γ instead of y2.

Let us finish this overview by discussing fundamental classes, another aspect in which a

general oriented cohomology theory differs from CH∗. While in CH∗ it is possible to associate

such a class to every equi-dimensional scheme, for a general oriented cohomology theory A∗

one has to restrict to schemes whose structure morphism is a local complete intersection. In

particular, since not all Schubert varieties satisfy this requirement, it becomes necessary to

find an alternative definition for Schubert classes. One possible option is to choose a family

of resolutions of singularities and replace the fundamental classes of Schubert varieties with

the pushforwards of the associated resolutions.

2.2. Algebraic cobordism of flag varieties and their limit. For any integers a, b such

that a ≤ b, let [a, b] := {a, a + 1, . . . , b}. Let k
Z>0 be the infinite dimensional vector space

generated by a formal basis (ei)i∈Z>0 . For each m ∈ Z>0, let Em be the subspace of kZ>0

generated by e1, . . . , em. We set E0 = 0. We often identify Em with k
m the space of column

vectors.
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For each n ∈ Z>0, the flag variety Fln consists of flags U• = (Ui)i∈[1,n−1] of subspaces in

En where Ui ⊂ Ui+1 and dimUi = i for each i ∈ [1, n − 1]. Note that this implies Un = En.

For a fixed n, let U
(n)
i , i ∈ [0, n] denote the tautological vector bundles of Fln and Ei the

trivial bundles of fiber Ei. In particular, U
(n)
0 = 0 and U

(n)
n = En.

Let GLn(k) = GL(En) be the general linear group. We consider the maximal torus

Tn ⊂ GLn(k) given by the matrices having (ei)i∈[1,n] as a basis of eigenvectors and the

Borel subgroup Bn ⊂ GLn(k) given by the upper triangular matrices stabilizing the flag

E• = (Ei)i∈[1,n−1] in Fln. We can identify Fln with the homogeneous space GLn(k)/Bn by

associating the matrix M = (u1, . . . , un) to a flag U• where {uj}j∈[1,i] is a basis of Ui.

There is an isomorphism of graded rings ([6, Thm 1.1])

Ω∗(Fln) ∼= L[x1, . . . , xn]/Sn (2.4)

sending c1((U
(n)
i /U

(n)
i−1)

∨) to xi, where Sn is the ideal generated by the homogeneous sym-

metric polynomials in x1, . . . , xn of strictly positive degree.

Let ιn : Fln →֒ Fln+1 be the embedding induced by the canonical inclusion En →֒ En+1.

We have ι∗nU
(n+1)
i = U

(n)
i for all i ∈ [1, n] and ι∗nU

(n+1)
n+1 = En+1. As a consequence, under

the isomorphism (2.4), the pullback map ι∗n : Ω∗(Fln+1) → Ω∗(Fln) is the natural projection

given by setting xn+1 = 0. For each m ∈ Z, let Rm be the projective limit of Ωm(Fln)

with respect to ι∗n. We define the graded projective limit of Ω∗(Fln) with respect to ι∗n to be

R :=
⊕

m∈Z R
m.

In order to give a ring presentation of R, we introduce the following ring of formal power

series. Let x = (xi)i∈Z>0 be a sequence of infinitely many indeterminates. Let Z∞ be the set

of infinite sequence s = (si)i∈Z>0 of nonnegative integers such that all but finitely many si’s

are zero. Let L[[x]](m) be the space of formal power series of degree m ∈ Z. An element f(x)

of L[[x]](m) is uniquely given as

f(x) =
∑

s∈Z∞

asx
s, as ∈ L, xs =

∞
∏

i=1

xsii

such that |s|+deg as = m where |s| =
∑∞

i=0 si and deg as is the degree of as in L. An element

f(x) ∈ L[[x]](m) is bounded if pn(f(x)) ∈ L[x1, . . . , xn]
(m), where pn is the substitution of

xk = 0 for all k > n and L[x1, . . . , xn]
(m) is the degree m part of L[x1, . . . , xn]. Let L[[x]]

(m)
bd

be the set of all such bounded elements of L[[x]]m. We set

L[[x]]bd :=
⊕

m∈Z

L[[x]]
(m)
bd .

This is a graded sub L-algebra of the ring L[[x]] of formal power series.

Proposition 2.2. There is an isomorphism of graded L-algebras

R ∼= L[[x]]bd/S∞
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where S∞ is the ideal of L[[x]]bd generated by symmetric functions in x of strictly positive

degree.

Proof. Let m ∈ Z. The projections pn : L[[x]]
(m)
bd → L[x1, . . . , xn]

(m) for n > 0 induce a

surjective homomorphism

Φ : L[[x]]
(m)
bd → lim

n→∞
L[x1, . . . , xn]

(m)

sending f(x) to {pn(f(x))}n∈Z>0 . It is also easy to see that Φ is injective, and thus an

isomorphism. Moreover, pn’s induce surjections

L[[x]]
(m)
bd ∩ S∞ → L[x1, . . . , xn]

(m) ∩ Sn, n > 0,

inducing a bijection

L[[x]]
(m)
bd ∩ S∞

∼= lim
n→∞

(

L[x1, . . . , xn]
(m) ∩ Sn

)

.

Thus we obtain the isomorphism

⊕

m∈Z

L[[x]]
(m)
bd /(L[[x]]

(m)
bd ∩ S∞) ∼=

⊕

m∈Z

lim
n→∞

L[x1, . . . , xn]
(m)/(L[x1, . . . , xn]

(m) ∩ Sn),

which is the desired one. �

Definition 2.3. An element in Ri is a sequence (αn)n∈Z>0
such that αn ∈ Ωi(Fln) and

ι∗n(αn+1) = αn for all n > 0. An element of R is a finite linear combinations of such

sequences and we call it a stable class.

Remark 2.4. In order to specify an element of Ri, we only need to provide αi for all i ≥ N

for some fixed integer N . In fact, for i < N the elements αi can be obtained from αN by

applying the projections ι∗n.

2.3. Divided difference operators. Let Wn be the Weyl group of GLn(k). The maximal

torus Tn and the Borel subgroup Bn define a system of simple reflections s1, · · · , sn−1 ∈ Wn

and we can identify Wn with the symmetric group Sn in n letters, where each si corresponds

to the transposition of the letters i and i+ 1. We denote the length of w by ℓ(w).

For each i ∈ [1, n− 1], the divided difference operator ∂i is an operator on Ω∗(Fln) defined

as follows. Let Fl
(i)
n be the partial flag variety consisting of flags of the form U1 ⊂ · · · ⊂

Ui−1 ⊂ Ui+1 ⊂ · · · ⊂ Un−1 with dimUk = k. Denote the canonical projection Fln → Fl
(i)
n

by pi. Then define ∂i := pi∗ ◦ p
∗
i . It is known from [6] that under the presentation (2.4), we

have

∂i(f(x)) = (id + si)
f(x)

F (xi, χ(xi+1))
=

f(x)

F (xi, χ(xi+1))
+

sif(x)

F (xi+1, χ(xi))
. (2.5)

Lemma 2.5. The pullback ι∗n : Ω∗(Fln+1) → Ω∗(Fln) commutes with ∂i for all i ∈ [1, n−1].

