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ABSTRACT
In this paper, the flexible semi-parametric model introduced in [15] is considered for conducting
tail inference of censored data. Both the censored and the censoring variables are supposed to be-
long to this family of distributions, and thus solutions for modeling the tail of censored data which
are between Weibull-tail and Pareto-tail behavior are proposed. Estimators of the tail parameters
and extreme quantiles are defined without prior knowledge of censoring strength and asymptotic
normality results are proved. Various combinations of the tails of censored and censoring distribu-
tions are covered, ranging from rather mild censoring to severe censoring in the tail, i.e. when the
ultimate probability of censoring in the tail is zero. Finite sample behavior is presented via some
simulations and an illustration on real data is also provided.
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1. Introduction

This paper proposes new contributions to the topic of extreme value statistics for data which are
randomly censored from the right.

Consider the classical random censoring setup, where one observes a sample from a couple
pZ, δq “ pminpX,Cq, IXďCq with X denoting the variable of interest, and C a censoring vari-
able (independent from X) which may prevent the user from observing the data X. The observed
data is a sample pZ1, δ1q, . . . , pZn, δnq where pX1, . . . , Xnq and pC1, . . . , Cnq are independent sam-
ples of i.i.d. copies of X and C and δi “ IXiďCi . The topic of extreme value statistics for randomly
censored data deals with the estimation of the tail of X (tail parameters, extreme quantiles, rare
probabilities of exceeding a large value), while observing such an incomplete data sample.

A variety of topics can fit this formal random censoring framework. For instance, in the so-called
survival analysis setting, the statistical units are patients suffering from a disease, and X1, . . . , Xn

denote the times elapsed between their inclusion in a study and some event of interest (recovery,
recurrence of the disease, death, etc...). Due to loss of follow-up or end of study, one only observe
durations pZ1, . . . , Znq and non-censoring indicators pδ1, . . . , δnq. An extreme quantile, in this sur-
vival analysis context, is a duration xp that the ”lifetime” of a patient is expected to exceed only
with a small probability p, typically smaller than 1{n. Due to scarcity of data in the tail, some sort
of semi-parametric modeling is required to estimate such extreme quantile xp.

This topic has benefited from a number of contributions in the recent years, which were stimulated
by applications in a variety of domains, mainly reliability analysis, survival/lifetime analysis and
insurance. [2] and [13] presented a general method for adapting estimators of the extreme value
index in this censorship framework. [27], [7] and [28] proposed a more survival analysis-oriented
approach, the first two being restricted to the heavy tail case. [29] extended this survival analysis
approach to competing risks. The Weibull-tail class of distributions is studied in [30]. [22], [23] and
[25] extended the framework to data with covariate information. [5], [6] and [16] considered the
bias-reduction problem. The multivariate case is studied in [17] and [20]. See also [4] , [18], [24], [9],
[10], [11], [26] and [8] for other papers on the subject.

A characteristic of most of these papers is that X and C are always supposed to share the same
type of tail, i.e. a heavy tail censored by a heavy tail, a light (Gumbel) tail censored by another
light tail, or a finite tail censored by a finite tail. This is for instance very well described by the 3
cases exhibited in formula (7) of the insightful paper [13].

The main and initial objective of this paper is to broaden the type of tails in the Gumbel domain
that the user will be able to deal with, for estimating tail parameters and extreme quantiles based on
censored data. As a matter of fact, the lighter-than-Pareto-tails situation was slightly overlooked
in censored extremes works, and this may be considered unfortunate since several applications
of the censored extremes question do not necessarily exhibit a heavy tail behavior (particularly in
survival/lifetime analysis). Essentially only two research papers proposed so far solutions for dealing
with light tails. The first one is [13] which proposed estimators of the extreme value index and of
extreme quantiles in various cases and in particular in the double Gumbel case (a distribution in
the Gumbel domain of attraction censored by another distribution in the same domain). However,
the results on the extreme value index, in this case, are stated with a restrictive assumption on the
ultimate probability of non-censoring in the tail and there is no formal convergence statement for
the proposed extreme quantiles estimator. The second one is [30] which considered the general two
Weibull-tails framework (a distribution in the Weibull-tail class censored by another distribution
in the same class) : this is a strict subset of the double Gumbel case, allowing however interesting
configurations where the ultimate probability of non-censoring in the tail can be zero (see its
definition in next Section).

The basement of the present work is the flexible semi-parametric model proposed in [15] (model
A1pτ, θq described in the next section), which encompasses a large part of the Gumbel maximum
domain of attraction and the whole Fréchet one, and therefore provides a more flexible option for
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modeling various phenomena. In this paper, estimation of the parameters of this model will be
made possible in the presence of censoring, with very simple expressions for the estimators. In
addition, this setup will allow for a more diverse combination of tails (without prior knowledge of
that combination) than the Fréchet versus Fréchet or the Weibull-tail versus Weibull-tail cases (see
next section).

The paper is organized as follows. Section 2 formally settles the framework and describes how
the parameters of the observed Z can be deduced from those of X and C, thus explaining what
is statistically at stake. Section 3 explains how the parameters and extreme quantiles of X can be
estimated from the observed censored data, while Section 4 states the main results of this paper,
along with the required assumptions on the number kn of order statistics retained for the estimation.
Section 5 contains simulations to illustrate the performance of our estimators and Section 6 an
illustration on real-data. Part A to D of the Appendix are devoted to the proofs of our asymptotic
results, while part E contains important technical results. Technical aspects of the proofs can be
found in a Supplementary Material document provided by the authors ([31]).

2. Description of the framework and assumptions

2.1. Model and main assumptions

In the sequel, F´ denotes the general inverse of a function F , F´ptq “ inftx P R;F pxq ě tu for any
t P r0, 1s.

The formal framework of this paper is the following. Defining for τ P r0, 1s the Box-Cox function

Kτ pxq “

ż x

1
uτ´1du “

"

pxτ ´ 1q{τ if τ Ps0, 1s,
logpxq if τ “ 0,

we consider, for parameters τ P r0, 1s and θ ą 0, that a distribution function F belongs to the semi-
parametric family A1pτ, θq if the following holds (see [15] where this model was initially introduced
in a complete data setting, and [14] for additional developments):

A1pτ, θq : for some x˚ ą 0 and every x ě x˚, we have

1´ F pxq “ expp´K´
τ plogpHpxqqqq,

where H is an increasing positive function such that H´ is regularly
varying at infinity with index θ (which will be denoted by H´ P RVθ).

Let us highlight that the tail heaviness of a distribution belonging to A1pτ, θq is mainly driven by
τ , although in practice both shape parameters τ and θ play an important role in the properties
and shape of the upper tail. It is easy to see that (for more details see Proposition 2 in [15]) :

‚ A1p1, θq corresponds to distributions in the Fréchet domain of attraction with extreme value
index θ (i.e. when 1´ F pxq “ x´1{θlpxq with l slowly varying).

‚ A1p0, θq corresponds to Weibull-tail distributions with Weibull-tail coefficient θ (i.e. when
1´ F pxq “ expp´x1{θlpxqq with l slowly varying).

‚ The case τ Ps0, 1r corresponds to distributions in the Gumbel domain having tails heavier than
Weibull-type ones : such distributions can be conveniently qualified as having log-Weibull-
type tails, and log-normal distributions belong to this category with τ “ 1{2 (see [15] for
more examples). The larger τ is, the heavier the tail can be considered.

In this work, the main assumption is that both the censored and the censoring variables have
their distribution belonging to the A1pτ, θq family. This assumption covers a quite flexible setting.
Indeed, the users will not need to decide in advance whether a Pareto, Weibull or Log-Weibull tail
is convenient for their data, either for the target X or the censoring C. In particular, it is important
to note that X and C do not necessarily share the same type of tail. For instance, the cases of
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Weibull-type data censored by a log-Weibull-type distribution, or of Pareto-type data censored by
a log-Weibull-type distribution, are covered. We thus assume the following :

Assumption (A1) : there exist τX P r0, 1s, τC P r0, 1s, θX ą 0, θC ą 0 such that

FX P A1pτX , θXq and FC P A1pτC , θCq.

This means that there exists positive functions HX and HC such that

sFXpxq “ 1´FXpxq “ expp´K´
τX plogpHXpxqqqq and sFCpxq “ 1´FCpxq “ expp´K´

τC plogpHCpxqqqq

and, for some slowly varying functions l̄X and l̄C at infinity,

H´Xpxq “ xθX l̄Xpxq and H´C pxq “ xθC l̄Cpxq.

It is clear that under this condition we also have HXpxq “ x1{θX lXpxq and HCpxq “ x1{θC lCpxq
where both lX and lC are slowly varying functions at infinity.

The estimation of the parameters τX and θX is the main objective of this work (with the esti-
mation of extreme quantiles of FX being its main application). A first step to do so is to find a
relation between the parameters of X and C and those of the observed variable Z “ mintX,Cu.

Under assumption (A1), the following proposition states that the distribution of Z also belongs
to the same family of distributions as those of X and C, for some parameters τZ and θZ specified
below :

Proposition 1. Under Assumption (A1), the distribution function of Z “ minpX,Cq satisfies
condition A1pτZ , θZq, where

τZ “ minpτX , τCq and θZ “

$

’

’

&

’

’

%

θX if 0 ď τX ă τC ď 1
θC if 0 ď τC ă τX ď 1

pθ
´1{τZ
X ` θ

´1{τZ
C q´τZ if 0 ă τX “ τC ď 1

minpθX , θCq if τX “ τC “ 0

Therefore, there exists x˚ ą 0 such that for any x ě x˚, we have

PpZ ą xq “ expp´K´
τZ plogpHZpxqqqq,

where H´Z P RVθZ . Consequently, if E denotes a standard exponential variable, we have

Z
d
“ H´Z pexpKτZ pEqq.

Remark 1. It is interesting to note that :

´ in the two-heavy-tails case τX “ τC “ 1, the parameters θX , θC and θZ , are the extreme value
indices of the distributions of X, C and Z respectively, and they indeed satisfy the well-known
relation θZ “ pθ

´1
X ` θ´1

C q
´1 (see [2]).

´ in the two-Weibull-tails case τX “ τC “ 0, we recover the fact that the Weibull-tail parameter
of Z is equal to the minimum of those of X and C (see [30]).

´ when τX “ τC , we have θZ ď minpθX , θCq, but otherwise this is not necessarily the case.
´ the expression of θZ in the fourth case is coherent with the third one in the sense that

minpθX , θCq is indeed the limit of pθ
´1{τ
X ` θ

´1{τ
C q´τ as τ Ñ 0.

In this paper, we will exclude the first two situations evoked in Remark 1 above, which have al-
ready been explored in anterior works, and therefore suppose that pτX , τCq P r0, 1s

2 zt p0, 0q , p1, 1q u.

Let us close this subsection by now describing the more technical assumptions required for our
results to hold. This part of the section may be skipped on first reading.

