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Introduction and main results

There are several mathematical models representing physical damping. The most often encountered type of damping in vibration studies are linear viscous damping [START_REF] Ammari | Stabilization of elastic systems by collocated feedback[END_REF][START_REF] Bardos | Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary[END_REF][START_REF] Lebeau | Équations des ondes amorties[END_REF][START_REF] Lebeau | Stabilisation de l'équation des ondes par le bord[END_REF] and Kelvin-Voigt damping [START_REF] Hassine | Stability of elastic transmission systems with a local Kelvin-Voigt damping[END_REF][START_REF] Liu | Exponential decay of energy of the Euler-Bernoulli beam with locally distributed Kelvin-Voigt damping[END_REF][START_REF] Liu | Characterization of polynomial decay rate for the solution of linear evolution equation[END_REF][START_REF] Liu | Exponential stability for wave equations with local Kelvin-Voigt damping[END_REF] which are special cases of proportional damping. Viscous damping usually models external friction forces such as air resistance acting on the vibrating structures and is thus called "external damping", while Kelvin-Voigt damping originate from the internal friction of the material of the vibrating structures and thus called "internal damping" or "material damping". This type of material is encountered in real life when one uses patches to suppress vibrations, the modeling aspect of which may be found in [START_REF] Banks | Modeling aspects for piezoelectric patch actuation of shells, plates and beams[END_REF]. This type of question was examined in the one-dimensional setting in [START_REF] Liu | Exponential decay of energy of the Euler-Bernoulli beam with locally distributed Kelvin-Voigt damping[END_REF] where it was shown that the longitudinal motion of an Euler-Bernoulli beam modeled by a locally damped wave equation with Kelvin-Voigt damping is not exponentially stable when the junction between the elastic part and the viscoelastic part of the beam is not smooth enough. Later on, the wave equation with Kelvin-Voigt damping in the multidimensional setting was examined in [START_REF] Liu | Exponential stability for wave equations with local Kelvin-Voigt damping[END_REF]; in particular, those authors showed the exponential decay of the energy by assuming that the damping region is a neighborhood of the whole boundary. Later on, it was shown that the exponential decay of the energy could be obtained with just imposing that the damping is a neighborhood of part of the boundary [START_REF] Tebou | A constructive method for the stabilization of the wave equation with localized Kelvin-Voigt damping[END_REF].

Let Ω ⊂ R n , n ≥ 2, be a bounded domain with a sufficiently smooth boundary Γ = ∂Ω. Let ω be an no empty and open subset of Ω with smooth boundary I = ∂ω (see Figure 1).

Consider the damping wave system (1.1) ∂ 2 t u -∆udiv(a(x) ∇∂ t u) = 0, Ω × (0, +∞),

(1.2) u = 0, ∂Ω × (0, +∞),

(1.3) u(x, 0) = u 0 , ∂ t u(x, 0) = u 1 (x), Ω,
where a(x) = d 1 ω (x) and d > 0 is a constant. 3), involving a constructive viscoelastic damping div(a(x)∇u t ), models the vibrations of an elastic body which has one part made of viscoelastic material. In the case of global viscoelastic damping (a > 0), the wave equation (1.1)-(1.3) generates an analytic semigroup, and the spectrum of which is contained in a sector of the left half complex plan (see [START_REF] Chen | Spectrum and stability for elastic systems with global or local Kelvin-Voigt damping[END_REF]). While the situation of local viscoelastic damping is more delicate due to the unboundedness of the viscoelastic damping and the discontinuity of the materials.

In [START_REF] Liu | Exponential decay of energy of the Euler-Bernoulli beam with locally distributed Kelvin-Voigt damping[END_REF], it was proved that the energy of an one-dimensional wave equation with local viscoelastic damping does not decay uniformly if the damping coefficient a is discontinuous across the interface of the materials. Because of the discontinuity of the materials across the interface, the dissipation is badly transmitted from the viscoelastic region to the elastic region, where the energy decays slowly. Nevertheless, this does not contradict the well-known "geometric optics" condition in [START_REF] Bardos | Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary[END_REF], since the viscoelastic damping is unbounded in the energy space. The loss of uniform stability is caused by the discontinuity of material properties across the interface and the unboundedness of the viscoelastic damping. In this paper, we prove a logarithmically decay of energy. Our idea is transform the resolvent problem of system (1.1)-(1.2) to a transmission system to be able to quantify the discontinuity of the material properties across the interface through the so-called Carleman estimate. Noting that recently the same problem was treated in [START_REF] Hassine | Stability of elastic transmission systems with a local Kelvin-Voigt damping[END_REF] where it was proved that the energy is polynomially decreases over the time but only on one-dimensional case (even for a transmission system).

We define the natural energy of u solution of (1.1)-(1.3) at instant t by

E(u, t) = 1 2 (u(t), ∂ t u(t)) 2 H 1
and therefore, the energy is non-increasing function of the time variable t.

Theorem 1.1. For any k ∈ N * there exists C > 0 such that for any initial data (u 0 , u 1 ) ∈ D(A k ) the solution u(x, t) of (1.1) starting from (u 0 , u 1 ) satisfying

E(u, t) ≤ C (ln(2 + t)) 2k (u 0 , u 1 ) 2 D(A k ) , ∀ t > 0,
where (A, D(A)) is defined in Section 2.

This paper is organized as follows. In Section 2, we give the proper functional setting for systems (1.1)-(1.3), and prove that this system is well-posed. In Section 3, we establish some Carleman estimate which is correspond to the system (1.1)-(1.3). Finally, in Section 4, we study the stabilization for (1.1)-(1.3) by resolvent method and give the explicit decay rate of the energy of the solutions of (1.1)-(1.3).

Well-posedness and strong stability

We define the energy space by H = H 1 0 (Ω) × L 2 (Ω) which is endowed with the usual inner product

(u 1 , v 1 ); (u 2 , v 2 ) = Ω ∇u 1 (x).∇u 2 (x) dx + Ω v 1 (x)v 2 (x) dx.
We next define the linear unbounded operator A :

D(A) ⊂ H -→ H by D(A) = {(u, v) ∈ H : v ∈ H 1 0 (Ω), ∆u + div(a∇v) ∈ L 2 (Ω)} and A(u, v) t = (v, ∆u + div(a∇v)) t
Then, putting v = ∂ t u, we can write (1.1)-(1.3) into the following Cauchy problem

d dt (u(t), v(t)) t = A(u(t), v(t)) t , (u(0), v(0)) = (u 0 (x), u 1 (x)).
Theorem 2.1. The operator A generates a C 0 -semigroup of contractions on the energy space H.

