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High-order fully well-balanced Lagrange-Projection scheme for

shallow water

Tomás Morales de Luna∗ Manuel J. Castro Dı́az† Christophe Chalons‡

June 17, 2019

Abstract

In this work we propose a novel strategy to define high-order fully well-balanced Lagrange-
Projection finite volume solvers for balance laws. In particular, we focus on the 1D shallow
water system as it is a reference system of balance laws with non-trivial stationary solutions.
Nevertheless, the strategy proposed here could be extended to other interesting balance laws. By
fully well-balanced, it is meant that the scheme is able to preserve stationary smooth solutions.
Following [6], we exploit the idea of using a high-order well-balanced reconstruction operator for
the Lagrangian step. Nevertheless, this is not enough to achieve well-balanced high-order during
the projection step. We propose here a new projection step that overcomes this difficulty and that
reduces to the standard one in case of conservation laws. Finally, some numerical experiments
illustrate the good behaviour of the scheme.

1 Introduction

Basics. The goal of this paper is to design high-order fully well-balanced finite volume Lagrange-
Projection numerical schemes for balance laws. In particular we focus on the shallow water system.
As usual in Lagrange-Projection schemes, we use the standard Lagrange-Projection decomposition
to naturally decouple the acoustic and transport phenomena. We refer for instance the reader to
[10, 11, 12, 13, 9, 15, 16] for various applications of such a strategy. It is the purpose of this contribution
to set the basis of an extension to higher order accuracy, preserving all (or a representative set of)
stationary solutions, which is non trivial due to the Lagrange-Projection decomposition.
As pointed before, in the present work, we will be especially interested in the numerical approximation
of the solutions of shallow-water like systems, whose prototype in Eulerian coordinates is given by

∂th+ ∂x(hu) = 0,

∂t(hu) + ∂x

(
hu2 + g

h2

2

)
= −gh∂xz,

(1.1)

where z(x) denotes a given smooth topography, g > 0 is the gravity constant, while the water depth
h ≥ 0 and velocity u depend on the space and time variables, namely x ∈ R and t ∈ [0,∞), and are
the so-called primitive variables. However, there would be no difficulty to apply a similar approach as
the one proposed here to more general systems than (1.1), including for instance sediment transport
bedload and suspension, turbidity currents and other geophysical systems like the ones studied in
[17, 14, 24, 22]. For the sake of conciseness, (1.1) will be given the following condensed form

∂tU + ∂xF(U) = S(U)∂xz, (1.2)
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†Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain

(mjcastro@uma.es).
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where U = (h, hu)T , F(U) = (hu, hu2 + gh2/2)T and S(U) = (0,−gh)T . We assume that the initial
water depth h(x, t = 0) = h0(x) and velocity u(x, t = 0) = u0(x) are given at time t = 0. At last, recall
that the left-hand side of (1.1) is strictly hyperbolic over the phase space Ω = {(h, hu)T ∈ R2 | h > 0}
with two genuinely non linear characteristic fields associated with the eigenvalues {u− c, u+ c} where
the sound speed is defined by c =

√
gh.

In addition to the high-order accuracy, we expect our scheme to satisfy the now very well-known (fully)
well-balanced property. It is meant that discrete approximations of the smooth stationary solutions
of (1.1), governed by the ordinary differential system ∂xF (U) = S(U)∂xz or equivalently

hu = constant,
u2

2
+ g(h+ z) = constant, (1.3)

should be preserved exactly. The particular ”lake at rest” stationary solution corresponds to

h+ z = constant, u = 0. (1.4)

Note that most of the schemes proposed in the literature are focused on these particular stationary
solutions and they are said to be well-balanced. We refer for instance the reader to the recent book [19]
for a review on the design of well-balanced schemes. However, some numerical schemes also preserve
equilibria (1.3) with a non-zero velocity, leading to the so-called fully well-balanced property. We refer
for instance the reader to [23, 7, 4, 25, 28, 2]. The objective here is to extend to high-order the recent
contribution [9] where we propose a first-order fully well-balanced Lagrange-Projection scheme.

The shallow-water equations in Lagrangian coordinates. As already said, we aim at proposing a
high-order and fully well-balanced numerical scheme based on a Lagrange-Projection decomposition.
Therefore, the so-called Lagrangian coordinates which amount to describe the flow by following the
fluid motion, will play an important role. With this in mind, and for any given ”fluid particle” ξ, we
introduce the characteristic curves {

∂x

∂t
(ξ, t) = u(x(ξ, t), t),

x(ξ, 0) = ξ,
(1.5)

and given any function (x, t)→ U(x, t) in Eulerian coordinates, we denote by

U(ξ, t) = U(x(ξ, t), t) (1.6)

its counterpart in Lagrangian coordinates (ξ, t). Note that since we aim at following every particle ξ,
the new functions U in Lagrangian coordinates depend only on the time t for all ξ. To go further,
note that if we define

L(ξ, t) =
∂x

∂ξ
(ξ, t), (1.7)

which satisfies {
∂L

∂t
(ξ, t) = ∂ξu(x(ξ, t), t),

L(ξ, 0) = 1,
(1.8)

we also have
∂tL(ξ, t) = ∂ξu(x(ξ, t), t) = ∂ξu(ξ, t),

and for all U

∂ξU(ξ, t) = L(ξ, t)∂xU(x, t) and ∂tU(ξ, t) = ∂tU(x, t) + u(x, t)∂xU(x, t).

Therefore and since the shallow water equations (1.1) in Eulerian coordinates are equivalent for smooth
solutions to {

∂th+ u∂xh+ h∂xu = 0,
∂t(hu) + u∂x(hu) + hu∂xu+ ∂xp+ gh∂xz = 0,

(1.9)
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where we have set p = gh2/2, we get by multiplying the two equations by L(ξ, t) that{
L(ξ, t)∂th(ξ, t) + h∂ξu(ξ, t) = 0,

L(ξ, t)∂t(hu)(ξ, t) + hu∂ξu+ ∂ξp+ gh∂ξz = 0,
(1.10)

and finally, since ∂tL(ξ, t) = ∂ξu(ξ, t) (see above),{
∂t(Lh) = 0,

∂t(Lhu) + ∂ξp+ gh∂ξz = 0.
(1.11)

The functions now depend on (ξ, t) in (1.11), instead on (x, t) in (1.1).

