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STABILITY OF BOTT-SAMELSON CLASSES IN ALGEBRAIC COBORDISM

In this paper, we construct stable Bott-Samelson classes in the projective limit of the algebraic cobordism rings of full flag varieties, upon an initial choice of a reduced word in a given dimension. Each stable Bott-Samelson class is represented by a bounded formal power series modulo symmetric functions in positive degree. We make some explicit computations for those power series in the case of infinitesimal cohomology. We also obtain a formula of the restriction of Bott-Samelson classes to smaller flag varieties.

Introduction

Let k be an algebraically closed field of characteristic 0. Let F l n be the flag variety of complete flags in k n . It can be identified with the homogeneous space GL n (k)/B where B is the Borel subgroup of upper triangular matrices. For each permutation w ∈ S n , the corresponding Schubert variety X (n) w ⊂ F l n is defined as B -wB, the closure of the orbits of wB by the action of the opposite Borel subgroup B -. If ι n : F l n → F l n+1 is the natural embedding, the cohomology fundamental classes of these Schubert varieties have the property that ι * n [X

(n+1) w ] = [X (n)
w ], i.e., the Schubert classes are stable under the pullback maps. The exact analogue of this property also holds in K-theory, in which one defines the Schubert classes as the K-theory classes of the structure sheaves of Schubert varieties.

In this paper, we attempt to generalize the above notion of stability to Bott-Samelson classes in algebraic cobordism. The algebraic cobordism, denoted by Ω * , was introduced by Levine-Morel in [START_REF] Levine | Algebraic cobordism[END_REF] and represents the universal object among oriented cohomology theories, a family of functors which includes both the Chow ring CH * and K 0 [β, β -1 ], a graded version of the Grothendieck ring of vector bundles. In recent years a lot of energy has been spent to lift results of Schubert calculus to Ω * , in the same way in which Bressler-Evens did in [1,2] for topological cobordism. The first works in this direction were those of Calmés-Petrov-Zanoulline [3] and Hornbostel-Kiritchenko [START_REF] Hornbostel | Schubert calculus for algebraic cobordism[END_REF] who investigated the algebraic cobordism of flag manifolds. Later, the interest shifted to Grassmann and flag bundles (cf. [START_REF] Kiritchenko | Equivariant cobordism of flag varieties and of symmetric varieties[END_REF], [START_REF] Calmès | Equivariant oriented cohomology of flag varieties[END_REF], [START_REF] Hudson | Segre classes and Kempf-Laksov formula in algebraic cobordism[END_REF], [START_REF] Hudson | Vexillary degeneracy loci classes in K-theory and algebraic cobordism[END_REF], [START_REF] Hudson | Kempf-Laksov Schubert classes for even infinitesimal cohomology theories[END_REF], [START_REF] Hornbostel | Smooth Schubert varieties and generalized Schubert polynomials in algebraic cobordism of Grassmannians[END_REF], [START_REF] Hudson | A Thom-Porteous formula for connective K-theory using algebraic cobordism[END_REF], [START_REF] Hudson | Generalised symplectic Schubert classes[END_REF]). One of the main difficulty of Schubert calculus in algebraic cobordism is caused by the fact that the fundamental classes of Schubert varieties are not well-defined in general oriented cohomology theories. A candidate for the replacement of Schubert classes is the family of the push-forward classes of Bott-Samelson resolutions of Schubert varieties.

Since a Bott-Samelson variety is defined upon a choice of a reduced word, thus our stability of Bott-Samelson classes depends on a particular choice of a sequence of reduced words. The followings are the main results in this paper: (1) For a given Bott-Samelson variety Y n in F l n , we construct a sequence of Bott-Samelson varieties Y m over F l m for m ≥ n such that their push-forward classes in algebraic cobordism are stable under pullbacks, namely, the identity

ι * m [Y m+1 → F l m+1 ] = [Y m → F l m ]
holds in Ω * (F l m ) for all m ≥ n; (2) For a given Bott-Samelson variety Y n over F l n , we find an explicit formula for the pullback ι * n-1 [Y n → F l n ] of its push-forward class in Ω * (F l n-1 ).

The pullback maps ι * n : Ω * (F l n+1 ) → Ω * (F l n ) give rise to a projective system of graded rings. Based on the ring presentation of Ω * (F l n ) obtained by Hornbostel-Kiritchenko [START_REF] Hornbostel | Schubert calculus for algebraic cobordism[END_REF],

we observe that their graded projective limit, denoted by R, is isomorphic to the graded ring of bounded formal power series in an infinite sequence of variables x = (x i ) i∈Z >0 with coefficients in the Lazard ring L modulo the ideal of symmetric functions of positive degrees in x. Our stable sequence of Bott-Samelson classes determine a class in this limit, which we call a stable Bott-Samelson class. On each Ω * (F l n ) the divided difference operators commute with the pullback maps and therefore lift to the limit R. This gives a method of computing the power series representing stable Bott-Samelson classes, which we apply to the case of a chosen infinitesimal cohomology theory. In particular, we obtain a formula for the power series representing stable Bott-Samelson classes associated to dominant permutations.

In [START_REF] Hudson | Segre classes and Kempf-Laksov formula in algebraic cobordism[END_REF][START_REF] Hudson | Vexillary degeneracy loci classes in K-theory and algebraic cobordism[END_REF], the first and second authors obtained determinant formula of the cobordism push-forward classes of so-called Damon-Kempf-Laksov resolutions, generalizing the classical Damon-Kempf-Laksov determinant formula of Schubert classes. In [START_REF] Hudson | Kempf-Laksov Schubert classes for even infinitesimal cohomology theories[END_REF], more explicit formula of Damon-Kempf-Laksov classes were obtained for infinitesimal cohomology. While these resolutions only exist for Schubert varieties associated to vexillary permutations (like for instance Grassmannian elements), their push-forward classes are stable and so is their determinantal formula. On the other hand, Naruse-Nakagawa [START_REF] Nakagawa | Generalized (co)homology of the loop spaces of classical groups and the universal factorial Schur P -and Q-functions[END_REF][START_REF] Nakagawa | Universal Gysin formulas for the universal Hall-Littlewood functions[END_REF][START_REF] Nakagawa | Generating functions for the universal Hall-Littlewood P -and Qfunctions[END_REF][START_REF] Nakagawa | Universal factorial Schur P, Q-functions and their duals[END_REF] achieved, by considering a different resolution, a stable generalization of the Hall-Littlewood type formula for Schur polynomials in the context of topological cobordism. The differences among these stable expressions, including the ones obtained in this paper, should reflect the geometric nature of the different resolutions, each of which gives a different class in cobordism.

The paper is organized as follows. In Section 2, we recall basic facts about the algebraic cobordism ring of flag varieties and, in particular, we identify their projective limit. In Section 3, we review the definition of Bott-Samelson resolutions and show the stability of their pushforward classes in cobordism based on the choice of a sequence of reduced words. We then focus on infinitesimal cohomology theory and compute, using divided difference operators, the power series representing the limits of the classes associated to dominant permutations.