In order to achieve asymptotic normality of the estimators defined in this paper, the slowly
varying functions lX and lC associated to HX and HC are supposed to satisfy a classical second
order condition (usually called the SR2 condition) :
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Assumption (A2) : there exist some negative constants ρX and ρC , and some
rate functions bX and bC having constant sign at `8 and
satisfying |bX | P RVρX and |bC | P RVρC , such that, as t Ñ
`8,

lXptxq{lXptq ´ 1

bXptq
ÝÑ KρX pxq, and

lCptxq{lCptq ´ 1

bCptq
ÝÑ KρC pxq,@x ą 0.

(1)
According to the last statement of Proposition 1 and to the expression of our estimators (see next
Section), it will be important in the sequel to consider the functions

H´Z pxq “ xθZ l̃pxq and HX ˝H
´
Z pxq “ xalpxq with a :“

θZ
θX

, (2)

where both l̃ and l are slowly varying, and ˝ denotes the composition operator (f ˝gpxq “ fpgpxqq).
The crucial parameter a “ θZ{θX is equal to 1 in ” mild censoring” situations (in particular when
τX ă τC).

In addition, our important technical Lemma 1, stated in E.1, ensures that functions H´Z and
HX ˝ H

´
Z also satisfy a second order condition SR2. For technical reasons though, we need to

consider the following stronger conditions on l̃ and l. We consider there exist nonnegative constants
ρ and ρ̃, and functions b and b̃, such that assumptions Rl̃pb̃, ρ̃q and Rlpb, ρq hold, according to the
following generic definition :

Assumption R`pB, ρq : for some constant ρ ď 0 and a rate function B satisfying
limxÑ`8Bpxq “ 0, such that for all ε ą 0, we have

sup
λě1

ˇ

ˇ

ˇ

ˇ

`pλxq{`pxq ´ 1

BpxqKρpλq
´ 1

ˇ

ˇ

ˇ

ˇ

ď ε, for x sufficiently large .

Note that, according to Lemma 1 (see E.1), we have necessarily ρ “ ρ̃, and that this parameter is
negative when either τX “ 0 or τC “ 0, but otherwise (i.e. in most cases) it is zero, an unpleasant
fact which often implies some challenge in the proofs, and affects the rates of convergence of our
estimators (with respect to the non-censored framework).

2.2. Proportion of censoring in the tail

It is well known that the strength of censoring affects the statistical performance of estimators
in survival analysis. This is naturally also the case for tail estimation under random censoring.
Indeed, the ultimate proportion of non-censoring in the tail, denoted p below, explicitly appears in
asymptotic variances in the context of extremes of censored data. For instance, the adaptation of
the Hill estimator introduced in [13] multiplies the asymptotic variance of the non-censored case
by 1{p (see Corollary 1 therein), provided that this ultimate probability p is positive. Moreover, the
pre-asymptotic probability

ppxq “ Ppδ “ 1|Z “ xq

of being non-censored at level x (for large x) often plays a crucial role for proving asymptotic
results.

In the context of this paper, Lemma 2 (stated in E.1) provides precise expansions for ppxq,
for large x, which turn out to be useful in the proofs of our asymptotic results. In particular, its
statement (i) yields the following :

lim
xÑ`8

ppxq “ p :“

$

’

&

’

%

1 if 0 ď τX ă τC ď 1,

0 if 0 ď τC ă τX ď 1,

θ
1{τX
X { pθ

1{τX
X ` θ

1{τX
C q if 0 ă τX “ τC ă 1.
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Note that when X and C are both in the Fréchet or both in the Weibull (i.e. finite tail, not
Weibull-type tail) maximum domain of attraction, p necessarily belongs to s0, 1r (see [13] page 214,
for instance). When X and C are both in the Gumbel maximum domain of attraction, things are
more complicated, and in this case, [13] considered the assumption p Ps0, 1r, which is difficult to
check in practice and somehow restrictive.

In the model considered in this paper, p can thus span the whole r0, 1s interval. In the first
situation above 0 ď τX ă τC ď 1 (the light censoring one), the fact that the ultimate probability
p of non-censoring in the tail is 1 and that the parameters of X are the same as those of Z (see
Proposition 1) would suggest that taking into account the censoring is useless. However, as [30]
already put forward, this is not advisable because those settings produce finite size data where
censoring is still present and needs to be taken into account. Similarly, the second situation (strong
censoring) where the ultimate probability p is 0 produces, in practice, data which are not completely
censored in the tail, and thus the statistical problem of estimating the tail parameters and extreme
quantiles of X should and can be addressed. Finally, one can note that the particular situation
where tails of X and C have the same heaviness (τX “ τC) is interesting on its own.

3. Construction of the estimators

Let us denote by ΛX and ΛC the cumulative hazard functions associated to FX and FC , respectively

ΛXpxq “ ´ log sFXpxq and ΛCpxq “ ´ log sFCpxq,

and let Λ̂nX denote the Nelson-Aalen estimator of ΛX defined as

Λ̂nXpxq “
ÿ

Zi,nďx

δi,n
n´ i` 1

, (3)

where Z1,n ď . . . ď Zn,n are the order statistics of the sample pZiq and δ1,n, . . . , δn,n are the
corresponding indicators associated to these reordered Z values. Let kn “ opnq be an intermediate
sequence of integers (which will often be simply denoted by k), representing the number of upper
data values retained for tail estimation.

In the following lines, we derive the approximations that inspired our estimators defined below in
relation (6). Under assumption (A1), HX is regularly varying with index 1{θX and KτX pΛXpxqq “
logpHXpxqq, hence, for u large, we have

KτX puq «
1

θX
logpΛ´Xpuqq.

Moreover, for s large and any u ą 1

log

ˆ

KτX psuq

KτX psq

˙

“ log

ˆ

psuqτX ´ 1

psqτX ´ 1

˙

» τX log u.

Combining these two results, we obtain a first approximation, for u and s large, relating τX to ΛX
:

τX log u « log logpΛ´Xpsuqq ´ log logpΛ´Xpsqq. (4)

The second approximation comes from the fact that, for t large and any given x ą 1, we have

HXptxq

HXptq
“ exppKτX pΛXptxqq ´KτX pΛXptqqq » x1{θX ,

hence θX is related to τX and ΛX via the formula :

1

θX
log x « KτX pΛXptxqq ´KτX pΛXptqq. (5)
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Therefore, applying approximation (4) to s “ ΛXpZn´kn,nq and u “ ΛXpZn´j`1,nq{ΛXpZn´kn,nq
on one hand, and approximation (5) to t “ Zn´kn,n and x “ Zn´j`1,n{Zn´kn,n on the other hand,
and then plugging in the Nelson-Aalen estimator of ΛX and summing for 1 ď j ď k lead to our
proposed estimators of τX and θX :

τ̂X :“
HHk,n

Dk,0
and θ̂X,τX :“

Hk,n

Dk,τX

(6)

with

Hk,n :“
1

kn

kn
ÿ

j“1

logpZn´j`1,nq ´ logpZn´kn,nq,

HHk,n :“
1

kn

kn
ÿ

j“1

log logpZn´j`1,nq ´ log logpZn´kn,nq,

Dk,τX :“
1

kn

kn
ÿ

j“1

KτX pΛ̂nXpZn´j`1,nqq ´KτX pΛ̂nXpZn´kn,nqq.

The two estimators above are thus ratios involving on one hand the mean of either the log-
spacings (i.e. the Hill statistic) or the log-log-spacings, and on the other hand a denominator
involving the Nelson-Aalen estimator at the k upper values of the observed Z sequence.

Note that the expressions of the estimators defined in (6) do not depend on the relative positions
of τX and τC (or of θX and θC). They can be calculated whatever the combinations of the tails
of X and C are, with the same formulas. However, we will see in the next Section that the rates
of convergence, performances, and assumptions of these estimators can differ depending on the
strength of censoring.

Remark 2. In the case τX “ τC “ 0, corresponding to the purely Weibull-tail framework, the
estimator θ̂X,0 corresponds to the one studied in [30], because KτZ pxq “ logpxq in that case. In the

case τX “ τC “ 1, corresponding to the purely heavy-tail framework, the estimator θ̂X,1 corresponds
to the adapted Hill estimator studied in [2], because in that case KτZ pxq “ x´ 1 and thus we have
exactly Dk,1 “ p̂k (see formula (7) below). As said earlier, these two particular cases are excluded

from the scope of the statements of this paper because properties of θ̂X,0 and θ̂X,1 are already known.

The main issue in the proofs lies in the treatment of the denominators Dk,τX and Dk,0. In fact,
the statistic Dk,τX defined below p6q turns out to be related to the proportion p̂k of uncensored
data in the tail via the relation (see Lemma 3 in the Appendix for the details)

Dk,τX «

´

Λ̂nXpZn´k,nq
¯τX´1

p̂k where p̂k :“
1

k

k
ÿ

j“1

δn´j`1,n

because of the nature of the Box-Cox transformation KτX , Taylor’s formula, and of the fact that

1

k

k
ÿ

j“1

´

Λ̂nXpZn´j`1,nq ´ Λ̂nXpZn´k,nq
¯

“
1

k

k
ÿ

j“1

k
ÿ

l“j

δn´l`1,n

l
“

1

k

k
ÿ

j“1

δn´j`1,n. (7)

Therefore, the properties of our estimators will rely on a careful study of two sequences. The first
one is Λ̂nXpZn´k,nq (in particular, how it can be approximated by ΛXpZn´k,nq and written as an
increasing function of log n{k ; see Lemma 4 in the Appendix). The second one is the sequence
p̂k, which converges to 0, 1 or a value p Ps0, 1r depending on the position of τX with respect to
τC (Proposition 2 in section A provides the full details about this, and relies on sharp second
order expansions of the different regularly varying functions that appear in this framework, cf the
important technical Lemmas 1 and 2 in the Appendix).

Finally, let us deal with the estimation of an extreme quantile xpn :“ sF´X ppnq of the distribution
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of X, with pn Ñ 0, as n Ñ `8. Applying the approximation (5) now to t “ Zn´k,n and x “
xpn{Zn´k,n, we can propose the following estimator of xpn (with both θX and τX being unknown) :

x̂pn :“ Zn´k,n exp
!

θ̂X,τ̂X

´

Kτ̂X p´ logppnqq ´Kτ̂X pΛ̂nXpZn´k,nqq
¯)

. (8)

Note that if we know that τX “ 0 and we then set τ̂X “ 0, then this estimator is the same as
the one proposed in [30].

4. Asymptotic results

The main assumptions on the model and the different notations have been stated in the previous
sections. In order to obtain the asymptotic normality of our estimators, we naturally need the
sequence pknq (number of top order statistics to use) to satisfy some conditions (we will note
k “ kn from now on). The first one is standard in the literature on Weibull-tail or log-Weibull-tail
models :

H1 : k Ñ `8, k
n Ñ 0, log k

logn Ñ 0, as nÑ `8.

