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ABSTRACT

In this paper, the flexible semi-parametric model introduced in [15] is considered for conducting
tail inference of censored data. Both the censored and the censoring variables are supposed to be-
long to this family of distributions, and thus solutions for modeling the tail of censored data which
are between Weibull-tail and Pareto-tail behavior are proposed. Estimators of the tail parameters
and extreme quantiles are defined without prior knowledge of censoring strength and asymptotic
normality results are proved. Various combinations of the tails of censored and censoring distribu-
tions are covered, ranging from rather mild censoring to severe censoring in the tail, i.e. when the
ultimate probability of censoring in the tail is zero. Finite sample behavior is presented via some
simulations and an illustration on real data is also provided.
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1. Introduction

This paper proposes new contributions to the topic of extreme value statistics for data which are
randomly censored from the right.

Consider the classical random censoring setup, where one observes a sample from a couple
(Z,0) = (min(X,C),Ix<c) with X denoting the variable of interest, and C a censoring vari-
able (independent from X') which may prevent the user from observing the data X. The observed
data is a sample (Z1,61),...,(Zn,0n) where (X1,...,X,) and (C1,...,C,) are independent sam-
ples of i.i.d. copies of X and C and d; = Ix,<c,. The topic of extreme value statistics for randomly
censored data deals with the estimation of the tail of X (tail parameters, extreme quantiles, rare
probabilities of exceeding a large value), while observing such an incomplete data sample.

A variety of topics can fit this formal random censoring framework. For instance, in the so-called
survival analysis setting, the statistical units are patients suffering from a disease, and X1,..., X,
denote the times elapsed between their inclusion in a study and some event of interest (recovery,
recurrence of the disease, death, etc...). Due to loss of follow-up or end of study, one only observe
durations (Z1, ..., Z,) and non-censoring indicators (41, ...,d,). An extreme quantile, in this sur-
vival analysis context, is a duration x, that the "lifetime” of a patient is expected to exceed only
with a small probability p, typically smaller than 1/n. Due to scarcity of data in the tail, some sort
of semi-parametric modeling is required to estimate such extreme quantile ).

This topic has benefited from a number of contributions in the recent years, which were stimulated
by applications in a variety of domains, mainly reliability analysis, survival/lifetime analysis and
insurance. [2] and [13] presented a general method for adapting estimators of the extreme value
index in this censorship framework. [27], [7] and [28] proposed a more survival analysis-oriented
approach, the first two being restricted to the heavy tail case. [29] extended this survival analysis
approach to competing risks. The Weibull-tail class of distributions is studied in [30]. [22], [23] and
[25] extended the framework to data with covariate information. [5], [6] and [16] considered the
bias-reduction problem. The multivariate case is studied in [17] and [20]. See also [4] , [18], [24], [9],
[10], [11], [26] and [8] for other papers on the subject.

A characteristic of most of these papers is that X and C' are always supposed to share the same
type of tail, i.e. a heavy tail censored by a heavy tail, a light (Gumbel) tail censored by another
light tail, or a finite tail censored by a finite tail. This is for instance very well described by the 3
cases exhibited in formula (7) of the insightful paper [13].

The main and initial objective of this paper is to broaden the type of tails in the Gumbel domain
that the user will be able to deal with, for estimating tail parameters and extreme quantiles based on
censored data. As a matter of fact, the lighter-than-Pareto-tails situation was slightly overlooked
in censored extremes works, and this may be considered unfortunate since several applications
of the censored extremes question do not necessarily exhibit a heavy tail behavior (particularly in
survival/lifetime analysis). Essentially only two research papers proposed so far solutions for dealing
with light tails. The first one is [13] which proposed estimators of the extreme value index and of
extreme quantiles in various cases and in particular in the double Gumbel case (a distribution in
the Gumbel domain of attraction censored by another distribution in the same domain). However,
the results on the extreme value index, in this case, are stated with a restrictive assumption on the
ultimate probability of non-censoring in the tail and there is no formal convergence statement for
the proposed extreme quantiles estimator. The second one is [30] which considered the general two
Weibull-tails framework (a distribution in the Weibull-tail class censored by another distribution
in the same class) : this is a strict subset of the double Gumbel case, allowing however interesting
configurations where the ultimate probability of non-censoring in the tail can be zero (see its
definition in next Section).

The basement of the present work is the flexible semi-parametric model proposed in [15] (model
A1(7,0) described in the next section), which encompasses a large part of the Gumbel maximum
domain of attraction and the whole Fréchet one, and therefore provides a more flexible option for



modeling various phenomena. In this paper, estimation of the parameters of this model will be
made possible in the presence of censoring, with very simple expressions for the estimators. In
addition, this setup will allow for a more diverse combination of tails (without prior knowledge of
that combination) than the Fréchet versus Fréchet or the Weibull-tail versus Weibull-tail cases (see
next section).

The paper is organized as follows. Section 2 formally settles the framework and describes how
the parameters of the observed Z can be deduced from those of X and C, thus explaining what
is statistically at stake. Section 3 explains how the parameters and extreme quantiles of X can be
estimated from the observed censored data, while Section 4 states the main results of this paper,
along with the required assumptions on the number k,, of order statistics retained for the estimation.
Section 5 contains simulations to illustrate the performance of our estimators and Section 6 an
illustration on real-data. Part A to D of the Appendix are devoted to the proofs of our asymptotic
results, while part E contains important technical results. Technical aspects of the proofs can be
found in a Supplementary Material document provided by the authors ([31]).

2. Description of the framework and assumptions

2.1. Model and main assumptions

In the sequel, F'~ denotes the general inverse of a function F'; F~(t) = inf{x € R; F(x) > t} for any
te[0,1].
The formal framework of this paper is the following. Defining for 7 € [0, 1] the Box-Cox function

v " —1)/r if 7 €]0,1],
KT(m):Lu 1alu:{l(og(an') / ifTe:]O,]

we consider, for parameters 7 € [0, 1] and 6 > 0, that a distribution function F' belongs to the semi-
parametric family A; (7, 6) if the following holds (see [15] where this model was initially introduced
in a complete data setting, and [14] for additional developments):

Aq(,0) : for some z, > 0 and every = > x,, we have
1 = F(z) = exp(—K7 (log(H(2)))),

where H is an increasing positive function such that H~ is regularly
varying at infinity with index 6 (which will be denoted by H~ € RVjp).

Let us highlight that the tail heaviness of a distribution belonging to A;(7,6) is mainly driven by
7, although in practice both shape parameters 7 and 6 play an important role in the properties
and shape of the upper tail. It is easy to see that (for more details see Proposition 2 in [15]) :

e A;(1,0) corresponds to distributions in the Fréchet domain of attraction with extreme value
index 6 (i.e. when 1 — F(z) = 2~ /?1(x) with [ slowly varying).

e A;(0,0) corresponds to Weibull-tail distributions with Weibull-tail coefficient 6 (i.e. when
1 — F(x) = exp(—z?1(z)) with [ slowly varying).

e The case 7 €]0, 1] corresponds to distributions in the Gumbel domain having tails heavier than
Weibull-type ones : such distributions can be conveniently qualified as having log-Weibull-
type tails, and log-normal distributions belong to this category with 7 = 1/2 (see [15] for
more examples). The larger 7 is, the heavier the tail can be considered.

In this work, the main assumption is that both the censored and the censoring variables have
their distribution belonging to the A;(7,0) family. This assumption covers a quite flexible setting.
Indeed, the users will not need to decide in advance whether a Pareto, Weibull or Log-Weibull tail
is convenient for their data, either for the target X or the censoring C'. In particular, it is important
to note that X and C do not necessarily share the same type of tail. For instance, the cases of



Weibull-type data censored by a log-Weibull-type distribution, or of Pareto-type data censored by
a log-Weibull-type distribution, are covered. We thus assume the following :

Assumption (A1) : there exist 7x € [0,1], 7¢ € [0, 1], Ox > 0, 6 > 0 such that

Fx € Ai(tx,0x) and F¢o € Ai(mc,0c).
This means that there exists positive functions Hx and Hg such that
Fx(z) = 1-Fx(z) = exp(~ K, (log(Hx(x)))) and Fc(x) = 1-Fo(x) = exp(— K (log(Hc(x))))
and, for some slowly varying functions lx and lc at infinity,

Hy(z) = 2" Ix(z) and Hg(z) = 2%Io(z).