In particular, this shows that ∂i can be defined in the projective limit R and it is given by

the formula (2.5).
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Proof. For each i ∈ [1, n− 1], ιn and pi form a fiber diagram

Fln ιn
//

pi
��

Fln+1

pi
��

Fl
(i)
n

ιn
// Fl

(i)
n+1,

and, since they are transverse, we have ι∗n ◦ pi∗ = pi∗ ◦ ι∗n. Thus ι∗n ◦ ∂i = ι∗n ◦ pi∗ ◦ p∗i =

pi∗ ◦ ι
∗
n ◦ p∗i = pi∗ ◦ p

∗
i ◦ ι

∗
n = ∂i ◦ ι

∗
n. �

For a permutation w ∈ Wn, let X̊
(n)
w = Bn · w(E•) be the Bruhat cell associated to w in

Fln, where w(E•) is the flag consisting of w(Ei) = 〈ew(1), . . . , ew(i)〉 for each i ∈ [1, n − 1].

The Schubert varieties X
(n)
w are the closures of the Bruhat cells: X

(n)
w := Bn · w(E•). The

opposite Schubert varieties are defined via Xw
(n) = w0 ·X

(n)
w0w, where w0 = w

(n)
0 is the longest

element of Wn. As an orbit closure, we have Xw
(n) = B−

n · w(E•) where B
−
n := w0Bnw0 is the

opposite Borel subgroup of lower triangular matrices.

Remark 2.6. The fundamental class [Xw
(n)] of X

w
(n) is well-defined in the Chow ring of Fln.

Those classes are stable along pullbacks, i.e., ι∗n[X
w
(n+1)] = [Xw

(n)] in CH∗(Fln) where w ∈ Sn is

regarded as an element of Sn+1 under the natural embedding Sn ⊂ Sn+1. As it is well-known,

its stable limit can be identified with the Schubert polynomial of Lascoux–Schützenberger

[14]. It is also worth mentioning that the Schubert classes admit the following compatibility

with divided difference operators, reflected on the definition of Schubert polynomials: for

each i ∈ [1, n− 1], we have

∂i[X
w
(n)] =







[Xwsi
(n) ] ℓ(wsi) = ℓ(w) + 1,

0 otherwise.

2.4. Some facts on permutations and reduced words. We conclude this section by

fixing notations for reduced words and showing a few lemmas and a proposition that will be

used in the rest of the paper.

We denote by W n the set of words in s1, . . . , sn−1: an element of Wn will be written as

a finite sequence si1 · · · sir , while the empty word is denoted by 1. The length of a word

w = si1 · · · sir is the number r of the letters si’s in w and we denote it by ℓ(w). For a word

w ∈ Wn, we denote the corresponding permutation by w ∈ Wn. Let W
i
n be the subgroup of

Wn generated by all simple reflections sj with j 6= i and W i
n the corresponding set of words.

In particular, we can identify Wn with W n
n+1 and Wn with Wn

n+1.

We denote the Bruhat order in Wn by ≤, i.e., w ≤ v if and only if every reduced word for

v contains a subword which is a reduced word for w.

We denote by c(n) the Coxeter element s1 · · · sn of Wn+1. It has a unique reduced word

c(n) = s1 · · · sn. Note that c(n)c(n−1) · · · c(1) is a reduced word for the longest element w
(n+1)
0

of Wn+1.
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Lemma 2.7. If c(n)v ∈ Wn+1 is a reduced word, then v is a reduced word in W n.

Proof. There exists a reduced word u such that c(n)v u = w
(n+1)
0 is a reduced word for the

longest element w
(n+1)
0 ∈ Wn+1. Since vu = (c(n))−1w

(n+1)
0 = w

(n)
0 , we have vu ∈ Wn so that

any reduced word of vu lies in Wn and in particular v u is a reduced word in W n. Thus v is

a reduced word in W n. �

Lemma 2.8. If v ∈ Wn is a reduced word, then c(n)v ∈ W n+1 is a reduced word. In

particular, if v = w
(n)
0 w for some w ∈ Wn, then c(n)v is a reduced word for w

(n+1)
0 w.

Proof. There exists a reduced word u such that v u is a reduced word for w
(n)
0 . Then c(n)v u

is a reduced word for w
(n+1)
0 . This implies that c(n)v is a reduced word. �

Proposition 2.9. Let w ∈ Wn+1 such that c := c(n) ≤ w. Every reduced word w ∈ Wn+1

for w decomposes, modulo commuting relations, as w = u c v with u ∈ W 1
n+1 and v ∈ W n.

Proof. In this proof, all the equalities of words are modulo commuting relations. By definition

of the Bruhat order, w contains as a subword c, the unique reduced word of c. We choose

such a subword by selecting the first occurrence of s1, the first occurrence of s2 after the

chosen s1 and so on. We thus have a decomposition

w = w1s1w2s2w3 · · ·wnsnwn+1

with wi ∈ W i
n+1 for i ∈ [1, n]. We have wi = viui, where vi is a word in the sk’s for 1 ≤ k < i

and ui is a word in the sk’s for i < k ≤ n. Observing that viuj = ujvi and si−1uj = ujsi−1

for i ≤ j, we thus obtain

w = w1(u1u2 · · · un)(s1v2s2v3 · · · vnsn)wn+1.

For each i ∈ [2, n], we claim that the word vi does not contain si−1, i.e., it is a word in the

sk’s for 1 ≤ k ≤ i − 2. We prove the claim by induction on i. First of all, it is easy to see

that v2 is an empty word since it is a word in s1 only, and there is s1 on the left of v2 in the

word w. Now by assuming that the claim holds for i ≤ k, we have

w = w1(u1u2 · · · un)(s1s2 · · · sk)(v1 · · · vk)(vk+1sk+1 · · · vnsn)wn+1.

Since s1s2 · · · skv1 · · · vkvk+1 ∈ W k+1 is reduced, Lemma 2.7 implies that v1 · · · vk+1 ∈ W k

and, in particular, we find that vk+1 doesn’t contain sk. Thus the claim holds and by moving

all vi to the right using commuting relations, we obtain

w = w1u1 · · · uns1s2 · · · snv1 · · · vnwn+1.

Using Lemma 2.7 again, we obtain v1 · · · vnwn+1 ∈ Wn, proving the proposition. �
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3. Stable Bott–Samelson classes

In this section, we introduce stable Bott–Samelson classes in the limit R of Ω∗(Fln). We

also compute some of those classes explicitly in the case of infinitesimal cohomology.

3.1. The stability of Bott–Samelson classes. A Schubert variety is, in general, nor-

mal and Cohen-Macaulay, and has rational singularities. There exists several resolutions of

singularities for it. We will be interested in the so-called Bott–Samelson resolutions.

We set F
(n)
i := 〈en, . . . , en+1−i〉 and denote the trivial bundle with fiber F

(n)
i by F

(n)
i .

Definition 3.1. For a reduced word v = si1 · · · sir ∈ Wn, the Bott–Samelson variety Y
(n)
v is

a subvariety of (Fln)
r defined as follows:

Y (n)
v =

{

(U
[0]
• , U

[1]
• , . . . , U

[r]
• ) ∈ (Fln)

r
∣

∣

∣ U
[k−1]
i = U

[k]
i ,∀k = [1, r],∀i ∈ [1, n − 1]\{ik}

}

,

where U
[0]
• = F

(n)
• . If there is no confusion, we will sometimes write Yv for Y

(n)
v .

Remark 3.2. In Definition 4.1 we will give another equivalent construction (denoted Xw)

of the Bott–Samelson resolutions.

It is well-known (cf. [5]) that Yv is a smooth projective variety of dimension r. Let πn :

(Fln)
r → Fln be the projection to the r-th component. If w ∈ Wn and v = w

(n)
0 w, the

projection πn induces a birational map Yv → Xw, which we refer to as a Bott–Samelson

resolution of Xw ⊂ Fln.