Moreover, introducing the important notation

Lnk “ logpn{kq,

let vn be a factor which will contribute to the rates of convergence of our estimators, and which
depends on the censoring strength in the tail :

vn :“

$

’

’

&

’

’

%

1 if 0 ă τX ă τC ď 1 or 0 ă τX “ τC ă 1 or 0 “ τX ă τC ď 1,

L
1

2
p
τC
τX
´1q

nk if 0 ă τC ă τX ď 1,

L
´1{2
nk plogLnkq

1

2
p 1

τX
´1q

if 0 “ τC ă τX ď 1.

Note that vn “ 1 in the mild or moderate censoring cases (when p “ 1 or at least p ą 0, see
Section 2.2), and vn Ñ 0 in the strong censoring cases (when p “ 0). We also consider the following
conditions

H2 : 0 ă τX ă τC ď 1 and

#

piq
?
kL

τX{τC´1
nk Ñ 0 if 1

τC
´ 1

τX
ě ´1

piiq
?
kL´τXnk Ñ 0 if 1

τC
´ 1

τX
ă ´1

H3 : 0 ă τC ă τX ď 1 and

$

’

&

’

%

piq
?
kvn Ñ `8

piiq
?
kvnL

τC{τX´1
nk Ñ 0 if 1

τX
´ 1

τC
ě ´1

piiiq
?
kvnL

´τC
nk Ñ 0 if 1

τX
´ 1

τC
ă ´1

H4 : 0 ă τX “ τC ă 1 and
?
kL´τXnk Ñ 0

H5 : 0 “ τX ă τC ď 1 and Dδ ą 0,
?
kLρ̃`δnk Ñ 0

H6 : 0 “ τC ă τX ď 1 and

"

piq
?
kvn Ñ `8

piiq
?
kvnplogLnkq

´1 Ñ 0

(in assumption H5 above, ρ̃ denotes the second order parameter associated to the slowly varying
function l̃, which is negative in this case ; see formula (2) in Section 2 as well as Lemma 1 in E.1)

Remark 3. A possible choice of the sequence pknq satisfying the conditions above, as well as the
additional conditions in the theorems stated below, is :

kn “

#

plog nqa if τC ‰ 0,
logn

plog lognqb if τC “ 0.

The choice and scope of exponents a and b depend on which condition H2, . . . , or H6 is considered.
Note that these sequences tend to infinity a bit more slowly than the sequences pknq considered in
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[14], in the non-censoring situation (see the paragraph following the statement of their Theorem 2).

The following four theorems respectively state the convergence in distribution of the estimators
θ̂X,τX (with τX known), τ̂X , θ̂X,τ̂X , and x̂pn , all of them being defined in the previous section.

Theorem 1. Let assumptions (A1) and (A2) hold, with pτX , τCq P r0, 1s
2zt p0, 0q , p1, 1q u, as well

as Rlpb, ρq and Rl̃pb̃, ρ̃q. If pknq satisfies H1 and one of the conditions H2, . . . ,H6, then we have, as
nÑ8,

?
kvnpθ̂X,τX ´ θXq

d
ÝÑ N

`

0, θ2
Xσ

2
˘

,

where a “ θZ{θX and

σ2 “

$

’

’

’

’

&

’

’

’

’

%

1 if 0 ď τX ă τC ď 1,

a´1{τX
´

τX
τC

¯1´1{τX
if 0 ă τC ă τX ď 1,

a´1{τX if 0 ă τX “ τC ă 1,

a´1{τXτ
1´1{τX
X if 0 “ τC ă τX ď 1.

Remark 4. When τX ă τC , the ultimate probability p of non-censoring is 1, this is the mild
censoring situation. When τX “ τC , it is easy to see that θZ ă θX and thus the asymptotic variance
is larger than in the case τX ă τC (i.e. we have σ2 ą 1). When 0 ă τC ă τX (strong censoring
setting), the ultimate probability of non-censoring p is zero, and the factor σ2 is ă 1 when θC ą θX ,
but otherwise this is not necessarily the case.

Theorem 2. Under the same assumptions as Theorem 1, we have, as nÑ8,

if τX ‰ 0,
?
kvnpτ̂X ´ τXq

d
ÝÑ N

`

0, τ2
Xσ

2
˘

,

if τX “ 0, τ̂X “ OPp1{ logpLnkqq
P
ÝÑ 0,

Theorem 3. Under the same assumptions as Theorem 1, if τX ą 0 and if we further assume that
?
kvn

logLnk
Ñ `8 pif τC ‰ 0q or

?
kvn

log logLnk
Ñ `8 pif τC “ 0q, (9)

we then have, as nÑ8,

if τC ‰ 0

?
kvn

logLnk
pθ̂X,τ̂X ´ θXq

d
ÝÑ N

`

0, θ2
Xσ

2τ2
Z

˘

,

if τC “ 0

?
kvn

log logLnk
pθ̂X,τ̂X ´ θXq

d
ÝÑ N

`

0, θ2
Xσ

2
˘

.

Remark 5. Note that the rate of convergence and asymptotic variance of θ̂X,τ̂X are altered and

different from that of θ̂X,τX due to the plug-in of τ̂X .

Theorem 4. Under the same assumptions as Theorem 3, if moreover
?
kvn

log logp1{pnqp´ logppnqqτX
Ñ `8 (10)

and

logLnk
log logp1{pnq

Ñ 0 pif τC ‰ 0q or
log logLnk

log logp1{pnq
Ñ 0 pif τC “ 0q, (11)

9



we then have, as nÑ8,
?
kvn

log logp1{pnqp´ logppnqqτX

ˆ

x̂pn
xpn

´ 1

˙

d
ÝÑ N

`

0, θ2
Xσ

2
˘

.

Remark 6. Note that condition p11q allows for an order pn of the high quantile which is lower
than 1

n , making it really extreme, while condition p10q is a restriction on this order.
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Figure 1. Illustration of the possible combinations of τ -parameters and the impact on rates and assumptions (τX “ τC “ 0

and τX “ τC “ 1 are excluded).

Remark 7. There is some sort of phase transition phenomenon in the above results. As a matter
of fact, not only the rate of convergence of our estimators vary whether τX is ď τC or not, but
the closeness of the parameters τX and τC also play a role (see assumptions H2 and H3) : the
assumptions vary whether τX is lower than τC but not too close to it (i.e. 1 ă 1

τX
´ 1

τC
), lower

than τC but close to it (i.e. 0 ă 1
τX
´ 1

τC
ď 1), equal to τC , larger than and close to τC (i.e.

0 ă 1
τC
´ 1

τX
ď 1), or sufficiently larger than τC (i.e. 1 ă 1

τC
´ 1

τX
). Figure 1 helps to understand

these facts.

However, in practice, for finite and moderate values of n, visualizing these findings on simulations
is not easy, because other factors (than just the tail parameters) play a non-negligible role in the
estimation quality.

Let us close this section by providing a hint of the proof of the consistency of our estimators
(consistency alone is not considered in the full proofs, only asymptotic normality is detailed). Let

us note θ̂
pcq
Z and τ̂

pcq
Z the following estimators of θZ and τZ

θ̂
pcq
Z “

Hk,n

µ1,τZ pLnkq
and τ̂

pcq
Z “

HHk,n

µ1,0pLnkq
where µ1,τ ptq “

ż 8

0
pKτ px` tq ´Kτ ptqqq e

´x dx.

(12)
The first one was introduced in [15]. The second one is similar to the estimator proposed in [1] (in

a slightly different setting). Using the material of [15] and [1], one can prove that θ̂
pcq
Z and τ̂

pcq
Z are

consistent estimators of θZ and τZ . Our estimators can then be written as

θ̂X,τX “ θ̂
pcq
Z ˆ

µ1,τZ pLnkq

Dk,τX

and τ̂X “ τ̂
pcq
Z ˆ

µ1,0pLnkq

lµ1,τZ pLnkq
ˆ
lµ1,τZ pLnkq

Dk,0
(13)

10



where lµ1,τ ptq :“
ş8

0 plogpKτ px` tqq ´ logpKτ ptqqq e
´x dx.

The consistency of θ̂X,τX will thus come from the convergence of the ratio µ1,τZ pLnkq{Dk,τX to
1{a “ θX{θZ , which is deduced from Corollary 1 (stated in Appendix A) of the present paper. The
consistency of τ̂X comes from the convergence of lµ1,τZ pLnkq{Dk,0 to τX , which is deduced from
Corollary 2 (stated in Appendix B), and from the fact that µ1,0ptq{lµ1,τZ ptq converges to 1{τZ as
tÑ8 (which is deduced from relations (A3) and (B3) in the Appendix).

It is noteworthy that equation (13) describes a way of adapting to the censoring context any
estimators of θ or τ valid in the complete data setting, by simply dividing by the appropriate
expression involving Dk,τX or Dk,0.

Finally, note that τ̂
pcq
Z defined above is a new estimator of τ in the A1pτ, θq model without

censoring, and thus a competitor of the estimator which was proposed in [14] (which required the
delicate choice of two intermediate sequences kn and k1n).

5. Finite sample comparisons

In this section, we illustrate, using few simulations, the finite sample performances of our estimators
of τX , θX and xpn (for small pn), in terms of observed bias and mean squared error (MSE). Note
that numerous different situations could be considered with our flexible framework : a thorough
and extensive simulation study is however not possible within the limits of the present paper. We
generate N “ 1000 samples of size n “ 500.

We consider three classes of distributions of Log-Weibull-tail type, for the target variable X and
the censoring variable C (for the first two classes, see Proposition 3 in [15] for the justification that
they fit our framework) :

‚ Log-Weibullpθq distribution such that its logarithm has c.d.f. 1 ´ expp´x1{θq (x ą 0). It
satisfies assumption A1pθ, θq.

‚ Log-Normal distribution LNpµ, σ2q, which satisfies assumption A1p
1
2 ,

σ
?

2
2 q.

‚ Model F with c.d.f. Fτ satisfying A1pτ, 1{5q, with H´pxq “ x1{5p1` x´1{2q p@xq.

We then consider three cases : a Log-WeibullpθXq distribution censored by the Log-Normalp1, 1{2q
distribution (Figures 2 and 3), the Log-Normalp1, 1{2q distribution censored by a Log-WeibullpθCq
distribution (Figures 4 and 5), and then a distribution in the F model censored by another distri-
bution in the F model (Figures 6 and 7). In each case, we consider three situations with τX ă τC ,
τX “ τC or τX ą τC , corresponding to different (ultimate) intensities of censoring in the tail.

In Figures 2, 4 and 6, we present the bias and the MSE of our estimators τ̂X and θ̂X,τ̂X as a
function of k. In Figures 3, 5 and 7, we present the relative bias and the relative MSE of our
estimator x̂pn for the value pn “ 0.001, compared with those of the existing estimator defined, in a
more general censored setting, by equation p8q in [13] :

x̂EFGpn “ Zn´k,n ` âk
pp1´ F̂npZn´kqq{pnq

γ̂c,Mom ´ 1

γ̂c,Mom
, (14)

where γ̂c,Mom is the moment estimator of the extreme value index γX of F adapted to censoring
and F̂n stands for the Kaplan-Meier estimator of the c.d.f. F . We refer to [13] for the expression of
âk. Note that no formal asymptotic result is currently available for x̂EFGpn .