In Section 4, we prove a formula for the product of any Bott-Samelson class with the class [F l n-1 → F l n ], generalizing the restriction formula given in Section 3.

Preliminary

Let k be an algebraic closed field of characteristic 0.

2.1. Basics on algebraic cobordisms. For the reader's convenience, we will briefly recall some basic facts about algebraic cobordism and infinitesimal theories. More details on the construction and the properties of Ω * can be found in [START_REF] Levine | Algebraic cobordism[END_REF], while a more comprehensive description of I * n is given in [START_REF] Hudson | Kempf-Laksov Schubert classes for even infinitesimal cohomology theories[END_REF]. Both Ω * and I *

n are examples of oriented cohomology theories, a family of contravariant functors A * : Sm k → R * from the category of smooth schemes to graded rings, which are furthermore endowed with push-forward maps for projective morphisms. Such functors are required to satisfy, together with some expected functorial compatibilities, the projective bundle formula and the extended homotopy property. These imply that, for every vector bundle E → X, one is able to describe the evaluation of A * on the associated projective bundle P(E) → X as well as on every E-torsor V → X. The Chow ring CH * is probably the most well-known example of oriented cohomology theory and it should be kept in mind as a first approximation to the general concept.

As a direct consequence of the projective bundle formula one has that every oriented cohomology theory admits a theory of Chern classes, which can be defined using Grothendieck's method. These satisfy most of the expected properties, like for instance the Whitney sum formula, however it is no longer true that the first Chern class behaves linearly with respect to tensor product: this is a key difference with CH * . For a pair of line bundles L and M defined over the same base, classically one has

c CH 1 (L ⊗ M ) = c CH 1 (L) + c CH 1 (M ) and c CH 1 (L ∨ ) = -c CH 1 (L), (2.1) 
but these equalities in general fail for c A 1 . Instead, in order to describe c A 1 (L ⊗ M ), it becomes necessary to introduce a formal group law, a power series in two variables defined over the coefficient ring F A ∈ A * (Spec k) [[u, v]] satisfying some requirements. Similarly, expressing

c A 1 (L ∨ ) in terms of c A 1 (L) requires one to consider the formal inverse χ A ∈ A * (Spec k)[[u]
]. The analogues of (2.1) then become

c A 1 (L ⊗ M ) = F A (c A 1 (L), c A 1 (M )) and c A 1 (L ∨ ) = χ A (c A 1 (L)). (2.2)
It is a classical result of Lazard [START_REF] Lazard | Sur les groupes de Lie formels à un paramètre[END_REF] that every formal group law (R, F R ) can be obtained from the universal one (L, F L ), which is defined over a ring later named after him. He also proved that, as a graded ring, L = m≤0 L m is isomorphic to a polynomial ring in countably many variables y i , each appearing in degree -i for i ≥ 1. In the case of a field of characteristic 0, Levine and Morel were able to prove that the coefficient ring of algebraic cobordism is isomorphic to L and that its formal group law F Ω coincides with the universal one, which from now on we will simply denote F . The universality of Ω * does not restrict itself only to its coefficient ring, in fact, Levine and Morel were able to prove the following theorem. 

F In (u, v) = u + v + y n • 1 d n n j=1 n + 1 j u j v n+1-j . (2.3) 
Here one has d n = p, if n + 1 is a power of a prime p, and d n = 1 otherwise. In our computations we will only consider the case n = 2, for which (2.3) becomes

u ⊞ v := F I 2 (u, v) = u + v + y 2 (u 2 v + uv 2 ) = (u + v)(1 + y 2 uv)
with the formal inverse being ⊟u := χ I 2 (u) = -u. For the remainder of the paper we will write γ instead of y 2 .

Let us finish this overview by discussing fundamental classes, another aspect in which a general oriented cohomology theory differs from CH * . While in CH * it is possible to associate such a class to every equi-dimensional scheme, for a general oriented cohomology theory A * one has to restrict to schemes whose structure morphism is a local complete intersection. In particular, since not all Schubert varieties satisfy this requirement, it becomes necessary to find an alternative definition for Schubert classes. One possible option is to choose a family of resolutions of singularities and replace the fundamental classes of Schubert varieties with the pushforwards of the associated resolutions.

2.2. Algebraic cobordism of flag varieties and their limit. generated by e 1 , . . . , e m . We set E 0 = 0. We often identify E m with k m the space of column vectors.

For each n ∈ Z >0 , the flag variety F l n consists of flags

U • = (U i ) i∈[1,n-1] of subspaces in E n where U i ⊂ U i+1 and dim U i = i for each i ∈ [1, n -1]. Note that this implies U n = E n .
For a fixed n, let U

i , i ∈ [0, n] denote the tautological vector bundles of F l n and E i the trivial bundles of fiber E i . In particular, U

(n) 0 = 0 and U (n) n = E n .
Let GL n (k) = GL(E n ) be the general linear group. We consider the maximal torus

T n ⊂ GL n (k)
given by the matrices having (e i ) i∈ [1,n] as a basis of eigenvectors and the Borel subgroup B n ⊂ GL n (k) given by the upper triangular matrices stabilizing the flag

E • = (E i ) i∈[1,n-1] in F l n .
We can identify F l n with the homogeneous space GL n (k)/B n by

associating the matrix M = (u 1 , . . . , u n ) to a flag U • where {u j } j∈[1,i] is a basis of U i .
There is an isomorphism of graded rings ([6, Thm 1.1])

Ω * (F l n ) ∼ = L[x 1 , . . . , x n ]/S n (2.4) sending c 1 ((U (n) i /U (n) i-1 ) ∨ ) to x i
, where S n is the ideal generated by the homogeneous symmetric polynomials in x 1 , . . . , x n of strictly positive degree.

Let ι n : F l n ֒→ F l n+1 be the embedding induced by the canonical inclusion

E n ֒→ E n+1 . We have ι * n U (n+1) i = U (n) i for all i ∈ [1, n] and ι * n U (n+1) n+1 = E n+1 . As a consequence, under the isomorphism (2.4), the pullback map ι * n : Ω * (F l n+1 ) → Ω * (F l n )
is the natural projection given by setting x n+1 = 0. For each m ∈ Z, let R m be the projective limit of Ω m (F l n ) with respect to ι * n . We define the graded projective limit of Ω * (F l n ) with respect to ι * n to be R := m∈Z R m .

In order to give a ring presentation of R, we introduce the following ring of formal power series. Let x = (x i ) i∈Z >0 be a sequence of infinitely many indeterminates. Let Z ∞ be the set of infinite sequence s = (s i ) i∈Z >0 of nonnegative integers such that all but finitely many s i 's are zero. Let L[[x]] (m) be the space of formal power series of degree m ∈ Z.