The Lagrange-Projection algorithm. The proposed algorithm based on a Lagrange-Projection de-
composition to solve (1.1) will simply consist in first solving system (1.11) in Lagrangian coordinates,
and then to come back to the Eulerian coordinates by a projection step. The details will be given
hereafter. The extension to high-order of this two-step algorithm is not straightforward, more so if
we want to preserve all smooth stationary solutions as well. The major difficulty comes from the
fact that the stationary solutions in the Lagrangian framework depend on time. In order to obtain
a fully well-balanced Lagrange-Projection scheme, we exploit the idea of using a high-order well-
balanced reconstruction operator for the Lagrangian step. Nevertheless, this is not enough to achieve
well-balanced high-order during the projection step. We propose here a new projection step that
overcomes this difficulty and takes into account that stationary solutions depend on time.

Outline of the paper. The paper is organized in such a way that the high-order and well-balanced
properties are treated separately. More precisely, one first considers in the next section the case of
a flat topography, which makes the source term in (1.1) trivial (∂xz = 0), and focus ourselves on
the high-order extension of the Lagrange-Projection scheme. Then, we show in Section 3 how to
deal with the general case of a non constant topography and satisfy at the same time the high-order
accuracy and fully well-balanced properties. At last, Section 4 collects some numerical results in order
to illustrate the behavior of the proposed strategies.

2 The case of a flat topography

In this section, the topography is taken to be flat, leading to the classical shallow water system
over flat bottom or, in a more general framework the barotropic gas dynamics equations, in Eulerian
coordinates: {

∂th+ ∂x(hu) = 0,
∂t(hu) + ∂x(hu2) + ∂xp = 0

(2.1)

and in Lagrangian coordinates: {
∂t(Lh) = 0,

∂t(Lhu) + ∂ξp = 0
(2.2)

In order to approximate the solutions of this system, space and time will be discretized using a
space step ∆x and a time step ∆t into a set of cells [xi−1/2, xi+1/2) and instants tn = n∆t, where
xi+1/2 = i∆x and xi = (xi−1/2 + xi+1/2)/2 are respectively the cell interfaces and cell centers, for

i ∈ Z and n ∈ N. For a given initial condition x 7→ U0(x) where U = (h, hu)t, we will consider a
discrete initial data U0

i which approximates 1
∆x

∫ xi+1/2

xi−1/2
U0(x) dx, for i ∈ Z. Therefore, the proposed

algorithm aims at computing an approximation Un
i of 1

∆x

∫ xi+1/2

xi−1/2
U(x, tn) dx where x → U(x, tn) is

the exact solution of the shallow water equations at all time tn, n ∈ N. Given the sequence {Un
i }i∈Z,

it is a matter of defining the sequence {Un+1
i }i∈Z, n ∈ N, since {U0

i }i∈Z is assumed to be known.

Using these notations, the overall Lagrange-Projection algorithm can be described as follows: for a
given discrete state Un

i = (h, hu)ni , i ∈ Z that describes the system at instant tn, the computation of
the approximation Un+1

i = (h, hu)n+1
i at the next time level is a two-step process defined by
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1. Update Un
i to U

n+1

i by approximating the solution of (1.11) in Lagrangian coordinates, which
is referred to as the Lagrangian step,

2. Update U
n+1

i to Un+1
i by going back to the Eulerian coordinates, referred to as the Projection

(or Transport) step.

In this section, we aim at proposing a high-order (in space and time) approximation of these two
steps, in such a way that the overall algorithm is high-order too. To do so, we will focus first on
the high-order approximation in space, so that the time is left continuous and a semi-discrete in time
scheme shall be proposed. Afterwards, an explicit Runge-Kutta scheme will be applied to obtain a
high-order in time scheme.

2.1 The Lagrangian step

First of all, we consider for the ξ variable the same space discretization as for the x variable, that is
to say ∆ξ = ∆x, ξi+1/2 = xi+1/2 and ξi = xi for all i. Therefore, it is natural to approximate (2.2)
by the semi-discrete in time scheme

d

dt
(Lh)i(t) = 0,

d

dt
(Lhu)i(t) = − 1

∆x

(
π∗i+1/2(t)− π∗i−1/2(t)

)
,

(2.3)

where
π∗i±1/2(t) ≈ p(ξj±1/2, t)

and with, according to (1.8),
Li(0) = 1,

and

Li(t) =
1

∆x

(∫ xi+1/2

xi−1/2

∂x

∂ξ
(ξ, t)dξ

)
=
x∗i+1/2(t)− x∗i−1/2(t)

∆x
, (2.4)

where x∗i±1/2(t) naturally represents the position at time t of the exact trajectory defined by the
ordinary differential equation {

∂x

∂t
(ξi±1/2, t) = u(x(ξi±1/2, t), t),

x(ξi±1/2, 0) = ξi±1/2,
(2.5)

that is
x∗i±1/2 = x(ξi±1/2, t). (2.6)

In what follows and for the sake of simplicity we shall not write the dependence on time whenever there
is no ambiguity. As usual in finite volume methods, π∗i±1/2 and u∗i±1/2 will be classically defined thanks

to two given two-point numerical flux functions u∗(., .) and π∗(., .) that we assume to be consistent,
namely u∗(U,U) = u(U) and π∗(U,U) = p(U) for all U. In practice, the definition of these functions
will be based on the one given in [18, 10, 13, 9] evaluated at the inter-cell reconstructed values as will
be described in the next subsection.