Proof. Firstly, it is easy to see that for all (u, v) ∈ D(A), we have

Re A(u, v); (u, v) = - Ω a|∇v(x)| 2 dx,
which show that the operator A is dissipative.

Next, for any given (f, g) ∈ H, we solve the equation A(u, v) = (f, g), which is recast on the following way

(2.1) v = f, ∆u + div(a∇f ) = g.
It is well known that by Lax-Milgram's theorem the system (2.1) admits a unique solution u ∈ H 1 0 (Ω). Moreover by multiplying the second line of (2.1) by u and integrating over Ω and using Poincaré inequality and Cauchy-Schwarz inequality we find that there exists a constant C > 0 such that

Ω |∇u(x)| 2 dx ≤ C Ω |∇f (x)| 2 dx + Ω |g(x)| 2 dx .
It follows that for all (u, v) ∈ D(A) we have

(u, v) H ≤ C (f, g) H .
This imply that 0 ∈ ρ(A) and by contraction principle, we easily get R(λI-A) = H for sufficient small λ > 0. The density of the domain of A follows from [START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF]Theorem 1.4.6]. Then thanks to Lumer-Phillips Theorem (see [START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF]Theorem 1.4.3]), the operator A generates a C 0 -semigroup of contractions on the Hilbert H.

Theorem 2.2. The semigroup e tA is strongly stable in the energy space H, i.e,

lim t→+∞ e tA (u 0 , v 0 ) t H = 0, ∀ (u 0 , v 0 ) ∈ H.
Proof. To show that the semigroup (e tA ) t≥0 is strongly stable we only have to prove that the intersection of σ(A) with iR is an empty set. Since the resolvent of the operator A is not compact (see [START_REF] Liu | Exponential decay of energy of the Euler-Bernoulli beam with locally distributed Kelvin-Voigt damping[END_REF][START_REF] Liu | Exponential stability for wave equations with local Kelvin-Voigt damping[END_REF]) but 0 ∈ ρ(A) we only need to prove that (iµI -A) is a one-to-one correspondence in the energy space H for all µ ∈ R * . The proof will be done in two steps: in the first step we will prove the injective property of (iµI -A) and in the second step we will prove the surjective property of the same operator.

i) Let (u, v) ∈ D(A) such that (2.2) A(u, v) t = iµ(u, v) t .
Then taking the real part of the scalar product of (2.2) with (u, v) we get

Re(iµ (u, v) 2 H ) = Re A(u, v), (u, v) = -d ω |∇v| 2 dx = 0.
which implies that

(2.3) ∇v = 0 in ω. Inserting (2.3) into (2.
2), we obtain (2.4)

   µ 2 u + ∆u = 0 in Ω\ω, ∇u = 0 in ω u = 0 on Γ,
We denote by w j = ∂ xj u and we derive the first and the second equations of (2.4), one gets

µ 2 w j + ∆w j = 0 in Ω, w j = 0 in ω.
Hence, from the unique continuation theorem we deduce that w j = 0 in Ω and therefore u is constant in Ω and since u |Γ = 0 we follow that u ≡ 0. We have thus proved that Ker(iµI-A) = 0.

ii) Now given (f, g) ∈ H, we solve the equation

(iµI -A)(u, v) = (f, g) Or equivalently, (2.5) v = iµu -f µ 2 u + ∆u + iµ div(a∇u) = div(a∇f ) -iµf -g.
Let's define the operator

Au = -(∆u + iµ div(a∇u)), ∀ u ∈ H 1 0 (Ω). It is easy to show that A is an isomorphism from H 1 0 (Ω) onto H -1 (Ω).
Then the second line of (2.5) can be written as follow

(2.6) u -µ 2 A -1 u = A -1 [g + iµf -div(a∇f )] . If u ∈ Ker(I -µ 2 A -1 ), then µ 2 u -Au = 0. It follows that (2.7) µ 2 u + ∆u + iµdiv(a∇u) = 0.
Multiplying (2.7) by u and integrating over Ω, then by Green's formula we obtain

µ 2 Ω |u(x)| 2 dx - Ω |∇u(x)| 2 dx -idµ ω |∇u(x)| 2 dx = 0.
This shows that

d ω |∇u(x)| 2 dx = 0,
which imply that ∇u = 0 in ω.

Inserting this last equation into (2.7) we get

µ 2 u + ∆u = 0, in Ω.
Once again, using the unique continuation theorem as in the first step where we recall that u |Γ = 0, we get u = 0 in Ω. This imply that Ker(Iµ 2 A -1 ) = {0}. On the other hand thanks to the compact embeddings

H 1 0 (Ω) → L 2 (Ω) and L 2 (Ω) → H -1 (Ω) we see that A -1 is a compact operator in H 1 0 (Ω). Now thanks to Fredholm's alternative, the operator (I -µ 2 A -1 ) is bijective in H 1 0 (Ω), hence the equation (2.6
) have a unique solution in H 1 0 (Ω), which yields that the operator (iµI -A) is surjective in the energy space H. The proof is thus complete.

Carleman estimate

For any s ∈ R we define the Sobolev space with a parameter τ ,

H s τ by u(x, τ ) ∈ H s τ ⇐⇒ ξ, τ s û(ξ, τ ) ∈ L 2 ; ξ, τ 2 = |ξ| 2 + τ 2 ,
where û denote the partial Fourier transform with respect to x. The class of symbols of order m defined by

S m τ = a(x, ξ, τ ) ∈ C ∞ ; |∂ α x ∂ β ξ a(x, ξ, τ )| ≤ C α,β ξ, τ m-|β|
and the class of tangential symbols of order m by

T S m τ = a(x, ξ , τ ) ∈ C ∞ ; |∂ α x ∂ β ξ a(x, ξ , τ )| ≤ C α,β ξ , τ m-|β|
We denote by O m (resp. T O m ) the set of pseudo-differential operators A = op(a), a ∈ S m (resp. a ∈ T S m ). We shall use the symbol

Λ = ξ , τ = (|ξ | 2 + τ 2 ) 1 2 .
Consider a bounded smooth open set U of R n with boundary ∂U = γ. We set U 1 and U 2 two smooth open subsets of U with boundaries ∂U 1 = γ 0 and ∂U 2 = γ ∪ γ such that γ 0 ∪ γ = ∅. We denote by ν(x) the unit outer normal to