An element f (x) of L[[x]] (m) is uniquely given as f (x) = s∈Z ∞ a s x s , a s ∈ L, x s = ∞ i=1 x s i i such that |s|+deg a s = m where |s| = ∞ i=0 s i and deg a s is the degree of a s in L. An element f (x) ∈ L[[x]] (m) is bounded if p n (f (x)) ∈ L[x 1 , . . . , x n ] (m)
, where p n is the substitution of

x k = 0 for all k > n and L[x 1 , . . . , x n ] (m) is the degree m part of L[x 1 , . . . , x n ]. Let L[[x]] (m) bd be the set of all such bounded elements of L[[x]] m . We set L[[x]] bd := m∈Z L[[x]] (m) bd .
This is a graded sub L-algebra of the ring L[[x]] of formal power series.

Proposition 2.2.

There is an isomorphism of graded L-algebras

R ∼ = L[[x]] bd /S ∞ where S ∞ is the ideal of L[[x]] bd generated by symmetric functions in x of strictly positive degree. Proof. Let m ∈ Z. The projections p n : L[[x]] (m) bd → L[x 1 , . . . , x n ] (m) for n > 0 induce a surjective homomorphism Φ : L[[x]] (m) bd → lim n→∞ L[x 1 , . . . , x n ] (m) sending f (x) to {p n (f (x))} n∈Z >0 .
It is also easy to see that Φ is injective, and thus an isomorphism. Moreover, p n 's induce surjections

L[[x]] (m) bd ∩ S ∞ → L[x 1 , . . . , x n ] (m) ∩ S n , n > 0, inducing a bijection L[[x]] (m) bd ∩ S ∞ ∼ = lim n→∞ L[x 1 , . . . , x n ] (m) ∩ S n .
Thus we obtain the isomorphism

m∈Z L[[x]] (m) bd /(L[[x]] (m) bd ∩ S ∞ ) ∼ = m∈Z lim n→∞ L[x 1 , . . . , x n ] (m) /(L[x 1 , . . . , x n ] (m) ∩ S n ),
which is the desired one.

Definition 2.3. An element in R i is a sequence (α n ) n∈Z >0 such that α n ∈ Ω i (F l n ) and ι * n (α n+1 ) = α n for all n > 0.
An element of R is a finite linear combinations of such sequences and we call it a stable class.

Remark 2.4. In order to specify an element of R i , we only need to provide α i for all i ≥ N for some fixed integer N . In fact, for i < N the elements α i can be obtained from α N by applying the projections ι * n .

2.3. Divided difference operators. Let W n be the Weyl group of GL n (k). The maximal torus T n and the Borel subgroup B n define a system of simple reflections

s 1 , • • • , s n-1 ∈ W n
and we can identify W n with the symmetric group S n in n letters, where each s i corresponds to the transposition of the letters i and i + 1. We denote the length of w by ℓ(w).

For each i ∈ [1, n -1], the divided difference operator ∂ i is an operator on Ω * (F l n ) defined as follows. Let F l (i)
n be the partial flag variety consisting of flags of the form

U 1 ⊂ • • • ⊂ U i-1 ⊂ U i+1 ⊂ • • • ⊂ U n-1 with dim U k = k. Denote the canonical projection F l n → F l (i) n by p i . Then define ∂ i := p i * • p * i .
It is known from [START_REF] Hornbostel | Schubert calculus for algebraic cobordism[END_REF] that under the presentation (2.4), we have

∂ i (f (x)) = (id + s i ) f (x) F (x i , χ(x i+1 )) = f (x) F (x i , χ(x i+1 )) + s i f (x) F (x i+1 , χ(x i )) . (2.5) Lemma 2.5. The pullback ι * n : Ω * (F l n+1 ) → Ω * (F l n ) commutes with ∂ i for all i ∈ [1, n -1].
In particular, this shows that ∂ i can be defined in the projective limit R and it is given by the formula (2.5).

Proof. For each i ∈ [1, n -1], ι n and p i form a fiber diagram

F l n ιn / / p i F l n+1 p i F l (i) n ιn / / F l (i) n+1 ,
and, since they are transverse, we have

ι * n • p i * = p i * • ι * n . Thus ι * n • ∂ i = ι * n • p i * • p * i = p i * • ι * n • p * i = p i * • p * i • ι * n = ∂ i • ι * n . For a permutation w ∈ W n , let X(n) w = B n • w(E • ) be the Bruhat cell associated to w in F l n , where w(E • ) is the flag consisting of w(E i ) = e w(1) , . . . , e w(i) for each i ∈ [1, n -1]. The Schubert varieties X (n)
w are the closures of the Bruhat cells:

X (n) w := B n • w(E • ). The opposite Schubert varieties are defined via X w (n) = w 0 • X (n) w 0 w , where w 0 = w (n) 0
is the longest element of W n . As an orbit closure, we have

X w (n) = B - n • w(E • ) where B - n := w 0 B n w 0 is the opposite Borel subgroup of lower triangular matrices. Remark 2.6. The fundamental class [X w (n) ] of X w (n) is well-defined in the Chow ring of F l n . Those classes are stable along pullbacks, i.e., ι * n [X w (n+1) ] = [X w (n) ] in CH * (F l n )
where w ∈ S n is regarded as an element of S n+1 under the natural embedding S n ⊂ S n+1 . As it is well-known, its stable limit can be identified with the Schubert polynomial of Lascoux-Schützenberger [START_REF] Lascoux | Géométric algébrique-polynômes de schubert[END_REF]. It is also worth mentioning that the Schubert classes admit the following compatibility with divided difference operators, reflected on the definition of Schubert polynomials: for

each i ∈ [1, n -1], we have ∂ i [X w (n) ] =    [X ws i (n) ] ℓ(ws i ) = ℓ(w) + 1, 0 otherwise.
2.4. Some facts on permutations and reduced words. We conclude this section by fixing notations for reduced words and showing a few lemmas and a proposition that will be used in the rest of the paper.

We denote by W n the set of words in s 1 , . . . , s n-1 : an element of W n will be written as a finite sequence s i 1 • • • s ir , while the empty word is denoted by 1. The length of a word

w = s i 1 • • • s ir
is the number r of the letters s i 's in w and we denote it by ℓ(w). For a word w ∈ W n , we denote the corresponding permutation by w ∈ W n . Let W i n be the subgroup of W n generated by all simple reflections s j with j = i and W i n the corresponding set of words. In particular, we can identify W n with W n n+1 and W n with W n n+1 . We denote the Bruhat order in W n by ≤, i.e., w ≤ v if and only if every reduced word for v contains a subword which is a reduced word for w. (1) is a reduced word for the longest element w

We denote by c

(n) the Coxeter element s 1 • • • s n of W n+1 . It has a unique reduced word c (n) = s 1 • • • s n . Note that c (n) c (n-1) • • • c
(n+1) 0 of W n+1 . Lemma 2.7. If c (n) v ∈ W n+1 is a reduced word, then v is a reduced word in W n .
Proof. There exists a reduced word u such that c (n) v u = w (n+1) 0 is a reduced word for the longest element w

(n+1) 0 ∈ W n+1 . Since vu = (c (n) ) -1 w (n+1) 0 = w (n)
0 , we have vu ∈ W n so that any reduced word of vu lies in W n and in particular v u is a reduced word in W n . Thus v is a reduced word in W n .

