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Material modeling via Thermodynamics-based
Artificial Neural Networks

Filippo Masi, Ioannis Stefanou, Paolo Vannucci, and Victor Maffi-Berthier

Abstract Machine Learning methods and, in particular, Artificial Neural Networks
(ANNs) have demonstrated promising capabilities in material constitutive modeling.
One of the main drawbacks of such approaches is the lack of a rigorous frame based
on the laws of physics.
Here we propose a new class of data-driven, physics-based, neural networks for
constitutive modeling of strain-rate independent processes at the material point level,
which we define as Thermodynamics-based Artificial Neural Networks (TANNs).
Relying on automatic differentiation, derivatives of the free-energy, the dissipation
rate and their relation with the stress and internal state variables are hardwired in the
network.
The proposed network does not have to identify the underlying pattern of thermodynamic
laws during training, reducing the need of large data-sets, improving the robustness
and the performance of predictions. Finally and more important, the predictions
remain thermodynamically consistent, even for unseen data.
TANNs are herein used to model history-dependent materials, with kinematic
softening. While the motivating examples considered may be rather simple, we
emphasize that the proposed class of ANN can be successfully applied (without any
modification) to materials with different or more complex behavior.
Based on these features, TANNs are a starting point for data-driven, physics-based
constitutive modeling with neural networks.
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1 Introduction

Machine Learning (ML) is increasingly recognized as a promising tool for many
scientific branches, from biological to mechanical sciences. At present, several
successful applications of ML approaches and, in particular, of Artificial Neural
Networks (ANNs) have been implemented for learning representations of material
behaviors from data, either originated through experimental tests or detailed
micro-mechanical simulations. We refer, without being exhaustive, to the works
of Ghaboussi and Sidarta [12], Lefik and Schrefler [33], Jung and Ghaboussi
[28], Settgast et al. [45], Liu and Wu [35], Lu et al. [37], Xu et al. [47], Huang
et al. [25], Liu and Wu [35], Gajek et al. [10], Gorji et al. [18], Heider et al.
[20], Ghavamian and Simone [15], Mozaffar et al. [42], Frankel et al. [9], González
et al. [16], Gorji et al. [18].
Further achievements were accomplished in the field of numerical modeling of
mechanics. Starting from the so-called autoprogressive trained ANNs proposed
by Ghaboussi et al. [14], numerous approaches have been implemented to solve
numerical simulations by resorting to ANNs. Neural networks, trained on some
data characterizing the response of a given material, can be employed as material
subroutines, replacing the standard constitutive equations or algorithms, in numerical
simulations [see 33, 28, 34, 45, among others].
In the last two decades, attention has been focused on the implementation of ANN
methods for speeding-up the computing time of multiscale analyses for materials
with different characteristic lengths (or scales). Indeed, in multiscale simulations, the
micro-scale problem has to be solved repeatedly, but with different input parameters,
which renders the computing time of such approaches soon prohibitive. Accelerating
techniques based on ANNs have been promoted as excellent tools to overcome the
aforementioned issues, see e.g. [8, 1, 35, 15, 36].

Nevertheless, constitutive modeling via ANNs has some major issues. For
instance, ANNs perform well when evaluated sufficiently close to the training
domain. However, the extrapolation capabilities appear limited when predictions
are performed for values far beyond the training range. Furthermore, vast amounts of
high quality data (e.g. with reduced noise and free of outliers) are generally needed to
enable ANNs to identify and learn with high accuracy the constitutive stress-strain
response. These issues essentially stems from the lack of a rigorous framework
based on the physical laws governing the material systems under investigation. For a
trained ANN, nothing guarantees that its predictions will respect the basic principles
of thermodynamics, e.g. the first and second laws.

Very recently, a new class of methods, denoted as physics-driven approaches,
have received particular attention. We refer, for instance, to Raissi et al. [44]
who developed the so-called Physics-Informed Neural Networks (PINNs), for the
resolution of partial differential equations by enforcing basic laws of physics, using
the reverse-mode autodiff technique [2]. In the field of mechanics, we record the
works of González et al. [17], Hernández et al. [21] in which, by leveraging the
metriplectic structure of dissipative Hamiltonian systems, the behavior of physical
systems can be retrieved by ANNs, whose predictions comply with the first and
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second principles of thermodynamics.
In the field of mechanics and constitutive material modeling, Kirchdoerfer and
Ortiz [30] proposed a new data driven computing approach in which the boundary
value problem (BVP), in material numerical simulations, is solved directly from
experimental material data (measurements), bypassing the ANN material modeling
step [30, 26, 31, 32, 27, 6]. The integration of basic laws of thermodynamics, in the
forms of a minimization problem, allows predictions to fulfill physical requirements,
such as the thermodynamic consistency.