U 2 if x ∈ γ 0 ∪ γ.
For τ a large parameter and ϕ 1 and ϕ 2 two weight functions of class C ∞ in U 1 and U 2 respectively such that ϕ 1|γ0 = ϕ 2|γ0 we denote by ϕ(x) = diag(ϕ 1 (x), ϕ 2 (x)) and let α be a non null complex number. We set the differential operator

P = diag(P 1 , P 2 ) = diag -∆ + τ 2 1 + ατ , -∆ -τ 2 ,
and its conjugate operator

P (x, D, τ ) = e τ ϕ P e -τ ϕ = diag(P 1 (x, D, τ ), P 2 (x, D, τ )),
with principal symbol p(x, ξ, τ ) given by

p(x, ξ, τ ) = diag(p 1 (x, ξ, τ ), p 2 (x, ξ, τ )) = diag(|ξ| 2 + 2iτ ξ∇ϕ 1 -τ 2 |∇ϕ 1 | 2 , |ξ| 2 + 2iτ ξ∇ϕ 2 -τ 2 |∇ϕ 2 | 2 -τ 2 ).
In a small neighborhood W of a point x 0 of γ 0 , we place ourselves in normal geodesic coordinates and we denote by x n the variable that is normal to the interface γ 0 and by x the reminding spacial variables, i.e., x = (x , x n ). The interface γ 0 is now given by γ 0 = {x ; x n = 0} where in particular we can assume that x 0 = (0, 0) and that W is symmetric with respect to x n -→ -x n . We denote by

W 1 = {x ∈ R n , x n > 0} ∩ W,
and

W 2 = {x ∈ R n , x n < 0} ∩ W.
Next we will proceed like Bellassoued in [START_REF] Bellasoued | Carleman estimates and distribution of resonnances for the transparent obstacle and application to the stabilization[END_REF] and we will reduce the problem of the transmission in only one side. The operator P 1 on W 1 is written in the form

P 1 (x, D) = D 2 xn + R(+x n , x , D x ) + τ 2 1 + ατ .
and the operator P 2 on W 2 can be identified locally to an operator in W 1 given by

P 2 (x, D) = D 2 xn + R(-x n , x , D x ) -τ 2 We denote the tangential operator, with the C ∞ coefficients defined in W 1 by R(x, D x ) = diag(R(+x n , x , D x ), R(-x n , x , D x )) = diag(R 1 (x, D x ), R 2 (x, D x )) with principal symbol r(x, ξ ) = diag(r 1 (x, ξ ), r 2 (x, ξ )) where the quadratic form r k (x, ξ ), k = 1, 2 satisfies ∃ C > 0, ∀ (x, ξ ) ∈ W 1 × R n-1 , r k (x, ξ ) ≥ C|ξ | 2 , k = 1, 2.
We assume that ϕ satisfies

|∇ϕ k (x)| > 0, ∀ x ∈ W 1 , k = 1, 2, (3.1) ∂ xn ϕ 1 (x , 0) < 0 and ∂ xn ϕ 2 (x , 0) > 0 (3.2) (∂ xn ϕ 1 (x , 0)) 2 -(∂ xn ϕ 2 (x , 0)) 2 > 1, (3.3) 
The principal symbol p(x, ξ, τ ) of P (x, D, τ ) is now given by p(x, ξ, τ ) = diag(p 1 (x, ξ, τ ), p 2 (x, ξ, τ )) = (ξ + iτ (∂ xn ϕ))

2 +r(x, ξ +iτ (∂ x ϕ))-diag(0, τ 2 ) ∈ S 2 τ , where we assume that it satisfies to following the sub-ellipticity condition

(3.4) ∃ c > 0, ∀ (x, ξ) ∈ W 1 × R n , p k (x, ξ, τ ) = 0 =⇒ {Re(p k ), Im(p k )} (x, ξ, τ ) ≥ c ξ, τ 3 .
We defined on the boundary {x n = 0} ∩ W the operators

op(b 1 )w = w 1 -w 2 on {x n = 0} ∩ W op(b 2 )w = (D xn + iτ ∂ xn ϕ 1 ) w 1 + (D xn + iτ ∂ xn ϕ 2 ) w 2 on {x n = 0} ∩ W.
We denote by v = v L 2 (W2) with the correspondent scalar product denoted by (v 1 , v 2 ). For

s ∈ R we denote by v 2 s = op(Λ s )v 2 and |v| 2 s = v |xn=0 2 
s such that when s = 0 the norm |v| 0 with the scalar product (v 1 , v 2 ) 0 = (v 1|xn=0 , v 2|xn=0 ) will be denoted simply |v|. Finally, we denote by |v| 2 1,0,τ = |v| 2 1 + |D n v| 2 . Before proving the Carleman estimate we recall the following theorem given by [20, Theorem 2.3]. Proposition 3.1. Let ϕ satisfies (3.1)- (3.4). Then there exist C > 0 and τ 0 > 0 such that for any τ ≥ τ 0 we have the following estimate

(3.5) τ 3 w 2 + τ ∇w 2 ≤ C P (x, D, τ )w 2 + τ |w| 2 1,0,τ and 
(3.6) τ 3 w 2 + τ ∇w 2 + τ |w| 2 1,0,τ ≤ C P (x, D, τ )w 2 + τ |op(b 1 )w| 2 1 + τ |op(b 2 )w| 2 for any w ∈ C ∞ 0 (K) where K ⊂ W 1 is a compact subset.
Now we are ready to state our local Carleman estimate whose main ingredients are estimates (3.5) and (3.6). In fact, the Carleman estimate established here is an estimate analogous the previous one but with another scale of Sobolev spaces. Theorem 3.1. Let ϕ satisfies (3.1)-(3.4). There exist C > 0 and τ 0 > 0 such that for any τ ≥ τ 0 we have the following estimate (3.7)

τ 3 w 2 + τ ∇w 2 + τ 2 |w| 2 1 2 + τ 2 |D xn w| 2 -1 2 ≤ C P (x, D, τ )w 2 + τ 2 |op(b 1 )w| 2 1 2 + τ |op(b 2 )w| 2 for any w ∈ C ∞ 0 (K) where K ⊂ W 1 is a compact subset.
Proof. We can write the operator P (x, D, τ ) as follow