It is clear that under this condition we also have Hx(x) = z'/%Ix(z) and Ho(z) = 2% 1o (x)
where both [x and lo are slowly varying functions at infinity.

The estimation of the parameters 7x and fx is the main objective of this work (with the esti-
mation of extreme quantiles of Fy being its main application). A first step to do so is to find a
relation between the parameters of X and C and those of the observed variable Z = min{X, C'}.

Under assumption (A1), the following proposition states that the distribution of Z also belongs
to the same family of distributions as those of X and C, for some parameters 7 and 67 specified
below :

Proposition 1. Under Assumption (A1), the distribution function of Z = min(X,C) satisfies
condition Ai(1z,0z), where

0x f0<tx <7170 <1
in ) i 0 Oc if0<To<7x <1
= min an = _ _
7z x,7C 4 (GXUTZ + 901/72)*72 f0<tx =70 <1
min(fx, 0c) iftx =17¢ =0

Therefore, there exists x4 > 0 such that for any x = x,, we have
P(Z > ) = exp(—K_, (log(Hz(x)))),
where H, € RVy,. Consequently, if E denotes a standard exponential variable, we have
d —
Z = H, (exp K;,(E)).
Remark 1. It is interesting to note that :

— in the two-heavy-tails case Tx = 7c = 1, the parameters Ox, 0c and 0z, are the extreme value
indices of the distributions of X, C' and Z respectively, and they indeed satisfy the well-known
relation 07 = (05" +0,1) 7" (see [2]).

— in the two- Weibull-tails case Tx = 70 = 0, we recover the fact that the Weibull-tail parameter
of Z is equal to the minimum of those of X and C (see [30]).

— when Tx = 7¢, we have 07 < min(Ox,0c), but otherwise this is not necessarily the case.

— the expression of Oz in the fourth case is coherent with the third one in the sense that
min(fyx,0c) is indeed the limit of (0;(1/7 + 951/7)_7 as T — 0.

In this paper, we will exclude the first two situations evoked in Remark 1 above, which have al-

ready been explored in anterior works, and therefore suppose that (7x, 7¢) € [0,1]2\{(0,0), (1,1) }.

Let us close this subsection by now describing the more technical assumptions required for our
results to hold. This part of the section may be skipped on first reading.

In order to achieve asymptotic normality of the estimators defined in this paper, the slowly
varying functions lx and [ associated to Hx and H¢ are supposed to satisfy a classical second
order condition (usually called the SR2 condition) :



Assumption (A2) : there exist some negative constants px and pc, and some
rate functions by and bc having constant sign at +00 and
satisfying |bx| € RV,, and |bc| € RV,, such that, as t —
+00,

Ix(tr)/lx(t) — 1
bx (1)

lo(tz)/lo(t) — 1
bo(t)

— K, (x), and — K, (z),Yz > 0.

(1)
According to the last statement of Proposition 1 and to the expression of our estimators (see next
Section), it will be important in the sequel to consider the functions

~ 0
Hy(z) =2%1(z) and Hx o H,(z) =2%(z) with a:= Q—Z, (2)
X

where both [ and [ are slowly varying, and o denotes the composition operator (fog(z) = f(g(x))).
The crucial parameter a = 67/0x is equal to 1 in ” mild censoring” situations (in particular when
Tx < TC).

In addition, our important technical Lemma 1, stated in E.1, ensures that functions H, and
Hyx o H, also satisfy a second order condition SR2. For technical reasons though, we need to
consider the following stronger conditions on [ and . We consider there exist nonnegative constants
p and p, and functions b and b, such that assumptions RZ(B, p) and Ry(b, p) hold, according to the
following generic definition :

Assumption Ry(B, p) : for some constant p < 0 and a rate function B satisfying
lim,_,+ o B(z) = 0, such that for all e > 0, we have

L(A\z)/l(x) — 1

sup | ———~———— — 1| < ¢, for z sufficiently large .
T BWE,M T

Note that, according to Lemma 1 (see E.1), we have necessarily p = p, and that this parameter is
negative when either 7x = 0 or 7¢ = 0, but otherwise (i.e. in most cases) it is zero, an unpleasant
fact which often implies some challenge in the proofs, and affects the rates of convergence of our
estimators (with respect to the non-censored framework).

2.2. Proportion of censoring in the tail

It is well known that the strength of censoring affects the statistical performance of estimators
in survival analysis. This is naturally also the case for tail estimation under random censoring.
Indeed, the ultimate proportion of non-censoring in the tail, denoted p below, explicitly appears in
asymptotic variances in the context of extremes of censored data. For instance, the adaptation of
the Hill estimator introduced in [13] multiplies the asymptotic variance of the non-censored case
by 1/p (see Corollary 1 therein), provided that this ultimate probability p is positive. Moreover, the
pre-asymptotic probability

p(z) =P =1|Z = x)

of being non-censored at level x (for large x) often plays a crucial role for proving asymptotic
results.

In the context of this paper, Lemma 2 (stated in E.1) provides precise expansions for p(z),
for large x, which turn out to be useful in the proofs of our asymptotic results. In particular, its
statement () yields the following :

1 if0<x < 7¢
lim p(x)=p:=4 0 if 0 <
&=+ 91/7’){ 1/7—X I/TX .
v SO +04T) f0<Tx =70 <



Note that when X and C' are both in the Fréchet or both in the Weibull (i.e. finite tail, not
Weibull-type tail) maximum domain of attraction, p necessarily belongs to ]0, 1[ (see [13] page 214,
for instance). When X and C' are both in the Gumbel maximum domain of attraction, things are
more complicated, and in this case, [13] considered the assumption p €]0, 1[, which is difficult to
check in practice and somehow restrictive.

In the model considered in this paper, p can thus span the whole [0, 1] interval. In the first
situation above 0 < 7x < 7¢ < 1 (the light censoring one), the fact that the ultimate probability
p of non-censoring in the tail is 1 and that the parameters of X are the same as those of Z (see
Proposition 1) would suggest that taking into account the censoring is useless. However, as [30]
already put forward, this is not advisable because those settings produce finite size data where
censoring is still present and needs to be taken into account. Similarly, the second situation (strong
censoring) where the ultimate probability p is 0 produces, in practice, data which are not completely
censored in the tail, and thus the statistical problem of estimating the tail parameters and extreme
quantiles of X should and can be addressed. Finally, one can note that the particular situation
where tails of X and C have the same heaviness (7x = 7¢) is interesting on its own.

3. Construction of the estimators

Let us denote by Ax and A¢ the cumulative hazard functions associated to F'x and Fg, respectively
Ax(z) = —log Fx(r) and Ac(z) = —logFo(x),

and let A, x denote the Nelson-Aalen estimator of Ax defined as

R iy
Rox(@) = 3 2 (3)
P n—1i+1
where Z1, < ... < Z,, are the order statistics of the sample (Z;) and 01 p,...,0,, are the

corresponding indicators associated to these reordered Z values. Let k,, = o(n) be an intermediate
sequence of integers (which will often be simply denoted by k), representing the number of upper
data values retained for tail estimation.

In the following lines, we derive the approximations that inspired our estimators defined below in
relation (6). Under assumption (A1), Hx is regularly varying with index 1/0x and K, (Ax(z)) =
log(Hx (x)), hence, for u large, we have

1 _
Kry () ~ 5 log(Ax ().
X

Moreover, for s large and any v > 1

Combining these two results, we obtain a first approximation, for v and s large, relating 7x to Ax

Tx log u ~ loglog(Ay (su)) — loglog(Ax (s)). (4)

The second approximation comes from the fact that, for ¢ large and any given = > 1, we have

Hx(tx
XUD) oy, (Ax (1) — Ko (Ax (1)) = 2%,
Hx(t)
hence 0x is related to 7x and Ax via the formula :
1
x logx ~ K. (Ax(tx)) — K (Ax(1)). (5)



Therefore, applying approximation (4) to s = Ax(Zy—k, n) and v = Ax(Zn—j+1,0)/Ax(Zn—k, n)
on one hand, and approximation (5) to t = Z,_, » and & = Zn_j41,n/Zn—k, »n on the other hand,
and then plugging in the Nelson-Aalen estimator of Ay and summing for 1 < j < k lead to our
proposed estimators of 7x and Ox:

~ HHkn N Hkn
= — d ¢ = ’ 6
TX Dk70 an X, Tx Dk,TX ( )
with
1 k’!‘b
Hp, = — lOg(anj#l,n) 710g(Zn—kmn)’
Fn S
1 &
HHgpn = 1= 2, 10glog(Zn—j+1n) — loglog(Zn—r,n),
niq
1 & A .
Dk,TX ]{37 K’TX (AnX(Zn—j-‘rl,n)) - KTX (AnX(ankn,n))
noiq

The two estimators above are thus ratios involving on one hand the mean of either the log-
spacings (i.e. the Hill statistic) or the log-log-spacings, and on the other hand a denominator
involving the Nelson-Aalen estimator at the k& upper values of the observed Z sequence.