With the aim of accelerating multiscale simulations, we propose here a new
class of Artificial Neural Networks for the material modeling, based on the basic
laws of thermodynamics. Our method, which we denote as Thermodynamics-
based Artificial Neural Networks (TANNs), assures thermodynamically consistent
network’s predictions, for data both close to and beyond the training domain. The
proposed approach can be advantageous when modeling complex and abstract
constitutive behaviors, which are not a priori known. It can be used even if the BVP
does not have a unique solution due to important non-linearities and bifurcation
phenomena (e.g. loss of uniqueness, strain localization at the length of interest,
multiphysics, runway instabilities etc.). Finally, TANNs are characterized by reduced
computing time, differently from other thermodynamics-based approaches [6, 7],
which render them an excellent accelerating tool for multiscale simulations.
For the implementation of Artificial Neural Networks and Thermodynamics-based
Artificial Neural Networks, we leverage Tensorflow v2.0. Source codes are available
at https://github.com/flpmasi/Thermodynamics-Neural-Networks [39].

This Chapter is organized as follows. Section 2 presents an overview of ANN
methods and their implementation for material modeling, denoted here as standard
ANNs. We present in Section 3 the new class of Thermodynamics-based Artificial
Neural Networks, as opposed to standard ANN methods, for the constitutive
modeling, at the material point level. Finally, Section 4 presents a motivating
application of our approach in modeling history-dependent material behaviors with
kinematic softening. Extensive comparisons with standard ANNs, which are not
based on thermodynamics, are also presented.

2 Artificial Neural Networks for constitutive modeling

Machine Learning is a general term to describe a large spectrum of numerical
methods. Some of them offer very rich interpolation spaces, which, in theory, could
be used for approximating complicated functions belonging to uncommon spaces.
Here we focus on the method of Artificial Neural Networks (ANNs), which is
considered to be a sub-class of Machine Learning methods. According to Cybenko
[4] and Chen and Chen [3], ANNs have proved to be universal approximators, due
to their rich interpolation space.
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2.1 Artificial Neural networks

Artificial Neural Networks (ANNs) can be regarded as non-linear operators [24, 11],
composed of an assembly of mutually connected processing units−nodes−, which
take an input signal I and return the output O, namely

O = ANN@I. (1)

ANNs consist of at least three types of layers: input, output and hidden layers, with
equal or different number of nodes. Figure 1 depicts a network composed of three
hidden layers, with three nodes each, an input layer with three nodes, and an output
layer with one node. When an ANN has two or more hidden layers, it is called a deep
neural network [11]. Denoting the input array withI = (𝑖𝑡 ), with 𝑡 = 1, 2 . . . , 𝑛I (𝑛I
is the number of inputs), and the outputs with O =

(
𝑜 𝑗

)
, with 𝑗 = 1, 2 . . . , 𝑛O (𝑛O is

the number of outputs), the signal flows from layer (𝑙 − 1) to layer (𝑙) according to

𝑝 (𝑙)
𝑘 = A (𝑙)

(
𝑧 (𝑙)𝑘

)
, with 𝑧 (𝑙)𝑘 =

𝑛
(𝑙−1)
N∑
𝑠

(
𝑤 (𝑙)

𝑘𝑠 𝑝
(𝑙−1)
𝑠

)
+ 𝑏 (𝑙)

𝑘 , (2)

where 𝑝 (𝑙)
𝑘 are the outputs of node 𝑘 , at layer (𝑙); A (𝑙) is the activation function

of layer (𝑙); 𝑛(𝑙−1)
N is the number of neurons in layer (𝑙 − 1); 𝑤 (𝑙)

𝑘𝑠 are the weights
between the 𝑠-th node in layer (𝑙 − 1) and the 𝑘-th node in layer (𝑙); and 𝑏 (𝑙)

𝑘 are the
biases of layer (𝑙).
The weights and biases of interconnections are adjusted, in an iterative procedure
[gradient descent algorithm 11], to minimize the error between the benchmark, O,
and prediction, O, that is measured by a loss function, L. In the following, the Mean
(over a set of 𝑁 samples) Absolute Error (MAE) is used as loss function, i.e.,

L =

∑𝑁
𝑖=1 |O𝑖 − O𝑖 |

𝑁
, (3)

where 𝑖 = 1, 2, . . . 𝑁 . The errors related to each node of the output layer are hence
back-propagated to the nodes in the hidden layers and used to calculate the gradients
of the loss function, namely

𝜕L
𝜕𝑤 (𝑙−𝑚)

𝑘𝑠

=
𝜕𝑧 (𝑙−𝑚+1)

𝑘

𝜕𝑤 (𝑙−𝑚)
𝑘𝑠

𝜕𝑝 (𝑙−𝑚+1)
𝑘

𝜕𝑧 (𝑙−𝑚+1)
𝑘

𝜕L
𝜕𝑝 (𝑙−𝑚+1)

𝑘

𝜕L
𝜕𝑝 (𝑙−𝑚)