Concerning the performance of the estimators θ̂X,τ̂X and τ̂X , we observe that when X has a
Log-Weibull tail, the bias and the MSE for both estimators are very small. When one deviates from
this situation, though, they are not very satisfactory on the situations presented here. Note however
that these estimators are the first to be proposed in this context, which is why no comparison to
competitors is presented . Another remark is that the quality of the estimators do not systematically
deteriorate when censoring gets stronger.
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Figure 2. Simulation with X log-Weibull censored by C log-Normal, where τX “ 0.4 ă τC “ 0.5 in figure (a) (mild censoring

p “ 1), τX “ 0.5 “ τC in figure (b) (moderate censoring p Ps0, 1r), and τX “ 0.6 ą τC “ 0.5 in figure (c) (strong censoring
p “ 0). The graphs represent observed bias and MSE of estimators τ̂X (blue) and θ̂X,τ̂X (dashed red).
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Figure 3. Simulation with X log-Weibull censored by C log-Normal, where τX “ 0.4 ă τC “ 0.5 in figure (a) (mild censoring

p “ 1), τX “ 0.5 “ τC in figure (b) (moderate censoring p Ps0, 1r), and τX “ 0.6 ą τC “ 0.5 in figure (c) (strong censoring

p “ 0). The graphs represent observed relative bias and MSE of estimators x̂pn (black) and x̂EFGpn (dashed green).
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Concerning the performance of the high quantile estimator, the figures show very good perfor-
mances when X has a Log-Weibull tail. When one deviates from this situation, things may become
worse. It is particularly true here in the Log-Normal versus Log-Weibull case. However, our estima-
tor remains competitive in terms of bias and MSE in a number of situations, for instance in Figure
7.

Note that when X has a Log-Weibull distribution, the associated function H is a power function
of index 1{θX . This corresponds to the case of equality in equation p4q, which is the starting point
for the construction of our estimators of τX and θX . This can explain the good performances of our
simulations in this case.

6. Real data analysis

In this section, we apply our methodology to one of the datasets included in the Cancer Genome
Atlas (TCGA, more information at cancergenome.nih.gov), namely the dataset concerning women
suffering from an ovarian cancer. The ov.clinical dataset, accessible using the R package RTCGA
(or manually), contains informations about 574 women1. In this section we will only be interested
in the vital status of the patient (δ “ 1 if the patient died during the study, or δ “ 0 if the patient
was still alive at the end of the study or was lost in the follow-up), and the observed duration
Z “ minpX,Cq (Z “ X if survival time is actually observed, and Z “ C if censoring occurred).
The tail of the survival time distribution FX will be estimated using the model (A1), and in this
context an extreme quantile xp associated to a small probability p, is a survival time that a patient
is expected to exceed only with probability p.

We plot, in figure 8, the proportion p̂k of non-censoring as a function of kn. We observe that the
censoring is rather strong, overall censoring rate is around 40% and more around 55% in the tail. If
we consider the quite stable zone where kn is between 55 and 80, we can estimate the probability
of non-censoring in the tail by 0.46.

We plot, on the left part of Figure 9, the values of our estimators τ̂X (thick blue) and θ̂X,τ̂X (thin
red) against kn. The estimate curve, as a function of kn, is particularly stable for τX (an estimate
of 0.12, possibly suggesting a Weibull-tail underlying distribution), but not very stable for θX (an
estimation between 0.85 and 0.9 if we consider the range of kn cited above).

On the right part of Figure 9, we plot the values of our estimator x̂pn (thick blue) of the extreme
quantile x̂pn for the value pn “ 0.001, as well as the estimator x̂EFGpn (thin green) against kn. We

observe that it is quite hard to propose as estimation of xpn relying on the estimator x̂EFGpn , as it
is particularly unstable in the tail. Concerning x̂pn , the choice of the sample fraction is delicate.
However, if we consider the quite stable area where kn is between 55 and 80, as for the estimation
of the parameters, then a possible estimation of the extreme quantile is around 28 years (i.e. it
would be estimated that there is a 0.1% chance that a woman suffering from ovarian cancer, dies
more than 28 years after the pronostic).

A concluding remark could be that estimating extreme quantiles under strong censoring is still
a research subject in progress and every new contribution is welcome.

7. Conclusion

In this paper we propose a solution for dealing with tail and extreme quantile estimation of data
which are randomly right censored, within a rather large family of distributions encompassing power
tail distributions, Weibull-tail distributions, and intermediary situations such as (for instance) log-
normal distributions. This family was first introduced in a complete data context in [15]. Our

1the original dataset contains 591 data lines, but 17 of them were not workable because of missing vital status or missing

survival time.
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Figure 4. Simulation with X log-Normal censored by C log-Weibull, where τX “ 0.5 ă τC “ 0.6 in figure (a) (mild censoring

p “ 1), τX “ 0.5 “ τC in figure (b) (moderate censoring p Ps0, 1r), and τX “ 0.5 ą τC “ 0.4 in figure (c) (strong censoring
p “ 0). The graphs represent observed bias and MSE of estimators τ̂X (blue) and θ̂X,τ̂X (dashed red).
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Figure 5. Simulation with X log-Normal censored by C log-Weibull, where τX “ 0.5 ă τC “ 0.6 in figure (a) (mild censoring

p “ 1), τX “ 0.5 “ τC in figure (b) (moderate censoring p Ps0, 1r), and τX “ 0.5 ą τC “ 0.4 in figure (c) (strong censoring

p “ 0). The graphs represent observed relative bias and MSE of estimators x̂pn (black) and x̂EFGpn (dashed green).
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Figure 6. Simulation with X and C in the F model, where τX “ 0.4 ă τC “ 0.6 in figures (a) (mild censoring p “ 1),

τX “ 0.5 “ τC in figure (b) (moderate censoring p Ps0, 1r), and τX “ 0.6 ą τC “ 0.4 in figure (c) (strong censoring p “ 0). The
graphs represent observed bias and MSE of estimators τ̂X (blue) and θ̂X,τ̂X (dashed red).
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Figure 7. Simulation with X and C in the F model, where τX “ 0.4 ă τC “ 0.6 in figure (a) (mild censoring p “ 1),

τX “ 0.5 “ τC in figure (b) (moderate censoring p Ps0, 1r), and τX “ 0.6 ą τC “ 0.4 in figure (c) (strong censoring p “ 0). The

graphs represent observed relative bias and MSE of estimators x̂pn (black) and x̂EFGpn (dashed green).
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0 100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

kn

τ̂  
an

d 
 θ̂

0 100 200 300 400 500

10
20

30
40

50

kn

x̂ p

Figure 9. Left: Our estimators τ̂X of τX (in thick blue) and θ̂X,τ̂X of θX (in thin red). Right : Estimators x̂pn (thick blue)

and x̂EFGpn (thin green) of the extreme quantile xpn , with pn “ 0.001.
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asymptotic normality results support all possible amounts of censoring in the tail, even very strong
ones where the ultimate probability of being censored in the tail is equal to one.

The main two contributions of this work are that very diverse combinations of tails of the censored
and censoring distributions are dealt with (not just a combination of tails from the same category),
and that tail estimation of log-Weibull-type distributions (not heavier than Pareto tails though)
are dealt with as well. The fact that one can estimate the tail parameters of this flexible model,
and not just the extreme quantiles, means that the user may consider estimating more elaborated
parameters than the extreme quantiles (for instance, expected tail losses EpX|X ą F´X p1´ pqq for
small p, of course with additional efforts in order to formally prove convergence results).

Concerning the performances, the bias of our estimators of θ and τ remains a problem, as
soon as one moves away from the pure log-Weibull situation. However our opinion is that this
bias problem was already present for the original estimators of τ and θ (which inspired ours) in
the non-censoring context. This topic of bias reduction still needs to be explored for this family
of distributions, even in the non-censored situation. In this paper, we did not try to detail the
asymptotic bias, mainly because of the great diversity of situations that our model handled, which
already made the exposition a bit complicated. This would require further work.

Finally, a continuation of this work could be to look for estimators of τ and θ which are weighted
modifications of their non-censored versions (the estimators in equation (12)), but with varying
weights, not the constant weights Dk,0 and Dk,τ̂X , with in mind a possible improvement in terms
of bias and mean-squared error.
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Appendix

Let us first summarize the contents of the Appendix. It is composed of 5 main parts.

Part A is devoted to the proof of Theorem 1.

Part B is devoted to the proof of Theorem 2.

Part C is devoted to the proof of Theorem 3

Part D is devoted to the proof of Theorem 4.

Part E contains different technical aspects. In particular, the important Lemma 1 and Lemma
2.

The Supplementary Material file contains the proofs of all the Lemmas, and of Propositions 1, 2
and 3.

Recall that Lnk is the notation for logpn{kq. Let us introduce the following notations :

Λk “ ΛF pZn´k,nq and Λ̂k “ Λ̂nXpZn´k,nq.

Appendix A. Proof of Theorem 1

This section details how the asymptotic normality of θ̂X,τX stems from the combination of properties
of the Hill estimator Hk,n (relations (A1), (A2) and (A4) below) and of the proportion p̂k of
uncensored data in the tail (Proposition 2 stated next page), via the important decomposition
(A6). Some details are postponed to other sections, in particular the crucial technical Lemma 2
(stated in E.1) which states the second order properties of the function ppxq “ Ppδ “ 1|Z “ xq.
The behavior of the (numerous) remainder terms is detailed in Proposition 3 below.

First, recall that θ̂X,τX “
Hk,n

Dk,τX

, with

Hk,n “
1

k

k
ÿ

j“1

logpZn´j`1,nq´logpZn´k,nq and Dk,τX “
1

k

k
ÿ

j“1

KτX pΛ̂nXpZn´j`1,nqq´KτX pΛ̂nXpZn´k,nqq.

According to Proposition 1, we have Zi “ H´Z pexppKτZ pEiqqq, where E1, . . . , En are n independent

standard exponential random variables and (see relation (2)) H´Z pxq “ xθZ l̃pxq, l̃ being RV0. Hence

Hk,n “ θZMn `Rn,l̃ (A1)

where

Mn :“
1

k

k
ÿ

j“1

KτZ pEn´i`1,nq ´KτZ pEn´k,nq and Rn,l̃ :“
1

k

k
ÿ

j“1

log

˜

l̃pexppKτZ pEn´j`1,nqqq

l̃pexppKτZ pEn´k,nqqq

¸

.