2.1.1 High-order approximation in space

In order to construct a high-order approximation in space, we make use of a reconstruction operator of
order s that associates to a given sequence {Ui}i∈Z two new sequences {Ui+1/2+}i∈Z and {Ui+1/2−}i∈Z
such that whenever

Ui(t) =
1

∆x

∫ xi+1/2

xi−1/2

U(x, t) dx

4



for some smooth vector function x→ U(x, t), then

Ui+1/2± = U(xi+1/2, t) +O(∆xs)

for all i. In practice, Ui+1/2± are computed as follows:

Ui−1/2+(t) = lim
x→xi−1/2

Pti(x) and Ui+1/2−(t) = lim
x→xi+1/2

Pti(x),

where x → Pti(x) represents a vector of polynomials reconstructed on the cell [xi−1/2, xi+1/2) using
for instance ENO or WENO techniques, see [27]. These polynomials are expected to be conservative
in the sense that for all i

1

∆x

∫ xi+1/2

xi−1/2

Pti(x)dx = Ui(t).

In a very classical way, we thus set

u∗i+1/2 = u∗(Ui+1/2−,Ui+1/2+), π∗i+1/2 = π∗(Ui+1/2−,Ui+1/2+)

for all i. More explicitly, following [18, 10, 12, 9], we set

u∗j+1/2 = u∗(Uj+1/2−,Uj+1/2+) :=
1

2
(uj+1/2− + uj+1/2+)− 1

2aj+1/2
(pj+1/2+ − pj+1/2−),

π∗j+1/2 = π∗(Uj+1/2−,Uj+1/2+) :=
1

2
(pj+1/2− + pj+1/2+)−

aj+1/2

2
(uj+1/2+ − uj+1/2−),

and pj+1/2± = g(hj+1/2±)2/2 for all j.
Here, the constant aj+1/2 has to be chosen sufficiently large for the sake of stability, and more precisely
larger than the Lagrangian sound speed according to the well-known subcharacteristic condition. In
practice it is required that ai+1/2 is greater than the values h

√
gh at the interface:

aj+1/2 = max
{
hi+1/2−

√
ghj+1/2−, hi+1/2+

√
ghj+1/2+

}
.

In other words, the treatment of the Lagrange step exactly fits within the framework of standard
high-order finite volume schemes.

2.2 The Projection step

In order to project the piece-wise constant approximate values of LU(ξ, t), U = (h, hu)t, obtained
on each cell (ξi−1/2, ξi+1/2) at the end of the first step, it is now a matter of defining a high-order
approximation of U(x, t), on the Eulerian cells (xi−1/2, xi+1/2). With this in mind, we first notice the
(trivial but) key property ∫ x(ξr,t)

x(ξl,t)

U(x, t)dx =

∫ ξr

ξl

L(ξ, t)U(ξ, t)dξ. (2.7)

Given a time t ≥ 0 we define ξ̂i+1/2(t) such that

x(ξ̂i+1/2(t), t) = xi+1/2.

Thus, for any time T ≥ 0, ξ̂(T ) corresponds to the origin of the characteristic x(ξ̂i+1/2, t) such that
at time t = T coincides with xi+1/2 (see Figure 1).
Remark that, given a fixed time T ≥ 0, we have for any t ≥ 0

∂x

∂t
(ξ̂i+1/2(T ), t) = u(x(ξ̂i+1/2(T ), t), t),

x(ξ̂i+1/2(T ), 0) = ξ̂i+1/2(T ),
(2.8)
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Figure 1: Sketch of the connection between Lagrangian and Eulerian coordinates

which we may approximate (at first-order in time) by

xi+1/2 = x(ξ̂i+1/2(T ), T ) ≈ x(ξ̂i+1/2(T ), 0) + T
∂x

∂t
(ξ̂i+1/2(T ), 0) ≈ ξ̂i+1/2 + T u∗i+1/2. (2.9)

Then, we naturally set for U = (h, hu)t,

Ui(t) =
1

∆x

∫ xi+1/2

xi−1/2

U(x, t)dx =
1

∆x

∫ x(ξ̂i+1/2(t),t)

x(ξ̂i−1/2(t),t)

U(x, t)dx =
1

∆x

∫ ξ̂i+1/2(t)

ξ̂i−1/2(t)

L(ξ, t)U(ξ, t)dξ

and we split the integral as follows

Ui(t) =
1

∆x

∫ ξi−1/2

ξ̂i−1/2(t)

L(ξ, t)U(ξ, t)dξ+

+
1

∆x

∫ ξi+1/2

ξi−1/2

L(ξ, t)U(ξ, t)dξ +
1

∆x

∫ ξ̂i+1/2(t)

ξi+1/2

L(ξ, t)U(ξ, t)dξ.

Note that the middle integral in the right-hand-side naturally equals (LU)i(t) and this quantity is
known from the first step. It remains to evaluate the other two integrals at high-order accuracy in
space.

2.2.1 First-order approximation

As a preliminary scheme, it is interesting to note that at first-order accuracy in the time interval
[tn, tn+1], writing the dependence on tn or tn+1 as a superscript (.)n or (.)n+1 respectively, we may
set

(LU)n+1
i−1/2 =

{
(LU)n+1

i−1 , for ξi−1/2 > ξ̂i−1/2,

(LU)n+1
i , for ξi−1/2 ≤ ξ̂i−1/2,

or equivalently

(LU)n+1
i−1/2 =

{
(LU)n+1

i−1 , for x∗,n+1
i−1/2 > xi−1/2,

(LU)n+1
i , for x∗,n+1

i−1/2 ≤ xi−1/2,

where, we are considering
x∗,n+1
i+1/2 = xi+1/2 + ∆tu∗i+1/2,

xi+1/2 = ξ̂i+1/2 + ∆tu∗i+1/2.
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We are led to set

1

∆x

∫ ξi−1/2

ξ̂i−1/2

L(ξ,∆t)U
n+1

(ξ)dξ =
ξi−1/2 − ξ̂i−1/2

∆x
(LU)n+1

i−1/2

and similarly

1

∆x

∫ ξ̂i+1/2

ξi+1/2

L(ξ,∆t)U
n+1

(ξ)dξ =
ξ̂i+1/2 − ξi+1/2

∆x
(LU)n+1

i+1/2.