𝑘

=

𝑛
(𝑙−𝑚+1)
N∑
𝑗=1

𝜕𝑧 (𝑙−𝑚+1)
𝑗

𝜕𝑝 (𝑙−𝑚)
𝑘

𝜕𝑝 (𝑙−𝑚+1)
𝑗

𝜕𝑧 (𝑙−𝑚+1)
𝑗

𝜕L
𝜕𝑝 (𝑙−𝑚+1)

𝑗

(4)

which are then used to update weights and biases, and force the minimization of the
loss function values, i.e.
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𝑤 (𝑙)−new
𝑘𝑠 := 𝑤 (𝑙)

𝑘𝑠 − 𝜖
𝜕L
𝜕𝑤 (𝑙)

𝑘𝑠

, (5)

where 𝜖 is the so-called learning rate. The weights and biases updating, the so-

Fig. 1 Graph illustration
of an ANN structure with
three inputs, one output,
and three hidden layer with
three nodes. In particular,
the ANN structure models
the incremental stress-strain
constitutive response of a
material. From the knowledge
of the material state at time
𝑡 , the model predicts the
material stress increment,Δ𝜎,
corresponding to the given
material strain increment, Δ𝜀.

σ t

Δσ

input layer

output layer

hidden layers

Δ𝜀𝜀 t

called training process, is performed on a subset of the input-output data-set, defined
as training set, known from experimental tests or numerical simulations of the
phenomenon investigated. The ANN is trained. The training process is stopped as
the loss function is below a specific tolerance. Then a test set, a subset of the input-
output data-set different to the training set, is used to check the error of the network
predictions. Once the ANN is trained, it is used in recall mode to obtain the output
of the problem at hand.
Although ANNs have proved to be universal approximators [4, 3], the choice of
hyper-parameters, such as the number of neurons, the network topology, the weights,
etc. are problem-dependent. The same stands for the activation functions, which
may be chosen to have some desirable properties of non-linearity, differentiation,
monotonicity, etc. Most of these properties stem from issues related to the gradient
descent algorithm and the so-called vanishing gradient problem.

2.2 Material modeling via Artificial Neural networks

Artificial Neural Networks (ANNs) have demonstrated to be successful in the
constitutive modeling of history-dependent materials from model identification
based on experiments and detailed numerical simulations. Starting form the seminal
work of Ghaboussi et al. [13] and without being exhaustive, we refer to Ghaboussi
and Sidarta [12], Lefik and Schrefler [33], Jung and Ghaboussi [28], Settgast et al.
[45], Liu and Wu [35], Lu et al. [37], Xu et al. [47], Huang et al. [25], Liu and
Wu [35], Gajek et al. [10], Gorji et al. [18], Heider et al. [20], Ghavamian and
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Simone [15], Mozaffar et al. [42], Frankel et al. [9], González et al. [16], Gorji
et al. [18]. The main idea in these works is to appropriately train ANNs, feeding
them with material data, and predict the material response at the material point
level. The trained models are then used as material subroutines, replacing the
standard constitutive equations or algorithms, in numerical simulations and speed
up the otherwise prohibitive computing time of multiscale analyses [1, 38]. This
replacement is straightforward and non-intrusive in Finite Element (FE) codes. We
record, for instance, the successful embedding of ANNs as material description
subroutines in FE codes by Lefik and Schrefler [33], Jung and Ghaboussi [28], Lefik
et al. [34], Settgast et al. [45]. Ghavamian and Simone [15] further implemented
ANNs in a FE2 scheme for accelerating multiscale FE simulations for materials
displaying strain softening, with Perzyna viscoplaticity model.
Several ANN models and architectures have been developed to promote the accuracy
of the material response predictions. For instance, Figure 1 depicts a variant of the
Nested Artificial Neural Networks first proposed by Ghaboussi and Sidarta [12]
for the modeling of geo-materials, with history-dependent behavior. Furthermore,
we record the works of Heider et al. [20], Mozaffar et al. [42], Gorji et al. [18]
who developed ANN models incorporating some knowledge in an informed, guided
graph with intermediate history-dependent variables or detecting history-dependent
features. We show in Figure 2 the graph of a standard ANN for the modeling
of history-dependent material responses. The inputs of the network are the strain
increment, Δ𝜀, and the material state at time 𝑡, characterized by strains, 𝜀𝑡 , stresses,
𝜎𝑡 , and an additional set of variables (e.g., plastic strains, temperature, etc.), denoted
here asZ𝑡 . The model outputs are the additional variables increments (e.g. the plastic
strain or temperature increment), ΔZ, and the stress increments, Δ𝜎, computed via
two distinct standard ANNs: sANNZ and sANN𝜎 , respectively. In an early work of the
authors [40], the foregoing model was successfully used to model von Mises plasticity
with kinematic hardening and softening. Nevertheless, several issues afflicting the
model accuracy were found. The reason lies in the lack of a rigorous framework
based on the laws of physics for standard ANNs, see e.g. [44, 40]. A large number
of quality and error-free data is usually needed to enable standard ANNs to identify
and learn the underlying thermodynamic laws (although without any guarantee that
the predictions will be thermodynamically consistent).