Note that the expressions of the estimators defined in (6) do not depend on the relative positions
of 7x and 7¢ (or of Ox and 6¢). They can be calculated whatever the combinations of the tails
of X and C are, with the same formulas. However, we will see in the next Section that the rates
of convergence, performances, and assumptions of these estimators can differ depending on the
strength of censoring.

Remark 2. In the case Tx = 17¢ = 0, corresponding to the purely Weibull-tail framework, the
estimator Ox o corresponds to the one studied in [30], because K, (x) = log(x) in that case. In the
case Tx = T7¢ = 1, corresponding to the purely heavy-tail framework, the estimator éx,l corresponds
to the adapted Hill estimator studied in [2], because in that case K;,(x) = x — 1 and thus we have
exactly Dy 1 = py, (see formula (7) below). As said earlier, these two particular cases are excluded

from the scope of the statements of this paper because properties of HAXJ) and éXJ are already known.

The main issue in the proofs lies in the treatment of the denominators Dy, ,, and Dy, o. In fact,
the statistic Dy, -, defined below (6) turns out to be related to the proportion p; of uncensored
data in the tail via the relation (see Lemma 3 in the Appendix for the details)

~ Tx—1 . . 1 k
Dy, ry ~ (AnX(Zn—k,n)) Pr  where py = Ezén—jﬁ-l,n
=1

because of the nature of the Box-Cox transformation K., Taylor’s formula, and of the fact that

k E k k

%Z (AnX(Zn—j+l,n) - AnX(ank,n)> = %Z Z 671_1;_1771 = %Eén—]#l,n- (7)
Jj=1 Jj=ll=j Jj=1
Therefore, the properties of our estimators will rely on a careful study of two sequences. The first
one is Apx(Zp—gyn) (in particular, how it can be approximated by Ax(Z,_j,) and written as an
increasing function of logn/k ; see Lemma 4 in the Appendix). The second one is the sequence
Pr, which converges to 0, 1 or a value p €]0,1[ depending on the position of 7x with respect to
7c (Proposition 2 in section A provides the full details about this, and relies on sharp second
order expansions of the different regularly varying functions that appear in this framework, cf the
important technical Lemmas 1 and 2 in the Appendix).

Finally, let us deal with the estimation of an extreme quantile z,, := Fi (p,) of the distribution



of X, with p, — 0, as n — +o0. Applying the approximation (5) now to t = Z,_, and = =
Zp, | Zn—kn, we can propose the following estimator of x,, (with both #x and 7x being unknown) :

B i= Zn_fon XP {éx,fx (K%X (—log(pn)) — K, (Anx(zn_m))) } . (8)

Note that if we know that 7x = 0 and we then set 7x = 0, then this estimator is the same as
the one proposed in [30].

4. Asymptotic results

The main assumptions on the model and the different notations have been stated in the previous
sections. In order to obtain the asymptotic normality of our estimators, we naturally need the
sequence (k,) (number of top order statistics to use) to satisfy some conditions (we will note
k = ky, from now on). The first one is standard in the literature on Weibull-tail or log-Weibull-tail
models :

logk
' logn

k— 400, 2 =0

’n

— 0, as n — +00.
Moreover, introducing the important notation
Lnk = log(n/k),

let v, be a factor which will contribute to the rates of convergence of our estimators, and which
depends on the censoring strength in the tail :

1 f0<ryxy <1<l or O<7x=7c<1or O=7x <70 <1,
1izc _q
VUp 1= L;](grx ) if0<7'0<7'X<1,
1/2(log Lnk) (iil) if0=7c<7x <1

Note that v, = 1 in the mild or moderate censoring cases (when p = 1 or at least p > 0, see
Section 2.2), and v, — 0 in the strong censoring cases (when p = 0). We also consider the following
conditions

VELTT Lo L - L>
0<71x <7 <1 and (4) Tc o Tx T
TxsTos o {(z)\FL o 0if L~ L <1
(i)V kv, — 400
H3:0<71c<7x <1 and (i1) v/ kvn L TC”X”—>01£%—%>—1
(iii)V kv, L, ¢ —>01f———< -1

Hy:0<1x =7c<1 and \/ELT_LkTX —0

Hs :0=7x <1c <1 and36>0,\/ELiza_’0
(Z)\/%Un — +0
(i9)vkvy (log Lyg) ™" — 0

(in assumption Hs above, p denotes the second order parameter associated to the slowly varying
function !, which is negative in this case ; see formula (2) in Section 2 as well as Lemma 1 in E.1)

Hg:0=17c<7x <1 and {

Remark 3. A possible choice of the sequence (k) satisfying the conditions above, as well as the
additional conditions in the theorems stated below, s :

. (logn)® if 10 #0,
L logn __ if 1¢=0.

(loglogn)
The choice and scope of exponents a and b depend on which condition Hs, ..., or Hg is considered.

Note that these sequences tend to infinity a bit more slowly than the sequences (k) considered in



[14], in the non-censoring situation (see the paragraph following the statement of their Theorem 2).

_ The following four theorems respectively state the convergence in distribution of the estimators
Ox 7 (with 7x known), 7x, 0x +,, and &, , all of them being defined in the previous section.

Theorem 1. Let assumptions (A1) and (A2) hold, with (7x,7¢) € [0,1]*\{ (0,0), (1,1)}, as well
as Ry(b, p) and R;(b, p). If (ky,) satisfies H and one of the conditions Hs, ..., Hg, then we have, as
n — o,

\/E'Un(éXﬂ'X - HX) i) N (070;{02) ’

where a = 67/0x and

1 if 0 < 7x <710 <1,
1/7 T 1-1/7x
- X x )
s2_1a <TC) if0<to<7x <1,
ail/TX if0<TX:Tc<1,

_ 1-1 .
a 1/TXTX /mx if0=10c<7x <1.

Remark 4. When 7x < 7¢, the ultimate probability p of non-censoring is 1, this is the mild
censoring situation. When tx = 7¢, it is easy to see that 07 < 0x and thus the asymptotic variance
is larger than in the case Tx < T¢ (i.e. we have 0® > 1). When 0 < 7¢ < Tx (strong censoring
setting), the ultimate probability of non-censoring p is zero, and the factor o is < 1 when 6 > Oy,
but otherwise this is not necessarily the case.

Theorem 2. Under the same assumptions as Theorem 1, we have, as n — o0,
if rx # 0, Vkva(fx —7x) =5 N (0,7202)
. . P
ifx =0, 7x = Op(1/log(Lnk)) — 0,

Theorem 3. Under the same assumptions as Theorem 1, if Tx > 0 and if we further assume that

Vo, Vv

log Lx * (if 7o #0) or log log Ly,

— 400 (if 7c = 0), 9)

we then have, as n — o0,

\/Evn

. A d

if o #0 logLnk(QX’%X —9)() —>N(O,9§(02T%),
Vkv N d

fro=0 ——" (Oxs —0x)— N(0,0%5%).

if 7o =0 log log Lnkz( X, 7x X) (07 x0 )

Remark 5. Note that the rate of convergence and asymptotic variance of éX,{—X are altered and
different from that of Ox . due to the plug-in of 7x.