Therefore, we get

Un+1
i =

ξi−1/2 − ξ̂i−1/2

∆x
(LU)n+1

i−1/2 + (LU)n+1
i +

ξ̂i+1/2 − ξi+1/2

∆x
(LU)n+1

i+1/2 =

= (LU)n+1
i − ∆t

∆x

(
u∗,ni+1/2(LU)n+1

i+1/2 − u
∗,n
i−1/2(LU)n+1

i−1/2

)
,

where

(LU)n+1
i−1/2 =

{
(LU)n+1

i−1 , for x∗,n+1
i−1/2 > xi−1/2,

(LU)n+1
i , for x∗,n+1

i−1/2 ≤ xi−1/2.

As we will see in the next subsection, this approach is especially well-adapted to be extended to
high-order accuracy, although it does not correspond to the ”usual” first-order Projection step as
underlined in the following remark.

Remark. The ”usual” Projection step, see for instance [9], amounts to define

U
n+1

i−1/2 =

{
U
n+1

i−1 , for ξi−1/2 > ξ̂i−1/2,

U
n+1

i , for ξi−1/2 ≤ ξ̂i−1/2,
(2.10)

or equivalently

U
n+1

i−1/2 =

{
U
n+1

i−1 , for x∗,n+1
i−1/2 > xi−1/2,

U
n+1

i , for x∗,n+1
i−1/2 ≤ xi−1/2,

(2.11)

and to set, first

1

∆x

∫ ξi−1/2

ξ̂i−1/2

L(ξ,∆t)U
n+1

(ξ)dξ = U
n+1

i−1/2

1

∆x

∫ ξi−1/2

ξ̂i−1/2

L(ξ,∆t)dξ = U
n+1

i−1/2

1

∆x

∫ ξi−1/2

ξ̂i−1/2

∂ξx(ξ,∆t)dξ

= U
n+1

i−1/2

x(ξi−1/2,∆t)− x(ξ̂i−1/2,∆t)

∆x
=
x∗,n+1
i−1/2 − xi−1/2

∆x
U
n+1

i−1/2,

and second (in a similar way)

1

∆x

∫ ξ̂i+1/2

ξi+1/2

L(ξ,∆t)U
n+1

(ξ)dξ = U
n+1

i+1/2

1

∆x

∫ ξ̂i+1/2

ξi+1/2

L(ξ,∆t)dξ = U
n+1

i+1/2

1

∆x

∫ ξ̂i+1/2

ξi+1/2

∂ξx(ξ,∆t)dξ

= U
n+1

i+1/2

x(ξ̂i+1/2,∆t)− x(ξi+1/2,∆t)

∆x
=
xi+1/2 − x∗,n+1

i+1/2

∆x
U
n+1

i+1/2.

Therefore, we get

Un+1
i =

x∗,n+1
i−1/2 − xi−1/2

∆x
U
n+1

i−1/2 +
x∗,n+1
i+1/2 − x

∗,n+1
i−1/2

∆x
U
n+1

i +
xi+1/2 − x∗,n+1

i+1/2

∆x
U
n+1

i+1/2

= (LU)n+1
i − ∆t

∆x

(
u∗,ni+1/2U

n+1

i+1/2 − u
∗,n
i−1/2U

n+1

i−1/2

)
, (2.12)
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where

U
n+1

i−1/2 =

{
U
n+1

i−1 , for x∗,n+1
i−1/2 > xi−1/2,

U
n+1

i , for x∗,n+1
i−1/2 ≤ xi−1/2.

(2.13)

In the above formulas, U
n+1

i are naturally defined by U
n+1

i = (LU)n+1
i /Ln+1

i . This classical approach
may be not suitable to the high-order extension because dividing by Ln+1

i ≈ 1 + ∆t(∂ξu)i could
introduce a first-order error with respect to time.

2.2.2 High-order approximation in space

In order to construct a high-order approximation in space, we proceed as in the first step by making
use of a similar polynomial reconstruction operator of order s but now related to the piecewise average
values LUi(t). Again, we impose the conservation property, that is to say if we denote ξ → LPti(ξ)
the corresponding polynomial on the ith-cell,∫ ξi+1/2

ξi−1/2

LPti(ξ)dξ = LUi(t).

As for the first-order accuracy, it is a matter of defining the three integrals in the right-hand side of

Ui(t) =
1

∆x

∫ ξi−1/2

ξ̂i−1/2(t)

L(ξ, t)U(ξ, t)dξ

+
1

∆x

∫ ξi+1/2

ξi−1/2

L(ξ, t)U(ξ, t)dξ +
1

∆x

∫ ξ̂i+1/2(t)

ξi+1/2

L(ξ, t)U(ξ, t)dξ.

Thanks to the conservation property of the reconstruction, the middle integral of the right-hand-side
naturally equals (LU)i(t). To evaluate the first and third integrals, we simply suggest to use the
polynomial reconstruction of LPti(ξ, t) in the corresponding cell, that is to say, if we consider for
instance the first integral

1

∆x

∫ ξi−1/2

ξ̂i−1/2(t)

L(ξ, t)U(ξ, t)dξ,

we will consider the polynomial ξ → LPti−1(ξ) of the cell i−1 if ξi−1/2 > ξ̂i−1/2(t) and the polynomial

ξ → LPti(ξ) of the cell i otherwise. Then, denoting by ξ → LPti+1/2(ξ) the resulting polynomial we
consider a Gauss quadrature formula exact for this polynomial with nodes ξi+1/2,k and weights ωk,
for k = 1, . . . ,m.
The integral

1

∆x

∫ ξ̂i+1/2(t)

ξi+1/2

L(ξ,∆t)U(ξ, t)dξ

is calculated in a similar way and the projection step writes as

Ui(t) = (LU)i(t)−
ξi+1/2 − ξ̂i+1/2

∆x

m∑
k=1

ωkLP
t
i+1/2(ξi+1/2,k)

+
ξi−1/2 − ξ̂i−1/2

∆x

m∑
k=1

ωkLP
t
i−1/2(ξi−1/2,k).