Theorem 3.3. Let v ∈ W n be a reduced word. There is a fiber diagram

Y
(n)
v

ι̃n

//

πn

��

Y
(n+1)

c(n)v

πn+1

��

Fln ιn
// Fln+1,

and we have ι∗n

([

Yc(n)v → Fln+1

])

=
[

Yv → Fln
]

.

Furthermore, let c[n+m] := c(n+m−1) · · · c(n+1)c(n) where c[n] = 1, then the sequence

[

Yc[n+m]v → Fln+m

]

, m ≥ 0

defines a stable class in R, which we call a stable Bott–Samelson class associated to w and

denote by BSvw if v = w
(n)
0 w.

Proof. First we note that, by definition, an element of Y
(n)
v can be specified by a sequence of

subspaces (V1, . . . , Vr) where Vk = U
[k]
ik

. We show that the map ι̃n : Y
(n)
v → Y

(n+1)

c(n)v
defined

by

ι̃n(V1, V2, . . . , Vr) := (F
(n)
1 , . . . , F (n)

n , V1, . . . , Vr)
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gives the desired fiber diagram. If we write an element of Y
(n+1)

c(n)v
as

(A
[1]
• , . . . , A

[n]
• , B

[1]
• , . . . , B

[r]
• ),

it suffices to show that A
[k]
k = F

(n)
k for all k ∈ [1, n] over the image of Fln. Suppose that B

[r]
•

is in the image of Fln, then B
[r]
n = En. Since i1, . . . , ir ∈ [1, n−1], we have A

[n]
n = En = F

(n)
n .

We use backward induction on k with the base case being k = n. Assume A
[k+1]
k+1 = F

(n)
k+1.

We then have

A
[k]
k ⊂ F

(n+1)
k+1 ∩A

[k+1]
k+1 = F

(n+1)
k+1 ∩ F

(n)
k+1 = F

(n)
k .

For the latter claim, we use the identity ι∗nπn+1∗ = πn∗ι̃
∗
n (see [16, p.144 (BM2)]). We get

ι∗n

[

Yc(n)v → Fln+1

]

= ι∗nπn+1∗(1Y
c(n)v

) = πn∗ι̃
∗
n(1Y

c(n)v
) = πn∗(1Yv ) = [Yv → Fln].

This completes the proof of the claim. �

Remark 3.4. We sometimes denote BSvw by BSvw(x) in order to stress that we regard it as

an element of L[x]bd/S∞ under the identification in Proposition 2.2.

The following compatibility of Bott–Samelson classes with divided difference operators

was established in [6].

Lemma 3.5. For a reduced word v = si1 · · · sir ∈ Wn, and k ∈ [1, n − 1], we have

∂i
[

Yv → Fln
]

=







[

Yvsi → Fln
]

if vsi is a reduced word

0 otherwise

Since, as explained in Section 2.2, the divided difference operators commute with the

pullbacks ι∗n, we obtain the next corollary.

Corollary 3.6. Let w ∈ Wn and set v = w
(n)
0 w. Let v be a reduced word of v. For any

i ∈ Z>0, we have

∂iBS
v
w =







BSvsiwsi
if ℓ(wsi) < ℓ(w)

0 otherwise.

Remark 3.7. In the connective K-theory of Fln, the class [Yv → Fln] coincides with the

class of the opposite Schubert variety Xw, provided that v = w
(n)
0 w. Its associated class in

the projective limit is represented by the Grothendieck polynomial Gw(x) associated to w.

3.2. Examples in infinitesimal cohomology. Throughout this section we will consider

infinitesimal cohomology instead of algebraic cobordism. In combination with Proposition

2.2, the use of this simpler theory will allow us to perform an explicit computation of the

stable Bott–Samelson classes in terms of power series in x.
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As in Section 2.1, the formal group law and its formal inverse for the infinitesimal coho-

mology I∗2 are given by

FI2(x, y) = x⊞ y = (x+ y)(1 + γxy), χI2(x) = ⊟x = −x

with γ2 = 0. We denote I∗2 (pt) = Z[γ]/(γ2) by I. As explained in Section 2.1, we have

I∗2 (Fln) ∼= I[x1, . . . , xn]/Sn

where Sn is the ideal generated by the homogeneous symmetric polynomials of strictly positive

degree in x1, . . . , xn. We set

RI := R⊗L I = I[x]bd/S∞.

By specialising (2.5) to this particular case we obtain that on RI the divided difference

operator ∂i is given by

∂if =
f − sif

xi − xi+1
· (1 + γxixi+1), f ∈ RI.

Remark 3.8. (1) If f is symmetric in xi and xi+1, then ∂i(fg) = f∂ig for all g ∈ RI.

(2) If |i− j| ≥ 2, then ∂i∂j = ∂j∂i.

For a reduced word v = si1 · · · sir , let ∂v := ∂ir · · · ∂i1 . Recall that c
(n) = s1 · · · sn.

Lemma 3.9. For n ≥ 1, we have

∂c(n)

(

xn1x
n−1
2 · · · xn

)

=
(

xn−1
1 xn−2

2 · · · xn−1

)

(1 + γe2(x1, . . . , xn+1)).

Proof. First we observe that

∂k(xk(1 + γe2(x1, . . . , xk))) = 1 + γe2(x1, . . . , xk+1) (3.1)

which can be shown by a straightforward computation using the identities

e2(x1, . . . , xk) = e2(x1, . . . , xk−1) + xke1(x1, . . . , xk−1)

e2(x1, . . . , xk+1) = e2(xk, xk+1) + e2(x1, . . . , xk−1) + e1(x1, . . . , xk−1)e1(xk, xk+1).

Now we prove the formula by induction on n. The case n = 1 is obvious. If n > 1, by

induction hypothesis, we have

∂n · · · ∂1
(

xn1x
n−1
2 · · · xn

)

= (xn−1
1 xn−2

2 · · · xn−1)∂n(xn(1 + e2(x1, . . . , xn))).

Thus the claim follows from Equation 3.1. �

Lemma 3.10. Modulo SN , we have

N−1
∑

k=n+1

e2(x1, . . . , xk) = −
N−1
∑

i=n+1

(i− n)xi+1e1(x1, . . . , xi).
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Proof. Let us begin by recalling the following identity of elementary symmetric polynomials

e2(x1, . . . , xN ) = e2(x1, . . . , xk) +
N−1
∑

i=k

xi+1e1(x1, . . . , xi).

Thus modulo SN , it follows that

N−1
∑

k=n+1

e2(x1, . . . , xk) = −
N−1
∑

k=n+1

N−1
∑

i=k

xi+1e1(x1, . . . , xi) = −
N−1
∑

i=n+1

i
∑

k=n+1

xi+1e1(x1, . . . , xi).

The right hand side is the desired formula. �

For w
(n)
0 ∈ Sn the corresponding Schubert variety X

w
(n)
0

(n) in Fln is a point, and so is the

unique Bott–Samelson variety Y
(n)
1 . In I∗2 (Fln) we have

[

Y
(n)
1 → Fln

]

= xn−1
1 xn−2

2 · · · xn−1.

The stable Bott–Samelson class BS1
w

(n)
0

introduced in Theorem 3.3 is given by the sequence

[

Y
(N)

c(N−1)···c(n) → FlN

]

∈ I∗2 (FlN ), N ≥ n.

By Lemma 3.9 and 3.10, we can identify a formal power series representing this class in the

ring RI as follows.