Theorem 4. Under the same assumptions as Theorem 3, if moreover

\/%’Un

— 400 10
Tog 108 (1/pn) (— 108 ()]~ (10)
and
log L.x . loglog Ly )
_ OBmk G (if e #0 OBIOBTmk (i 7 = 0), 11
loglog(1/py) 0 (V7 #0) loglog(1/py) ° (F7¢=0) ()



we then have, as n — o0,

Vkvn (”L

T N 2 2}
log log (1/pn) (— log(pn)) ™ 1) N (0,6%07)

Lp,

Remark 6. Note that condition (11) allows for an order p, of the high quantile which is lower
than %, making it really extreme, while condition (10) is a restriction on this order.

1.0

0.8
1

Tc
0.6
p=1,7k rate, Hs

0.2

0.0

Figure 1. Illustration of the possible combinations of T-parameters and the impact on rates and assumptions (7x = 7¢ =0
and 7x = 7¢ = 1 are excluded).

Remark 7. There is some sort of phase transition phenomenon in the above results. As a matter
of fact, not only the rate of convergence of our estimators vary whether Tx is < T¢ or not, but
the closeness of the parameters Tx and ¢ also play a role (see assumptions Ho and Hs) : the
assumptions vary whether Tx is lower than T¢ but not too close to it (i.e. 1 < % - %), lower
than tc but close to it (i.e. 0 < % - % < 1), equal to ¢, larger than and close to ¢ (i.e.
0 < % — % < 1), or sufficiently larger than ¢ (i.e. 1 < % — %) Figure 1 helps to understand

these facts.

However, in practice, for finite and moderate values of n, visualizing these findings on simulations
is not easy, because other factors (than just the tail parameters) play a non-negligible role in the
estimation quality.

Let us close this section by providing a hint of the proof of the consistency of our estimators

(consistency alone is not considered in the full proofs, only asymptotic normality is detailed). Let

) and %éc) the following estimators of 8, and 74

. H,, HHy, *© _

gl — _Thn _ apnd 29— TR0 where 1..(t =f K. (z+1t)— K- (t))e *dz.

7 g, (L) 7 p1o(Lnk) s () 0 ) (12)
12

The first one was introduced in [15]. The second one is similar to the estimator proposed in [1] (in

a slightly different setting). Using the material of [15] and [1], one can prove that é(ZC) and %éc) are

consistent estimators of #; and 7. Our estimators can then be written as

. » (L L Low) L, (L
9X,TX=9(Z)><M1’Z—(M) and szré)x #1,0(Lnk) e (Lnk) (13)

Dy 7y Lty (Lnk) Dy

A(C
us note 0,
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where lpi1 7 (t) == §; (log(K-(z +t)) — log(K-(t))) e® da.

The consistency of HAXVTX will thus come from the convergence of the ratio pi1 7, (Lyk)/Dik,ry t0
1/a = 0x /07, which is deduced from Corollary 1 (stated in Appendix A) of the present paper. The
consistency of 7x comes from the convergence of lj1 7, (Lyk)/Dyo to Tx, which is deduced from
Corollary 2 (stated in Appendix B), and from the fact that p1,0(¢)/lp,-, (t) converges to 1/7z as
t — oo (which is deduced from relations (A3) and (B3) in the Appendix).

It is noteworthy that equation (13) describes a way of adapting to the censoring context any
estimators of 6 or 7 valid in the complete data setting, by simply dividing by the appropriate
expression involving Dy, - or Dy g.

Finally, note that %éc) defined above is a new estimator of 7 in the A;(7,0) model without

censoring, and thus a competitor of the estimator which was proposed in [14] (which required the
delicate choice of two intermediate sequences k,, and k).

5. Finite sample comparisons

In this section, we illustrate, using few simulations, the finite sample performances of our estimators
of 7x, Ox and z,, (for small p,), in terms of observed bias and mean squared error (MSE). Note
that numerous different situations could be considered with our flexible framework : a thorough
and extensive simulation study is however not possible within the limits of the present paper. We
generate N = 1000 samples of size n = 500.

We consider three classes of distributions of Log-Weibull-tail type, for the target variable X and
the censoring variable C' (for the first two classes, see Proposition 3 in [15] for the justification that
they fit our framework) :

e Log-Weibull(f) distribution such that its logarithm has c.d.f. 1 — exp(—z"?) (z > 0). It
satisfies assumption A4;(6,0).

o Log-Normal distribution LN (11, 0%), which satisfies assumption A1 (3, %@)

e Model .Z with c.d.f. F, satisfying A;(r,1/5), with H~(z) = 2"/°(1 + 2~'/2) (V).
We then consider three cases : a Log-Weibull(fx ) distribution censored by the Log-Normal(1,1/2)
distribution (Figures 2 and 3), the Log-Normal(1,1/2) distribution censored by a Log-Weibull(6¢)
distribution (Figures 4 and 5), and then a distribution in the .# model censored by another distri-
bution in the .# model (Figures 6 and 7). In each case, we consider three situations with 7x < 7¢,
Tx = T¢ or Tx > T¢, corresponding to different (ultimate) intensities of censoring in the tail.

In Figures 2, 4 and 6, we present the bias and the MSE of our estimators 7x and éX,f-X as a
function of k. In Figures 3, 5 and 7, we present the relative bias and the relative MSE of our
estimator &, for the value p, = 0.001, compared with those of the existing estimator defined, in a
more general censored setting, by equation (8) in [13] :

. (1= Fn(Znik))/pn)fymlwoﬂ, 4

i,anG’ = Zn—fn + g SeMom , (14)
where 4¢M°™ is the moment estimator of the extreme value index vy of F' adapted to censoring

and F}, stands for the Kaplan-Meier estimator of the c.d.f. F. We refer to [13] for the expression of

ag. Note that no formal asymptotic result is currently available for iff G,

Concerning the performance of the estimators éX,{—X and Tx, we observe that when X has a
Log-Weibull tail, the bias and the MSE for both estimators are very small. When one deviates from
this situation, though, they are not very satisfactory on the situations presented here. Note however
that these estimators are the first to be proposed in this context, which is why no comparison to
competitors is presented . Another remark is that the quality of the estimators do not systematically
deteriorate when censoring gets stronger.
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Figure 2. Simulation with X log-Weibull censored by C log-Normal, where 7x = 0.4 < 7¢ = 0.5 in figure (a) (mild censoring
p=1), 7x = 0.5 = 7¢ in figure (b) (moderate censoring p €]0,1[), and 7x = 0.6 > 7c = 0.5 in figure (c) (strong censoring
p = 0). The graphs represent observed bias and MSE of estimators 7x (blue) and 6x +, (dashed red).
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Figure 3. Simulation with X log-Weibull censored by C log-Normal, where 7x = 0.4 < 7¢ = 0.5 in figure (a) (mild censoring
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Concerning the performance of the high quantile estimator, the figures show very good perfor-
mances when X has a Log-Weibull tail. When one deviates from this situation, things may become
worse. It is particularly true here in the Log-Normal versus Log-Weibull case. However, our estima-
tor remains competitive in terms of bias and MSE in a number of situations, for instance in Figure
7.

Note that when X has a Log-Weibull distribution, the associated function H is a power function
of index 1/0x. This corresponds to the case of equality in equation (4), which is the starting point
for the construction of our estimators of 7x and fx. This can explain the good performances of our
simulations in this case.

6. Real data analysis

In this section, we apply our methodology to one of the datasets included in the Cancer Genome
Atlas (TCGA, more information at cancergenome.nih.gov), namely the dataset concerning women
suffering from an ovarian cancer. The ov.clinical dataset, accessible using the R package RTCGA
(or manually), contains informations about 574 women!. In this section we will only be interested
in the vital status of the patient (§ = 1 if the patient died during the study, or § = 0 if the patient
was still alive at the end of the study or was lost in the follow-up), and the observed duration
Z = min(X,C) (Z = X if survival time is actually observed, and Z = C' if censoring occurred).
The tail of the survival time distribution Fx will be estimated using the model (A1), and in this
context an extreme quantile x, associated to a small probability p, is a survival time that a patient
is expected to exceed only with probability p.

We plot, in figure 8, the proportion p; of non-censoring as a function of k,. We observe that the
censoring is rather strong, overall censoring rate is around 40% and more around 55% in the tail. If
we consider the quite stable zone where k£, is between 55 and 80, we can estimate the probability
of non-censoring in the tail by 0.46.