The seminal work of Raissi et al. [44] showed the possibility of adding physical
constraints within the architecture of Artificial Neural Networks, by taking advantage
of the reverse-mode autodiff [2] in the numerical computation of the derivatives of
an ANN with respect to its inputs. The new class of physics-based ANNs, denoted as
Physics-Informed Artificial Neural Networks (PINNs), demonstrated its superiority
with respect to standard ANNs [44]. Inspired by the aforementioned PINNs, Xu
et al. [47] developed Symmetric Positive Definite Neural Networks (SPD-NNs) for
modeling constitutive relationships by assuring symmetric positive definite stiffness
matrices.
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Fig. 2 Graph of an informed
ANN for the modeling of
history-dependent material
responses. The inputs of
the network are the strain
increment, Δ𝜀, and the
material state at time 𝑡 ,
characterized by strains,
𝜀𝑡 , stresses, 𝜎𝑡 , and an
additional set of variables,
Z𝑡 . The model outputs
are the additional variables
increments (e.g. the plastic
strain or temperature
increment),ΔZ, and the stress
increments, Δ𝜎, computed
via two distinct standard
ANNs: sANNZ and sANN𝜎 ,
respectively

σ t Δ𝜀𝜀 t

Neural Network ANNσ

𝜀 t+Δt

Δσ

Δ𝜀

t

t+Δt

Δ

Δ

Neural Network ANN

3 Thermodynamics-based Artificial Neural networks

Inspired by the work of Raissi et al. [44], we propose a new class of neural networks
based on the laws of thermodynamics, which we denote as Thermodynamics-
based Artificial Neural Networks (TANNs). This is accomplished by hardwiring
the first and second principle of thermodynamics in the architecture of the network.
In comparison with standard ANNs, two additional scalar functions needs to be
identified in the training data-set. These are the free-energy and the mechanical
dissipation rate. However, these quantities are easily accessible in micromechanical
simulations [e.g. 8, 43, 46, 29] and can also be obtained experimentally in some
cases.
The theoretical framework of our model is presented in paragraph 3.1 and the
architecture of TANNs is further detailed in paragraph 3.2.

3.1 Thermodynamics principles and theoretical framework

Let us consider an isothermal constitutive stress-strain response. The (local) power
balance equation of energy can be expressed as

¤F = W − D, (6)

where W = 𝜎 · ¤𝜀 is the mechanical rate of work, with 𝜎 being the Cauchy stress
tensor, 𝜀 and ¤𝜀 the infinitesimal strain tensor and its rate of change, and "·" denoting
the contraction of adjacent indices; F and ¤F are the Helmholtz free energy potential
and its rate of change; and D is the rate of the mechanical dissipation.
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From the second principle of thermodynamics, the rate of the mechanical dissipation 

must be non-negative,
D ≥ 0. (7)

Furthermore, let us consider strain-rate independent constitutive material responses
with the following form of the Helmholtz free energy,

F := F̃ (𝜀,Z) , (8)

and dissipation rate,
D := D̃

(
𝜀,Z, ¤Z

)
, (9)

being a first-order homogeneous function of ¤Z, where Z = (𝜁𝑖 , . . . , 𝜁𝑁 ) denotes
a set of 𝑁 (additional) internal state variables, 𝜁𝑖 , 𝑖 = 1, . . . , 𝑁 . We define here
(thermodynamic) state variables those macroscopic quantities characterizing the
state of a system, see e.g. [41]. The physical representation of 𝜁𝑖 is not a priori
prescribed. For instance, in the case of isotropic damage, 𝜁 is a scalar; for anistotropic
damage, a tensor; in the case of elasto-plasticity, a second order tensor, etc. We
emphasize that identification of the internal variables set may be not trivial for
systems with increasing complexity. As proposed in [6], internal variables can be
interpreted as history variables, such as the strain and stress at precedent times.
This renders the formalism here adopted general and flexible, depending on the
applications.
By time differentiating the energy potential, we obtain

¤F =
𝜕F
𝜕𝜀

· ¤𝜀 +
𝑁∑
𝑖=1

𝜕F
𝜕𝜁 𝑖

· ¤𝜁𝑖 , (10)

which, after substitution in Eq. (6), leads to(
𝜕F
𝜕𝜀

− 𝜎

)
· ¤𝜀 −

(
𝑁∑
𝑖=1

𝜕F
𝜕𝜁 𝑖

· ¤𝜁𝑖 + D

)
= 0. (11)

From the arbitrariness of ¤𝜀 and ¤𝜁𝑖 , we obtain the following relations

𝜎 =
𝜕F
𝜕𝜀

, (12a)

D = −
𝑁∑
𝑖=1

𝜕F
𝜕𝜁 𝑖

· ¤𝜁𝑖 . (12b)
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3.2 Architecture of TANNs