Theorem 3.11. In RI, we have

BS1
w

(n)
0

(x) =

(

n−1
∏

i=1

xn−i
i

)(

1− γ
∞
∑

i=n+1

(i− n)xi+1e1(x1, . . . , xi)

)

. (3.2)

Proof. In view of Lemma 3.5, we can compute the class
[

Y
(N)

c(N−1)···c(n) → FlN

]

via divided

difference operators:

[

Y
(N)

c(N−1)···c(n) → FlN

]

= ∂c(n) · · · ∂c(N−1)

[

Y
(N)
1 → FlN

]

= ∂c(n) · · · ∂c(N−1)

(

xN−1
1 xN−2

2 · · · xN−1

)

.

Consecutive applications of Lemma 3.9 give

[

Y
(N)

c(N−1)···c(n) → FlN

]

=

(

n−1
∏

i=1

xn−i
i

)(

1 + γ

N−1
∑

k=n+1

e2(x1, . . . , xk)

)

.

By Lemma 3.10 we can rewrite this expression (modulo SN ) as:

[

Y
(N)

c(N−1)···c(n) → FlN

]

=

(

n−1
∏

i=1

xn−i
i

)(

1− γ

N−1
∑

i=n+1

(i− n)xi+1e1(x1, . . . , xi)

)

. (3.3)

The right hand side of (3.2) is well-defined as an element of I[x]bd and it projects to (3.3) for

all N ≥ n. This completes the proof. �
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In view of Corollary 3.6, all stable Bott–Samelson classes can be computed from (3.2) by

applying divided difference operators. More precisely, pick w ∈ Wn and v ∈ Wn such that

v = w
(n)
0 w. Then

BSvw = ∂vBS
1

w
(n)
0

.

Moreover, since the second factor of (3.2) is symmetric in x1, . . . , xn, one simply has to

identify ∂v
(

xn−1
1 xn−2

2 · · · xn−1

)

. That is,

BSvw = Bn(x)∂v
(

xn−1
1 xn−2

2 · · · xn−1

)

,

where we denote

Bn(x) := 1− γ

∞
∑

i=n+1

(i− n)xi+1e1(x1, . . . , xi).

Based on this, we will now obtain explicit closed formulas for the power series representing

the stable Bott–Samelson classes associated to dominant permutations.

Definition 3.12. For a permutation w ∈ Sn, consider a n × n grid with dots in the boxes

(i, w(i)). The diagram of w is the set of boxes that remain after deleting boxes weakly east

and south of each dot. A permutation w is called dominant if its diagram is located at the

NW corner of the grid, and coincides with a Young diagram of a partition λ = (λ1, . . . , λr)

with λi ≤ n − i. For a given such partition λ, there is a unique dominant permutation

wλ ∈ Sn. For example, the longest element w
(n)
0 is dominant and its associated partition is

ρ := (n− 1, n − 2, . . . , 2, 1).

Let T be the standard tableau of ρ, i.e., the fillings of the boxes of the i-th row of T are

all i. One places λ at the NW corner of ρ with its boxes shaded. We order the anti-diagonals

starting from the the inner ones to the outer ones, i.e., the i-th anti-diagonal consists of

boxes at (a, b) with a + b = n + 2 − i. Let m be the biggest number such that the m-th

anti-diagonal contains unshaded boxes. Let v(i), 1 ≤ i ≤ m be the reduced word obtained

by reading the numbers in the i-th anti-diagonal. Then v := v(1) · · · v(m) is a reduced word

of v = w
(n)
0 wλ. For each i, let x

(i)
k (k = 1, . . . , ai) be the orbits of v(i) in {x1, . . . , xn} with

cardinality greater than 1.

Theorem 3.13. Let wλ ∈ Sn be the dominant permutation associated to the partition λ =

(λ1, . . . , λr). Let v := v(1) · · · v(m) be the reduced word of v = w
(n)
0 wλ constructed in Definition

3.12. We have

BSvwλ
= xλ1

1 · · · xλr
r

(

1 + γ

(

m
∑

i=1

ai
∑

k=1

e2(x
(i)
k )

))

Bn(x).

Proof. We prove the formula by induction on m. If m = 1, then by Lemma 3.9 we have

∂v(1)
(

xn−1
1 xn−2

2 · · · xn−1

)

= xλ1
1 · · · xλr

r

(

1 + γ

(

a1
∑

k=1

e2(x
(1)
k )

))

.
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Now, let m > 1. By the induction hypothesis, we have

∂v(m) · · · ∂v(1)
(

xn−1
1 xn−2

2 · · · xn−1

)

= ∂v(m)

(

x
λ′

1
1 · · · xλ

′

r
r

(

1 + γ

(

m−1
∑

i=1

ai
∑

k=1

e2(x
(i)
k )

)))

,

where λ′ = λ ∪ (n −m,n −m − 1, . . . , 2, 1, ). Since the unshaded boxes form a skew shape

ρ/λ, it follows that v(m) stabilizes the second factor, allowing it pass through ∂v(m) :

∂v(m) · · · ∂v(1)
(

xn−1
1 xn−2

2 · · · xn−1

)

=

(

1 + γ

(

m−1
∑

i=1

ai
∑

k=1

e2(x
(i)
k )

))

· ∂v(m)

(

x
λ′

1
1 · · · xλ

′

r
r

)

.

Now the desired formula follows again from Lemma 3.9. �

Example 3.14. Consider wλ = (53124) ∈ S5 where λ = (4, 2).

1 1 1 1

2 2 2

3 3

4

The reduced word v of v = w
(5)
0 wλ is v = (s2s3s4)(s3). We have

(∂3)(∂4∂3∂2)
(

x41x
3
2x

2
3x4
)

= (1 + γe2([2, 5]) · ∂3
(

x41x
2
2x3
)

= x41x
2
2

(

1 + γ(e
[2,5]
2 + e

[3,4]
2 )

)

.

Example 3.15. Consider wλ = (45123) ∈ S5 where λ = (3, 3).

1 1 1 1

2 2 2

3 3

4

The reduced word of v = w
(5)
0 wλ is v = (s1s3s4)(s3). We have

(∂3)(∂4∂3∂1)
(

x41x
3
2x

2
3x4
)

=
(

1 + γ(e
[1,2]
2 + e

[3,5]
2 )

)

∂3
(

x31x
3
2x3
)

= x31x
3
2

(

1 + γ(e
[1,2]
2 + e

[3,5]
2 + e

[3,4]
2 )

)

.

Example 3.16. Consider wλ = (563412) ∈ S6 where λ = (4, 4, 2, 2).

1 1 1 1 1

2 2 2 2

3 3 3

4 4

5

The reduced word of v = w
(6)
0 wλ is v = s1s3s5. We have

∂5∂3∂1
(

x51x
4
2x

3
3x

2
4x5
)

= (x1x2)
4(x3x4)

2
(

1 + γ(e
[1,2]
2 + e

[3,4]
2 + e

[5,6]
2 )

)

.

4. Restriction of Bott–Samelson classes

In this section we generalise the restriction formula in Theorem 3.3 of the previous section.

Namely, we will prove a formula for the product of the cobordism class of any Bott–Samelson

resolution with the class [Fln−1 → Fln]. In order to simplify the proof we will use another

equivalent definition of Bott–Samelson resolutions.



STABILITY OF BOTT–SAMELSON CLASSES IN ALGEBRAIC COBORDISM 15

4.1. Bott–Samelson resolution revisited. In this section, we provide another construc-

tion of the Bott–Samelson variety Xw associated to a word w by viewing it as a configuration

space. This description will be better suited for our purposes.

Definition 4.1. Let w = si1 · · · sir be a word in Wn+1.

(1) For a ∈ [0, n + 1], define LOw(a), the last occurence of a in w, by

LOw(a) = sup{k ∈ [1, r] | ik = a}.