Lemma 2.8. If v ∈ W n is a reduced word, then c (n) v ∈ W n+1 is a reduced word. In particular, if v = w (n) 0 w for some w ∈ W n , then c (n) v is a reduced word for w (n+1) 0 w.
Proof. There exists a reduced word u such that v u is a reduced word for w

(n) 0 . Then c (n) v u is a reduced word for w (n+1) 0
. This implies that c (n) v is a reduced word. Proposition 2.9. Let w ∈ W n+1 such that c := c (n) ≤ w. Every reduced word w ∈ W n+1 for w decomposes, modulo commuting relations, as w = u c v with u ∈ W 1 n+1 and v ∈ W n .

Proof. In this proof, all the equalities of words are modulo commuting relations. By definition of the Bruhat order, w contains as a subword c, the unique reduced word of c. We choose such a subword by selecting the first occurrence of s 1 , the first occurrence of s 2 after the chosen s 1 and so on. We thus have a decomposition

w = w 1 s 1 w 2 s 2 w 3 • • • w n s n w n+1 with w i ∈ W i n+1 for i ∈ [1, n].
We have w i = v i u i , where v i is a word in the s k 's for 1 ≤ k < i and u i is a word in the s k 's for i < k ≤ n. Observing that v i u j = u j v i and s i-1 u j = u j s i-1

for i ≤ j, we thus obtain

w = w 1 (u 1 u 2 • • • u n )(s 1 v 2 s 2 v 3 • • • v n s n )w n+1 .
For each i ∈ [2, n], we claim that the word v i does not contain s i-1 , i.e., it is a word in the

s k 's for 1 ≤ k ≤ i -2.
We prove the claim by induction on i. First of all, it is easy to see that v 2 is an empty word since it is a word in s 1 only, and there is s 1 on the left of v 2 in the word w. Now by assuming that the claim holds for i ≤ k, we have

w = w 1 (u 1 u 2 • • • u n )(s 1 s 2 • • • s k )(v 1 • • • v k )(v k+1 s k+1 • • • v n s n )w n+1 . Since s 1 s 2 • • • s k v 1 • • • v k v k+1 ∈ W k+1 is reduced, Lemma 2.7 implies that v 1 • • • v k+1 ∈ W k
and, in particular, we find that v k+1 doesn't contain s k . Thus the claim holds and by moving all v i to the right using commuting relations, we obtain

w = w 1 u 1 • • • u n s 1 s 2 • • • s n v 1 • • • v n w n+1 .
Using Lemma 2.7 again, we obtain v 1 • • • v n w n+1 ∈ W n , proving the proposition.

Stable Bott-Samelson classes

In this section, we introduce stable Bott-Samelson classes in the limit R of Ω * (F l n ). We also compute some of those classes explicitly in the case of infinitesimal cohomology.

3.1. The stability of Bott-Samelson classes. A Schubert variety is, in general, normal and Cohen-Macaulay, and has rational singularities. There exists several resolutions of singularities for it. We will be interested in the so-called Bott-Samelson resolutions.

We set F (n) i := e n , . . . , e n+1-i and denote the trivial bundle with fiber

F (n) i by F (n) i . Definition 3.1. For a reduced word v = s i 1 • • • s ir ∈ W n , the Bott-Samelson variety Y (n) v
is a subvariety of (F l n ) r defined as follows:

Y (n) v = (U [0] • , U [1] • , . . . , U [r] • ) ∈ (F l n ) r U [k-1] i = U [k] i , ∀k = [1, r], ∀i ∈ [1, n -1]\{i k } ,
where U

[0]

• = F (n)
• . If there is no confusion, we will sometimes write

Y v for Y (n) v .
Remark 3.2. In Definition 4.1 we will give another equivalent construction (denoted X w ) of the Bott-Samelson resolutions.

It is well-known (cf. [START_REF] Demazure | Désingularisation des variétés de Schubert généralisées[END_REF]) that Y v is a smooth projective variety of dimension r. Let π n :

(F l n ) r → F l n be the projection to the r-th component. If w ∈ W n and v = w

(n) 0 w, the projection π n induces a birational map Y v → X w , which we refer to as a Bott-Samelson resolution of X w ⊂ F l n . Theorem 3.3. Let v ∈ W n be a reduced word. There is a fiber diagram

Y (n) v ιn / / πn Y (n+1) c (n) v π n+1 F l n ιn / / F l n+1 ,
and we have ι

* n Y c (n) v → F l n+1 = Y v → F l n . Furthermore, let c [n+m] := c (n+m-1) • • • c (n+1) c (n) where c [n] = 1, then the sequence Y c [n+m] v → F l n+m , m ≥ 0
defines a stable class in R, which we call a stable Bott-Samelson class associated to w and

denote by BS v w if v = w (n) 0 w.
Proof. First we note that, by definition, an element of Y (n) v can be specified by a sequence of subspaces (V 1 , . . . , V r ) where

V k = U [k]
i k . We show that the map ιn :

Y (n) v → Y (n+1) c (n) v defined by ιn (V 1 , V 2 , . . . , V r ) := (F (n) 1 , . . . , F (n) n , V 1 , . . . , V r )
gives the desired fiber diagram. If we write an element of Y (n+1)

c (n) v as (A [1]
• , . . . , A

[n]

• , B

• , . . . , B

[r]

• ), it suffices to show that A

[k] k = F (n) k for all k ∈ [1, n] over the image of F l n . Suppose that B [r] • is in the image of F l n , then B [r] n = E n . Since i 1 , . . . , i r ∈ [1, n -1], we have A [n] n = E n = F (n)
n . We use backward induction on k with the base case being k = n. Assume A

[k+1] k+1 = F (n) k+1 .
We then have

A [k] k ⊂ F (n+1) k+1 ∩ A [k+1] k+1 = F (n+1) k+1 ∩ F (n) k+1 = F (n) k .
For the latter claim, we use the identity ι * n π n+1 * = π n * ι * n (see [16, p.144 (BM2)]). We get

ι * n Y c (n) v → F l n+1 = ι * n π n+1 * (1 Y c (n) v ) = π n * ι * n (1 Y c (n) v ) = π n * (1 Yv ) = [Y v → F l n ].
This completes the proof of the claim.

Remark 3.4. We sometimes denote BS v w by BS v w (x) in order to stress that we regard it as an element of L[x] bd /S ∞ under the identification in Proposition 2.2.

The following compatibility of Bott-Samelson classes with divided difference operators was established in [START_REF] Hornbostel | Schubert calculus for algebraic cobordism[END_REF]. 

∂ i Y v → F l n =    Y vs i → F l n if vs i is a reduced word 0 otherwise
Since, as explained in Section 2.2, the divided difference operators commute with the pullbacks ι * n , we obtain the next corollary.

Corollary 3.6. Let w ∈ W n and set v = w (n) 0 w. Let v be a reduced word of v. For any i ∈ Z >0 , we have

∂ i BS v w =    BS vs i ws i if ℓ(ws i ) < ℓ(w) 0 otherwise.
Remark 3.7. In the connective K-theory of F l n , the class [Y v → F l n ] coincides with the class of the opposite Schubert variety X w , provided that v = w (n) 0 w. Its associated class in the projective limit is represented by the Grothendieck polynomial G w (x) associated to w.