By exploiting the theoretical background presented above, Thermodynamics-based
Artificial Neural Networks are ANNs which respect, by definition, the thermodynamic
principles, holding true for any class of material. In this framework, TANNs posses
the special feature that the entire constitutive response of a material can be derived
from definition of only two (pseudo-) potential functions: an energy function and
a dissipation function [23]. TANNs are fed with thermodynamics "information",
namely Eq.s (12a) and (12b), by relying on the automatic differentiation technique
[2] to differentiate neural networks outputs with respect to their inputs. This strategy
allows to construct a general framework of neural networks material models which,
in principle, can be exploited to predict the behavior of any material and assure that
the predictions of TANNs will be thermodynamically consistent even for inputs that
exceed the training range of data. Herein, we only focus on strain-rate independent
processes. Nevertheless, our approach can be extended, following the developments
in [22], to materials showing viscosity and strain-rate dependency.
The model relies on an incremental formulation and can be used in existing Finite
Element formulations (among others), see e.g. [33]. Figure 3 illustrates the scheme
of TANNs. The model inputs are the strain increment, the previous material state
at time 𝑡, which is identified herein through the material stress, 𝜎𝑡 , and the internal
state variables, 𝜁 𝑡𝑖 , namelyI = (𝜀𝑡 ,Δ𝜀, 𝜎𝑡 ,Z𝑡 ). The primary outputs are the internal
variables increment, ΔZ, and the energy potential at time 𝑡 +Δ𝑡, F𝑡+Δ𝑡 . In particular,
the increment of the internal variables are predicted by a sub-ANNs,

ΔZ = ANNZ@{𝜀𝑡 ,Δ𝜀𝑡 , 𝜎𝑡 ,Z𝑡 }. (13)

A second sub-ANN is used to predict the energy potential, i.e.,

F𝑡+Δ𝑡 = ANNF@{𝜀𝑡+Δ𝑡 ,Z𝑡+Δ𝑡 }. (14)

Then, secondary outputs−that is, outputs computed by differentiation of the neural
network with respect to the inputs−are computed: the stress increment, Δ𝜎, and the
dissipation rate, D𝑡+Δ𝑡 , i.e., ∇IO = (Δ𝜎,D𝑡+Δ𝑡 ). In particular, the stress increment
is computed by subtraction of the differential Eq. (12a) and the stress at time 𝑡, i.e.,

Δ𝜎 =
𝜕F𝑡+Δ𝑡

𝜕𝜀𝑡+Δ𝑡
− 𝜎𝑡 . (15)

While, the dissipation rate is computed using Eq. (12b), by approximating the rate
of the internal variables as ¤Z𝑡+1 ≈ ΔZ

Δ𝑡 .
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Fig. 3 Graph of
Thermodynamics-based
Artificial Neural Networks for
the isothermal constitutive
modeling of strain-rate
independent materials. The
model involves the following
steps:
(1) prediction of the
kinematic variables ΔZ =
ANNZ@

(
𝜀𝑡+Δ𝑡 , Δ𝜀, 𝜎𝑡 , Z𝑡

)
;

(2) computation of the
updated kinematic variables
rates, ¤Z𝑡+1 ≈ ΔZ/Δ𝑡 ,
and the updated kinematic
variables, Z𝑡+1 := Z𝑡 +ΔZ𝑡 ;
(3) prediction of
the updated energy
potential F𝑡+Δ𝑡 =
ANNF@{𝜀𝑡+Δ𝑡 , Z𝑡+Δ𝑡 };
(4) computation of the
updated dissipation rate using
Eq. (12b);
(5) computation of the
stress increment, Eq. (12a),
Δ𝜎 = 𝜕F𝑡+Δ𝑡/𝜕𝜀𝑡+Δ𝑡 − 𝜎𝑡 .

F t+Δt

Δσ

σ t+Δt

𝜕F t+Δt

𝜕𝜀 t+Δt

Neural Network ANNF

𝜀 t+Δt

Thermodynamics-based differentiation

D t+Δt

σ t Δ𝜀𝜀 t

Δ

t

t+Δt

𝜕F t+Δt

𝜕  
− Δ

 t+Δt

Neural Network ANN

4 Application to history-dependent materials with softening

Relying on the aforementioned architecture of TANNs, we investigate their ability
in modeling the response of history-dependent materials. In particular, we use
TANNs in modeling 1D elasto-plastic materials with kinematic softening. While
the motivating example we consider may be rather simple, we emphasize that the
proposed class of ANN can be successfully applied (without any modification) to
materials with different or more complex behavior, see [40].