We plot, on the left part of Figure 9, the values of our estimators 7x (thick blue) and éX,f-x (thin
red) against k,. The estimate curve, as a function of k,, is particularly stable for 7x (an estimate
of 0.12, possibly suggesting a Weibull-tail underlying distribution), but not very stable for x (an
estimation between 0.85 and 0.9 if we consider the range of k, cited above).

On the right part of Figure 9, we plot the values of our estimator £, (thick blue) of the extreme
quantile &, for the value p, = 0.001, as well as the estimator :@fﬂp G (thin green) against k,. We
observe that it is quite hard to propose as estimation of z,, relying on the estimator ﬁ:an G as it
is particularly unstable in the tail. Concerning Z,, , the choice of the sample fraction is delicate.
However, if we consider the quite stable area where k,, is between 55 and 80, as for the estimation
of the parameters, then a possible estimation of the extreme quantile is around 28 years (i.e. it
would be estimated that there is a 0.1% chance that a woman suffering from ovarian cancer, dies

more than 28 years after the pronostic).

A concluding remark could be that estimating extreme quantiles under strong censoring is still
a research subject in progress and every new contribution is welcome.

7. Conclusion

In this paper we propose a solution for dealing with tail and extreme quantile estimation of data
which are randomly right censored, within a rather large family of distributions encompassing power
tail distributions, Weibull-tail distributions, and intermediary situations such as (for instance) log-
normal distributions. This family was first introduced in a complete data context in [15]. Our

Ithe original dataset contains 591 data lines, but 17 of them were not workable because of missing vital status or missing
survival time.
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Figure 4. Simulation with X log-Normal censored by C' log-Weibull, where 7x = 0.5 < 7¢ = 0.6 in figure (a) (mild censoring
p=1), 7x = 0.5 = 7¢ in figure (b) (moderate censoring p €]0,1[), and 7x = 0.5 > 7c = 0.4 in figure (c) (strong censoring
p = 0). The graphs represent observed bias and MSE of estimators 7x (blue) and 6x +, (dashed red).
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Figure 5. Simulation with X log-Normal censored by C' log-Weibull, where 7x = 0.5 < 7¢ = 0.6 in figure (a) (mild censoring
p=1), 7x = 0.5 = 7¢ in figure (b) (moderate censoring p €]0, 1[), and 7x = 0.5 > 7« = 0.4 in figure (c) (strong censoring
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asymptotic normality results support all possible amounts of censoring in the tail, even very strong
ones where the ultimate probability of being censored in the tail is equal to one.

The main two contributions of this work are that very diverse combinations of tails of the censored
and censoring distributions are dealt with (not just a combination of tails from the same category),
and that tail estimation of log-Weibull-type distributions (not heavier than Pareto tails though)
are dealt with as well. The fact that one can estimate the tail parameters of this flexible model,
and not just the extreme quantiles, means that the user may consider estimating more elaborated
parameters than the extreme quantiles (for instance, expected tail losses E(X|X > F (1 — p)) for
small p, of course with additional efforts in order to formally prove convergence results).

Concerning the performances, the bias of our estimators of 6 and 7 remains a problem, as
soon as one moves away from the pure log-Weibull situation. However our opinion is that this
bias problem was already present for the original estimators of 7 and 6 (which inspired ours) in
the non-censoring context. This topic of bias reduction still needs to be explored for this family
of distributions, even in the non-censored situation. In this paper, we did not try to detail the
asymptotic bias, mainly because of the great diversity of situations that our model handled, which
already made the exposition a bit complicated. This would require further work.

Finally, a continuation of this work could be to look for estimators of 7 and € which are weighted
modifications of their non-censored versions (the estimators in equation (12)), but with varying
weights, not the constant weights Dy ¢ and Dy +,, with in mind a possible improvement in terms
of bias and mean-squared error.
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Appendix

Let us first summarize the contents of the Appendix. It is composed of 5 main parts.
Part A is devoted to the proof of Theorem 1.
Part B is devoted to the proof of Theorem 2.
Part C is devoted to the proof of Theorem 3
Part D is devoted to the proof of Theorem 4.
Part E contains different technical aspects. In particular, the important Lemma 1 and Lemma

2.

The Supplementary Material file contains the proofs of all the Lemmas, and of Propositions 1, 2
and 3.

Recall that L,y is the notation for log(n/k). Let us introduce the following notations :

Ak: = AF( n— kn) and Ak = AnX(Zn—k,n)'

Appendix A. Proof of Theorem 1

This section details how the asymptotic normality of 0 X,7 Stems from the combination of properties
of the Hill estimator Hy, (relations (Al), (A2) and (A4) below) and of the proportion pj of
uncensored data in the tail (Proposition 2 stated next page), via the important decomposition
(A6). Some details are postponed to other sections, in particular the crucial technical Lemma 2
(stated in E.1) which states the second order properties of the function p(z) = P(6 = 1|Z = x).
The behavior of the (numerous) remainder terms is detailed in Proposition 3 below.

- H
First, recall that 0x -, = D kin , with

kTX

k
Z n n j+1n)) KTX(AnX(Zn—k,n))~

w\H

k
1
Hi gz Zn—j+1n)—10g(Zp—n) and Dy, =

j=
According to Proposition 1, we have Z; = H,, (exp(K,(E;))), where E1, ..., E, are n independent
standard exponential random variables and (see relation (2)) H, (z) = 2%21(x), [ being RV;. Hence

Hypn =0zMn + R, ; (A1)

where

;’“ - ;’“ I(ex <T<nj+1n>>>>

By the Renyi representation, we have Fy,_ ;1 ,—FE,_j = Ek_j_i_l’k , where Eb e Ek are k indepen-
dent standard exponential random variables. As was done in [15] (and borrowing their notations),
we have

d 1 ;

M, £ 0,1(En_) where 6,1(t):= %ZKTZ (E; +t) — K. (t). (A2)

Introducing, for ¢ € N* (see Lemma 2 of [15])

pa.rs (t) := E(bng(t)) = LOO(KTZ (@ +1) = Ko, (£))? e do = (¢) "7 (1+ o(1)) (as t — +0)
(A3)
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and JiTZ (t) := po,r, (1) — ,u%TZ (t), it is proved in Lemma 5 of [15] that
O l(En—k) — K174 (En—k)

VEAL, -5 N 0,1) where Ay, :=— ) A4
1n ( ) 1,n o1r, (En—k) ( )

Moreover, we prove in Lemma 3 (stated in E.2) via Taylor’s formula that
Diry = AX 'y + Rip (A5)

where pj denotes the proportion of uncensored data among the k upper data values (see Lemma
3 for the definition of the remainder term R;,). Formulas (A1) and (A5) thus easily entail the
following important intermediate relation :

—1 A 3
5 4 07 M, — Ox Ay,
Oxre —bx £ "k + Y Tim,
k,TX i=1
where
R ~
Tl,n = il
DvaX
Rln
T, = —0Ox .
" DvaX
ATx—l ATx—l
T3 = —QX k k ﬁk
" Dk’TX

Concerning now py, recalling that a := 6;/0x, we prove in Lemma 5 (stated in E.2) that, when
7x = 0 and 7¢ > 0,

et (0T iy
AT e = ~, E.7 P+ Rap

(note that the first term is equal to E;Ekﬁk when 0 = 7y < 7¢ < 1, since then 77 = 7x and a = 1),
and when 7x > 0 and 7¢ = 0,
APy, = (arx) Y™ (log En 1) Y™ pi + Ron,

where the remainder term Ry ,, is detailed for each case in the statement of Lemma 5.

Consequently, defining Ty, := —0x DRk 2;" , we obtain the following decomposition : when 7x = 0
and 7¢ >0 '
. P (E k) 1 (E k:) aty 1-1/7x ETZ(;_l/TX) HZ 4
Oxr. —0x = 2R 9,A,, — Ox ( ) _n=k 5 L +> T,
" Dz b 01,77 (Bn—i) \\ 72 ftmy (Bn) F 7 Ox Z; o

and, when 7x > 0 and 7¢ = 0,
)171/7‘){

P17, (En_g) 1-1/7x (0g Epn_j 0z <
07A1, —O0x————=| (ar X ——— |+ Tin.
( T o1 (B <( x) e (Bar) ' Ox ;

Then, recalling that p1,,(t) ~ t™2~! as t — o0, we define the following remainder term as (note

|l
Q
i
N
=
i
=
SN—

Ox ¢ —Ox

again that arx/7z =1 and 72(1 — 1/7x) = —1 when 7x = 0 < 7¢)
1-1/7x r7(1-1/7x) _
Rao <GTLZX> Pr (% - LikTZ/TX> when 7x = 0, 7¢ > 0,
3n = ) 1-1/7x
(GTX)l_l/TX Pk <% — Ly (log Lnk)lffz/fx) when 0 = 70 < 7x.