P (x, D, τ ) = D 2 xn + R + τ c 0 (x)D xn + τ C 1 (x) + τ 2 c 0 (x), where c 0 , c 0 ∈ T O 0 , C 1 ∈ T O 1 and R ∈ T O 2 with R = n-1 j,k=1 a j,k D xj D x k . Let v ∈ C ∞ 0 (W 1 ),
then we have

(D 2 xn + R)op(Λ -1 2 )v 2 ≤ C P op(Λ -1 2 )v 2 + τ 2 op(Λ 1 2 )v 2 + τ 2 D xn op(Λ -1 2 )v 2 + τ 4 op(Λ -1 2 )v 2 .
(3.8)

We can estimate the three last terms of the right hand side of (3.8) as follow

τ 2 D xn op(Λ -1 2 )v 2 + τ 4 op(Λ -1 2 )v 2 ≤ C(τ D xn v 2 + τ 3 v 2 ), and 
(3.9) τ 2 op(Λ 1 2 )v 2 = τ 2 1 √ τ op(Λ)v, √ τ v ≤ C τ op(Λ)v 2 + τ 3 v 2 ≤ Cτ op(Λ)v 2 .
Then following (3.8) we obtain

(3.10) (D 2 xn + R)op(Λ -1 2 )v 2 ≤ C P op(Λ -1 2 )v 2 + τ op(Λ)v 2 + τ 3 v 2 + τ D xn v 2 .
Combining (3.5) and (3.10) and using the fact that τ ( op

(Λ)v 2 + D xn v 2 ) ∼ τ 3 v 2 + τ ∇v 2 we obtain (3.11) (D 2 xn + R)op(Λ -1 2 )v 2 ≤ C P op(Λ -1 2 )v 2 + P v 2 + τ |v| 2 1,0,τ . We can write P op(Λ -1 2 )v = op(Λ -1 2 )P v + [P, op(Λ -1 2 )]v = op(Λ -1 2 )P v + [R, op(Λ -1 2 )]v + τ [c 0 (x)D xn , op(Λ -1 2 )]v + τ [C 1 (x), op(Λ -1 2 )]v + τ 2 [c 0 (x), op(Λ -1 2 )]v. (3.12) Since [R, op(Λ -1 2 )] ∈ T O 1 2
, then following to (3.5) we have

(3.13) [R, op(Λ -1 2 )]v 2 ≤ C op(Λ 1 2 )v 2 ≤ C op(Λ)v 2 ≤ C P v 2 + τ |v| 2 1,0,τ . Since [c 0 (x)D xn , op(Λ -1 2 )] ∈ T O -1 2 D xn , then following to (3.5) we have (3.14) τ 2 [c 0 (x)D xn , op(Λ -1 2 )]v 2 ≤ Cτ 2 op(Λ -1 2 )D xn v 2 ≤ Cτ D xn v 2 ≤ C P v 2 + τ |v| 2 1,0,τ . Since [C 1 (x), op(Λ -1 2 )] ∈ T O -1 2 then following to (3.5) we have (3.15) τ 2 [C 1 (x), op(Λ -1 2 )]v 2 ≤ Cτ 2 op(Λ -1 2 )v 2 ≤ Cτ v 2 ≤ C P v 2 + τ |v| 2 1,0,τ . Since [c 0 (x), op(Λ -1 2 )] ∈ T O -3 2
, then following to (3.5) we have

(3.16) τ 4 [c 0 (x), op(Λ -1 2 )]v ≤ Cτ 4 op(Λ -3 2 )v 2 ≤ Cτ 3 v 2 ≤ C P v 2 + τ |v| 2 1,0,τ .
From (3.12)-(3.16), one gets (3.17)

P op(Λ -1 2 )v 2 ≤ C P v 2 + τ |v| 2 1,0,τ .
Then the combination of (3.11) and (3.17) gives

(3.18) (D 2 xn + R)op(Λ -1 2 )v 2 ≤ C P v 2 + τ |v| 2 1,0,τ .
In another hand, by integration by parts we find

(D 2 xn + R)op(Λ -1 2 )v 2 = D 2 xn op(Λ -1 2 )v 2 + Rop(Λ -1 2 )v 2 + 2Re(D 2 xn op(Λ -1 2 )v, Rop(Λ -1 2 )v) = D 2 xn op(Λ -1 2 )v 2 + Rop(Λ -1 2 )v 2 (3.19) + 2Re i D xn v, Rop(Λ -1 )v 0 + i D xn v, [op(Λ -1 2 ), R]op(Λ -1 2 )v 0 + 2Re RD xn op(Λ -1 2 )v, D xn op(Λ -1 2 )v + 2Re D xn op(Λ -1 2 )v, [D xn , R]op(Λ -1 2 )v . Let χ 0 ∈ C ∞ 0 (R n +
) be a positive function such that χ 0 ≡ 1 in the support of v then by integration by parts and using the fact that (1χ 0 )v ≡ 0 we obtain

op(Λ 3 2 )v 2 = (op(Λ 2 )op(Λ 1 2 )v, op(Λ 1 2 )v) = τ 2 op(Λ 1 2 )v 2 + n-1 j=1 D 2 xj op(Λ 1 
2 )v, op(Λ

1 2 )v = τ 2 op(Λ 1 2 )v 2 + n-1 j=1 D xj op(Λ 1 2 )v, D xj op(Λ 1 2 )v = τ 2 op(Λ 1 2 )v 2 + n-1 j=1 χ 0 D xj op(Λ 1 2 )v, D xj op(Λ 1 2 )v (3.20) + n-1 j=1 [(1 -χ 0 ), D xj op(Λ 1 2 )]v, D xj op(Λ 1 2 )v Since [(1 -χ 0 ), D xj op(Λ 1 2 )] ∈ T O 1 2 and D xj op(Λ 1 2 ) ∈ T O 3 2 for j = 1, . . . , n -1, we show (3.21) n-1 j=1 [(1 -χ 0 ), D xj op(Λ 1 2 )]v, D xj op(Λ 1 2 )v ≤ C op(Λ)v 2 .
We recall that

n-1 j,k=1 χ 0 a j,k D xj vD x k v ≥ cχ 0 n-1 j=1
|D xj v| 2 , for some constant c > 0 and using the fact that [χ 0 , a j,k D xj op(Λ