4.1 Material model and data

The elasto-plastic 1D model with kinematic softening−1D spring-slider [23], see
Figure 4−is characterized by the following expressions for the Helmholtz free-energy
potential, dissipation rate, and yield function:

F =
𝐸

2
(𝜀 − 𝜀𝑝)2 + 𝐻

2
(𝜀𝑝)2 , D = 𝑘 | ¤𝜀𝑝 |,

and 𝑦 =
|𝜎 − 𝐻𝜀𝑝 |

𝑘
− 1 ≤ 0,
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where 𝜀 is the total strain; 𝜀𝑝 the plastic strain; 𝜎 the Cauchy stress; 𝐸 the Young
modulus; 𝐻 the kinematic softening parameter; and 𝑘 the yield strength (slider
threshold). The incremental material response is given by

¤𝜎 =

{
𝐸 ¤𝜀 when 𝑦 < 0,
𝐸∗ ¤𝜀 when 𝑦 = 0;

¤𝜀𝑝 =


0 when 𝑦 < 0,
𝐸∗

𝐻
¤𝜀 when 𝑦 = 0;

(16)

with 𝐸∗ = 𝐸𝐻/(𝐸 + 𝐻).
As it follows, we consider the following material parameters: 𝐸 = 200 GPa, 𝑘 = 200
MPa, and 𝐻 = −100 MPa. Furthermore, we select the internal variable 𝜁−see Eq.s
(8) and (8)−such that they coincide with the plastic deformation, i.e., 𝜁 = 𝜀𝑝 . We
emphasize that our approach is general and not limited to this kind of state variables.

Fig. 4 Schematic
representation of the
spring-slider model with
kinematic softening (top) and
cyclic stress-strain behavior
(bottom).
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Data are generated by identifying random states for the material at time 𝑡. Random
strain increments ¤𝜀 are then applied, assuming constant and unitary time increment
Δ𝑡 = 1 ( ¤𝜀 = Δ𝜀). The material state at time 𝑡 + Δ𝑡 is then obtained by numerical
integration of the incremental constitutive relations (16). In particular, 2000 data
(random increments at random states) are generated. Additionally, an artificial subset
of data is considered and constructed assuming Δ𝜀 = 0 for the initial random states.
Such an artificial data-set is added to the generated set of data, in order to facilitate the
network to understand that to zero increments of strain correspond zero increments
of stress and plastic strain. Figure 5 shows the sampling for total strain, internal
variable, and stress. We present in Table 1 the mean (𝜇), standard deviation (st), and
maximum values (max) of the data-set.
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constructed for Δ𝜀 = 0

Fig. 5: Sampling of the material data: total strains 𝜀𝑡 , Δ𝜀, 𝜀𝑡+Δ𝑡 (top), plastic strains
𝜁 𝑡 , Δ𝜁 , 𝜁 𝑡+Δ𝑡 (center), and stresses 𝜎𝑡 , Δ𝜎, 𝜎𝑡+Δ𝑡 (bottom). 2000 random increments
are applied to random states (a), then an artificial subset of data is added considering
Δ𝜀 = 0 for the initial random states (b).

4.2 Training

Training is performed with 50 % of the generated data. A validation set consisting
of 25 % of the generated data is used to avoid over-fitting. We take advantage of the
technique of early-stopping−that is, training is stopped as the error of a validation set
starts to increase while the learning error still decreases [11]. Finally, a test set (25
% of the generated data) is used to evaluate the network predictions, once training is
accomplished.
The hyper-parameters characterizing the network (i.e., number of hidden layers,
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Table 1: Mean (𝜇), standard deviation (st), and maximum values (max) of the training
data-sets.

data 𝜇 st max

𝜀𝑡 (-) 5 × 10−4 0.010 0.038
Δ𝜀 (-) 1 × 10−4 0.003 0.040
𝜁 𝑡 (-) 5 × 10−4 0.010 0.040
Δ𝜁 (-) 1 × 10−4 0.003 0.001
𝜎𝑡
𝑖 (MPa) 3.724 208.6 458.8

Δ𝜎𝑖 (MPa) -7.745 217.6 400.0
F𝑡+Δ𝑡 (N-mm) -0.500 0.853 0.105
D𝑡+Δ𝑡 (N-mm/s) 0.384 0.416 2.333

neurons, activation functions, etc.) are selected to give the best predictions,
while requiring minimum number of hidden layers and nodes per layer. This is
accomplished by comparing the learning error on the set of test patterns, per each
trial choice of the hyper-parameters.

Adam optimizer with Nesterov’s acceleration gradient [5] is selected and a batch
size of 10 samples is used. We use the Mean Absolute Error (MAE) as loss functions
for each output in order to assure the same precision between data of low and high
numerical values (cf. Mean Square Error). Regularized weights are used to have
consistent order of magnitude of different quantities involved in the loss functions.
The architecture of TANNs, as presented in paragraph 3.2 consists of two sub-ANNs.
The former, ANNZ , is composed of four input nodes, one hidden layer with 6 neurons
and leaky ReLU activation function, and output node for the predictions of Δ𝜁 . The
latter sub-network, ANNF, has two input nodes, one hidden layer with 9 neurons and
a modified version of ELU as activation function,