Using u∗i±1/2 to integrate the characteristic backwards, we could replace ξi±1/2 − ξ̂i±1/2 by x∗i±1/2 −
xi±1/2.
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2.3 High-order integration in time

So far, we focused ourselves on the high-order accuracy in space. We now briefly discuss the high-
order accuracy in time, that we propose to deal with classical explicit Runge-Kutta TVD techniques,
see [26, 20]. However, two crucial remarks are in order. Firstly, the time integration of the exact

trajectories (1.8) to define x(ξ̂i+1/2, t
n) and Ln+1

i in the Lagrange and Projection steps must be
treated using high-order Runge-Kutta TVD techniques
Secondly, the main (additional) high-order Runge-Kutta TVD scheme must be applied to the overall
algorithm, that is to say to the two-step process made of the Lagrange and the Projection step, and
not to the Lagrange and the Projection step separately to avoid splitting errors.
Another way to achieve high-order in time is to consider high-order ADER or Taylor schemes like the
one proposed in [15].

3 The case of a non flat topography and well-balanced prop-
erty

In this section, the topography is not taken to be flat anymore, meaning that we consider the orig-
inal system (1.1) in Eulerian coordinates, or (1.11) in Lagrangian coordinates. Our objective is to
show how to extend the high-order Lagrange-Projection scheme proposed in the previous section to
this system, paying a particular attention to the well-balanced property associated with stationary
solutions satisfying

u2

2
+ g(h+ z) = constant, q = constant. (3.1)

Remark that this implies that any smooth stationary solution satisfies

∂x

(
hu2 + g

h2

2

)
+ gh∂xz = 0.

The main ingredients are the hydrostatic reconstruction originally introduced in [1, 7, 9], and its
extension to high-order accuracy introduced in [5] and based on space reconstructions performed on
the so-called fluctuations.
Considering the Lagrangian step, it is natural to replace the update formula (2.3) by

d

dt
(Lh)i(t) = 0,

d

dt
(Lhu)i(t) = − 1

∆x

(
π∗,li+1/2(t)− π∗,ri−1/2(t)

)
− {gh∂ξz}ti,

(3.2)

where π∗,li+1/2 and π∗,ri−1/2 still approximates the value of pressure at the interfaces, while {gh∂ξz}ti
approximates the spatial-average value of the exact source term, namely

{gh∂ξz}ti ≈
1

∆x

∫ ξi+1/2

ξi−1/2

gh(ξ, t)∂ξz(ξ, t)dx.

The definition of such a semi-discrete scheme is based on the values π∗,li+1/2(t) and π∗,ri−1/2(t) and

{gh∂ξz}ti. In what follows, we shall define these terms based on a well-balanced high-order recon-

struction procedure. Remark that, in general, the values π∗,li+1/2 and π∗,ri−1/2 should take into account

the jump on the interfaces of the source term. Nevertheless, we shall assume here a continuous
reconstruction of the bottom topography which allows us to define π∗,li+1/2 = π∗,ri+1/2 = π∗i+1/2.

Once the Lagrangian variables are computed, a projection step similar to the one described for the
case of flat bottom will be required. The scheme shall be decomposed into three steps:

1. Well-balanced high-order reconstruction

9



2. Lagrangian step

3. Projection step

that we now give in details.

3.1 Well-balanced high-order reconstruction

In order to define a well-balanced reconstruction strategy at high-order accuracy in space, we follow
[5, 6, 8] and perform a high-order polynomial reconstruction on the so-called fluctuations D defined
hereafter. More precisely, consider the cell averages {Ui(t)}i∈Z and assume that for each cell i ∈ Z
we can compute a stationary solution Ut,e

i (x) such that

1

∆x

∫ xi+1/2

xi−1/2

Ut,e
i (x)dx = Ui(t). (3.3)

Remark that although the stationary solution itself does not depend on time, the selected stationary
solution will not be in general the same. For each time t the given stationary solution depends on the
value Ui(t) and therefore varies through time.
Then, for any given i, we define the stencil {i− l, ..., i+ r} and for k = i− l, ..., i+ r the differences

Dk,i(t) = Uk(t)− 1

∆x

∫ xk+1/2

xk−1/2

Ut,e
i (x)dx,

on which we will apply a standard reconstruction operator of order s and denoted

Pti(x;Xi−l, ..., Xi+r)

with the property
Pti(x; 0, ..., 0) = 0.

For instance, if one considers second-order accuracy and the usual MUSCL [21] reconstruction ap-
proach, one is led to consider

Pti(x;Xi−1, Xi, Xi+1) = Xi + si
x− xi

∆x
,

with the following definition of the slope si using the well-known minmod limiter,

si = minmod(Xi+1 −Xi, Xi −Xi−1).

Then, we set
Pti(x) = Pti(x;Di−l,i(t), ...,Di+r,i(t)), x ∈ Ci.

At last, we define the following reconstruction function of the conservative variable U, namely

Ut
i(x) = Pti(x) + Ut,e

i (x), x ∈ Ci.

Note that the function x → Ut
i(x) is not polynomial, but reads like the sum of a polynomial contri-

bution and a portion of the well-balanced reconstruction curve associated to the cell Ci, the average
of which being equal to Ui.
Note that system (3.3) may not have a unique solution:

• If (3.3) has no solution, then U t,ei (x) ≡ 0 is chosen in the first stage and the reconstruction
operator reduces to the standard one. Notice that the reconstruction operator is still well-
balanced, since (3.3) has always at least one solution when the operator is applied to the cell
averages of a stationary solution.

• If (3.3) has more than one solution, a criterion to select one of them is needed: see, for instance,
[16].
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3.2 The Lagrangian step

We show in this section how to extend the discretization of the Lagrangian step in order to satisfy
both the high-order accuracy and well-balanced properties. Again, we first focus on the space dis-
cretization. Therefore, the time is left continuous and we assume as given the cell averages {U0

i }i∈Z
at the initial time t = t0, which are reconstructed as described before. In order to make the notation
less cumbersome, we shall not write explicitly the dependence of the selected stationary solution Ue

i

on time. This leads to the function

U0
i (x) = P0

i (x) + Ue
i (x), x ∈ Ci, (3.4)

where we have used clear notations between the so-called fluctuation and equilibrium parts. More
generally

Ut
i(x) = Pti(x) + Ue

i (x), x ∈ Ci, (3.5)

for later times. In the following, we will also use the notation Uf
i (x, t) = Pti(x) for the sake of clarity.