3.2.

Examples in infinitesimal cohomology. Throughout this section we will consider infinitesimal cohomology instead of algebraic cobordism. In combination with Proposition 2.2, the use of this simpler theory will allow us to perform an explicit computation of the stable Bott-Samelson classes in terms of power series in x.

As in Section 2.1, the formal group law and its formal inverse for the infinitesimal cohomology I * 2 are given by

F I 2 (x, y) = x ⊞ y = (x + y)(1 + γxy), χ I 2 (x) = ⊟x = -x
with γ 2 = 0. We denote I * 2 (pt) = Z[γ]/(γ 2 ) by I. As explained in Section 2.1, we have

I * 2 (F l n ) ∼ = I[x 1 , . . . , x n ]/S n
where S n is the ideal generated by the homogeneous symmetric polynomials of strictly positive degree in x 1 , . . . , x n . We set

R I := R ⊗ L I = I[x] bd /S ∞ .
By specialising (2.5) to this particular case we obtain that on R I the divided difference operator ∂ i is given by

∂ i f = f -s i f x i -x i+1 • (1 + γx i x i+1 ), f ∈ R I . Remark 3.8. ( 1 
) If f is symmetric in x i and x i+1 , then ∂ i (f g) = f ∂ i g for all g ∈ R I .
(

) If |i -j| ≥ 2, then ∂ i ∂ j = ∂ j ∂ i . For a reduced word v = s i 1 • • • s ir , let ∂ v := ∂ ir • • • ∂ i 1 . Recall that c (n) = s 1 • • • s n . 2 
Lemma 3.9. For n ≥ 1, we have

∂ c (n) x n 1 x n-1 2 • • • x n = x n-1 1 x n-2 2 • • • x n-1 (1 + γe 2 (x 1 , . . . , x n+1 )).
Proof. First we observe that

∂ k (x k (1 + γe 2 (x 1 , . . . , x k ))) = 1 + γe 2 (x 1 , . . . , x k+1 ) (3.1)
which can be shown by a straightforward computation using the identities

e 2 (x 1 , . . . , x k ) = e 2 (x 1 , . . . , x k-1 ) + x k e 1 (x 1 , . . . , x k-1 ) e 2 (x 1 , . . . , x k+1 ) = e 2 (x k , x k+1 ) + e 2 (x 1 , . . . , x k-1 ) + e 1 (x 1 , . . . , x k-1 )e 1 (x k , x k+1 ).
Now we prove the formula by induction on n. The case n = 1 is obvious. If n > 1, by induction hypothesis, we have

∂ n • • • ∂ 1 x n 1 x n-1 2 • • • x n = (x n-1 1 x n-2 2 • • • x n-1 )∂ n (x n (1 + e 2 (x 1 , . . . , x n ))).
Thus the claim follows from Equation 3.1.

Lemma 3.10. Modulo S N , we have

N -1 k=n+1 e 2 (x 1 , . . . , x k ) = - N -1 i=n+1 (i -n)x i+1 e 1 (x 1 , . . . , x i ).
Proof. Let us begin by recalling the following identity of elementary symmetric polynomials

e 2 (x 1 , . . . , x N ) = e 2 (x 1 , . . . , x k ) + N -1 i=k
x i+1 e 1 (x 1 , . . . , x i ).

Thus modulo S N , it follows that

N -1 k=n+1 e 2 (x 1 , . . . , x k ) = - N -1 k=n+1 N -1 i=k x i+1 e 1 (x 1 , . . . , x i ) = - N -1 i=n+1 i k=n+1
x i+1 e 1 (x 1 , . . . , x i ).

The right hand side is the desired formula.

For w

(n) 0 ∈ S n the corresponding Schubert variety X w (n) 0
(n) in F l n is a point, and so is the unique Bott-Samelson variety

Y (n) 1 . In I * 2 (F l n ) we have Y (n) 1 → F l n = x n-1 1 x n-2 2 • • • x n-1 .
The stable Bott-Samelson class BS 1

w (n) 0
introduced in Theorem 3.3 is given by the sequence

Y (N ) c (N-1) •••c (n) → F l N ∈ I * 2 (F l N ), N ≥ n.
By Lemma 3.9 and 3.10, we can identify a formal power series representing this class in the ring R I as follows.

Theorem 3.11. In R I , we have

BS 1 w (n) 0 (x) = n-1 i=1 x n-i i 1 -γ ∞ i=n+1 (i -n)x i+1 e 1 (x 1 , . . . , x i ) . (3.2) 
Proof. In view of Lemma 3.5, we can compute the class Y (N )

c (N-1) •••c (n) → F l N via divided difference operators: Y (N ) c (N-1) •••c (n) → F l N = ∂ c (n) • • • ∂ c (N-1) Y (N ) 1 → F l N = ∂ c (n) • • • ∂ c (N-1) x N -1 1 x N -2 2 • • • x N -1 .
Consecutive applications of Lemma 3.9 give

Y (N ) c (N-1) •••c (n) → F l N = n-1 i=1 x n-i i 1 + γ N -1 k=n+1 e 2 (x 1 , . . . , x k ) .
By Lemma 3.10 we can rewrite this expression (modulo S N ) as:

Y (N ) c (N-1) •••c (n) → F l N = n-1 i=1 x n-i i 1 -γ N -1 i=n+1 (i -n)x i+1 e 1 (x 1 , . . . , x i ) . (3.3) 
The right hand side of (3.2) is well-defined as an element of I[x] bd and it projects to (3.3) for all N ≥ n. This completes the proof.

In view of Corollary 3.6, all stable Bott-Samelson classes can be computed from (3.2) by applying divided difference operators. More precisely, pick w ∈ W n and v ∈ W n such that

v = w (n) 0 w. Then BS v w = ∂ v BS 1 w (n) 0 .
Moreover, since the second factor of (3.2) is symmetric in x 1 , . . . , x n , one simply has to

identify ∂ v x n-1 1 x n-2 2 • • • x n-1 . That is, BS v w = B n (x)∂ v x n-1 1 x n-2 2 • • • x n-1 ,
where we denote

B n (x) := 1 -γ ∞ i=n+1 (i -n)x i+1 e 1 (x 1 , . . . , x i ).
Based on this, we will now obtain explicit closed formulas for the power series representing the stable Bott-Samelson classes associated to dominant permutations.