By the Renyi representation, we have En´j`1,n´En´k
d
“ Ẽk´j`1,k , where Ẽ1, . . . , Ẽk are k indepen-

dent standard exponential random variables. As was done in [15] (and borrowing their notations),
we have

Mn
d
“ θn,1pEn´kq where θn,1ptq :“

1

k

k
ÿ

j“1

KτZ pẼi ` tq ´KτZ ptq. (A2)

Introducing, for q P N˚, (see Lemma 2 of [15])

µq,τZ ptq :“ Epθn,qptqq “
ż 8

0
pKτZ px` tq ´KτZ ptqq

q e´x dx “ pq!q tqpτZ´1qp1` op1qq (as tÑ `8)

(A3)
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and σ2
1,τZ ptq :“ µ2,τZ ptq ´ µ

2
1,τZ ptq, it is proved in Lemma 5 of [15] that

?
kA1,n

d
ÝÑ Np0, 1q where A1,n :“

θn,1pEn´kq ´ µ1,τZ pEn´kq

σ1,τZ pEn´kq
. (A4)

Moreover, we prove in Lemma 3 (stated in E.2) via Taylor’s formula that

Dk,τX “ Λ̂τX´1
k p̂k `R1,n (A5)

where p̂k denotes the proportion of uncensored data among the k upper data values (see Lemma
3 for the definition of the remainder term R1,n). Formulas pA1q and pA5q thus easily entail the
following important intermediate relation :

θ̂X,τX ´ θX
d
“
θZMn ´ θXΛτX´1

k p̂k
Dk,τX

`

3
ÿ

i“1

Ti,n,

where

T1,n :“
Rn,l̃
Dk,τX

T2,n :“ ´θX
R1,n

Dk,τX

T3,n :“ ´θX
Λ̂τX´1
k ´ ΛτX´1

k

Dk,τX

p̂k.

Concerning now p̂k, recalling that a :“ θZ{θX , we prove in Lemma 5 (stated in E.2) that, when
τX ě 0 and τC ą 0,

ΛτX´1
k p̂k “

ˆ

aτX
τZ

˙1´1{τX

E
τZp1´1{τXq
n´k p̂k `R2,n

(note that the first term is equal to E´1
n´kp̂k when 0 “ τX ă τC ď 1, since then τZ “ τX and a “ 1),

and when τX ą 0 and τC “ 0,

ΛτX´1
k p̂k “ paτXq

1´1{τX plogEn´kq
1´1{τX p̂k `R2,n,

where the remainder term R2,n is detailed for each case in the statement of Lemma 5.

Consequently, defining T4,n :“ ´θX
R2,n

Dk,τX
, we obtain the following decomposition : when τX ě 0

and τC ą 0

θ̂X,τX ´ θX
d
“

σ1,τZ pEn´kq

Dk,τX

˜

θZA1,n ´ θX
µ1,τZ pEn´kq

σ1,τZ pEn´kq

˜

ˆ

aτX
τZ

˙1´1{τX E
τZp1´1{τXq
n´k

µ1,τZ pEn´kq
p̂k ´

θZ
θX

¸¸

`

4
ÿ

i“1

Ti,n,

and, when τX ą 0 and τC “ 0,

θ̂X,τX ´ θX
d
“

σ1,τZ pEn´kq

Dk,τX

˜

θZA1,n ´ θX
µ1,τZ pEn´kq

σ1,τZ pEn´kq

˜

paτXq
1´1{τX plogEn´kq

1´1{τX

µ1,τZ pEn´kq
p̂k ´

θZ
θX

¸¸

`

4
ÿ

i“1

Ti,n.

Then, recalling that µ1,τZ ptq „ tτZ´1 as t Ñ 8, we define the following remainder term as (note
again that aτX{τZ “ 1 and τZp1´ 1{τXq “ ´1 when τX “ 0 ă τC)

R3,n :“

$

&

%

´

aτX
τZ

¯1´1{τX
p̂k

´

pEn´kq
τZ p1´1{τX q

µ1,τZ
pEn´kq

´ L
1´τZ{τX
nk

¯

when τX ě 0, τC ą 0,

paτXq
1´1{τX p̂k

´

plogEn´kq
1´1{τX

µ1,0pEn´kq
´ LnkplogLnkq

1´τZ{τX
¯

when 0 “ τC ă τX .

Finally, using the additional fact that, thanks to pA3q,
µ1,τZ

pEn´kq

σ1,τZ
pEn´kq

P
ÝÑ 1, we can state the main
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relation of the proof of Theorem 1 :

θ̂X,τX ´ θX
d
“
µ1,τZ pEn´kq

Dk,τX

pθZA1,n ´ θXA2,np1` oPp1qqq `
5
ÿ

i“1

Ti,n, (A6)

where the second important term A2,n is defined as

A2,n :“

$

’

&

’

%

ˆ

aτX
τZ

˙1´1{τX

L
1´τZ{τX
nk p̂k ´ a if τX ě 0 and τC ą 0,

paτXq
1´1{τX LnkplogLnkq

1´τZ{τX p̂k ´ a if 0 “ τC ă τX ,

and the last remainder term to be introduced is T5,n :“ θZR3,np1` oPp1qq.

We deal with the asymptotic normality of A2,n and the reminder terms Ti,n in the following two
propositions. Recall that the rate vn is defined as

vn :“

$

’

’

&

’

’

%

1 if 0 ă τX ă τC ď 1 or 0 ă τX “ τC ă 1 or 0 “ τX ă τC ă 1

L
1

2
p
τC
τX
´1q

nk if 0 ă τC ă τX ď 1

L
´1{2
nk plogLnkq

1

2
p 1

τX
´1q

if 0 “ τC ă τX ă 1

Proposition 2. Under the conditions of Theorem 1,

if 0 ď τX ă τC ď 1,
?
kvnA2,n “

?
kvnpp̂k ´ aq “

?
kpp̂k ´ 1q

P
ÝÑ 0,

if 0 ă τC ă τX ď 1,
?
kvnA2,n “

?
kvn

ˆ

´

aτX
τZ

¯1´ 1

τX L
1´τZ{τX
nk p̂k ´ a

˙

d
ÝÑ N

ˆ

0, a2´1{τX
´

τX
τC

¯1´1{τX
˙

,

if 0 ă τX “ τC ă 1,
?
kvnA2,n “

?
kpa1´1{τX p̂k ´ aq

d
ÝÑ N

`

0, a2´1{τX p1´ a1{τX q
˘

,

if 0 “ τC ă τX ă 1,
?
kvnA2,n “

?
kvn

´

paτXq
1´ 1

τX Lnk plogLnkq
1´ 1

τX p̂k ´ a
¯

d
ÝÑ N

´

0, a2´1{τXτ
1´1{τX
X

¯

.

Proposition 3. Under the conditions of Theorem 1, for all 1 ď i ď 5 ,
?
kvnTi,n

P
ÝÑ 0, as n tends

to infinity.

The following result is a corollary of Proposition 2 and part of Proposition 3 (concerning the
term T2,n). As explained at the end of Section 4, the statement of this corollary is helpful for
understanding how consistency of an estimator of θZ transfers to consistency of our estimator of
θX .

Corollary 1. Under the conditions of Theorem 1, we have
Dk,τX

µ1,τZ pEn´kq
P
ÝÑ a, as n tends to

infinity.

Indeed, according to pA5q, and since µ1,τZ ptq „ tτZ´1 as tÑ8 (see relation (A3)),

Dk,τX

µ1,τZ pEn´kq
“ L1´τZ

nk ΛτX´1
k p̂kp1` op1qq

d
“ pA2,n ` aqp1` op1qq

P
ÝÑ a.

Of course, Corollary 1 certainly holds with weaker conditions than those of Theorem 1.

Let us end this proof by explaining how the combination of relations (A6) and (A4), Propositions

2 and 3, as well as Corollary 1 imply that
?
kvnpθ̂X,τX ´ θXq

d
ÝÑ Np0, vq where v “ θ2

Xσ
2.

´ When 0 ď τX ă τC ď 1, Proposition 2 states that
?
kA2,n converges to 0. Hence, the leading

term in pA6q is
?
kA1,n which converges in distribution to Np0, 1q (see pA4q), and we thus

obtain the desired value of v “ p 1
aq

2θ2
Z “ θ2

X .

´ When 0 ă τX “ τC ă 1, Proposition 2 states that
?
kA2,n

d
ÝÑ N

`

0, a2´1{τX p1´ a1{τX q
˘

.

Moreover
?
kA1,n converges in distribution to Np0, 1q. Since A1,n and A2,n are independent
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(under our independent censoring setting), we obtain as desired

v “
θ2
Z

a2
`
θ2
X

a2
a2´1{τX p1´ a1{τX q “ θ2

X ` θ
2
Xpa

´1{τX ´ 1q “ θ2
Xa

´1{τX .

´ In the other two cases, since vn Ñ 0,
?
kvnA1,n converges in probability to 0, and on the

other hand Proposition 2 states that
?
kvnA2,n converges in distribution to N p0, Dq with a

variance described above, and it is not difficult to check that p 1
aq

2θ2
XD equals to θ2

Xσ
2 as

stated.

Appendix B. Proof of Theorem 2

The proof is very similar to the previous one. First, recall that τ̂X “
HHk,n
Dk,0

. Concerning the

numerator, we have by Proposition 1 that Zi “ H´Z pexppKτZ pEiqqq, where E1, . . . , En are standard
exponential, and thus

HHk,n :“
1

kn

kn
ÿ

j“1

log logpZn´j`1,nq ´ log logpZn´kn,nq “ LMn `RRn,l̃ (B1)

where

LMn :“
1

k

k
ÿ

j“1

logpKτZ pEn´i`1,nqq´logpKτZ pEn´k,nqq and RRn,l̃ :“
1

k

k
ÿ

j“1

log

¨

˝

1`
logpl̃pexppKτZ pEn´j`1,nqqqq

θZKτZ pEn´j`1,nq

1`
logpl̃pexppKτZ pEn´k,nqqqq

θZKτZ pEn´k,nq

˛

‚.

By the Renyi representation, for some independent standard exponential random variables
Ẽ1, . . . , Ẽk we have

LMn
d
“ lθn,1pEn´kq where lθn,1ptq :“

1

k

k
ÿ

j“1

logpKτZ pẼi ` tqq ´ logpKτZ ptqq. (B2)

Introducing, for q P N˚,

lµq,τZ ptq :“ Eplθn,qptqq “
ż 8

0
plogpKτZ px` tqq ´ logpKτZ ptqqq

q e´x dx

and lσ2
1,τZ ptq :“ lµ2,τZ ptq ´ lµ

2
1,τZ ptq, we have

lµq,τZ ptq “

"

pq!qτ qZt
´qp1` op1qq if τZ ‰ 0,

pq!qt´qplogptqq´qp1` op1qq if τZ “ 0.
(B3)

We can then prove that (the proof is similar to that of Lemma 5 in [15])

?
kLA1,n

d
ÝÑ Np0, 1q where LA1,n :“

lθn,1pEn´kq ´ lµ1,τZ pEn´kq

lσ1,τZ pEn´kq
. (B4)

Concerning now the denominator, we prove in Lemma 3 (stated in E.2) that

Dk,0 :“
1

kn

kn
ÿ

j“1

logpΛ̂nXpZn´j`1,nqq ´ logpΛ̂nXpZn´kn,nqq “ Λ̂´1
k p̂k `R1,n, (B5)

where

R1,n “
1

k

k
ÿ

j“1

˜

log

˜

1`
∆̂j,k

Λ̂k

¸

´
∆̂j,k

Λ̂k

¸
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where the ∆̂j,k are defined in Lemma 3 and p̂k denotes the proportion of uncensored data in the
tail. From now on we consider that τX ‰ 0 (see Remark 8 below for the τX “ 0 case). Formulas
pB1q and pB5q easily entail the following important intermediary relation :

τ̂X ´ τX
d
“
LMn ´ τXΛ´1

k p̂k
Dk,0

`

3
ÿ

i“1

TTi,n,

where

TT1,n :“
RRn,l̃
Dk,0

TT2,n :“ ´τX
R1,n

Dk,0

TT3,n :“ ´τXpΛ̂
´1
k ´ Λ´1

k qpDk,0q
´1p̂k.