Based on these reconstructions and as motivated above, we naturally set
d

dt
(Lh)i(t) = 0,

d

dt
(Lhu)i(t) = − 1

∆x

(
π∗i+1/2(t)− π∗i−1/2(t)

)
− {gh∂ξz}ti,

(3.6)

with (LU)i(t0) = U0
i , and where the interfacial pressures are defined by

π∗i+1/2(t) = π∗(Ut
i+1/2−,U

t
i+1/2+)

for all i where
Ut
i−1/2+ = lim

x→xi−1/2

Ut
i(x), Ut

i+1/2− = lim
x→xi+1/2

Ut
i(x).

Regarding the source term {gh∂ξz}ti and by linearity with respect to h, we use the equilibrium and
fluctuation decomposition (3.5) to set

{gh∂ξz}ti = {ghe∂ξz}ti + {ghf∂ξz}ti

where with clear notations

− {ghe∂ξz}ti = − 1

∆x

∫ ξi+1/2

ξi−1/2

gh
e

i (ξ, t)∂ξz(ξ, t)dξ =
1

∆x

∫ ξi+1/2

ξi−1/2

∂ξ

(
hu

e

iu
e
i + pei

)
(ξ, t)dξ

=
1

∆x
hu

e

i (t)
(
uei+1/2−(t)− uei−1/2+(t)

)
+

1

∆x

(
pei+1/2−(t)− pei−1/2+(t)

)
with

pei±1/2∓(t) = pei (x(ξi±1/2, t), t) = g
(hei (x(ξi±1/2, t), t)

2

2
,

and
uei±1/2∓(t) = uei (x(ξi±1/2, t), t).

Finally,

{ghf∂ξz}ti =
1

∆x

∫ ξi+1/2

ξi−1/2

gh
f

i (ξ, t)∂ξz(ξ, t)dξ

is computed via a (high-order) Gaussian quadrature formula with nodes xj,k and weights ωk for
k = 1, . . . ,m, leading to

{ghf∂ξz}ti = g

m∑
k=1

ωih
f

i (xi,k, t)∂ξz(xi,k).
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3.3 The Projection step

In order to get the high-order accuracy property, the projection step proposed here is similar to the
case of flat topography in the sense that it is based on polynomial reconstructions of LUi(t). How-
ever, in order to satisfy the well-balanced property we propose a new projection algorithm that exactly
preserves the smooth stationary solutions, that, as pointed before, depend on time in the Lagrangian
framework. This new projection algorithm exploits again the decomposition into stationary and fluc-
tuation parts as in [5, 8]. More precisely we aim at performing high-order polynomial reconstructions
on the fluctuation parts of LUi(t). Before going on, it is therefore a matter of defining the fluctuation
and equilibrium parts of LUi(t). With this in mind, we consider that the equilibrium part of LUi(t),
that we denote by LU

e

i (t), is given by nothing but (3.6) applied to the equilibrium solution Ue
i (x),

namely 
d

dt
(Lh

e
)i(t) = 0,

d

dt
(Lhu

e
)i(t) = − 1

∆x

(
pei+1/2−(t)− pei−1/2+(t)

)
− {ghe∂ξz}ti,

(3.7)

with LU
e

i (t0) = Ue
i . Defining now the fluctuation part by the consistency relation

LU
f

i (t) = LUi(t)− LU
e

i (t)

we notice that
d

dt
(Lh

f
)i(t) = 0,

d

dt
(Lhu

f
)i(t) = − 1

∆x

(
π∗i+1/2 − p

e
i+1/2− − π

∗
i−1/2 + pei−1/2+

)
− {ghf∂ξz}ti,

(3.8)

with LU
f

i (t0) = P0
i .

Then, in agreement with section 2.2, we set

Ui(t) =
1

∆x

∫ ξi−1/2

ξ̂i−1/2(t)

L(ξ, t)U(ξ, t)dξ+

+
1

∆x

∫ ξi+1/2

ξi−1/2

L(ξ, t)U(ξ, t)dξ +
1

∆x

∫ ξ̂i+1/2(t)

ξi+1/2

L(ξ, t)U(ξ, t)dξ

which is equivalent to

Ui(t) =
1

∆x

∫ ξi−1/2

ξ̂i−1/2(t)

L(ξ, t)U
e
(ξ, t)dξ+

+
1

∆x

∫ ξi+1/2

ξi−1/2

L(ξ, t)U
e
(ξ, t)dξ +

1

∆x

∫ ξ̂i+1/2(t)

ξi+1/2

L(ξ, t)U
e
(ξ, t)dξ

+
1

∆x

∫ ξi−1/2

ξ̂i−1/2(t)

L(ξ, t)U
f
(ξ, t)dξ+

+
1

∆x

∫ ξi+1/2

ξi−1/2

L(ξ, t)U
f
(ξ, t)dξ +

1

∆x

∫ ξ̂i+1/2(t)

ξi+1/2

L(ξ, t)U
f
(ξ, t)dξ.

Note that again
1

∆x

∫ ξi+1/2

ξi−1/2

L(ξ, t)U
f
(ξ, t)dξ = (LU

f
)i(t).
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Using now the notation ξei+1/2(t) such that

xe(ξei+1/2, t) = xi+1/2,

where we have considered the characteristic given by the velocity of the stationary solution
∂xe

∂t
(ξ, t) = ue(x(ξ, t), t),

x(ξ, 0) = ξ,
(3.9)

and the relation

Ue
i =

1

∆x

∫ xi+1/2

xi−1/2

Ue
i (x)dx =

1

∆x

∫ ξi−1/2

ξe
i−1/2

(t)

L(ξ, t)U
e
(ξ, t)dξ+

+
1

∆x

∫ ξi+1/2

ξi−1/2

L(ξ, t)U
e
(ξ, t)dξ +

1

∆x

∫ ξei+1/2(t)