1 2 )] ∈ T O 1 2 and D x k op(Λ 1 2 ) ∈ T O 3 2 , we obtain n-1 j=1 χ 0 D xj op(Λ 1 2 )v, D xj op(Λ 1 2 )v ≤ C n-1 j,k=1 χ 0 a j,k D xj op(Λ 1 2 )v, D k op(Λ 1 2 )v (3.22) ≤ C n-1 j,k=1 [χ 0 , a j,k D xj op(Λ 1 2 )]v, D x k op(Λ 1 2 )v + C n-1 j,k=1 a j,k D xj op(Λ 1 2 )v, D x k op(Λ 1 2 )v ≤ C n-1 j,k=1 a j,k D xj op(Λ 1 2 )v, D x k op(Λ 1 2 )v + C op(Λ)v 2 .
Integrating by parts the first term of the right hand side of (3.22)

, with R = n-1 j,k=1 a j,k D xj D x k , one gets n-1 j,k=1 a j,k D xj op(Λ 1 2 )v, D x k op(Λ 1 2 )v = (Rop(Λ 1 2 )v, op(Λ 1 2 )v) (3.23) + n-1 j,k=1 [D x k , a j,k ]D xj op(Λ 1 2 )v, op(Λ 1 2 )v . Since [D x k , a j,k ]D xj op(Λ 1 2 ) ∈ T O 3 2 , then (3.24) n-1 j,k=1 [D x k , a j,k ]D xj op(Λ 1 2 )v, op(Λ 1 2 )v ≤ C op(Λ)v 2 . Since (3.25) (Rop(Λ 1 2 )v, op(Λ 1 2 )v) = (Rop(Λ -1 2 )v, op(Λ 3 2 )v) + ([op(Λ), R]op(Λ -1 2 )v, op(Λ 1 2 )v),
and using the fact that [op(Λ), R]op(Λ -1 2 ) ∈ T O 3 2 and the Cauchy-Schwarz inequality, we obtain

(3.26) (Rop(Λ 1 2 )v, op(Λ 1 2 )v) ≤ C op(Λ 3 2 )v 2 + 1 Rop(Λ -1 2 )v 2 + op(Λ)v 2 .
Combining (3.20)-(3.26), we obtain for small enough

(3.27) Rop(Λ -1 2 )v 2 ≥ C op(Λ 3 2 )v 2 -τ op(Λ)v 2 ,
where we have used again (3.9). The same computation shows

(3.28) Re RD xn op(Λ -1 2 )v, D xn op(Λ -1 2 )v ≥ C D xn op(Λ 1 2 )v 2 -τ D xn v 2 . Since [op(Λ -1 2 ), R]op(Λ -1 2 ) ∈ T O 0 and Rop(Λ -1 ) ∈ T O 1 , we have (3.29) D xn v, Rop(Λ -1 )v 0 + D xn v, [op(Λ -1 2 ), R]op(Λ -1 2 )v 0 ≤ C |D xn v| 2 + |v| 2 1 ≤ C|v| 2 1,0,τ , and 
(3.30) D xn op(Λ -1 2 )v, [D xn , R]op(Λ -1 2 )v ≤ C v 2 + ∇v 2 .
Putting (3.18) and (3.27)-(3.30) into (3.19), we find

(3.31) D 2 xn op(Λ -1 2 )v 2 + D xn op(Λ 1 2 )v 2 + op(Λ 3 2 )v 2 ≤ C P v 2 + τ 3 v 2 + τ ∇v 2 + τ |v| 2
1,0,τ . Following (3.6) and (3.31) will be reduced to the following estimate

(3.32) D 2 xn op(Λ -1 2 )v 2 + D xn op(Λ 1 2 )v 2 + op(Λ 3 
2 )v 2 + τ |v| 2 1,0,τ ≤ C P v 2 + τ |op(b 1 )v| 2 1 + τ |op(b 2 )v| 2 . Let χ ∈ C ∞ 0 (R n ) such that χ ≡ 1 in the support of w. We set v = χop(Λ - 1 
2 )w and we write

P v = op(Λ -1 2 )P w + [P, op(Λ -1 2 )]w + P [χ, op(Λ -1 2 )]w = op(Λ -1 2 )P w + [P, op(Λ -1 2 )]w + D 2 xn [χ, op(Λ -1 2 )]w + R[χ, op(Λ -1 2 )]w + τ c 0 (x)D xn [χ, op(Λ -1 2 )]w + τ C 1 (x)[χ, op(Λ -1 2 )]w + τ 2 c 0 (x)[χ, op(Λ -1 2 )]w. (3.33) We have [χ, op(Λ -1 2 )] ∈ T O -3 2 , then (3.34) D 2 xn [χ, op(Λ -1 2 )]w 2 ≤ C D 2 xn op(Λ -3 2 )w 2 + D xn op(Λ -3 2 )w 2 + op(Λ -3 2 )w 2 , and 
(3.35) τ 2 c 0 (x)D xn [χ, op(Λ -1 2 )]w 2 ≤ Cτ 2 D xn op(Λ -3 2 )w 2 + op(Λ -3 2 )w 2 . Since R[χ, op(Λ -1 2 )] ∈ T O 1 2 , C 1 (x)[χ, op(Λ -1 2 )] ∈ T O -1 2 and c 0 (x)[χ, op(Λ -1 2 )] ∈ T O -3 2 , we obtain (3.36) R[χ, op(Λ -1 2 )]w 2 + τ 2 C 1 (x)[χ, op(Λ -1 2 )]w 2 + τ 4 c 0 (x)[χ, op(Λ -1 2 )]w 2 ≤ C op(Λ 1 2 )w 2 .
Since we can write

[P, op(Λ -1 2 )] = [R, op(Λ -1 2 )] + τ [c 0 (x)D xn , op(Λ -1 2 )] + τ [C 1 (x), op(Λ -1 2 )] + τ 2 [c 0 (x), op(Λ -1 2 )],
then by using (3.13)-(3.16), we obtain

(3.37) [P, op(Λ -1 2 )]w 2 ≤ C op(Λ 1 2 )w 2 + τ -1 D xn w 2 .
Inserting (3.34)-(3.37) into (3.33), we find

(3.38) P v 2 ≤ C τ -1 P w 2 + τ -1 op(Λ)w 2 + τ -1 D xn w 2 + τ -1 D 2 xn op(Λ -1 )w 2 . We have op(b 1 )v = op(b 1 )χop(Λ -1 2 )w = op(Λ -1 2 )op(b 1 )w + op(b 1 )[χ, op(Λ -1 2 )]w + [op(b 1 ), op(Λ -1 2 )]w. Since op(b 1 ) ∈ T O 0 then op(b 1 )[χ, op(Λ -1 2 )] ∈ T O -3 2 and [op(b 1 ), op(Λ -1 2 )] ∈ T O -3 2 which gives τ |op(b 1 )v| 2 1 = τ |op(Λ)op(b 1 )v| 2 ≤ C τ |op(Λ 1 2 )op(b 1 )w| 2 + |op(Λ -1 2 )w| 2 ≤ C τ |op(Λ 1 2 )op(b 1 )w| 2 + τ -2 |op(Λ 1 
2 )w| 2 .