Finally, using the additional fact that, thanks to (A3), % N 1, we can state the main
1,7y n—k
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relation of the proof of Theorem 1 :

5
7 d o (En—
Ox7 —bx = W (07A1, — Ox A2, (1 + 0p(1))) + Z TLin, (A6)
sTX -1
where the second important term A, is defined as
arx \ 1—72/7x - .
Ao,y = B Loy, Pr—a if 7x = 0 and 7o > 0,

(aTx)l_l/TX Lnk(log Lnk)lfTZ/TX pr—a if0=r710<r7x,
and the last remainder term to be introduced is T5 ,, := 07 R3,,(1 + op(1)).

We deal with the asymptotic normality of A3, and the reminder terms T, in the following two
propositions. Recall that the rate v, is defined as

1 f0<ryx<moc<lorO0O<7tx=170<lorO=1x<710<1
lizc _1
Up = L:Lli”‘ ) f0<to<7txy <1
17120 (L2-1) o
nk (ogLnk) X lfO—Tc<Tx<1

Proposition 2. Under the conditions of Theorem 1,
if 0<7x <7c <1, VEkvaAg, = Vko,(pr —a) = VE(pr — 1) — 0,
- 1-1/7x
if 0<to<Ttx <1, \/EvnAgm = Vkv, <(sz> = Lyllk 2/ P — a> LN (0,@2_1/TX (T—X) > ,

T, TC
lf 0< T =T0 < 17 \/E’UTLAQ,TL = \/E(Glfl/TXﬁk — a) i) N (07 a271/TX(1 _ al/TX)) ,
if O=710<71x <1, \/EUnAQ,n = \/Evn ((aTX)lii L (log Lnk)lfi P — a) _d. N (O,a2—1/7—x7_)1{1/rx)

Proposition 3. Under the conditions of Theorem 1, for all1 <i <5, \/EvnTm LN 0, as n tends
to infinity.

The following result is a corollary of Proposition 2 and part of Proposition 3 (concerning the
term Th,). As explained at the end of Section 4, the statement of this corollary is helpful for
understanding how consistency of an estimator of 6, transfers to consistency of our estimator of
Ox.

k7TX

1,7, (Enk)

Corollary 1. Under the conditions of Theorem 1, we have LN a, as n tends to
mnfinity.
Indeed, according to (A5), and since p1 ., (t) ~ t™2 71 as t — oo (see relation (A3)),

Dk T 1— —1aA d P
— =LA o1+ 0(1)) = (Aspn +a)(1 +0(1)) — a.
Ey = DA T o) £ (s a)(1 4 o(1)
Of course, Corollary 1 certainly holds with weaker conditions than those of Theorem 1.
Let us end this proof by explaining how the combination of relations (A6) and (A4), Propositions

2 and 3, as well as Corollary 1 imply that \/Evn(éx,m —0x) 4, N(0,v) where v = %02

— When 0 < 7x < 7¢ < 1, Proposition 2 states that \/%Agm converges to 0. Hence, the leading

term in (A6) is vkA1, which converges in distribution to N(0,1) (see (A4)), and we thus
obtain the desired value of v = (1)26% = 6%.

— When 0 < 7x = 7¢ < 1, Proposition 2 states that \/EAgyn 4N (O7 aQ*I/TX(l — al/TX)).
Moreover \/EALH converges in distribution to N(0,1). Since A;, and Ay, are independent
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(under our independent censoring setting), we obtain as desired

2
v = O + QX a’” 1/TX( al/TX) = 0% + 0%((171/7)‘ —-1) = Hgga*l/TX.

— In the other two cases, since v, — 0, \/EUTLAL” converges in probability to 0, and on the
other hand Proposition 2 states that VE kv, Asg  converges in distribution to N (0, D) with a
variance described above, and it is not difficult to check that ( )20% D equals to 6302 as
stated.

Appendix B. Proof of Theorem 2

The proof is very similar to the previous one. First, recall that 7x = HDIi "O Concerning the

numerator, we have by Proposition 1 that Z; = H, (exp(K,,(E;))), where Ey, ..., E, are standard
exponential, and thus

En
1
HHy p, := k—Z loglog(Zn—j+1,n) — loglog(Zy—k,n) = LMn + RR, ; (B1)
where
log(I(exp(K -+, (En—j11,n))))
k k 1+ z J
1 1 02K, (Bn—jt1.n)
7 En_ivin))-1 KTZ En_kn d = 7 1
’fg +1:0)) 108 (K, (Buin) and RR,ji= ) log s (exp(K (Ern))

J:I 1 + GZ Tz (En k,n)

By the Renyi representation, for some independent standard exponential random variables
FErq, ..., E, we have

k
M, < 10p1(En—k) where 10,1(t) := %Z log(K,, (E; + 1)) — log(K., (t)). (B2)

Introducing, for ¢ € N*,

0e]

lpg,r, (t) :=E(10,4(t)) = Jo (log(K,,(x +t)) —log(K., (1)) e * dx

and laiTZ (t) :=lpo,r, (t) — Z;L%TZ (t), we have

(@)7It=4(1 + o(1)) if 77 # 0,
lgrn®) = 20720 0T A7 (B3)
(@t 9(log(t))"9(1 +0o(1)) ifrz=0.
We can then prove that (the proof is similar to that of Lemma 5 in [15])
10n1(En—t) —lp1 7, (Epe
VELA; 4, N(0,1) where LA;, = 1 En—k) = ln.r, ( k) (B4)
lO—l,Tz (En—k)
Concerning now the denominator, we prove in Lemma 3 (stated in E.2) that
1 A A
Dk:,O T Z 10g nX(Zn —J7+1, n)) - log(AnX(Zn—kn,n)) = Ak 1Pk + Rl,n, (B5)
™ oj=1

where

k A A
A A
Z log [ 1+ A]’k — A]’k
o] Ay Ay,
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where the Aj,k are defined in Lemma 3 and p; denotes the proportion of uncensored data in the
tail. From now on we consider that 7x # 0 (see Remark 8 below for the 7x = 0 case). Formulas
(B1) and (B5) easily entail the following important intermediary relation :

. i LM, —7xA; 'py &
X —TX = +ZTTi,n,
Dk i=1
where
RR_ -
TT —
1n ka
Rl n
TT = —Tx :
" Dy
TT37n = —Tx(Alzl — Agl)(Dho)ilﬁk.

Moreover, we prove in Lemma 6 (stated in E.2) that, when 7x > 0 and 7¢ > 0 (the case 7x > 0
and 7¢ = 0 is omitted for brevity),

. ary\ Y™ —72)Tx A
Ay e = E E, . bk + RRay,

the expression for the remainder term RR3 ,, being detailed for each case in the statement of Lemma
6.

Consequently, defining 17}, := —7x R[’Z 2;}", we obtain the following decomposition : when 7x > 0
and 7o > 0 '
— — Z/TX 4
N a4 loy Tz (En—k:) lﬂl Tz (En—k) (GTX> L Enjk o 1
Tx —Tx = —————% | LA, —Tx— — P — — + > TT;p.
Dk:,() b lUl,TZ (En—k) TZ ZNI,TZ (En—k) b TX 7; b

Since lu1 7, (t) ~ 72t71 in the present case where 77 # 0 (see (B3)), we define the following

remainder term as
—1/7x —Tz/Tx
atx [ (En_k) | R T,
RR3 :=<> | ———— - —L 7%,
" TZ P it sy (En—y) 77 ™

Iy -y (Enk)

Mg i) B, 1, we can finally state the main relation
lUl,TZ(En—k)

and then, using the additional fact that
of the proof of Theorem 2 :

5
. d lpr, (En—k _
T —TX = 7” D(k n ) (LAl,n —a 1A27n(1 + 0[@(1))) + Z TTi’n, (Bﬁ)
0 i=1
where LA, is defined in (B4), the second main term A, is defined in section A and the last
remainder term to be introduced is T7T5 ,, := —7x RR3 (1 + op(1)). The asymptotic normality of
As y, is dealt with in Proposition 2. Concerning the remainder terms 7'T; ,,, we prove the following
proposition :

Proposition 4. Under the conditions of Theorem 1, for all 1 < ¢ < 5, \/EvnTTim LN 0, asn
tends to infinity.