Moreover, we prove in Lemma 6 (stated in E.2) that, when τX ą 0 and τC ą 0 (the case τX ą 0
and τC “ 0 is omitted for brevity),

Λ´1
k p̂k “

ˆ

aτX
τZ

˙´1{τX

E
´τZ{τX
n´k p̂k `RR2,n,

the expression for the remainder term RR2,n being detailed for each case in the statement of Lemma
6.

Consequently, defining TT4,n :“ ´τX
RR2,n

Dk,0
, we obtain the following decomposition : when τX ą 0

and τC ą 0

τ̂X ´ τX
d
“

lσ1,τZ pEn´kq

Dk,0

˜

LA1,n ´ τX
lµ1,τZ pEn´kq

lσ1,τZ pEn´kq

˜

ˆ

aτX
τZ

˙´1{τX E
´τZ{τX
n´k

lµ1,τZ pEn´kq
p̂k ´

1

τX

¸¸

`

4
ÿ

i“1

TTi,n.

Since lµ1,τZ ptq „ τZt
´1 in the present case where τZ ‰ 0 (see pB3q), we define the following

remainder term as

RR3,n :“

ˆ

aτX
τZ

˙´1{τX

p̂k

˜

pEn´kq
´τZ{τX

lµ1,τZ pEn´kq
´

1

τZ
L

1´τZ{τX
nk

¸

,

and then, using the additional fact that
lµ1,τZ

pEn´kq

lσ1,τZ
pEn´kq

P
ÝÑ 1, we can finally state the main relation

of the proof of Theorem 2 :

τ̂X ´ τX
d
“
lµ1,τZ pEn´kq

Dk,0

`

LA1,n ´ a
´1A2,np1` oPp1qq

˘

`

5
ÿ

i“1

TTi,n, (B6)

where LA1,n is defined in (B4), the second main term A2,n is defined in section A and the last
remainder term to be introduced is TT5,n :“ ´τXRR3,np1 ` oPp1qq. The asymptotic normality of
A2,n is dealt with in Proposition 2. Concerning the remainder terms TTi,n, we prove the following
proposition :

Proposition 4. Under the conditions of Theorem 1, for all 1 ď i ď 5,
?
kvnTTi,n

P
ÝÑ 0, as n

tends to infinity.

The proof of Proposition 4 is very similar to the proof of Proposition 3.

The following statement is a Corollary of Propositions 2 and 4, in the same way that Corollary
1 was deduced from Propositions 2 and 3.
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Corollary 2. Under the conditions of Theorem 1, when τX ‰ 0 we have

Dk,0

lµ1,τZ pEn´kq
P
ÝÑ

1

τX

and, when 0 “ τX ă τC , we have as nÑ8

Dk,0

lµ1,0pEn´kq
“ plogLnkqp1` oPp1qq.

The proof of Theorem 2 can be concluded in the same way as was that of Theorem 1. Details
are omitted.

Remark 8. In the case 0 “ τX ă τC , we have Dk,0{lµ1,0pEn´k,nq
P
„ logLnk, and thus the estimator

τ̂X
d
“ lθn,1pEn´kq {Dk,0`TT1,n is contiguous to lµ1,0pEn´kq {Dk,0`TT1,n, which is itself equivalent

in probability to 1{ logLnk. Thus only the consistency and rate of convergence of τ̂X is obtained in
this case.

Appendix C. Proof of Theorem 3

Recall that θ̂X,τ̂X “ Hk,n{Dk,τ̂X where

Hk,n “
1

k

k
ÿ

j“1

logpZn´j`1,nq´logpZn´k,nq and Dk,τ̂X “
1

k

k
ÿ

j“1

Kτ̂X pΛ̂nXpZn´j`1,nqq´Kτ̂X pΛ̂nXpZn´k,nqq.

Moreover

log

˜

θ̂X,τ̂X
θX

¸

“ log

˜

θ̂X,τ̂X

θ̂X,τX

¸

` log

˜

θ̂X,τX
θX

¸

. (C1)

Theorem 1 and the delta-method yields that the second term of the right-hand side in pC1q satisfies

?
kvn log

˜

θ̂X,τX
θX

¸

d
ÝÑ N

`

0, σ2
˘

. (C2)

Now let us treat the first term. Since Dk,τX “ pΛ̂kq
τX´1p̂k ` R1,n (see Lemma 3) and, similarly,

Dk,τ̂X “ pΛ̂kq
τ̂X´1p̂k ` R̂1,n, where R̂1,n is obtained by replacing τX by τ̂X in the expression for

R1,n, we obtain

log

˜

θ̂X,τX

θ̂X,τ̂X

¸

“ pτ̂X ´ τXq logpΛ̂kq ´ log

˜

1`
R1,n

Λ̂τX´1
k p̂k

¸

` log

˜

1`
R̂1,n

Λ̂τ̂X´1
k p̂k

¸

.

Let us study separately the first two terms in the expression above (the third one being similar to
the second one). The starting point is

pτ̂X ´ τXq logpΛ̂kq “ pτ̂X ´ τXq logpΛkq ` pτ̂X ´ τXq log

˜

Λ̂k
Λk

¸

.

Let us continue with the case τX ‰ 0 and τC ‰ 0 (the case 0 “ τC ă τX being similar and the case
0 “ τX ă τC being excluded, see Remark 9 below).

Since
?
kvnpτ̂X ´ τXq

d
ÝÑ N

`

0, σ2τ2
X

˘

(Theorem 2), and, according to Lemma 7, logpΛkq “
τZ
τX
plogLnkqp1` oPp1qq, we obtain that

?
kvn

logLnk
pτ̂X ´ τXq logpΛkq

d
ÝÑ N

`

0, σ2τ2
Z

˘
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and
?
kvn

logLnk
pτ̂X ´ τXq log

´

Λ̂k
Λk

¯

“ oPp1q (because Λ̂k
Λk
“ OPp1q, see Lemma 7 in [30] for a proof).

Now, log
´

1` R1,n

pΛ̂kqτX´1p̂k

¯

“
R1,n

pΛ̂kqτX´1p̂k
p1 ` oPp1qq, and we prove in Proposition 3 that

?
kvn

R1,n

pΛ̂kqτX´1p̂k
“ oPp1q. Hence

?
kvn

logLnk
log

´

1` R1,n

pΛ̂kqτX´1p̂k

¯

“ oPp1q. This ensures that

?
kvn

logLnk
log

˜

θ̂X,τX

θ̂X,τ̂X

¸

d
ÝÑ N

`

0, σ2τ2
Z

˘

.

Finally, pC1q and pC2q yield
?
kvn

logLnk
log

˜

θ̂X,τ̂X
θX

¸

d
ÝÑ N

`

0, σ2τ2
Z

˘

.

This entails the announced asymptotic normality, via the delta-method.

Remark 9. In the case τX “ 0, logpΛkq “ aplogLnkqp1 ` oPp1qq, according to Lemma 7. Hence,
τ̂X logpΛkq does not converge to 0, in this case. This is why τX “ 0 is excluded from the asymptotic

result of θ̂X,τ̂X .

Appendix D. Proof of Theorem 4

Recall that xpn “ sF´X ppnq “ H´XpexppKτX p´ log pnqqq and

x̂pn “ Zn´k,n exp
´

θ̂X,τ̂X

´

Kτ̂X p´ logppnqq ´Kτ̂X pΛ̂kq
¯¯

where H´Xpxq “ xθX l̄Xpxq, and l̄X is slowly varying at infinity. Moreover, since Zn´k,n “
sF´X pexpp´Λkqq, it is easy to prove that

log
´

x̂pn
xpn

¯

“ θ̂X,τ̂X tpKτ̂X p´ logppnqq ´Kτ̂X pΛkqq ´ pKτX p´ logppnqq ´KτX pΛkqqu

`pθ̂X,τ̂X ´ θXqKτX p´ logppnqq ` θ̂X,τ̂X

´

Kτ̂X pΛkq ´Kτ̂X pΛ̂kq
¯

´pθ̂X,τ̂X ´ θXqKτX pΛkq ` log
´

l̄XpexppKτX pΛkqqq

l̄XpexppKτX p´ logppnqqq

¯

“: Q1 `Q2 `Q3 `Q4 `Q5.

Let us treat separately these five terms, in the case τX ‰ 0 and τC ‰ 0, the case 0 “ τX ă τC being
similar. Note that Q1 will turn out to be the main term.
Recall that

Lk :“

#

paτX{τZq
1{τX pLnkq

τZ{τX if τX ‰ 0 and τC ‰ 0,

paτXq
1{τX plogLnkq

1{τX if τX ‰ 0 and τC “ 0.

Consider the temporary notations

σn :“
´?

kvn

¯´1
and wn :“

ż ´ logppnq

Lk

uτx´1 log u du.

By integration by parts, and under assumption p11q (which implies that Lk “ op´ logppnqq), we
can prove that

wn “
1

τX
logplogp1{pnqq p´ logppnqq

τX p1` op1qq, (D1)

and similarly w̃n :“
ş´ logppnq
Lk

uτx´1 log2 u du “ 1
τX
plogplogp1{pnqqq

2 p´ logppnqq
τX p1` op1qq.
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‚ Let us prove that σ´1
n w´1

n Q1 converges in distribution to N p0, θ2
Xτ

2
Xσ

2q, which (via (D1))
will imply that

?
kvn

log logp1{pnqp´ log pnqτX
Q1

d
ÝÑ N p0, θ2

Xσ
2q. (D2)

According to Theorem 2, τ̂X “ τX `σnξn, where ξn converges in distribution to N p0, τ2
Xσ

2q.
Hence,

Q1 “ θ̂X,τ̂X

´

ş´ log pn
Λk

uτX`σnξn´1du´
ş´ log pn
Λk

uτX´1du
¯

“ θ̂X,τ̂X

´

ş´ log pn
Lk

uτX´1puσnξn ´ 1qdu´
şΛk
Lk
uτX´1puσnξn ´ 1qdu

¯

.