(3.39)

We have

op(b 2 )v = op(b 2 )χop(Λ -1 2 )w = op(Λ -1 2 )op(b 2 )w + op(b 1 )[χ, op(Λ -1 2 )]w + [op(b 2 ), op(Λ -1 2 )]w. Since op(b 2 ) ∈ D xn + T O 1 then it is clear that op(b 2 )[χ, op(Λ -1 2 )] ∈ T O -3 2 D xn + T O -1 2 and [op(b 2 ), op(Λ -1 2 )] ∈ T O -3 2 D xn + T O -1 2 hence τ |op(b 2 )v| 2 ≤ Cτ |op(Λ -1 2 )op(b 2 )w| 2 + |op(Λ -1 2 )w| 2 + |D xn op(Λ -3 2 )w| 2 ≤ C τ |op(Λ -1 2 )op(b 2 )w| 2 + τ -1 |op(Λ 1 2 )w| 2 + τ -1 |D xn op(Λ -1 2 )w| 2 .
(3.40)

Moreover, we can write 

op(Λ)v = op(Λ)χop(Λ -1 2 )w = op(Λ 1 2 )w + op(Λ)[χ, op(Λ -1 2 )]w, since op(Λ)[χ, op(Λ -1 2 )] ∈ T O -1 2 then we get τ |op(Λ)v| 2 ≥ τ |op(Λ 1 2 )w| 2 -Cτ |op(Λ -1 2 )w| 2 ≥ τ |op(Λ 1 2 )w| 2 -Cτ -1 |op(Λ 1 
op(Λ 3 2 )v = op(Λ 3 2 )χop(Λ -1 2 )w = op(Λ)w + op(Λ 3 2 )[χ, op(Λ -1 2 )]w
where op(Λ

3 2 )[χ, op(Λ -1 2 )] ∈ T O 0 we obtain (3.44) op(Λ)w 2 -C w 2 ≤ op(Λ 3 2 )v 2 .
Similarly we can prove also that

(3.45) D xn w 2 -C D xn op(Λ -1 )w 2 + op(Λ -1 )w 2 ≤ D xn op(Λ 1 2 )v 2 ,
and

(3.46) D 2 xn op(Λ -1 )w 2 -C D 2 xn op(Λ -2 )w 2 + D xn op(Λ -2 )w 2 + op(Λ -2 )w 2 ≤ D 2 xn op(Λ -1 2 )v 2 .
Combining (3.44)-(3.46) we find 

(3.47) D 2 xn op(Λ -1 )w 2 + D xn w 2 + op(Λ)w 2 ≤ D 2 xn op(Λ -1 2 )v 2 + D xn op(Λ 1 2 )v 2 + op(Λ 3 
D 2 xn op(Λ -1 )w 2 + D xn w 2 + op(Λ)w 2 + τ |op(Λ 1 2 )w| 2 + τ |D xn op(Λ -1 2 )w| 2 ≤ C τ -1 P w 2 + τ -1 op(Λ)w 2 + τ -1 D xn w 2 + τ -1 D 2 xn op(Λ -1 )w 2 + τ |op(Λ 1 2 )op(b 1 )w| 2 + τ -2 |op(Λ 1 2 )w| 2 + τ |op(Λ -1 2 )op(b 2 )w| 2 + τ -1 |op(Λ 1 2 )w| 2 + τ -1 |D xn op(Λ -1 2 )w| 2 .
For τ large enough we yield

D xn w 2 + op(Λ)w 2 + τ |op(Λ 1 2 )w| 2 + τ |D xn op(Λ -1 2 )w| 2 ≤ C τ -1 P w 2 + τ |op(Λ 1 2 )op(b 1 )w| 2 + τ |op(Λ -1 2 )op(b 2 )w| 2 ,
which obviously leads to the Carleman estimate. And this end the proof.

For u = (u 1 , u 2 ) ∈ H 1 (U 1 ) × H 1 (U 2 )
we define the tangential operators op(B 1 ) and op(B 2 ) by

(3.48) op(B 1 )u = u 1|γ0 -u 2|γ0 and op(B 2 )u = ∂ ν u 1|γ0 -∂ ν u 2|γ0 .
We note that op(B 1 ) measure the continuity of the displacement of u through the interface γ 0 where op(B 2 ) describe the difference of the flux through γ 0 of the two sides of the interface.

Corollary 3.1. Let ϕ satisfies (3.1)-(3.4). There exist C > 0 and τ 0 > 0 such that for any τ ≥ τ 0 we have the following estimate

(3.49) τ 3 e τ ϕ u 2 + τ e τ ϕ ∇u 2 + ≤ C e τ ϕ P (x, D)u 2 + τ 2 |e τ ϕ op(B 1 )u| 2 1 2 + τ |e τ ϕ op(B 2 )u| 2 for any u ∈ C ∞ 0 (K) where K ⊂ W 1 is a compact subset.
Proof. Let w = e τ ϕ u and we recall that P (x, D, τ )w = e τ ϕ P (x, D)u, op(b 1 )w = e τ ϕ1 .op(B 1 )u and op(b 2 )w = e τ ϕ1 .op(B 2 )u then using the fact that ϕ 1 and ϕ 2 have the same trace on γ 0 and estimate (3.7) we obtain (3.49).