Definition 3.12. For a permutation w ∈ S n , consider a n × n grid with dots in the boxes (i, w(i)). The diagram of w is the set of boxes that remain after deleting boxes weakly east and south of each dot. A permutation w is called dominant if its diagram is located at the NW corner of the grid, and coincides with a Young diagram of a partition λ = (λ 1 , . . . , λ r ) with λ i ≤ ni. For a given such partition λ, there is a unique dominant permutation w λ ∈ S n . For example, the longest element w

(n) 0
is dominant and its associated partition is

ρ := (n -1, n -2, . . . , 2 , 1). 
Let T be the standard tableau of ρ, i.e., the fillings of the boxes of the i-th row of T are all i. One places λ at the NW corner of ρ with its boxes shaded. We order the anti-diagonals starting from the the inner ones to the outer ones, i.e., the i-th anti-diagonal consists of boxes at (a, b) with a + b = n + 2i. Let m be the biggest number such that the m-th anti-diagonal contains unshaded boxes. Let v (i) , 1 ≤ i ≤ m be the reduced word obtained by reading the numbers in the i-th anti-diagonal. Then v

:= v (1) • • • v (m) is a reduced word of v = w (n) 0 w λ . For each i, let x (i) 
k (k = 1, . . . , a i ) be the orbits of v (i) in {x 1 , . . . , x n } with cardinality greater than 1. Theorem 3.13. Let w λ ∈ S n be the dominant permutation associated to the partition λ = (λ 1 , . . . , λ r ).

Let v := v (1) • • • v (m) be the reduced word of v = w (n)
0 w λ constructed in Definition 3.12. We have

BS v w λ = x λ 1 1 • • • x λr r 1 + γ m i=1 a i k=1 e 2 (x (i) k ) B n (x).
Proof. We prove the formula by induction on m. If m = 1, then by Lemma 3.9 we have

∂ v (1) x n-1 1 x n-2 2 • • • x n-1 = x λ 1 1 • • • x λr r 1 + γ a 1 k=1 e 2 (x (1) 
k ) .

Now, let m > 1. By the induction hypothesis, we have

∂ v (m) • • • ∂ v (1) x n-1 1 x n-2 2 • • • x n-1 = ∂ v (m) x λ ′ 1 1 • • • x λ ′ r r 1 + γ m-1 i=1 a i k=1 e 2 (x (i) k ) ,
where λ ′ = λ ∪ (nm, nm -1, . . . , 2, 1, ). Since the unshaded boxes form a skew shape ρ/λ, it follows that v (m) stabilizes the second factor, allowing it pass through ∂ v (m) :

∂ v (m) • • • ∂ v (1) x n-1 1 x n-2 2 • • • x n-1 = 1 + γ m-1 i=1 a i k=1 e 2 (x (i) k ) • ∂ v (m) x λ ′ 1 1 • • • x λ ′ r r .
Now the desired formula follows again from Lemma 3.9.

Example 3.14. Consider w λ = (53124) ∈ S 5 where λ = (4, 2).

1 1 1 1 2 2 2 3 3 4
The reduced word v of v = w

(5) 0 w λ is v = (s 2 s 3 s 4 )(s 3 ). We have The reduced word of v = w

(∂ 3 )(∂ 4 ∂ 3 ∂ 2 ) x 4 1 x 3 2 x 2 3 x 4 = (1 + γe 2 ([2, 5]) • ∂ 3 x 4 1 x 2 2 x 3 = x 4 1 x 2 2 1 + γ(e [2,5] 2 + e [3,4] 2 ) . 
(5) 0 w λ is v = (s 1 s 3 s 4 )(s 3 ). We have The reduced word of v = w (6) 0 w λ is v = s 1 s 3 s 5 . We have

(∂ 3 )(∂ 4 ∂ 3 ∂ 1 ) x 4 1 x 3 2 x 2 3 x 4 = 1 + γ(e [1,2] 2 + e [3,5] 2 ) ∂ 3 x 3 1 x 3 2 x 3 = x 3 1 x 3 2 1 + γ(e
∂ 5 ∂ 3 ∂ 1 x 5 1 x 4 2 x 3 3 x 2 4 x 5 = (x 1 x 2 ) 4 (x 3 x 4 ) 2 1 + γ(e [1,2] 2 + e [3,4] 2 + e [5,6 ] 
2 ) .

Restriction of Bott-Samelson classes

In this section we generalise the restriction formula in Theorem 3.3 of the previous section. 

r i = ℓ(u i ) for i ∈ [1, 2] and set r = ℓ(w) = ℓ(v) = r 1 + r 2 + 2. Define the map f w,v : X w → X v by f w,v ((V k ) k∈[1,r] ) = (W k ) k∈[1,r] and f v,w ((W k ) k∈[1,r] ) = (V k ) k∈[1,r]
with W k = V k for k ∈ {r 1 + 1, r 1 + 2} and W r 1 +ǫ = V r 1 +3-ǫ for ǫ ∈ {1, 2}. These maps are inverses of each other and we only need to check that they indeed map X w to X v and X v to X w respectively. By symmetry, we only need to check this for f w,v .

We prove that given

(V k ) k∈[1,r] ∈ X w , the condition W LP v (k) ⊂ W k is satisfied for all k.
The other inclusion W k ⊂ W RPv(k) is obtained by similar arguments. First note that we have the following relations:

LP v (k) = LP w (k) for k, LP w (k) ∈ {r 1 + 1, r 1 + 2} LP v (k) = r 1 + 3 -ǫ for LP w (k) = r 1 + ǫ and ǫ ∈ {1, 2} LP v (r 1 + ǫ) = LP w (r 1 + 3 -ǫ) for ǫ ∈ {1, 2} For k such that k, LP w (k) ∈ {r 1 + 1, r 1 + 2}, we have W LPv(k) = W LPw(k) = V LPw(k) ⊂ V k = W k . For LP w (k) = r 1 + ǫ with ǫ ∈ {1, 2}, note that k ∈ {r 1 + 1, r 1 + 2} thus we have W LPv(k) = W r 1 +3-ǫ = V r 1 +ǫ = V LPw(k) ⊂ V k = W k . Finally, for k = r 1 + ǫ with ǫ ∈ {1, 2}, note that LP w (r 1 + 3 -ǫ) ∈ {r 1 + 1, r 1 + 2} thus we have W LP v (k) = W LP v (r 1 +ǫ) = W LP w (r 1 +3-ǫ) = V LP w (r 1 +3-ǫ) ⊂ V r 1 +3-ǫ = W r 1 +ǫ = W k . Furthermore we have: LO w (a) = LO v (a) if LO w (a) ∈ {r 1 + 1, r 1 + 2} LO w (a) = LO v (a) + 3 -ǫ if LO w (a) = r 1 + ǫ for ǫ ∈ {1, 2}, so we easily see that we have π v • f w,v = π w and π w • f v,w = π v .
4.2. Fiber product with a subflag. We now prove a fiber product formula for Bott-Samelson resolutions.