Note that if the above set is empty, then LOw(a) = −∞.

(2) If LOw(a) = −∞, then we set VLOw(a) = 〈e1, · · · , ea〉.

(3) For k ∈ [1, r], define w[k] = si1 · · · sik .

(4) For k ∈ [1, r], the left and the right predecessors of k in w, denoted LPw and RPw,

are defined as:

LPw(k) := LOw[k](ik − 1),

RPw(k) := LOw[k](ik + 1).

(5) We set

VLPw(k) = 〈e1, · · · , eik−1〉 if LPw(k) = −∞ and

VRPw(k) = 〈e1, · · · , eik+1〉 if RPw(k) = −∞.

Definition 4.2. Given a word w = si1 · · · sir , define the Bott–Samelson varietyXw as follows:

Xw =
{

(Vk)k∈[1,r] | dimVk = ik and VLPw(k) ⊂ Vk ⊂ VRPw(k)

}

.

Define a morphism πw : Xw → Fln+1 by πw((Vk)k∈[1,r]) = (VLOw(a))a∈[1,n]. If w is reduced,

then the map πw is a proper birational morphism from Xw onto the Schubert variety Xw. In

this reduced case, we often call Xw together with the map πw a Bott–Samelson resolution.

Remark 4.3. There is a natural isomorphism between our two construction of the Bott–

Samelson variety Xw and Yw. It is given by (Vk)k∈[1,r] 7→ (U
(k)
• )k∈[1,r] with U

(k)
a = VLOw[k](a)

for all k ∈ [1, r] and a ∈ [1, n].

Recall the following well known fact on Bott–Samelson varieties.

Lemma 4.4. The Bott–Samelson variety does not depend on the choice of a word modulo

commuting relations. More precisely, if w = v modulo commuting relations, then there is an

isomorphism fw,v : Xw → Xv such that the following diagram is commutative:

Xw

fw,v
//

πw

��

Xv

πv

��

Xw
Id

// Xv.
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Proof. It is enough to prove this result in the case in which w and v are obtained from

each other by a unique commuting relation. The result then follows by induction on the

number of commuting relations. Assume therefore that w = u1sasbu2 and v = u1sbsau2 with

|a − b| ≥ 2. Let ri = ℓ(ui) for i ∈ [1, 2] and set r = ℓ(w) = ℓ(v) = r1 + r2 + 2. Define

the map fw,v : Xw → Xv by fw,v((Vk)k∈[1,r]) = (Wk)k∈[1,r] and fv,w((Wk)k∈[1,r]) = (Vk)k∈[1,r]

with Wk = Vk for k 6∈ {r1 + 1, r1 + 2} and Wr1+ǫ = Vr1+3−ǫ for ǫ ∈ {1, 2}. These maps are

inverses of each other and we only need to check that they indeed map Xw to Xv and Xv to

Xw respectively. By symmetry, we only need to check this for fw,v.

We prove that given (Vk)k∈[1,r] ∈ Xw, the condition WLPv(k) ⊂ Wk is satisfied for all k.

The other inclusion Wk ⊂ WRPv(k) is obtained by similar arguments. First note that we have

the following relations:

LPv(k) = LPw(k) for k,LPw(k) 6∈ {r1 + 1, r1 + 2}

LPv(k) = r1 + 3− ǫ for LPw(k) = r1 + ǫ and ǫ ∈ {1, 2}

LPv(r1 + ǫ) = LPw(r1 + 3− ǫ) for ǫ ∈ {1, 2}

For k such that k,LPw(k) 6∈ {r1 + 1, r1 + 2}, we have WLPv(k) = WLPw(k) = VLPw(k) ⊂

Vk = Wk. For LPw(k) = r1 + ǫ with ǫ ∈ {1, 2}, note that k 6∈ {r1 + 1, r1 + 2} thus we

have WLPv(k) = Wr1+3−ǫ = Vr1+ǫ = VLPw(k) ⊂ Vk = Wk. Finally, for k = r1 + ǫ with

ǫ ∈ {1, 2}, note that LPw(r1 +3− ǫ) 6∈ {r1 +1, r1 +2} thus we have WLPv(k) = WLPv(r1+ǫ) =

WLPw(r1+3−ǫ) = VLPw(r1+3−ǫ) ⊂ Vr1+3−ǫ = Wr1+ǫ = Wk. Furthermore we have:

LOw(a) = LOv(a) if LOw(a) 6∈ {r1 + 1, r1 + 2}

LOw(a) = LOv(a) + 3− ǫ if LOw(a) = r1 + ǫ for ǫ ∈ {1, 2},

so we easily see that we have πv ◦ fw,v = πw and πw ◦ fv,w = πv. �

4.2. Fiber product with a subflag. We now prove a fiber product formula for Bott–

Samelson resolutions.

Define

Fn =
{

U• ∈ Fln+1 | Un = 〈e2, · · · , en+1〉 = F (n+1)
n

}

. (4.1)

We can easily see that Fn coincides with the opposite Schubert variety Xc in Fln+1 where

c := c(n) = s1 . . . sn is the Coxeter element. Therefore, from a well-known fact, we have that

for w ∈ Wn+1

Xw ∩Fn 6= ∅ if and only if c ≤ w. (4.2)

Definition 4.5. For u ∈ W 1
n+1 with u = si1 · · · sir , define c−1(u) ∈ W n

n+1 by

c−1(u) = sc−1(i1) · · · sc−1(ir) = si1−1 · · · sir−1,

where we observe that for each k ∈ [2, n + 1] one has c−1(k) = k − 1 ∈ [1, n].



STABILITY OF BOTT–SAMELSON CLASSES IN ALGEBRAIC COBORDISM 17

Definition 4.6. Denote by c the isomorphism c : kn+1 → k
n+1 defined by c(ei) = ec(i) for

all i ∈ [1, n + 1].

(1) The map c induces an isomorphism c : Fln → Fn ⊂ Fln+1.

(2) For w ∈ W n
n+1 with ℓ(w) = r, define

c(Xw) =
{

(c(Vk))k∈[1,r] | (Vk)k∈[1,r] ∈ Xw

}

and c(πw) : c(Xw) → c(Xw) ⊂ c(Fln) = Fn, so that the following diagram is com-

mutative:

Xw
c

//

πw

��

c(Xw)

c(πw)

��

Xw
c

// c(Xw).

Lemma 4.7. For u ∈ W 1
n+1 and v ∈ W n

n+1, define w = u c v and w′ = c−1(u)v. Let

r1 = ℓ(u) and r2 = ℓ(v). For α ∈ [1, n− 1], we have the following equalities:

(1) If k ≤ r1, then LOw′[k](α) = LOw[k](α+ 1);

(2) If k ≥ r1 + 1 and LOv[k−r1](α) 6= −∞, then LOw′[k](α) = LOw[k+n](α) − n =

LOv[k−r1](α) + r1 ≥ r1 + 1;

(3) If k ≥ r1+1 and LOv[k−r1](α) = −∞, then LOw′[k](α) = LOu(α+1) = RPw[k+n](r1+

α) ≤ r1 and LOw[k+n](α) = r1 + α.

Proof. If k ≤ r1, then w′[k] = c−1(w[k]) and the result follows. Assume now that k ≥ r1 +1.