Now we can state the global Carleman estimate in U 1 and U 2 (defined in the beginning of this section page 5) which is given by the following theorem. Theorem 3.2. Assume that ϕ satisfies

|∇ϕ k (x)| > 0, ∀ x ∈ U k , k = 1, 2, (3.50) ∂ ν ϕ |γ (x) < 0, (3.51) ∂ ν ϕ k|γ0 (x) > 0, k = 1, 2, (3.52) ∂ ν ϕ 1|γ0 (x) 2 -∂ ν ϕ 2|γ0 (x) 2 > 1, (3.53)
and the sub-ellipticity condition

(3.54) ∃ c > 0, ∀ (x, ξ) ∈ U k × R n , p k (x, ξ) = 0 =⇒ {Re(p k ), Im(p k )} (x, ξ, τ ) ≥ c ξ, τ 3 .
Then there exist C > 0 and τ 0 > 0 such that we have the following estimate

τ 3 e τ ϕ u 2 L 2 (U ) + τ e τ ϕ ∇u 2 L 2 (U ) (3.55) ≤ C e τ ϕ P u 2 L 2 (U ) + τ 2 e τ ϕ op(B 1 )u 2 H 1 2 (γ0) 
+ τ e τ ϕ op(B 2 )u 2

L 2 (γ0)
for all τ ≥ τ 0 and u

= (u 1 , u 2 ) ∈ H 2 (U 1 ) × H 2 (U 2 ) such that u 2|γ = 0.
Actually a weight functions with assumptions (3.50)-(3.54) can not exist. So, since the proof of the theorem is local then we can do without the conditions (3.50) and (3.51) in some region where the entries is supposed to be vanishing around the critical points of the weight functions and where the damping is active. Next, the missing information will be recuperated with a new entries which vanishing far away when the first do (See next section).

Stabilization result

In this section, we will prove the logarithmic stability of the system (1.1). To this end, we establish a particular resolvent estimate precisely we will show that for some constant C > 0 we have

(4.1) (A -iµ I) -1 L(H) ≤ Ce C|µ| , ∀ |µ| 1,
and then by Burq's result [START_REF] Burq | Décroissance de l'énergie locale de l'équation des ondes pour le problème extérieur et absence de résonance au voisinage du réel[END_REF] and the remark of Duyckaerts [9, section 7] (see also [START_REF] Batty | Non-uniform stability for bounded semi-groups on Banach spaces[END_REF][START_REF] Borichev | Optimal polynomial decay of function and operator semigroups[END_REF]) we obtain the expected decay rate of the energy.

Let µ be a real number such that |µ| is large, and assume that

(4.2) (A -iµ I)(u, v) t = (f, g) t , (u, v) ∈ D(A), (f, g) ∈ H.
which can be written as follow

v -iµu = f in Ω ∆u + div(a(x)∇v) -iµv = g in Ω,
or equivalently,

(4.3) v = f + iµu in Ω ∆u + iµdiv(a(x)∇u) + µ 2 u = g + iµf -div(a(x)∇f ) in Ω.
Multiplying the second line of (4.3) by u and integrating over Ω then by Green's formula we obtain (4.4)

Ω (g -iµf )u dx + d ω ∇f.∇u dx = µ 2 Ω |u| 2 dx - Ω |∇u| 2 dx -idµ ω |∇u| 2 dx.
Taking the imaginary part of (4.4) and using the Cauchy-Schwarz inequality and Poincaré inequality we find (4.5) d|µ|

ω |∇u| 2 dx ≤ C µ 2 Ω |∇f | 2 dx + Ω |g| 2 dx . By setting u = u 1 1 ω + u 2 1 Ω\ω , v = v 1 1 ω + v 2 1 Ω\ω , f = f 1 1 ω + f 2 1 Ω\ω and g = g 1 1 ω + g 2 1 Ω\ω system (4.
3) is transformed to the following transmission equation

(4.6)        v 1 = iµu 1 + f 1 in ω v 2 = iµu 2 + f 2 in Ω\ω ∆((1 + idµ)u 1 + df 1 ) + µ 2 u 1 = g 1 + iµf 1 in ω ∆u 2 + µ 2 u 2 = g 2 + iµf 2 in Ω\ω,
with the transmission conditions (4.7) and for all |µ| > µ 0 we have the following estimate (4.9)

u 1 = u 2 on I ∂ ν ((1 + idµ)u 1 + df 1 ) = ∂ ν u 2 on I,
w 2 H 1 ≤ C ∇w 2 L 2 (O) + F 2 L 2 (O) .
Proof. We need to distinguish two cases Inside O: Let χ ∈ C ∞ 0 (O), we have by integration by parts

O ∆w + µ 2 1 + idµ w .χ 2 w dx = µ 2 1 + idµ χw 2 L 2 (O) - O |χ∇w| 2 dx -2 O ∇χ.∇wχw dx.
Then we obtain

µ 2 1 + d 2 µ 2 χw 2 L 2 (O) ≤ C F L 2 (O) . χ 2 w L 2 (O) + ∇w 2 L 2 (O) + ∇w L 2 (O) . χw L 2 (O) .
Using Cauchy-Schwarz inequality and for |µ| large enough, one gets (4.10)

χw 2 L 2 (O) ≤ C ∇w 2 L 2 (O) + F 2 L 2 (O) . hence the result inside O.
In the neighborhood of the boundary: Let

x = (x , x n ) ∈ R n-1 × R. then ∂O = {x ∈ R n , x n = 0}. Let ε > 0 such that 0 < x n < ε. Then we have w(x, ε) -w(x , x n ) = ε xn ∂ xn w(x , t) dt. It follows |w(x , x n )| 2 ≤ 2|w(x , ε)| 2 + 2 ε xn |∂ xn w(x , t)| dt 2 .
Using the Cauchy-Schwarz inequality, we obtain

|w(x , x n )| 2 ≤ 2|w(x , ε)| 2 + 2ε ε xn |∂ xn w(x , t)| 2 dt.
Integrating with respect to x , we obtain (4.11)

|x |<ε |w(x , x n )| 2 dx ≤ 2 |x |<ε |w(x , ε)| 2 dx + 2ε |x |<ε |xn|<ε |∂ xn w(x , t)| 2 dt dx .
Using the trace theorem, we have (4.12)

|x |<ε |w(x , ε)| 2 dx ≤ C |x |<2ε,|xn-ε|< ε 2 |w(x)| 2 + |∇w(x)| 2 dx.
We introduce the following cut-off functions

χ 1 (x) = 1 if 0 < x n < ε 2 0 if x n > ε, and 
χ 2 (x) =    1 if ε 2 < x n < 3ε 2 0 if x n < ε 4 , x n > 2ε.
Combining (4.11) and (4.12), we obtain for ε small enough (4.13)

χ 1 w 2 ≤ C χ 2 w 2 + ∇w 2 .
From (4.10), we have

(4.14) χ 2 w 2 ≤ C ∇w 2 + F 2 .
Inserting (4.14) into (4.13) we find (4.15)

χ 1 w 2 ≤ C ∇w 2 + F 2 .
hence the result in the neighborhood of the boundary.