Define

F n = U • ∈ F l n+1 | U n = e 2 , • • • , e n+1 = F (n+1) n . (4.1) 
We can easily see that F n coincides with the opposite Schubert variety X c in F l n+1 where c := c (n) = s 1 . . . s n is the Coxeter element. Therefore, from a well-known fact, we have that for

w ∈ W n+1 X w ∩ F n = ∅ if and only if c ≤ w. (4.2) Definition 4.5. For u ∈ W 1 n+1 with u = s i 1 • • • s ir , define c -1 (u) ∈ W n n+1 by c -1 (u) = s c -1 (i 1 ) • • • s c -1 (ir) = s i 1 -1 • • • s ir-1 ,
where we observe that for each k ∈

[2, n + 1] one has c -1 (k) = k -1 ∈ [1, n]. hand, since RP w (k) > RP w (LP w (k)), we have LO w[RPw(k)] (i k ) ≥ LO w[RPw(LPw(k))] (i k ) = RP w (LP w (k)). The last equality holds since i RPw(LPw(k)) = i k . C.2. Assume RP w (k) < RP w (LP w (k)). This implies LP w (k) = -∞ thus k > r 1 + 1. We have RP w (k) = LO w[k] (i k + 1) and RP w (RP w (LP w (k))) = LO w[RPw(LPw(k))] (i k + 1). Since RP w (LP w (k)) < k, then w[RP w (LP w (k))] is a subword of w[k] thus LO w[RPw(LPw(k))] (i k +1) ≤ LO w[k] (i k +1). On the other hand, since RP w (k) < RP w (LP w (k)), we have LO w[RPw(LPw(k))] (i k + 1) ≥ LO RP w [k] (i k + 1).
Theorem 4.10. Let w be a reduced word and w ∈ W the associated element.

(

) If w ≥ c, then X w × F l n+1 F n is empty. 1 
(2) If w ≥ c, there exist u ∈ W 1 n+1 and v ∈ W n n+1 such that w = u c v modulo commuting relations and we have an isomorphism of F l n+1 -varieties

X w × F l n+1 F n ≃ c(X c -1 (u)v ).
Proof. (1) is clear since the condition implies X w ∩ F n = ∅. We prove (2). By Proposition 2.9, we can write w = u c v. Let ℓ(w) = r, and ℓ(u) = r 1 , ℓ(v) = r 2 so that r = r 1 + r 2 + n.

Since the obvious inclusion F n ֒→ F l n+1 is a closed embedding, we can view X w × F l n+1 F n as the closed subvariety of X w given as follows:

X w × F l n+1 F n = (V k ) k∈[1,r] ∈ X w | V r 1 +n = e 2 , • • • , e n+1 . Define the map f : X w × F l n+1 F n → c(X c -1 (u)v ) by f ((V k ) k∈[1,r] ) = (H a ) a∈[r 1 +r 2 ] with H a = V a ∩ e 2 , • • • , e n+1 for a ∈ [1, r 1 ] V a+n for a ∈ [r 1 + 1, r 1 + r 2 ]. Define the map g : c(X c -1 (u)v ) → X w × F l n+1 F n by g((H a ) a∈[r 1 +r 2 ] ) = (V k ) k∈[1,r] with V k =        H k + e 1 for k ∈ [1, r 1 ] V RPw(k) ∩ e 2 , • • • , e n+1 for k ∈ [r 1 + 1, r 1 + n] H k-n for k ∈ [r 1 + n + 1, r]. Set w ′ = c -1 (u)v ∈ W n n+1 . Write u = s i 1 • • • s ir 1 and v = s i r 1 +n+1 • • • s i r 1 +n+r 2 so that w = s i 1 • • • s ir with s i r 1 +k = s k for k ∈ [1, n]. We have w ′ = s j 1 • • • s j r 1 +r+2 with j k = i k -1 for k ∈ [1, r 1 ] i k+n for k ∈ [r 1 + 1, r 1 + r 2 ].
We first prove that these maps are well defined. We start with f . Note that if ( We check that dim H a = j a . For a ∈ [1, r 1 ], we have dim H a = dim(V a ∩ e 2 , • • • , e n+1 ) = dim V a -1 = i a -1 = j a , where the second equality holds since u ∈ W 1 n+1 , therefore e 1 ⊂ V a . For a ∈ [r 1 + 1, r 1 + r 2 ], we have dim H a = dim V a+n = i a+n = j a .

V k ) k∈[1,r] ∈ X w × F l n+1 F n , then V k ⊃ e 1 for k ∈ [1, r 1 ] V k ⊂ e 2 , • • • , e n+1 for k ∈ [r 1 + 1, r 1 + r 2 + n] V k = V RP w (k) ∩ e 2 , • • • , e n+1 for k ∈ [r 1 + 1, r 1 + n].
We now check the inclusions H LP w ′ (a) ⊂ H a ⊂ H RP w ′ (a) . We start with the inclusions We now prove that g is well defined. Note that for all a, we have 

  For any integers a, b such that a ≤ b, let [a, b] := {a, a + 1, . . . , b}. Let k Z >0 be the infinite dimensional vector space generated by a formal basis (e i ) i∈Z >0 . For each m ∈ Z >0 , let E m be the subspace of k Z >0

Lemma 3 . 5 .

 35 For a reduced word v = s i 1 • • • s ir ∈ W n , and k ∈ [1, n -1], we have

Example 3 . 15 .

 315 Consider w λ = (45123) ∈ S 5 where λ = (3

Example 3 . 16 .

 316 Consider w λ = (563412) ∈ S 6 where λ = (4, 4, 2,

  Namely, we will prove a formula for the product of the cobordism class of any Bott-Samelson resolution with the class [F l n-1 → F l n ]. In order to simplify the proof we will use another equivalent definition of Bott-Samelson resolutions. Proof. It is enough to prove this result in the case in which w and v are obtained from each other by a unique commuting relation. The result then follows by induction on the number of commuting relations. Assume therefore that w = u 1 s a s b u 2 and v = u 1 s b s a u 2 with |a -b| ≥ 2. Let

  Indeed, since u ∈ W 1 , we have LP w (k) = -∞ for any k ∈ [1, r 1 ] with i k = 2 implying our first claim. Furthermore, since v ∈ W n+1 , by the same type of arguments we have the equality V r 1 +n = e 2 , • • • , e n+1 proving the second claim. In particular for k ∈[r 1 + 1, r 1 + n], we have V k ⊂ V RPw(k) ∩ e 2 , • • • , e n+1 and e 1 ⊂ V RPw(k) . Since dim V k = dim V RPw(k) -1 thisproves the last equality.