If LOv[k−r1](α) 6= −∞, then the last occurence of α in w′[k] is obtained at a letter of v[k−r1]

so that LOwu′[k](α) = LOv[k−r1](α) + r1 = LOw[k+n](α) − n ≥ r1. If LOv[k−r1](α) = −∞,

the last occurence of α in w′[k] is the last occurence of α in c−1(u) and we get the equalities

LOw′[k](α) = LOc−1(u)(α) = LOu(α+1) ≤ r1. On the other hand, the last occurence of α in

w[k + n] is obtained as the α-th letter in c thus LOw[k+n](α) = r1 + α. This also explains

the equality LOu(α+ 1) = RPw[k+n](r1 + α). �

Corollary 4.8. For u ∈ W 1
n+1 and v ∈ W n

n+1, define w = ucv and w′ = c−1(u)v. Let

r1 = ℓ(u) and r2 = ℓ(v). We have the following alternatives:

(1) If LOv(α) 6= −∞, then LOw′(α) = LOw(α)− n = LOv(α) + r1 ≥ r1 + 1;

(2) If LOv(α) = −∞, then LOw′(α) = LOu(α+1) = RPw(r1+α) and LOw(α) = r1+α.

Proof. Apply the previous lemma with k = r1 + r2. �

Corollary 4.9. For u ∈ W 1
n+1 and v ∈ W n

n+1, define w = ucv and w′ = c−1(u)v. Let

r1 = ℓ(u) and r2 = ℓ(v). We set LPx(−∞) = −∞ and RPx(−∞) = −∞ for any word x.

A. We have the following formulas for LPw and LPw′ :

1. If a ∈ [1, r1], then LPw′(a) = LPw(a) ≤ r1.
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2. If a > r1 and LPv(a− r1) 6= ∞, then LPw′(a) = LPw(a+ n)− n > r1.

3. If a > r1 and LPv(a − r1) = −∞, then LPw(a + n) ∈ [r1 + 1, r1 + n] ∪ {−∞} and

LPw′(a) = RPw(LPw(a+ n)) ≤ r1.

B. We have the following formulas for RPw and RPw′ :

1. If a ∈ [1, r1], then RPw′(a) = RPw(a) ≤ r1.

2. If a > r1 and RPv(a− r1) 6= ∞, then RPw′(a) = RPw(a+ n)− n > r1.

3. If a > r1 and RPv(a − r1) = −∞, then RPw′(a) = RPw(RPw(a + n)) ≤ r1 and

RPw(a+ n) ∈ [r1 + 1, r1 + n] ∪ {−∞}.

C. If k ∈ [r1 + 1, r1 + n], then LPw(k) ∈ [r1 + 1, r1 + n] ∪ {−∞} Furthermore, for k ∈

[r1 + 1, r1 + n], we have the following formulas for LPw and RPw:

1. If RPw(k) > RPw(LPw(k)), then RPw(LPw(k)) = LPw(RPw(k)).

2. If RPw(k) < RPw(LPw(k)), then RPw(RPw(LPw(k))) = RPw(k).

Proof. Write u = si1 · · · sir1 and v = sir1+n+1 · · · sir1+n+r2
so that w = si1 · · · sir with r =

r1 + r2 + n and sir1+k
= sk for k ∈ [1, n]. We have w′ = sj1 · · · sjr1+r+2 with

jk =

{

ik − 1 for k ∈ [1, r1]

ik+n for k ∈ [r1 + 1, r1 + r2].

A.1. We have LPw′(a) = LOw′[a](ja−1) = LOw[a]((ja−1)+1) = LOw[a](ja) = LOw[a](ia−

1) = LPw(a). By definition LPw′(a) < a ≤ r1.

A.2. We have LPw′(a) = LOw′[a](ja−1) = LOw[a+n](ia+n−1)−n = LPw(a+n)−n ≥ r1+1.

A.3. We have LPw′(a) = LOw′[a](ja − 1) = RPw[a+n](r1 + ja − 1) ≤ r1 and r1 + ja − 1 =

LOw[a+n](ja−1). We get LPw′(a) = RPw[a+n](LOw[a+n](ja−1)) = RPw[a+n](LOw[a+n](ia+n−

1)) = RPw[a+n](LPw(a+ n)).

For B.1. and B.2. use the proof of A.1. and A.2 with RP in place of LP.

B.3. We have RPw′(a) = LOw′[a](ja + 1) = RPw[a+n](r1 + ja + 1) ≤ r1 and r1 + ja + 1 =

LOw[a+n](ja+1). We get LPw′(a) = RPw[a+n](LOw[a+n](ja+1)) = RPw[a+n](LOw[a+n](ia+n+

1)) = RPw[a+n](RPw(a+ n)).

C. If k ∈ [r1 +1, r1 +n], then the k-th letter of w is the (k− r1)-th letter of c and we have

LPw(k) = LPc(k− r1) = k− r1 − 1 for k > r1 +1 and LPw(r1 +1) = −∞. Note that, if any

of the two quatities RPw(k) or RPw(LPw(k)) is finite, we have RPw(k) 6= RPw(LPw(k)).

C.1. Assume RPw(k) > RPw(LPw(k)). If k = r1 + 1, then ik = 1 and LPw(k) = −∞

thus RPw(LPw(k)) = −∞. Furthermore, iRPw(k) = ik + 1 = 2 and since u ∈ W 1
n+1 we

have LPw(RPw(k)) = LOu(2) = −∞. Assume now k > r1 + 1, then LPw(k) = k − 1, thus

RPw(LPw(k)) = RPw(k − 1) = LOu(ik−1 + 1) = LOu(ik). We have iRPw(k) = ik + 1 thus

LPw(RPw(k)) = LOw[RPw(k)](iRPw(k)−1) = LOw[RPw(k)](ik). Since RPw(k) < k, we have that

w[RPw(k)] is a subword of u thus LOw[RPw(k)](ik) ≤ LOu(ik) = RPw(LPw(k)). On the other
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hand, since RPw(k) > RPw(LPw(k)), we have LOw[RPw(k)](ik) ≥ LOw[RPw(LPw(k))](ik) =

RPw(LPw(k)). The last equality holds since iRPw(LPw(k)) = ik.

C.2. Assume RPw(k) < RPw(LPw(k)). This implies LPw(k) 6= −∞ thus k > r1 + 1. We

have RPw(k) = LOw[k](ik + 1) and RPw(RPw(LPw(k))) = LOw[RPw(LPw(k))](ik + 1). Since

RPw(LPw(k)) < k, then w[RPw(LPw(k))] is a subword of w[k] thus LOw[RPw(LPw(k))](ik+1) ≤

LOw[k](ik+1). On the other hand, since RPw(k) < RPw(LPw(k)), we have LOw[RPw(LPw(k))](ik+

1) ≥ LORPw[k](ik + 1). �

Theorem 4.10. Let w be a reduced word and w ∈ W the associated element.

(1) If w 6≥ c, then Xw ×F ln+1 Fn is empty.

(2) If w ≥ c, there exist u ∈ W 1
n+1 and v ∈ W n

n+1 such that w = u c v modulo commuting

relations and we have an isomorphism of Fln+1-varieties Xw ×F ln+1 Fn ≃ c(Xc−1(u)v).

Proof. (1) is clear since the condition implies Xw ∩ Fn = ∅. We prove (2). By Proposition

2.9, we can write w = u c v. Let ℓ(w) = r, and ℓ(u) = r1, ℓ(v) = r2 so that r = r1 + r2 + n.

Since the obvious inclusion Fn →֒ Fln+1 is a closed embedding, we can view Xw ×F ln+1 Fn

as the closed subvariety of Xw given as follows:

Xw ×F ln+1 Fn =
{

(Vk)k∈[1,r] ∈ Xw | Vr1+n = 〈e2, · · · , en+1〉
}

.