The proof of Proposition 4 is very similar to the proof of Proposition 3.

The following statement is a Corollary of Propositions 2 and 4, in the same way that Corollary
1 was deduced from Propositions 2 and 3.
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Corollary 2. Under the conditions of Theorem 1, when Tx # 0 we have
Do e 1
lpar, (En—k) TX
and, when 0 = 7x < 7o, we have as n — ©
Dy 0

o) = (log Lynx)(1 + op(1)).

The proof of Theorem 2 can be concluded in the same way as was that of Theorem 1. Details
are omitted. O

Remark 8. In the case 0 = Tx < 7¢, we have Dy o/lp1,0(En—gn) < log Lk, and thus the estimator
Tx 4 10n1(En—1)/ Dyo+TTh, is contiguous to L1 o(En—g) / Do+ 1T, which is itself equivalent

in probability to 1/log Lyk. Thus only the consistency and rate of convergence of Tx is obtained in
this case.

Appendix C. Proof of Theorem 3

Recall that 0 #x = Hjn/Dy 7 where

k
1 A .
H Zlog n— ]+1n) log(Zn kn) and DkTX = EZ A ( n—j+1, n)) Tx<A ( n— kn))

] 1
éX'F HXT éXT
log | =% | =log [ =% | +1log | =X . C1

Theorem 1 and the delta-method yields that the second term of the right-hand side in (C'1) satisfies

Vku, log ( ‘;TX> 4N (0,02) . (C2)

Moreover

Now let us treat the first term. Since Dy, = (Ak)TX*Iﬁk + Ry, (see Lemma 3) and, similarly,
Dy = (Ak)fxflﬁk + Riy, where Ry, is obtained by replacing 7x by 7x in the expression for
R1 5, we obtain

é T N R n R n
log | == | = (#x — 7x)log(Ay) —log {1+ — 27— | +1log {1+ ——1— | -
O0x 75 A b AR D

Let us study separately the first two terms in the expression above (the third one being similar to
the second one). The starting point is

(Fx — 7x)log(Ax) = (Fx — 7x) log(Ag) + (Fx — 7x) log (ﬁi) :

Let us continue with the case 7x # 0 and 7¢ # 0 (the case 0 = 7o < Tx being similar and the case
0 = 7x < 7¢ being excluded, see Remark 9 below).

Since Vkvy(7x — 7x) 4N (0,027%) (Theorem 2), and, according to Lemma 7, log(Ag) =
Iz (log Lk ) (1 + op(1)), we obtain that

\/Evn
lOg Lnk

(Fx — 7x) log(Ay) > N (0,0%7%)
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and l(;gfi} (Tx — 7x) log (/Tk) = op(1) (because ﬁ—: = Op(1), see Lemma 7 in [30] for a proof).
Ry o Ry . L.
Now, log <1 + m) = G (1 + op(1)), and we prove in Proposition 3 that
\/7’Un B Ey = op(1). Hence 13?57 log (1 W) = op(1). This ensures that
k 0
\/>Un IOg AX77_X i) N (0, 0,27_%) )
log Lnk GX,'FX

Finally, (C1) and (C2) yield

\/Evn éXf- d 2 9
1 X — N .
log L. & 0x (0.0%72)

This entails the announced asymptotic normality, via the delta-method. O

Remark 9. In the case Tx = 0, log(Ax) = a(log L,x)(1 + op(1)), according to Lemma 7. Hence,
7x log(Ag) does not converge to 0, in this case. This is why Tx = 0 is excluded from the asymptotic
result of Ox + .

Appendix D. Proof of Theorem 4

Recall that z,, = F’)} (pn) = Hx (exp(Kr, (—logpy,))) and

Tp, = Zn—kn€Xp (éx,+x ( K (—log(pn)) — fo([\k)»

where Hy(x) = 2%%Ix(z), and lx is slowly varying at infinity. Moreover, since Zn—kn =
F (exp(—Ay)), it is easy to prove that

log (22 ) = fxr, {(Key (—log(pn) — K (k) = (Kry (— log(pn)) — Koy (A0))}

+(Bx.py — 0x)Kry (= log(pn)) + Ox 5, (K (Ak))

j L (exp(K  (Aw))
%@“_%)“M”“dwm<<mmm)
=1+ Q2+ @3+ Qs+ s

Let us treat separately these five terms, in the case 7x # 0 and 7¢ # 0, the case 0 = 7x < 7¢ being
similar. Note that Q1 will turn out to be the main term.
Recall that

(a;X/;Z) / (Lnk) / if 7x # 0 and o # 0,
Li =
(a;X) & (logLnk)l/ . if Tx #0 and 7¢ = 0.

Consider the temporary notations

—log(pn)

- \/E’Un - and w, = u™ Llogu du.
(Vi) ) :

By integration by parts, and under assumption (11) (which implies that Ly = o(—log(p,))), we
can prove that

w=é@@ﬁ%M4ﬂmwumm» (1)

pn)

and similarly w,, := S ~log? u du = %(log(log(l/pn)))2 (—log(pn))™ (1 + o(1)).
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e Let us prove that o, w, 1Q1 converges in distribution to .4(0,0%7%0?), which (via (D1))
will imply that

\/Evn

loglog(1/pn)(—1log pp)™

Q1 -5 #(0,6%0%). (D2)

According to Theorem 2, 7x = Tx + 0,,&,, where &, converges in distribution to .4°(0, 7%0?).
Hence,

@1

0o . —logpn | rx+0,6,—1 —logpn | 7x—1
Ox 7+ ( A U du — SA,C U du
A —1 n — A _
= Ox.sy (SLkng u™x "y — 1) du — SL: u™ L (ynEn — 1)du> )

Let us introduce ¢(z) = e* — 1 — x. Consequently,

4 .
Ql = Z le)7
=1

where
QY = bxs, §7, 8P u™1(0&y log u)du
ng = Ox.+.Onkn S;klogp” uw™*logu du
QY = by 5w G (0nn logu)du
Q§4) = —éX’-f-X onén Sﬁ: u*logu du

Now, there exists > 0, such that = < logn implies that |¢(z)| < (7/2)x?. As a consequence,
since o, loglog(1/p,) — 0 and oy, log L, — 0 (according to (10) and (11)),

—log pn
\Qg1)| < Ox.4, gaz ,QLJL u™ (logu)? du = nOp(1) o240,.
,
Hence, via (10) and the previous approximations of w,, and w,,
aglw;1|Q§1)| < nOp(1) oy /wy, = nO0p(1) oy, loglog(1/py) 0.
Concerning ng, we have
aglwnggm = éX,%an 4, N(0,0%7%52).
Let us now consider Qgg). We proceed as for le) to obtain

9 S?i u™x " 1(logu)? du

-1,,—11H3) )
o, W, |Q1 ’ < GX,f'X go—ngngzlogpn wxllogu du
k

9 52: u™X "logu du

< GAXﬁX d0, max(log Ay, log Ly )¢

n(—logpn  ryv—1 :
SLk u™x Llogu du

Since o, log Ay 0 (this is an easy consequence of assumption (11) and Lemma 7), the
right hand-side tends to 0, according to Lemma 8 and assumption (11).

Concerning Q§4), Lemma 8 and assumption (11) entails that o, lw, 1Q§4) tends to 0. This
completes the proof of (D2).

e Let us prove that o, 'w; Qs = op(1) : according to Theorem 3,

QQ = Un(log Lnk)KTX (_ log(pn))én,
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where d,, converges to a gaussian distribution. Hence,

(log Lng) Kry (—log(pn))
SZ log(pn)

-1, -1
0, w, Q2= On,

u™Llogu du

and assumption (11) yields the result.

In order to prove that o, 'w, 'Q3 = op(1), we obtain via a Taylor expansion that

o w Qs = x5 VE|Ay — Ayl

KL (Tp) 2™
’Tx( k)w

n

where T}, is a value between Ay, and Ay. The fact that v/k|Ay — Ax| = Op(1) (see Lemma 7 in
[30]) and assumption (11) yields the result.