ξi+1/2

L(ξ, t)U
e
(ξ, t)dξ, (3.10)

we get

Ui(t) = Ue
i +

1

∆x

∫ ξei−1/2(t)

ξ̂i−1/2(t)

L(ξ, t)U
e
(ξ, t)dξ − 1

∆x

∫ ξei+1/2(t)

ξ̂i+1/2(t)

L(ξ, t)U
e
(ξ, t)dξ

+ (LU
f
)i(t) +

1

∆x

∫ ξi−1/2

ξ̂i−1/2(t)

L(ξ, t)U
f
(ξ, t)dξ − 1

∆x

∫ ξi+1/2

ξ̂i+1/2(t)

L(ξ, t)U
f
(ξ, t)dξ. (3.11)

Now we proceed exactly as in section 2.2.2 and define polynomial reconstructions of LP
#,t

i where #
stands for e or f (the equilibrium and fluctuation parts) satisfying as usual the conservation property

1

∆x

∫ ξi+1/2

ξi−1/2

LP
#,t

i (x)dx = LU
#

i (t)

and use these polynomials, together with high-order Gauss quadrature formulas, to evaluate the
integrals. Of course, we consider the polynomials ξ → LP#,t

i−1(ξ), ξ → LP#,t
i (ξ), or ξ → LP#,t

i+1(ξ)
depending on whether ξ is to the left or to the right of the values ξi±1/2.

3.4 Fully well-balanced property

In this section, we prove that the scheme is fully well-balanced. Therefore, we assume that the initial
data is a smooth stationary solution that we denote by x→ Ue(x) and that for all i the initial values
hi(t = 0) and (hu)i(t = 0) are defined by the cell averages of this initial data.
By definition, the equilibrium and fluctuation decomposition (3.4) gives

P0
i (x) = 0 and Ue

i (x) = Ue(x)

for all i. Therefore, the well-balanced high-order reconstruction corresponds exactly to the stationary
solution and the fluctuation part is 0. This gives immediately

Ui+1/2−(t) = Ui+1/2+(t) = Ue
i+1/2,

u∗i+1/2 = uei+1/2, and π∗i+1/2 = pei+1/2.

As a consequence, the Lagrangian step gives (LU
f
)i(t) = 0 and (LU)i(t) = (LU

e
)i(t) for all t.

Moreover, in this case we clearly have ξ̂i+1/2 = ξei+1/2 so that from (3.11) it is clear that Ui(t) = Ue
i

for all t, which means that the discrete solution is an equilibrium solution for all times. By continuity,
it coincides with the initial condition.
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3.5 High-order integration in time

Again, this step is strictly identical to the case of a flat topography and it can be easily proved that
it does not affect the well-balanced property.

3.6 Remarks

In this section, we give two important remarks. The first one states that for a flat topography, the
scheme proposed here is equivalent to the one of the previous section. The second one states that at the
first-order accuracy, the scheme is equivalent to the fully well-balanced scheme recently proposed in [9].

Let us first consider a flat topography. In this case, the fluctuation are simply given by

Dk,i(t) = Uk(t)−Ui(t)

so that the reconstruction function of the conservative variable U is given by

Ut
i(x) = Pti(x;Ui−l(t)−Ui(t), . . . ,Ui+r(t)−Ui(t)) + Ui(t).

Under the additional assumption that the reconstruction operator of order s satisfies the property

Pti(x;Xi−l, ..., Xi+r) = Pti(x;Xi−l − Y, ...,Xi+r − Y ) + Y for all Y, (3.12)

we get
Ut
i(x) = Pti(x;Ui−l(t), . . . ,Ui+r(t)),

which means that a very standard reconstruction process is considered. Then, since z is constant,
(3.6) boils down to 

d

dt
(Lh)i(t) = 0,

d

dt
(Lhu)i(t) = − 1

∆x

(
π∗i+1/2(t)− π∗i−1/2(t)

) (3.13)

with initial condition (LU)i(t0) = U0
i , which is strictly equivalent to the evolution of the Lagrangian

step in the case of a flat topography. As far as the evolution (3.7) of the equilibrium part is concerned,
the time derivatives are clearly equal to zero, so that (LU

e
)i(t) = U0

i for all times t. By definition of
the fluctuation part, we deduce that

(LU
f
)i(t) = (LU)i(t)−U0

i . (3.14)

Finally, (3.11) gives

Ui(t) = U0
i

+ (LU
f
)i(t) +

1

∆x

∫ ξi−1/2

ξ̂i−1/2(t)

L(ξ, t)U
f
(ξ, t)dξ − 1

∆x

∫ ξi+1/2

ξ̂i+1/2(t)

L(ξ, t)U
f
(ξ, t)dξ. (3.15)

Invoking (3.14) and again the property of the reconstruction operator (3.12), it is clear that the pro-
jection step is equivalent to the one proposed for a flat topography.

Assume now that we consider the first-order version of the scheme. In this case, the fluctuation
part at the initial time equals zero (note that Di,i = 0), and (3.6) and (3.7) are strictly equivalent
(same equations and same initial condition) so that the fluctuation part is always equal to zero. In

addition, we clearly have ξ̂i−1/2(t) = ξei−1/2(t) so that (3.11) gives

Ui(t) = Ue
i =

14
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Figure 2: Initial and final time evolution

1

∆x

∫ ξi−1/2

ξe
i−1/2

(t)

L(ξ, t)U
e
(ξ, t)dξ +

1

∆x

∫ ξi+1/2

ξi−1/2

L(ξ, t)U
e
(ξ, t)dξ +

1

∆x

∫ ξei+1/2(t)

ξi+1/2

L(ξ, t)U
e
(ξ, t)dξ

and therefore
Ui(t) =

1

∆x

∫ ξi−1/2

ξ̂i−1/2(t)

L(ξ, t)U(ξ, t)dξ +
1

∆x

∫ ξi+1/2

ξi−1/2

L(ξ, t)U(ξ, t)dξ +
1

∆x

∫ ξ̂i+1/2(t)

ξi+1/2

L(ξ, t)U(ξ, t)dξ.