Let us introduce φpxq “ ex ´ 1´ x. Consequently,

Q1 “

4
ÿ

i“1

Q
piq
1 ,

where

Q
p1q
1 “ θ̂X,τ̂X

ş´ log pn
Lk

uτX´1φpσnξn log uqdu

Q
p2q
1 “ θ̂X,τ̂Xσnξn

ş´ log pn
Lk

uτX´1 log u du

Q
p3q
1 “ ´θ̂X,τ̂X

şΛk
Lk
uτX´1φpσnξn log uqdu

Q
p4q
1 “ ´θ̂X,τ̂Xσnξn

şΛk
Lk
uτX´1 log u du

Now, there exists η ą 0, such that x ă log η implies that |φpxq| ă pη{2qx2. As a consequence,
since σn log logp1{pnq Ñ 0 and σn logLk Ñ 0 (according to p10q and p11q),

|Q
p1q
1 | ă θ̂X,τ̂X

η

2
σ2
nξ

2
n

ż ´ log pn

Lk

uτX´1plog uq2 du “ η OPp1qσ
2
nw̃n.

Hence, via (10) and the previous approximations of wn and w̃n,

σ´1
n w´1

n |Q
p1q
1 | ă η OPp1qσnw̃n{wn “ η OPp1qσn log logp1{pnq

P
ÝÑ 0.

Concerning Q
p2q
1 , we have

σ´1
n w´1

n Q
p2q
1 “ θ̂X,τ̂Xξn

d
ÝÑ N p0, θ2

Xτ
2
Xσ

2q.

Let us now consider Q
p3q
1 . We proceed as for Q

p1q
1 to obtain

σ´1
n w´1

n |Q
p3q
1 | ă θ̂X,τ̂X

η
2σnξ

2
n

şΛk
Lk
uτX´1plog uq2 du

ş

´ log pn
Lk

uτX´1 log u du

ă θ̂X,τ̂X
η
2σn maxplog Λk, logLkqξ

2
n

şΛk
Lk
uτX´1 log u du

ş

´ log pn
Lk

uτX´1 log u du
.

Since σn log Λk
P
ÝÑ 0 (this is an easy consequence of assumption p11q and Lemma 7), the

right hand-side tends to 0, according to Lemma 8 and assumption p11q.

Concerning Q
p4q
1 , Lemma 8 and assumption p11q entails that σ´1

n w´1
n Q

p4q
1 tends to 0. This

completes the proof of (D2).

‚ Let us prove that σ´1
n w´1

n Q2 “ oPp1q : according to Theorem 3,

Q2 “ σnplogLnkqKτX p´ logppnqqδn,
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where δn converges to a gaussian distribution. Hence,

σ´1
n w´1

n Q2 “
plogLnkq KτX p´ logppnqq
ş´ logppnq
Lk

uτx´1 log u du
δn,

and assumption p11q yields the result.

‚ In order to prove that σ´1
n w´1

n Q3 “ oPp1q, we obtain via a Taylor expansion that

σ´1
n w´1

n |Q3| “ θ̂X,τ̂X
?
k|Λk ´ Λ̂k|

ˇ

ˇ

ˇ

ˇ

K 1
τ̂X pT̂kq

vn
wn

ˇ

ˇ

ˇ

ˇ

where T̂k is a value between Λk and Λ̂k. The fact that
?
k|Λk ´ Λ̂k| “ OPp1q (see Lemma 7 in

[30]) and assumption p11q yields the result.

‚ Let us prove that σ´1
n w´1

n Q4 “ oPp1q : as above (see treatment of Q2)

Q4 “ σn logLnkKτX pΛkqδn,

where δn converges to a gaussian distribution. Moreover KτX pΛkq
d
“ aKτZ pLnkqp1 ` oPp1qq

(see Lemma 4 piq). Hence

σ´1
n w´1

n Q4
d
“ a

KτZ pLnkq logLnk
ş´ logppnq
Lk

uτx´1 log u du
δnp1` oPp1qq.

Assumption p11q yields the result.

‚ Let us finally prove that σ´1
n w´1

n Q5 “ oPp1q : recall that

Q5 “ log
´

l̄XpexppKτX pΛkqqq

l̄XpexppKτX p´ logppnqqq

¯

“ log
´

l̄XpexppKτX pLkqqq

l̄XpexppKτX p´ logppnqqq

¯

` log
´

l̄XpexppKτX pΛkqqq

l̄XpexppKτX pLkqqq

¯

“ Q
p1q
5 `Q

p2q
5 .

Concerning Q
p1q
5 , we know that l̄X satisfies the SR2 condition (see Remark 10). Hence

´Q
p1q
5 “ log

´

l̄Xpλnxnq

l̄Xpxnq

¯

“ b̄XpxnqKθXρX pλnqp1` oPp1qq,

where |b̄X | P RVθXρX , λn “
exppKτX p´ logppnqqq

exppKτX pLkqq
and xn “ exppKτX pLkqq. Moreover, since λn

tends to `8, as n tends to infinity (because
KτX pLkq

KτX p´ logppnqq
tends to 0 under assumption p11q),

we obtain that KθXρX pλnq tends to ´1{pθXρXq. Moreover, since b̄X is RVθXρX according to
Remark 10, we have, for some small δ ą 0,

b̄XpexppKτX pLkqqq “ expppθXρX`δqKτX pLkqqop1q “ exp
`

pθXρX ` δq.cst.L
τZ
nkp1` op1qq

˘

op1q,

where the constant above is positive. Hence
?
kvnb̄XpexppKτX pLkqqq tends to 0 under the

appropriate assumption among H2, . . . ,H6. For example, in the case 0 ă τX ă τC ă 1 and
1
τC
´ 1

τX
ă ´1, for which vn “ 1, assumption H2piq yields that

?
kvnb̄XpexppKτX pLkqqq “

?
kL´τXnk LτXnk exp

`

pθXρX ` δq.cst.L
τZ
nkp1` op1qq

˘

op1q,

which clearly tends to 0 since ρX is negative, δ is small and the constant is positive. All the
other cases can be treated similarly. Consequently,

?
kvn

Q
p1q
5

KτX p´ logppnqq
“ ´

?
kvnb̄XpexppKτX pLkqqq

KθXρX pλnq

KτX p´ logppnqq
p1` op1qq,
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tends to 0. Then,

σ´1
n w´1

n Q
p1q
5 “

?
kvn

Q
p1q
5

KτX p´ logppnqq

KτX p´ log pnq
ş´ logppnq
Lk

uτx´1 log u du
,

which tends to 0 thanks to pD1q.

Similarly, we have

Q
p2q
5 “ log

´

l̄Xpλnxnq

l̄Xpxnq

¯

“ b̄XpxnqKθXρX pλnqp1` oPp1qq,

where xn “ exppKτX pLkqq and

λn “
exppKτX pΛkqq

exppKτX pLkqq
“ exppτ´1

X pΛτXk ´ LτXk qq “ exppcst.LτZ´αnk p1` op1qqq,

where, according to Lemma 4, the constant above is negative and

α “

"

τZ when either τX “ τC , or τX ‰ τC and r ď 0,
τZp1´ rq when τX ‰ τC and r Ps0, 1r.

In the case where α “ τZ , KθXρX pλnq converges to a constant. Hence we obtain, for the term

Q
p2q
5 , that

?
kvn

Q
p2q
5

KτX p´ logppnqq
P
ÝÑ 0,

in the same way as for Q
p1q
5 . Therefore σ´1

n w´1
n Q

p2q
5

P
ÝÑ 0, thanks to pD1q.

In the case where α “ τZp1 ´ rq, we have KθXρX pλnq “ Op1q exppcst.LrτZnk p1 ` op1qqq, where
here the constant is positive. Moreover, since b̄X is RVθXρX according to Remark 10, we have,
for some small δ ą 0,

b̄Xpxnq “ expppθXρX ` δqKτX pLkqqop1q “ exp
`

pθXρX ` δq.cst.L
τZ
nkp1` op1qq

˘

op1q,

where the constant above is positive. Consequently, since 0 ă r ă 1,

b̄XpxnqKθXρX pλnq “ op1q exp
`

pθXρX ` δqL
τZ
nk Op1q

˘

.

Hence,
?
kvnb̄XpxnqKθXρX pλnq tends to 0 according to the appropriate assumption among

H2, . . . ,H5 as explained above for Q
p1q
5 . To conclude, we proceed as in the previous case.

Appendix E. Technical aspects

The Lemmas stated in this section are proved in the Supplementary Material document.

E.1. Details about second order conditions and censoring probabilities

Recall that

sFXpxq “ expp´K´
τX plogpHXpxqqqq and sFCpxq “ expp´K´

τC plogpHCpxqqqq

where

H´Xpxq “ xθX l̄Xpxq , H´C pxq “ xθC l̄Cpxq , HXpxq “ x1{θX lXpxq , HCpxq “ x1{θC lCpxq.
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Moreover (see Proposition 1),

PpZ ą xq “ expp´K´
τZ plogpHZpxqqqq,

where H´Z pxq “ xθZ l̃pxq and l̃ is slowly varying. This implies that HX ˝H
´
Z pxq “ xalpxq, with l a

slowly varying function and a “ θZ{θX .
Lemma 1 stated below provides details about the second order properties of the functions H´Z

and HX ˝ H
´
Z (and therefore, on the behavior of the variables Zi and ΛXpZiq). These properties

not only depend on the position of the parameters τX and τC with respect to each other, but on
their proximity through the parameter r defined by

r :“ 1´

ˇ

ˇ

ˇ

ˇ

1

τC
´

1

τX

ˇ

ˇ

ˇ

ˇ

P r´8, 1s

(if either τX “ 0 or τC “ 0, indeed consider that r “ ´8). Its proof can be found in the Supple-
mentary Material document.

Lemma 1. Let conditions pA1q and pA2q hold.

piq For different slowly varying functions generically noted v, we have

lXpxq “ cXp1´ x
ρXvpxqq and lCpxq “ cCp1´ x

ρCvpxqq

l̄Xpxq “ c´θXX p1´ xθXρXvpxqq and l̄Cpxq “ c´θCC p1´ xθCρCvpxqq.

piiq The slowly varying functions l̃ and l associated to H´Z and HX ˝H
´
Z satisfy a second order

condition SR2 : as tÑ `8,

l̃ptxq

l̃ptq
´ 1

b̃ptq
ÝÑ Kρ̃pxq and

lptxq
lptq ´ 1

bptq
ÝÑ Kρpxq

where

ρ̃ “ ρ “

$

&

%

maxpθXρX ,´1q if 0 “ τX ă τC ă 1
maxpθCρC ,´1q if 0 “ τC ă τX ă 1
0 in the other cases ,

and |b̃| P RVρ̃ and |b| P RVρ. When ρ “ 0, both bptq and b̃ptq are (as t Ñ `8) of the order
Opplog tqr´1q when r ‰ 0, and of the order Opplog tq´2q when r “ 0.

piiiq The slowly varying function lZ associated to HZ satisfies

lim
xÑ`8

lZpxq “ cZ

"

Ps0,`8r if τX “ τC or r ď 0,
“ `8 if τX ‰ τC and r Ps0, 1r

where in particular cZ “ cX if τX ă τC and r ă 0, and cZ “ cC if τC ă τX and r ă 0.
Moreover we have (with the convention p`8q´θ “ 0 when θ ą 0)

l̃ptq Ñ c̃ :“ c´θZZ and lptq Ñ c :“ cX c̃
1{θX , as tÑ `8.