A(𝑧𝑘 ) =
{
𝑧2
𝑘 if 𝑧𝑘 > 0,

exp(𝑧𝑘 ) − 1 else,

output node to predict F𝑡+Δ𝑡 . The modified ELU activation function is used to avoid
the so-called second-order vanishing gradients issue, see [40, 38] for more. The
output layers for both sub-networks have linear activation function and biases set
to zero. The corresponding number of degrees of freedom, i.e., the number of the
hyper-parameters, is 72. Higher number of hidden layers could be used as well, but
this is out of the scope of our investigations. Figure 6 displays the loss functions
of each output as the training is performed, i.e., in number of epochs. The early
stopping rule assures convergence with MAEs of the same order of magnitude for
the 4 outputs, Δ𝜁 , F𝑡+Δ𝑡 , Δ𝜎, and D𝑡+Δ𝑡 .
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Fig. 6: Errors in terms of the adimensional Mean Absolute Error (MAE) of the
predictions of TANN (loss functions), as the training is being performed, evaluated
with respect to the training (train) and validation (val) sets. Weights and biases
update are computed only on the training set.

4.3 Predictions in recall mode

Once the neural network has been trained, we use it in recall mode to predict the
stress increment for a given strain, strain increment, and possibly other variables,
and we compare the predictions with the corresponding targets. The results of the
numerical integration scheme−Eq. (16)−are here considered as the exact solution
of the material response. In particular, starting from an initial configuration, we
make cyclic (or random) increments of the strain, Δ𝜀. TANNs hence predict the
corresponding increments, {Δ𝜁,Δ𝜎}, which will be transformed into the inputs in
the successive call, as well as the energy and dissipation rates, {F𝑡+Δ𝑡 ,D𝑡+Δ𝑡 }. This
procedure is applied recursively. The neural network is so self-fed. Figure 7 illustrate
the predictions of TANNs for random loading paths with strain increments varying
from 10−5 and 0.01.

TANNs are found to successfully predict all quantities of interest. Moreover,
and most important, the architecture and the training of the network allows to
obtain thermodynamically consistent results. The first law of thermodynamics is
automatically satisfied as a result of the structure of TANNs and the predicted
dissipation rate is always positive. Indeed, even if the second principle of thermodynamics
is not explicitly assured by the TANNs architecture, the fact that the training has
been performed with consistent material data (i.e., positive dissipation rate) results
automatically in the fulfillment of the second principle.
It worth noticing that the random loading path consists of values of strain increments
beyond the training range (see Table 1). However, TANNs predictions are extremely
accurate. Indeed, the thermodynamics framework renders the generalization capability
of TANN (i.e., the ability to make predictions for loading paths different from those
used in the training operation) remarkably good. This is usually not observed in
standard ANNs as extensively discussed by Lefik and Schrefler [33]. We investigate
more in detail the generalization capabilities of our model with respect to standard
ANNs, in the next paragraph.
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Fig. 7: Predictions of TANNs for a random loading path with strain increments
varying from 10−5 and 0.01 (beyond the training range, see Table 1): (a) loading
path, (b) stress and plastic strain, (c) energy potential and dissipation rate.

4.4 TANNs versus standard ANNs

We compare herein the performance and generalization ability of TANNs with
respect to standard ANNs for constitutive modeling [13, 33]. In particular, we select
the ANN architecture depicted in Figure 2. The hyper-parameters are selected to give
the best performance while assuring the same amount of degrees of freedom, hyper-
parameters, with respect to TANNs. Both sub-networks, sANNZ and sANN𝜎 , consist
of one hidden layer, with 6 neurons each and leaky ReLU activation function. As for
TANNs, the output layers have linear activation function and zero bias. Training is
performed on the same set of samples that are used for the thermodynamics-based
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network. Figure 8 displays the error of the predictions of standard ANNs, as training
is performed, and compares it with TANNs.

It is worth emphasizing that both ANNs and TANNs are dependent on the choice
of the user, concerning, for instance, the number of hyper-parameters. Moreover, the
actual configurations of both networks may benefit of alternatives/extensions, such
as Recurrent Neural Networks. Nevertheless, the following comparisons show the
added value of our approach compared to standard ones that do not explicitly contain
physics.

Δ𝜁train-TANN

Δ𝜁train-ANN

Δ𝜁val-TANN

Δ𝜁val-ANN
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epochs

M
A

E

10−1

10−2

10−3

10−4

10−5

(a) Mean Absolute Error (MAE) of Δ𝜁
predictions
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(b) Mean Absolute Error (MAE) of Δ𝜎
predictions

Fig. 8: Training of ANNs compared with TANNs evaluated with respect to the
training (train) and validation (val) sets.

Once both networks have been trained, we compare the predictions of TANNs
and standard ANNs, for a cycling loading path Δ𝜀𝑛 = Δ𝜀 sgn

(
cos 𝑛𝜋

2𝑁
)
−with Δ𝜀 ∈

(10−5, 1). The results are presented in Figure 9, in terms of stress and plastic strain
increments.