Easy calculations show that this projection step is equivalent to the one proposed in [9] with the
choice given in equation (26) of the corresponding section 3.2. Finally, let us remark that we do not
discuss here any special treatment for wet/dry fronts or the positivity preserving properties of the
scheme and it is out of the scope of this work. Nevertheless, we recall that the first order fully-well
balanced Lagrange-Projection [9] is positive preserving and we could combine this scheme together
with the strategy proposed by Zhang et al. [29] to obtain a high-order positive preserving scheme.

4 Numerical experiments

4.1 Accuracy test

We perform first an accuracy test for the scheme. To do so, let us consider in the interval [0, 1] a
bottom topography given by

z(x) = 0.1 + 0.1 cos(2πx).

Then consider an initial free surface given by

h(x, t = 0) + z(x) = 1.1 + 0.1 sin(4πx),

and set the velocity initially to u = 0. We compute a reference solution on a very fine grid with 3200
points up to the time t = 0.2 with periodic boundary conditions and we compare with the reference
solution for different grid meshes using the first, second and third order schemes. Initial and final
times are shown in Figure 2 and the comparison for the three schemes with 100 cell points is shown
in Figure 3. The L1-norm errors are shown in Tables 1, 2 and 3.

4.2 Perturbation of a lake at rest

Let us consider a lake at rest initial condition in the interval [0, 1] given by

z(x) = 0.5 exp(−200(x− 0.5)2), h+ z = 1.0, u = 0,
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Figure 3: Comparison at final times for 100 cell volumes

No. of cells
h q

L1 error order L1 error order
25 1.85e-02 0.00 1.29e-01 0.00
50 1.34e-02 0.47 8.28e-02 0.64
100 8.58e-03 0.64 4.70e-02 0.82
200 5.09e-03 0.75 2.51e-02 0.90
400 2.83e-03 0.85 1.30e-02 0.95

Table 1: L1 errors and numerical orders of accuracy: first order scheme.

No. of cells
h q

L1 error order L1 error order
25 1.07e-02 0.00 4.04e-02 0.00
50 4.14e-03 1.37 1.21e-02 1.74
100 1.25e-03 1.73 3.25e-03 1.89
200 3.34e-04 1.91 8.16e-04 1.99
400 8.43e-05 1.99 2.01e-04 2.02

Table 2: L1 errors and numerical orders of accuracy: second order scheme.

No. of cells
h q

L1 error order L1 error order
25 6.94e-03 0.00 1.39e-02 0.00
50 1.64e-03 2.08 3.75e-03 1.89
100 2.85e-04 2.53 8.80e-04 2.09
200 4.06e-05 2.81 1.39e-04 2.66
400 5.85e-06 2.80 2.10e-05 2.73

Table 3: L1 errors and numerical orders of accuracy: third order scheme.
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Figure 4: Evolution of a perturbation from a lake at rest. Comparison with the reference lake at rest
solution.

and we consider a initial small perturbation on the water surface

h(x, t = 0) + z(x) = 1 + 0.05 exp(−1000(x− 0.3)2).

We simulate this perturbation of the steady state with the third order well-balanced Lagrange-
Projection scheme using 400 cell volumes. Figure 4 shows the difference of the computed solutions
when compared with the unperturbed lake at rest steady state. As expected, the perturbation prop-
agates towards the boundaries until they leave the domain. Afterwards, the unperturbed solution
remains. Remark that once the steady state is reached, the scheme preserves it as expected up to an
error of order 10−13.

4.3 Transcritical flow with shock

Let us consider now a test from [3]. The space domain is [0, 25] and the bottom topography is given
by

z(x) =

{
0.2− 0.05(x− 10)2, if 8 < x < 12,
0, otherwise,

the initial data are h = 0.33 and q = 0.18, and boundary conditions are q(x = 0) = 0.18 and
h(x = 25, t) = 0.33. The final time is t = 200. Figures 5 and 6 show the comparison between the
second order well-balanced Lagrange-Projection scheme with 200 cell points compared with a reference
solution with 1000 points using a path-conservative HLL scheme (see [6]). We remark that here we get
to a stationary solution which is not smooth. Nevertheless, the results obtained with the Lagrange-
Projection technique is comparable to the reference solution. Some deviations from the final steady
state are obtained as expected, which is specially seen on the discharge and at the shock.

4.4 Perturbation of a steady state with non-zero velocity

The objective now is to test the fully well-balanced scheme. Let us consider now a stationary solution
with non zero velocity. To do so we set as bottom topography

z(x) = 0.5 exp(−200(x− 0.5)2);

and we consider the subcritical stationary solution given by
qe(x) = 0.5,

(qe(x))2

2(he(x))2
+ g(he(x) + z(x)) = 9.935.
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Figure 5: Transcritical flow with shock
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Figure 6: Transcritical flow with shock
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Figure 7: Perturbation of a stationary steady state with non-zero velocity: initial condition

The fully-well balanced Lagrange-Projection scheme preserves such a steady state with an error of
order 10−15. We consider now a perturbation on the water thickness of this steady state given by

h(x, t = 0) = he(x) + 0.05 exp(−1000(x− 0.2)2).

The initial condition is shown in Figure 7.
We solve the system with this initial condition using 400 volume cells on the interval [0, 1] using a
second order fully well-balanced Lagrange-Projection scheme. The solution is compared with a first
order path-conservative HLL scheme, as described in [6], and with a reference solution computed using
a very fine grid of 1600 volume cells. The results are shown in Figures 8 and 9. As expected, the
scheme preserves exactly the areas where we find the prescribed well-balance solution while solving
with accuracy the perturbation.

5 Conclusions

We have developed a high-order fully well-balanced approach extension for the Lagrangian-Projection
scheme introduced in [18, 10, 12, 13, 9]. The proposed technique produces good results when applied to
shallow water system. Note that, the Lagrange-Projection scheme may be extended to other systems
and applications such as bedload sediment transport, turbidity currents, Ripa system, etc. Future
works will consider the extension to multi-dimensional domains and high-order semi-implicit schemes.
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Figure 8: Perturbation of a stationary steady state with non-zero velocity: Surface evolution
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