When τX “ τC or r ď 0, both c and c̃ are positive. When τX ‰ τC and r Ps0, 1r, both c̃ and c
are zero and the following relation holds for some ν ą 0, as xÑ8

log lpexpxq

x
“ ´ν.xr´1p1` op1qq ÝÑ 0 and

log l̃pexpxq

x
“ ´θXν.x

r´1p1` op1qq ÝÑ 0

(E1)

Remark 10. A consequence of this Lemma is that l̄X and l̄C also satisfy the SR2 condition with
rate functions |b̄X | P RVθXρX and |b̄C | P RVθCρC respectively.

Recall now that the function pp¨q is defined by

ppxq “ Ppδ “ 1|Z “ xq.
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The following lemma provides useful developments of functions pp¨q and rp¨q

rptq “ p ˝H´Z pexppKτZ p´ log tqqq,

which are crucial to derive the properties of the random proportion p̂k (and therefore the statements
of Proposition 2). Its proof is essentially based on the fact that

ppxq “
sFCpxqfXpxq

sFCpxqfXpxq ` sFXpxqgpxq
“

ˆ

1`
pK´

τC q
1plogHCpxqq

pK´
τX q

1plogHXpxqq

H 1Cpxq{HCpxq

H 1Xpxq{HXpxq

˙´1

(where fX and fC are the respective probability density functions of X and C), as well as on the
results of Lemma 1.

Lemma 2. Let us define the constants

AX “ θXpτ
´1
X ´ 1qpτ´1

X ` log cXq , AC “ θCpτ
´1
C ´ 1qpτ´1

C ` log cCq

and

A “ AC ´AX and B “
θX
θC

ˆ

τX
θX

˙1´1{τX ˆ

τC
θC

˙1{τC´1

.

Let assumptions pA1q and pA2q hold (the asymptotics below are xÑ `8 and t Ó 0).

piq We have

ppxq Ñ p :“

$

’

’

’

’

&

’

’

’

’

%

1 if 0 ď τX ă τC ď 1,

0 if 0 ď τC ă τX ď 1,

θ
1{τX
X

pθ
1{τX
X ` θ

1{τX
C q

“ a1{τX if 0 ă τX “ τC ă 1,

and, more precisely,

ppxq ´ p “

$

’

’

&

’

’

%

D plog xqr´1
“

1` gprqplog xqmaxp´1,r´1qp1` op1qq
‰

if 0 ă τX ‰ τC ď 1,

D x´1{θX plog xqτ
´1
C ´1

“

1`ACplog xq´1p1` op1qq
‰

if 0 “ τX ă τC ď 1,

D x´1{θC plog xqτ
´1
X ´1

“

1`AXplog xq´1p1` op1qq
‰

if 0 “ τC ă τX ď 1,
D plog xq´1p1`Op1{ log xqq if 0 ă τC “ τX ă 1,

where

D “

$

’

’

’

’

&

’

’

’

’

%

´B if 0 ă τX ă τC ď 1,
B´1 if 0 ă τC ă τX ď 1,

´pτC{θCq
τ´1
C ´1pθX{θCcXq if 0 “ τX ă τC ď 1,

pτX{θXq
τ´1
X ´1pθC{θXcCq if 0 “ τC ă τX ď 1,

´ABp1`Bq´2 if 0 ă τC “ τX ă 1,

and

gprq “

"

AIră0 ` pA´BqIr“0 ` p´BqIrPs0,1r if 0 ă τX ă τC ď 1,
p´AqIră0 ` p´A´B

´1qIr“0 ` p´B
´1qIrPs0,1r if 0 ă τC ă τX ď 1.

piiq When τZ ą 0 and τX ‰ τC , as t Ó 0 we have

rptq ´ p “ DpθZ{τZq
r´1p´ log tq´τZp1´rq

´

1`O
´

p´ log tq´τZ mint1,1´ru
¯¯

,

in particular, when 0 ă τC ă τX ď 1,

rptq “ a1{τX pτX{τCq
τ´1
X ´1p´ log tq

τC
τX
´1

´

1`O
´

p´ log tqmaxt´τC ,τC{τX´1u
¯¯

.

33



When τZ ą 0 and τX “ τC , we have

rptq ´ p “ ´AB
“

p1`Bq2pθZ{τZq
‰´1

p´ log tq´τZ
`

1`O
`

p´ log tq´τZ
˘˘

.

When τZ “ 0, if τ` “ maxpτX , τCq we have

rptq ´ p “ cstp´ log tq´1plog logp1{tqq
1

τ`
´1 `

1`O
`

plog logp1{tqq´1
˘˘

.

with the constant being equal to τ
1

τX
´1

X a1{τX when 0 “ τC ă τX ď 1.

E.2. Technical Lemmas

The proofs of the following Lemmas can be found in the Supplementary Material document.

Lemma 3. The denominator of the estimator θ̂X,τX satisfies the relation

Dk,τX “
1

k

k
ÿ

j“1

KτX pΛ̂nXpZn´j`1,nqq ´KτX pΛ̂nXpZn´k,nqq “ Λ̂τX´1
k p̂k `R1,n,

where

R1,n “

$

’

’

’

&

’

’

’

%

τX´1
2 Λ̂τXk

1
k

řk
j“1

´

∆̂j,k

Λ̂k

¯2
p1` Tj,kq

τX´2, if 0 ă τX ă 1,

1
k

řk
j“1

´

log
´

1` ∆̂j,k

Λ̂k

¯

´
∆̂j,k

Λ̂k

¯

if τX “ 0,

0 if τX “ 1

with, for each j “ 1, . . . , k, ∆̂j,k :“ Λ̂nXpZn´j`1,nq ´ Λ̂nXpZn´k,nq and the random variable Tj,k

lies between 0 and ∆̂j,k

Λ̂k
.

For the following lemma, recall that pEiq denote the i.i.d. standard exponential variable pEiq
satisfying Zi “ H´Z pexppKτZ pEiqq, and that lp¨q denotes the slowly varying function which properties
are described in Lemma 1 and which is such that HX ˝H

´
Z pxq “ xalpxq. Note that in part piiq of

this lemma, the results also hold when one replaces En´k,n by Lnk, or replaces Zn´k,n and En´k,n
by Zn´j`1,n and En´j`1,n (this will occasionally prove useful).

Lemma 4. piq For every i “ 1, . . . , n, and whether τZ ą 0 or is equal to 0, we have

ΛXpZiq “ K´
τX

`

aKτZ pEiq ` log lpexpKτZ pEiqq
˘

.

piiq When τZ ą 0, we have

ΛXpZn´k,nq “

ˆ

a
τX
τZ

˙1{τX

E
τZ{τX
n´k,np1` oPp1qq “

ˆ

a
τX
τZ

˙1{τX

E
τZ{τX
n´k,n

´

1` βE´αn´k,np1` oPp1qq
¯

(E2)

for some constant β and exponent α “

"

τZ when either τX “ τC , or τX ‰ τC and r ď 0,
τZp1´ rq when τX ‰ τC and r Ps0, 1r.

When 0 “ τX ă τC , we have ΛXpZn´k,nq “ En´k,nlpEn´k,nq “ En´k,np1` oPp1qq.

When 0 “ τC ă τX , we have

ΛXpZn´k,nq “ paτXq
1{τX plogEn´k,nq

1{τX
`

1` βplogEn´k,nq
´1p1` oPp1qq

˘

.

Note that the constant β is negative in the case τX ‰ τC and r Ps0, 1r.
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Lemma 5. Let E1, . . . , En be i.i.d. standard exponential random variables.

ΛτX´1
k p̂k “

$

’

’

’

&

’

’

’

%

´

aτX
τZ

¯1´1{τX
E
τZp1´1{τXq
n´k,n p̂k `R2,n, if τX ‰ 0 and τC ‰ 0

p̂k
En´k,n

`R2,n, if 0 “ τX ă τC ă 1

paτXq
1´1{τX plogpEn´k,nqq

1´1{τX p̂k `R2,n if 0 “ τC ă τX ă 1,

where

R2,n “

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

´

aτX
τZ

¯1´ 1

τX E
τZp1´

1

τX
q

n´k,n p̂k

ˆ

p1´ E´τZn´k,nq
1´ 1

τX

´

1`
1`τX log lpexppKτZ pEn´k,nqqq

aτXKτZ pEn´k,nq

¯1´ 1

τX
´ 1

˙

,

if 0 ă τX ă 1 and τC ‰ 0

p̂k
En´k,n

´

1
lpEn´k,nq

´ 1
¯

, if 0 “ τX ă τC ă 1

paτXq
1´ 1

τX plogpEn´k,nqq
1´ 1

τX p̂k

ˆ

´

1` 1`τX log lpEn´k,nq
aτX logpEn´k,nq

¯1´ 1

τX
´ 1

˙

, if 0 “ τC ă τX ă 1

0, if τX “ 1

Lemma 6. Let E1, . . . , En be i.i.d. standard exponential random variables.

Λ´1
k p̂k “

$

’

’

’

&

’

’

’

%

´

aτX
τZ

¯´1{τX
E
´τZ{τX
n´k,n p̂k `RR2,n, if τX ‰ 0 and τC ‰ 0

p̂k
En´k,n

`RR2,n, if 0 “ τX ă τC ă 1

paτXq
´1{τX plogpEn´k,nqq

´1{τX p̂k `RR2,n if 0 “ τC ă τX ă 1,

where

RR2,n “

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

´

aτX
τZ

¯´ 1

τX E
´
τZ
τX

n´k,np̂k

ˆ

p1´ E´τZn´k,nq
´ 1

τX

´

1`
1`τX log lpexppKτZ pEn´k,nqqq

aτXKτZ pEn´k,nq

¯´ 1

τX
´ 1

˙

,

if 0 ă τX ă 1 and τC ‰ 0

p̂k
En´k,n

´

1
lpEn´k,nq

´ 1
¯

, if 0 “ τX ă τC ă 1

paτXq
´ 1

τX plogpEn´k,nqq
´ 1

τX p̂k

ˆ

´

1` 1`τX log lpEn´k,nq
aτX logpEn´k,nq

¯´ 1

τX
´ 1

˙

, if 0 “ τC ă τX ă 1

0, if τX “ 1

Lemma 7. Under the assumptions of Theorem 1, we have, as nÑ8,

if τX ‰ 0 and τC ‰ 0, logpΛkq “
τZ
τX

logLnkp1` oPp1qq

if τX “ 0, logpΛkq “ a logLnkp1` oPp1qq

if τX ‰ 0, and τC “ 0 logpΛkq “
1
τX

log logLnkp1` oPp1qq

Lemma 8. Under the assumptions of Theorem 4, we have, as n tends to infinity,

ż Λk

Lk

uτX´1 log u du “

$

’

’

’

&

’

’

’

%

OPplogLnkq if τX ‰ 0, τC ‰ 0 and pτX “ τC or r ď 0q,

OPpL
rτZ
nk logLnkq if τX ‰ 0, τC ‰ 0, τX ‰ τC and r Ps0, 1r,

OPplog logLnkq if τX ‰ 0 and τC “ 0,

oPplogLnkq if τX “ 0.
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