Define the map f : Xw ×F ln+1 Fn → c(Xc−1(u)v) by f((Vk)k∈[1,r]) = (Ha)a∈[r1+r2] with

Ha =

{

Va ∩ 〈e2, · · · , en+1〉 for a ∈ [1, r1]

Va+n for a ∈ [r1 + 1, r1 + r2].

Define the map g : c(Xc−1(u)v) → Xw ×F ln+1 Fn by g((Ha)a∈[r1+r2]) = (Vk)k∈[1,r] with

Vk =















Hk + 〈e1〉 for k ∈ [1, r1]

VRPw(k) ∩ 〈e2, · · · , en+1〉 for k ∈ [r1 + 1, r1 + n]

Hk−n for k ∈ [r1 + n+ 1, r].

Set w′ = c−1(u)v ∈ W n
n+1. Write u = si1 · · · sir1 and v = sir1+n+1 · · · sir1+n+r2

so that

w = si1 · · · sir with sir1+k
= sk for k ∈ [1, n]. We have w′ = sj1 · · · sjr1+r+2 with

jk =

{

ik − 1 for k ∈ [1, r1]

ik+n for k ∈ [r1 + 1, r1 + r2].

We first prove that these maps are well defined. We start with f . Note that if (Vk)k∈[1,r] ∈

Xw ×F ln+1 Fn, then

Vk ⊃ 〈e1〉 for k ∈ [1, r1]

Vk ⊂ 〈e2, · · · , en+1〉 for k ∈ [r1 + 1, r1 + r2 + n]

Vk = VRPw(k) ∩ 〈e2, · · · , en+1〉 for k ∈ [r1 + 1, r1 + n].

Indeed, since u ∈ W 1, we have LPw(k) = −∞ for any k ∈ [1, r1] with ik = 2 implying our first

claim. Furthermore, since v ∈ Wn+1, by the same type of arguments we have the equality
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Vr1+n = 〈e2, · · · , en+1〉 proving the second claim. In particular for k ∈ [r1 + 1, r1 + n], we

have Vk ⊂ VRPw(k) ∩ 〈e2, · · · , en+1〉 and 〈e1〉 ⊂ VRPw(k). Since dimVk = dimVRPw(k) − 1 this

proves the last equality.

We check that dimHa = ja. For a ∈ [1, r1], we have dimHa = dim(Va ∩ 〈e2, · · · , en+1〉) =

dimVa−1 = ia−1 = ja, where the second equality holds since u ∈ W 1
n+1, therefore 〈e1〉 ⊂ Va.

For a ∈ [r1 + 1, r1 + r2], we have dimHa = dimVa+n = ia+n = ja.

We now check the inclusions HLPw′ (a) ⊂ Ha ⊂ HRPw′(a). We start with the inclusions

HLPw′ (a) ⊂ Ha. For a ∈ [1, r1], then LPw′(a) = LPw(a) ≤ r1 and we have HLPw′ (a) =

HLPw(a) = VLPw(a) ∩ 〈e2, · · · , en+1〉 ⊂ Va ∩ 〈e2, · · · , en+1〉 = Ha. For a ∈ [r1 + 1, r1 + r2]

and LPv(a − r1) 6= −∞, then LPw′(a) = LPw(a + n) − n ≥ r1 + 1 and we have HLPw′(a) =

HLPw(a+n)−n = VLPw(a+n) ⊂ Va+n = Ha. For a ∈ [r1 + 1, r1 + r2] and LPv(a) = −∞,

then LPw′(a) = RPw(LPw(a + n)) ≤ r1 and LPw(a + n) ∈ [r1 + 1, r1 + n] ∪ {−∞}. If

LPw(a+n) = −∞, then LPw′(a) = −∞ and HLPw′(a) = 0, so the inclusion holds. Otherwise,

we have HLPw′(a) = HRP(LPw(a)) = VRP(LPw(a+n)) ∩ 〈e2, · · · , en+1〉 = VLPw(a+n) ⊂ Va = Ha.

We prove the inclusions Hk ⊂ HRPw′(a). For a ∈ [1, r1], then RPw′(a) = RPw(a) ≤ r1 and

we have Ha = Va ∩ 〈e2, · · · , en+1〉 ⊂ VRPw(a) ∩ 〈e2, · · · , en+1〉 = HRPw(a) = HRPw′ (a). For

a ∈ [r1+1, r1+r2] and RPv(a−r1) 6= −∞, then RPw′(a) = RPw(a+n)−n ≥ r1+1 and we have

Ha = Va+n ⊂ VRPw(a+n) = HRPw(a+n)−n = HRPw′(a). For a ∈ [r1 + 1, r1 + r2] and RPv(a) =

−∞, then RPw′(a) = RPw(RPw(a + n)) ≤ r1 and RPw(a + n) ∈ [r1 + 1, r1 + n] ∪ {−∞}.

If RPw(a + n) = −∞, then RPw′(a) = −∞ and HLPw′(a) = 〈e1, · · · , en+1〉, so the inclusion

holds. Otherwise, we have Ha = Va+n ⊂ VRPw(a+n) = VRP(RPw(a+n)) ∩ 〈e2, · · · , en+1〉 =

HRPw(RPw(a+n)) = HRPw′(a).

We now prove that g is well defined. Note that for all a, we have Ha ⊂ 〈e2, · · · , en+1〉.

We first check the equalities dimVk = ik for all k ∈ [1, r]. For k ∈ [1, r1], we have dimVk =

dim(Hk + 〈e1〉) = dimHk + 1 = jk + 1 = ik, where the second equality holds since Hk ⊂

〈e2, · · · , en+1〉. For k ∈ [r1 + 1, r1 + n], we have dimVk = dim(VRPw(k) ∩ 〈e2, · · · , en+1〉) =

dimVRPw(k) − 1 = (ik + 1) − 1 = ik, where the second equality holds since RPw(k) ≤ r1 for

k ∈ [r1+1, r1+n] thus 〈e1〉 ⊂ VRPw(k). For k ∈ [r1+n+1, r], we have dimVk = dimHk−n =

jk−n = ik.

We now check, for k ∈ [1, r], the inclusions VLPw(k) ⊂ Vk ⊂ VRPw(k). We start with the

inclusions VLPw(k) ⊂ Vk. For k ∈ [1, r1], we have LPw(k) = LPw′(k) ≤ r1 thus VLPw(k) =

VLPw′(k) = HLPw′(k) + 〈e1〉 ⊂ Hk + 〈e1〉 = Vk. For k ∈ [r1 + 1, r1 + n] and RPw(k) >

RPw(LPw(k)), we have RPw(LPw(k)) = LPw(RPw(k)) and LPw(k) ∈ [r1+1, r1+n]∪{−∞}.

If LPw(k) = −∞, then VLPw(k) = 0 and the inclusion holds. Otherwise, we have VLPw(k) =

VRPw(LPw(k))∩〈e2, · · · , en+1〉 = VLPw(RPw(k))∩〈e2, · · · , en+1〉 ⊂ VRPw(k)∩〈e2, · · · , en+1〉 = Vk.