Following to (4.10), we can write

(4.16) (1 -χ 1 )w 2 ≤ C ∇w 2 + F 2 .
Adding (4.15) and (4.16) we obtain (4.9). Now we can prove Theorem 1.1. We set w 1 = (1 + idµ)u 1 + df 1 and w 2 = u 2 , then the system (4.6)-(4.8) can be recast as follow (4.17)

   ∆w 1 + µ 2 1 + idµ w 1 = Φ 1 in ω ∆w 2 + µ 2 w 2 = Φ 2 in Ω \ ω,
with the transmission conditions (4.18)

w 1 = w 2 + φ on I ∂ ν w 1 = ∂ ν w 2 on I,
and the boundary condition

(4.19) w 2 = 0 on Γ,
where we have denoted by

Φ 1 = g 1 + iµ 1 + idµ f 1 , Φ 2 = g 2 + iµf 2 and φ = df 1 + idµu 1 .
We denoted by B r a ball of radius r > 0 in ω and B c r its complementary such that B 4r ⊂ ω. Let's introduce the cut-off function χ ∈ C ∞ (ω) by

χ(x) = 1 in B c 3r 0 in B 2r .
Next, we denote by w 1 = χw 1 then from the first line of (4.17), one sees that (4.20)

∆ w 1 + µ 2 1 + idµ w 1 = Φ 1 in ω,
where Φ 1 = χΦ 1 -[∆, χ]w 1 . We denote by Ω 1 = ω \ B r and Ω 2 = Ω \ ω.

According to [START_REF] Burq | Décroissance de l'énergie locale de l'équation des ondes pour le problème extérieur et absence de résonance au voisinage du réel[END_REF], [START_REF] Hassine | Asymptotic behavior of the transmission Euler-Bernoulli plate and wave equation with a localized Kelvin-Voigt damping[END_REF] or [START_REF] Hassine | Logarithmic stabilization of the Euler-Bernoulli plate equation with locally distributed Kelvin-Voigt damping[END_REF] we can find four weight functions ϕ 1,1 , ϕ 1,2 , ϕ 2,1 and ϕ 2,2 , a finite number of points x i j,k where B(x i j,k , 2ε) ⊂ Ω j for all j, k = 1, 2 and i = 1, . . . , N i,k such that by denoting

U j,k = Ω k   N j,k i=1 B(x i j,k , )   c , the weight function ϕ k = diag(ϕ 1,k , ϕ 2,k ) verifying the assumption (3.50)-(3.54) in U 1,k ∪ U 2,k with γ 1 = ∂B r , γ 2 = Γ and γ = I. Moreover, ϕ j,k < ϕ j,k+1 in N j,k i=1 
B(x i j,k , 2 ) for all j, k = 1, 2 where we denoted by ϕ j,3 = ϕ j,1 .

Let χ j,k (for j, k = 1, 2) four cut-off functions equal to 1 in

  N j,k i=1 B(x i j,k , 2 )   c and supported in   N j,k i=1 B(x i j,k , )   c
(in order to eliminate the critical points of the weight functions ϕ j,k ). We 

set w 1,1 = χ 1,1 w 1 , w 1,2 = χ 1,2 w 1 , w 2,1 = χ 2,
               ∆w 1,k + µ 2 1 + idµ w 1,k = Ψ 1,k in ω ∆w 2,k + µ 2 w 2,k = Ψ 2,k in Ω \ ω w 1,k = w 2,k + φ on I ∂ ν w 1,k = ∂ ν w 2,k on I w 2,k = 0 on Γ, where (4.22) Ψ 1,k = χ 1,k Φ 1 -[∆, χ 1,k ] w 1 Ψ 2,k = χ 2,k Φ 2 -[∆, χ 2,k ]w 2 .
Applying now Carleman estimate (3.55) to the system (4.21) with τ = |µ| then for k = 1, 2 we have

τ 3 j=1,2 e τ ϕ j,k w j,k 2 L 2 (U j,k ) + τ j=1,2 e τ ϕ j,k ∇w j,k 2 L 2 (U j,k ) ≤ C e τ ϕ 1,k Ψ 1,k 2 L 2 (U 1,k ) + e τ ϕ 2,k Ψ 2,k 2 
L 2 (U 2,k ) + τ 2 e τ ϕ 1,k φ 2 H 1 2 (I)
.

We recall the expression of Ψ 1,k and Ψ 2,k in (4.22), then we can write .

Adding the two last estimates and using the property of the weight functions ϕ j,1 < ϕ 1,2 in .

Since we can write φ = idµ 1 + idµ w 1 + d 1 + idµ f 1 then using the trace theorem, Green's formula and the fact that the operator [∆, χ] is of the first order with support in ω we find We can obtain the same estimate as (4.25) with the v variable with the L 2 norm instead of u by using again the Poincaré inequality and recalling the expression of v in the first line of (4.3) namely, we have

(4.26) v 2 L 2 (Ω) ≤ Ce c|µ| ∇f 2 L 2 (Ω) + g 2 L 2 (Ω) .
So that, the estimate (4.1) is obtained by the combination of the two estimates (4.25) and (4.26).
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  = τ |v| 2 1 + τ |D n v| 2 = τ |op(Λ)v| 2 + τ |D n v| 2 ,and combining (3.41) and (3.42), we obtain

	Recalling that	
	τ |v| 2 1,0,τ (3.43) τ |op(Λ	1 2 )w| 2 + τ |D xn op(Λ -1 2 )w| 2 ≤ Cτ |v| 2 1,0,τ .
	Since we have	

2 )w| 2 , and for τ large enough we obtain

(3.41) 

τ |op(Λ 1 2 )w| 2 ≤ Cτ |op(Λ)v| 2 . By using (3.41) similarly we can prove that for τ large enough we have (3.42) τ |D xn op(Λ -1 2 )w| 2 ≤ Cτ |D xn v| 2 + Cτ |v| 2 1 .

  1 w 2 and w 2,2 = χ 2,2 w 2 .

	Then from system (4.18)
	and equations (4.8) and (4.20), then for k = 1, 2 we obtain
	(4.21)