H

  LP w ′ (a) ⊂ H a . For a ∈ [1, r 1 ], then LP w ′ (a) = LP w (a) ≤ r 1 and we haveH LP w ′ (a) = H LP w (a) = V LP w (a) ∩ e 2 , • • • , e n+1 ⊂ V a ∩ e 2 , • • • , e n+1 = H a . For a ∈ [r 1 + 1, r 1 + r 2 ] and LP v (ar 1 ) = -∞, then LP w ′ (a) = LP w (a + n)n ≥ r 1 + 1 and we have H LP w ′ (a) = H LPw(a+n)-n = V LPw(a+n) ⊂ V a+n = H a . For a ∈ [r 1 + 1, r 1 + r 2 ] and LP v (a) = -∞, then LP w ′ (a) = RP w (LP w (a + n)) ≤ r 1 and LP w (a + n) ∈ [r 1 + 1, r 1 + n] ∪ {-∞}. If LP w (a+ n) = -∞, then LP w ′ (a) = -∞ and H LP w ′ (a) = 0, so the inclusion holds. Otherwise, we have H LP w ′ (a) = H RP(LPw(a)) = V RP(LPw(a+n)) ∩ e 2 , • • • , e n+1 = V LPw(a+n) ⊂ V a = H a .We prove the inclusionsH k ⊂ H RP w ′ (a) . For a ∈ [1, r 1 ], then RP w ′ (a) = RP w (a) ≤ r 1 and we have H a = V a ∩ e 2 , • • • , e n+1 ⊂ V RPw(a) ∩ e 2 , • • • , e n+1 = H RPw(a) = H RP w ′ (a) . For a ∈ [r 1 +1, r 1 +r 2 ] and RP v (a-r 1 ) = -∞, then RP w ′ (a) = RP w (a+n)-n ≥ r 1 +1 and we have H a = V a+n ⊂ V RP w (a+n) = H RP w (a+n)-n = H RP w ′ (a) . For a ∈ [r 1 + 1, r 1 + r 2 ] and RP v (a) = -∞, then RP w ′ (a) = RP w (RP w (a + n)) ≤ r 1 and RP w (a + n) ∈ [r 1 + 1, r 1 + n] ∪ {-∞}. If RP w (a + n) = -∞, then RP w ′ (a) = -∞and H LP w ′ (a) = e 1 , • • • , e n+1 , so the inclusion holds. Otherwise, we have H a = V a+n ⊂ V RPw(a+n) = V RP(RPw(a+n)) ∩ e 2 , • • • , e n+1 = H RPw(RPw(a+n)) = H RP w ′ (a) .

  H a ⊂ e 2 , • • • , e n+1 .We first check the equalities dimV k = i k for all k ∈ [1, r]. For k ∈ [1, r 1 ], we have dim V k = dim(H k + e 1 ) = dim H k + 1 = j k + 1 = i k , where the second equality holds since H k ⊂ e 2 , • • • , e n+1 . For k ∈ [r 1 + 1, r 1 + n], we have dim V k = dim(V RP w (k) ∩ e 2 , • • • , e n+1 ) = dim V RP w (k) -1 = (i k + 1) -1 = i k , where the second equality holds since RP w (k) ≤ r 1 for k ∈ [r 1 + 1, r 1 + n] thus e 1 ⊂ V RP w (k) . For k ∈ [r 1 + n + 1, r], we have dim V k = dim H k-n = j k-n = i k . We now check, for k ∈ [1, r], the inclusions V LPw(k) ⊂ V k ⊂ V RPw(k) . We start with the inclusions V LPw(k) ⊂ V k . For k ∈ [1, r 1 ], we have LP w (k) = LP w ′ (k) ≤ r 1 thus V LPw(k) = V LP w ′ (k) = H LP w ′ (k) + e 1 ⊂ H k + e 1 = V k . For k ∈ [r 1 + 1, r 1 + n] and RP w (k) > RP w (LP w (k)), we have RP w (LP w (k)) = LP w (RP w (k)) and LP w (k) ∈ [r 1 + 1, r 1 + n]∪ {-∞}.If LP w (k) = -∞, then V LPw(k) = 0 and the inclusion holds. Otherwise, we haveV LPw(k) = V RPw(LPw(k)) ∩ e 2 , • • • , e n+1 = V LPw(RPw(k)) ∩ e 2 , • • • , e n+1 ⊂ V RPw(k) ∩ e 2 , • • • , e n+1 = V k . For k ∈ [r 1 + 1, r 1 + n] and RP w (k) < RP w (LP w (k)), we have RP w (RP w (LP w (k))) = RP w (k) ≤ r 1 . We have V LP w (k) = V RP w (LPw(k)) ∩ e 2 , • • • , e n+1 ⊂ V RP w (RPw(LPw(k))) ∩

4.1. Bott-Samelson resolution revisited. In this section, we provide another construction of the Bott-Samelson variety X w associated to a word w by viewing it as a configuration space. This description will be better suited for our purposes. (5) We set

Definition 4.2. Given a word w = s i 1 • • • s ir , define the Bott-Samelson variety X w as follows:

then the map π w is a proper birational morphism from X w onto the Schubert variety X w . In this reduced case, we often call X w together with the map π w a Bott-Samelson resolution.

Remark 4.3.

There is a natural isomorphism between our two construction of the Bott-Samelson variety X w and Y w . It is given by (

Recall the following well known fact on Bott-Samelson varieties.

Lemma 4.4. The Bott-Samelson variety does not depend on the choice of a word modulo commuting relations. More precisely, if w = v modulo commuting relations, then there is an isomorphism f w,v : X w → X v such that the following diagram is commutative: (1) The map c induces an isomorphism c : F l n → F n ⊂ F l n+1 .

(2) For w ∈ W n n+1 with ℓ(w) = r, define

we have the following equalities:

) and the result follows. Assume now that k ≥ r 1 + 1.

the last occurence of α in w ′ [k] is the last occurence of α in c -1 (u) and we get the equalities

On the other hand, the last occurence of α in

We have the following alternatives:

Proof. Apply the previous lemma with k = r 1 + r 2 .

Corollary 4.9. For u ∈ W 1 n+1 and v ∈ W n n+1 , define w = ucv and w ′ = c -1 (u)v. Let r 1 = ℓ(u) and r 2 = ℓ(v). We set LP x (-∞) = -∞ and RP x (-∞) = -∞ for any word x.

A. We have the following formulas for LP w and LP w ′ :

We finish with the inclusions

and the inclusion holds. Otherwise, we have

where the last equality holds since RP w (k)

Now we prove that f and g are inverse to each other and that

we proceed by induction on k and remark that RP w (k) < k. We have

4.3.

A product formula in cobordism. As a consequence of Theorem 4.10 we prove a product formula in the algebraic cobordism Ω * (F l n+1 ). Corollary 4.11. Let w be a reduced word and w ∈ W the associated element.

(

(2) If w ≥ c, there exist u ∈ W 1 n+1 and v ∈ W n n+1 such that w = u c v modulo commuting relations and we have

in Ω * (F l n+1 ).

Proof. The product [X w ] • [F n ] is given by pulling back the exterior product X w × F n → F l n+1 × F l n+1 along the diagonal map ∆ : F l n+1 → F l n+1 × F l n+1 , see [START_REF] Levine | Algebraic cobordism[END_REF]Remark 4.1.14].

We thus have [X

As a special case, we recover the restriction formula in Theorem 3.3 as a product formula. Corollary 4.12. Let w = c v be a reduced word with v ∈ W n n+1 . Then we have the following formula in Ω * (F l n+1 ):

By reversing the order of the simple reflection s 1 , • • • , s n (or equivalently by conjugating with the element w 0 ) we also obtain the following results in Ω * (F l n+1 ): (2) If w ≥ c ′ , then, modulo commuting relations, we have w = u c ′ v with u ∈ W 1 n+1 and v ∈ W n n+1 . Furthermore, we have

in Ω * (F l n+1 ).

In particular, if w = c ′ v is reduced with v ∈ W 1 n+1 , then we have the following formula in Ω * (F l n+1 ):