For k ∈ [r1 + 1, r1 + n] and RPw(k) < RPw(LPw(k)), we have RPw(RPw(LPw(k))) =

RPw(k) ≤ r1. We have VLPw(k) = VRPw(LPw(k)) ∩ 〈e2, · · · , en+1〉 ⊂ VRPw(RPw(LPw(k))) ∩
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〈e2, · · · , en+1〉 ⊂ VRPw(k) ∩ 〈e2, · · · , en+1〉 = VK . For k ≥ r1 + n and LPv(k − n− r1) 6= −∞,

we have LPw(k)− n = LPw′(k − n) ≥ r1 + n+ 1 thus VLPw(k) = HLPw(k)−n = HLPw′ (k−n) ⊂

Hk−n = Vk. For k ≥ r1+n and LPv(k−n−r1) = −∞, we have RPw(LPw(k)) = LPw′(k−n) ≤

r1 and LPw(k) ∈ [r1 + 1, r1 + n] ∪ {−∞}. If LPw(k) = −∞, then VLPw(k) = 0 and the

inclusion holds. Otherwise, we have VLPw(k) = VRPw(LPw(k)) ∩ 〈e2, · · · , en+1〉 = VLPw′(k−n) ∩

〈e2, · · · , en+1〉 = (HLPw′(k−n) + 〈e1〉) ∩ 〈e2, · · · , en+1〉 = HLPw′ (k−n) ⊂ Hk−n = Vk.

We finish with the inclusions Vk ⊂ VRPw(k). For k ∈ [1, r1], we have RPw(k) = RPw′(k) ≤

r1 thus Vk = Hk+〈e1〉 ⊂ HRPw′(k)+〈e1〉 = VRPw′(k) = VRPw(k). For k ∈ [r1+1, r1+n], we have

Vk = VRPw(k)∩〈e2, · · · , en+1〉 ⊂ VRPw(k). For k ≥ r1+n and RPv(k−n−r1) 6= −∞, we have

RPw(k)−n = RPw′(k−n) ≥ r1+n+1 thus Vk = Hk−n ⊂ HRPw′(k−n) = HRPw(k)−n = VRPw(k).

For k ≥ r1 + n and RPv(k − n− r1) = −∞, we have RPw(RPw(k)) = RPw′(k− n) ≤ r1 and

RPw(k) ∈ [r1 + 1, r1 + n] ∪ {−∞}. If RPw(k) = −∞, then VLPw(k) = 〈e1, · · · , en+1〉 and the

inclusion holds. Otherwise, we have Vk = Hk−n ⊂ HRPw′(k−n) = VRPw′(k−n) = VRPw(RPw(k))

But since Vk = Hk−n ⊂ 〈e2, · · · , en+1〉, we get Vk ⊂ VRPw(RPw(k)) ∩ 〈e2, · · · , en+1〉 = VRPw(k)

where the last equality holds since RPw(k) ∈ [r1 + 1, r1 + n].

Now we prove that f and g are inverse to each other and that πw = πw′ ◦ c−1 ◦ f . We

first prove that g ◦ f is the identity. Write g ◦ f((Vk)k∈[1,r]) = (V ′
k)k∈[1,r] and f((Vk)k∈[1,r]) =

(Ha)a∈[1,r1+r2]. For k ∈ [1, r1], we have V ′
k = Hk + 〈e1〉 = (Vk ∩ 〈e2, · · · , en+1〉) + 〈e1〉.

But for such k, we have 〈e1〉 ⊂ Vk, this implies (Vk ∩ 〈e2, · · · , en+1〉) + 〈e1〉 = Vk. For

k ∈ [r1 + 1, r1 + n], we proceed by induction on k and remark that RPw(k) < k. We have

V ′
k = V ′

RPw(k) ∩ 〈e2, · · · , en+1〉 = VRPw(k) ∩ 〈e2, · · · , en+1〉 = Vk. For k ≥ r1 + n+ 1, we have

V ′
k = Hk−n = Vk.

Next we prove that f ◦ g is the identity. Write f ◦ g((Ha)a∈[1,r1+r2]) = (H ′
a)a∈[1,r1+r2]

and g((Ha)a∈[1,r1+r2]) = (Vk)k∈[1,r]. For a ∈ [1, r1], we have H ′
a = Va ∩ 〈e2, · · · , en+1〉 =

(Ha + 〈e1〉) ∩ 〈e2, · · · , en+1〉. But for such a, we have Ha ⊂ 〈e2, · · · , en+1〉 and this implies

(Ha + 〈e1〉) ∩ 〈e2, · · · , en+1〉 = Ha. For a ∈ [r1 + 1, r1 + r2], we have H ′
a = Va+n = Ha.

Finally we check that πw = πw′◦c−1◦f . Write f((Vk)k∈[1,r]) = (Ha)a∈[r1+r2], πw((Vk)k∈[1,r]) =

(Uα)α∈[1,n] and πw′((Ha)a∈[1,r1+r2]) = (U ′
α)α∈[1,n]. We need to prove that Uα = U ′

α for

all α ∈ [1, n]. If LOv(α) 6= −∞, we have LOw′(α) = LOw(α) − n ≥ r1 + 1. We get

U ′
α = HLOw′ (α) = VLOw′ (α)+n = VLOw(α) = Uα. If LOv(α) = −∞, we have LOw′(α) =

LOu(α+1) = RPw(r1+α) ≤ r1 and LOw(α) = r1+α. We get U ′
α = HLOw′ (α) = HRPw(r1+α) =

VRPw(r1+α) ∩ 〈e2; · · · , en+1〉 = Vr1+α = VLOw(α) = Uα. �

4.3. A product formula in cobordism. As a consequence of Theorem 4.10 we prove a

product formula in the algebraic cobordism Ω∗(Fln+1).

Corollary 4.11. Let w be a reduced word and w ∈ W the associated element.

(1) If w 6≥ c, then [Xw] · [Fn] = 0 in Ω∗(Fln+1).
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(2) If w ≥ c, there exist u ∈ W 1
n+1 and v ∈ Wn

n+1 such that w = u c v modulo commuting

relations and we have

[Xw] · [Fn] = [Xc−1(u)v].

in Ω∗(Fln+1).

Proof. The product [Xw] · [Fn] is given by pulling back the exterior product Xw × Fn →

Fln+1×Fln+1 along the diagonal map ∆ : Fln+1 → Fln+1×Fln+1, see [16, Remark 4.1.14].

We thus have [Xw] · [Fn] = ∆∗[Xw ×Fn → Fln+1 ×Fln+1]. Applying [16, Corollary 6.5.5.1],

we get ∆∗[Xw ×Fn → Fln+1 × Fln+1] = [Xw ×F ln+1 Fn] in Ω∗(X). The result follows since

[c(Xc−1(u)v)] = [Xc−1(u)v ]. �

As a special case, we recover the restriction formula in Theorem 3.3 as a product formula.

Corollary 4.12. Let w = c v be a reduced word with v ∈ Wn
n+1. Then we have the following

formula in Ω∗(Fln+1):

[Xw] · [Fn] = [Xv ].

By reversing the order of the simple reflection s1, · · · , sn (or equivalently by conjugating

with the element w0) we also obtain the following results in Ω∗(Fln+1):

Proposition 4.13. Let w ∈ Wn+1 be a reduced word and c′ := sn · · · s1 a Coxeter element.

Let F′
n = {U• ∈ Fln+1 | U1 = 〈en+1〉}. Then w 6≥ c′ is equivalent to Xw ∩ F′

n = ∅ and we

have the following alternatives:

(1) If w 6≥ c′, then [Xw] · [F
′
n] = 0 in Ω∗(Fln+1).

(2) If w ≥ c′, then, modulo commuting relations, we have w = u c′v with u ∈ W 1
n+1 and

v ∈ Wn
n+1. Furthermore, we have

[Xw] · [F
′
n] = [Xc′−1(u)v]

in Ω∗(Fln+1).

In particular, if w = c′v is reduced with v ∈ W 1
n+1, then we have the following formula in

Ω∗(Fln+1):

[Xw] · [F
′
n] = [Xv ].
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