TANNs are clearly superior in terms of (a) accuracy of the prediction and (b)
generalization with respect to the inputs. Moreover, standard ANNs predictions do
not fulfill the principles of thermodynamics, even though the training of the network
has been performed on consistent material data. This is clearly shown by computing
from the predictions of ANNs the increment of the Helmholtz free-energy and
dissipation rate using the corresponding definitions, Eq. (4.1). Figure 10 displays the
comparison in terms of energy potential, F, and dissipation rate, D. The predictions
of the standard ANNs clearly do not respect the thermodynamics principles (both
the first and second laws).

We emphasize that even for relatively large and far beyond the training range
strain increments, the predictions of TANNs are extremely accurate thanks to their
thermodynamic basis. Moreover, TANNs successfully learn the Jacobian, i.e. the
elasto-plastic matrix 𝜕Δ𝜎

𝜕Δ𝜖 [see 19]. The Jacobian is computed for both networks,
standard ANNs and TANNs, as the derivative of the stress increment (Δ𝜎, output)
with respect to the strain increment (Δ𝜀, input). Figure 11 shows the Jacobian and
the comparison with the predictions of TANNs and standard ANNs. The excellence
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Fig. 9: Predictions of TANNs and standard ANNs for a cyclic loading path, with
different strain increments (a-d), in terms of stresses (left column) and plastic strain
(right column).

of TANNs is clear: the predictions of the Jacobian are in very good agreement with
the reference values (with accuracy between 99.0% and 99.99% for all considered
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data-sets). This is not true for standard ANNs, especially for very small and large
strain increments.
As a result, TANNs are found to be an excellent candidate for such a substitution,
allowing to foresee their application to efficiently speed-up multiscale analyses and
FE simulations.

It is worth noticing that increasing the size of the training data-sets and/or
the number of layers and neurons could improve the accuracy of standard ANNs.
However, there will not be guarantee that the predictions would be thermodynamically
consistent. Thermodynamics-based Neural Networks excel over physics-unaware
ANNs.

5 Conclusions

A new class of artificial neural networks models to replace constitutive laws and
predict the material response at the material point level was proposed. The two basic
laws of thermodynamics were directly encoded in the architecture of the model,
which we refer to as Thermodynamics-based Neural Networks (TANNs).

TANNs, relying on an incremental formulation and on a theoretical framework of
thermodynamics, posses the special feature that the entire constitutive response
of a material can be derived from definition of only two scalar functions: the
free-energy and the dissipation rate. This assures thermodynamically consistent
predictions for data both close to and beyond the training domain. Differently from
the standard ANN approaches, TANN does not have to identify, through learning,
the underlying thermodynamic laws. Indeed, predictions of standard ANNs may be
thermodynamically inconsistent, even though the training of the network has been
performed on consistent material data.

For the cases here investigated, TANNs are found to be characterized by
high accuracy of the predictions, higher than those of standard approaches. The
integration of thermodynamic principles inside the network renders TANN’s ability
of generalization (i.e., make predictions for loading paths different from those used
in the training operation) remarkably good. Consequently, TANNs are excellent
candidates for replacing, in future applications, constitutive calculations at Finite
Element incremental formulations. Moreover, thanks to the implementation of the
free-energy in the network predictions and its thermodynamical relation with the
stresses, the Jacobian at the material point level is excellently predicted, even for
increments far outside the training data-set range. As a result quadratic convergence
in implicit formulations can be preserved, reducing the calculation cost.

Whilst the motivating example to a 1D elasto-plastic material with kinematic
softening is easier than real, complex 3D materias, further extensions of TANNs to a
wider range of applications are straightforwards [see e.g. 40], as the thermodynamics
principles hold true for any known class of material, at any length (micro- and macro-
scale).
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Fig. 10: Predictions of TANNs and standard ANNs for a cyclic loading path, with
different strain increments (a-d), in terms of Helmholtz free energy (left column)
and mechanical dissipation rate (right column).

23



-0.002 -0.001 0.0 0.001 0.002
𝜀 (-)

-50
0

50
100
150
200
250

𝜕
Δ
𝜎

𝜕
Δ
𝜀

(M
Pa

)

(a) strain increment: Δ𝜀 = 10−5 (inside
training range)

-0.002 -0.001 0.0 0.001 0.002
𝜀 (-)

0

50

100

150

200

 model TANN ANN model TANN ANN

𝜕
Δ
𝜎

𝜕
Δ
𝜀

(M
Pa

)

(b) strain increment: Δ𝜀 = 10−3 (inside
training range)

-0.10 -0.05 0.0 0.05 0.10
𝜀 (-)

-10

0

10

20

30

model TANN ANN

𝜕
Δ
𝜎

𝜕
Δ
𝜀

(M
Pa

)

(c) strain increment: Δ𝜀 = 10−2

(beyond training range)

-6 -4 -2 0 2 4 6
𝜀 (-)

-20

0

20

40

model TANN ANN

𝜕
Δ
𝜎

𝜕
Δ
𝜀

(M
Pa

)

(d) strain increment: Δ𝜀 = 1 (beyond
training range)

Fig. 11: Jacobian predictions for a cyclic loading path, with different strain increments
(a-d), cf. Figures 9 and 10.
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