Let us prove that o, 'w, Q4 = op(1) : as above (see treatment of Qz)
Q4 = oplog Lok Kry (Ak)5n7

where §,, converges to a gaussian distribution. Moreover K, (Ay) 4 aK;, (L) (1 + op(1))
(see Lemma 4 (i)). Hence
d KTZ (Lnk) 10g Lnk

o lw Qs < a 9n(1 + op(1)).

;klog(p") u™1logu du

Assumption (11) yields the result.

Let us finally prove that o, 'w, Qs = op(1) : recall that

B Ix (exp(K-y (Ar)))
Qs = log (l_x (exp (Ko (— log(pn))))

B Ix (exp(Kry (L)) L (exp(Kry (A1)
= log (Zx (exp(KTX(—logm)))) +log (z’x<exp<z<f; <L;>>>>

= o+ QP
Concerning Qél), we know that [x satisfies the SR2 condition (see Remark 10). Hence
_oW _ LxQnzn)
@5 l_og( Ix(zn) )
= bX(xn)Kexpx ()‘n)(l + O]P(l))7
DKoy (Zlog(pn))) g xn = exp(Kr, (Lk)). Moreover, since A,

exp(K.,.X (Lk))
tends to +00, as n tends to infinity (because & Koy (Ly)
TX

where |bx| € RVy,pys An =

Koo (—log(pn)) tends to 0 under assumption (11)),

we obtain that Kp, ,(As) tends to —1/(0xpx). Moreover, since by is RVy,,, according to
Remark 10, we have, for some small § > 0,

bx (exp(Kry (Ly))) = exp((Oxpx+8) K (Lg))o(1) = exp ((0x px + 8).cst.L7% (1 + o(1))) o(1),

where the constant above is positive. Hence v/kv,bx (exp(K,, (Ly))) tends to 0 under the
appropriate assumption among Ho, ..., Hg. For example, in the case 0 < 7x < 7¢ < 1 and

L % < —1, for which v, = 1, assumption Hs(7) yields that

VEvabx (exp(Kr, (Ly))) = \/ELT_L;X LT exp ((Oxpx + 6).cst.LT7 (1 + o(1))) o(1),

n

which clearly tends to 0 since px is negative, J is small and the constant is positive. All the
other cases can be treated similarly. Consequently,

KQXPX (An)

Vv Q5 = —Vkvnbx (exp(Kry (L))
" " ™ KTX (_ log(pn)>

KTX <_ log(pn>)

(1+0(1)),
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tends to 0. Then,

Qél) KTX (_ logpn)
(—log(pn)) S;:Og(p") u™1logu du’

a;lwnggl) = Vkuy, %

which tends to 0 thanks to (D1).

Similarly, we have

2= s (5)

bx (2n) Koy px (An) (1 + 0p(1)),

where z,, = exp(K;, (Ly)) and

_ exp(Kr, (Ag))
exp(Kry (L))

where, according to Lemma 4, the constant above is negative and

= exp(Ty (AJX — L7¥)) = exp(cst. L4 *(1 + o(1))),

I when either 7x = 7¢, or 7x # 7¢ and r < 0,
| 7z(1—=r) when 7x # 7¢ and r €]0, 1[.

In the case where a = 77, Ky, ,, (A\n) converges to a constant. Hence we obtain, for the term
Q. that

QY EL0,
(_ log(pn))

kup,
Vi

in the same way as for Qél). Therefore aglwngéQ) -2, 0, thanks to (D1).

In the case where o = 77(1 —r), we have Ky, ,, (A,) = O(1) exp(cst.L; ;7 (1 + o(1))), where
here the constant is positive. Moreover, since bx is RVj, ,, according to Remark 10, we have,
for some small § > 0,

bx (z,) = exp((Oxpx + 6)Kr, (Li))o(1) = exp ((Oxpx + 8).cst.LT% (1 + o(1))) o(1),
where the constant above is positive. Consequently, since 0 < r < 1,
bx (2n) Koy px (An) = 0(1) exp ((GXPX +6) L 0(1)) ‘

Hence, Vkvnbx (2) Koy py (A\n) tends to 0 according to the appropriate assumption among

H,, ..., H; as explained above for Qél). To conclude, we proceed as in the previous case. [J

Appendix E. Technical aspects

The Lemmas stated in this section are proved in the Supplementary Material document.

E.1. Details about second order conditions and censoring probabilities

Recall that

Fx(z) = exp(—K (log(Hx(z)))) and Fo(z) = exp(—K;_(log(Hc(x))))
where

Hy(z) = 2%Ix(2), H(z) = % lc(z) , Hx(z) = 2V/%%1x(2) , Ho(z) = 2% 10 ().
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Moreover (see Proposition 1),
P(Z > z) = exp(= K (log(Hz(x)))),

where H, (2) = 2°2{(z) and [ is slowly varying. This implies that Hx o H, (z) = 2%(z), with [ a
slowly varying function and a = 0z/0x.

Lemma 1 stated below provides details about the second order properties of the functions H,
and Hx o H,, (and therefore, on the behavior of the variables Z; and Ax(Z;)). These properties
not only depend on the position of the parameters T7x and 7¢ with respect to each other, but on
their proximity through the parameter r defined by

1 1

(if either 7x = 0 or 7¢ = 0, indeed consider that r = —o0). Its proof can be found in the Supple-
mentary Material document.

Lemma 1. Let conditions (A1) and (Az) hold.
(i) For different slowly varying functions generically noted v, we have
Ix(z) = cx (1 — xPxv(x)) and lo(z) = co(l — xPev(x))
Ix(z) = c}ax(l —axrxy(z))  and lo(z) = 66%(1 — glerey(z)).

i1) The slowly varying functions I and | associated to H, and Hx o H, satisfy a second order
A X A
condition SR2 : as t — 400,

lte) 4 I(tx)

L—»Kﬁ(x) and MO~

where

max(Oxpx,—1) if0=7x <710 <1
p=p=1 max(cpc,—1) if0=71c<71x <1
0 in the other cases ,

and |b| € RV; and |b| € RV,. When p = 0, both b(t) and b(t) are (ast — +0) of the order
O((logt)"™') when r # 0, and of the order O((logt)~2) when r = 0.
(tit) The slowly varying function lz associated to Hyz satisfies

. B €0, +oo[ if Tx = T orr <0,
lim Iz(x) = CZ{ — oo if x # 17¢ and r €]0,1[

T—+00

where in particular cz; = cx if Tx < 7o and r < 0, and cz = co if 7o < Tx and r < 0.
Moreover we have (with the convention (+00)~% =0 when § > 0)

1/9){
)

I(t) — ¢ := c}ez and I(t) - c:=cx¢ as t — +o0.

When tx = 1¢ orr <0, both ¢ and é are positive. When 1x # 17¢ and r €]0, 1], both ¢ and ¢
are zero and the following relation holds for some v > 0, as x — o0

logl
. = —va" ' (1+0(1) —0 and og(:ecxpw)

1
log l{exp ) = —Oxva" N1 +o0(1) — 0

(E1)

Remark 10. A consequence of this Lemma is that Ix and lc also satisfy the SR2 condition with
rate functions |bx| € RVy, ,, and |bc| € RVy, . respectively.

Recall now that the function p(-) is defined by
p(z) =P =1|Z = x).
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The following lemma provides useful developments of functions p(-) and r(+)

r(t) = po Hy(exp(Kr,(=logt))),

which are crucial to derive the properties of the random proportion py (and therefore the statements
of Proposition 2). Its proof is essentially based on the fact that

o) = - Folo)fx(@) _ (1+ (K;.)'(log Ho(x)) H/c(x)/Hc(x)>1
Fo(o) fx (x) + Fx(z)g(x) (Kry)'(log Hx (x)) H (2)/Hx ()

(where fx and fc are the respective probability density functions of X and C'), as well as on the
results of Lemma 1.

Lemma 2. Let us define the constants

Ax =0x(rx' = 1) (1x" +logex) , Ao = 0c(r5" — 1) (75" +logce)

and

9X TX 1—1/7')( TC 1/’7’0—1
A=Ac—A p=2X (XX e :
¢ Ax and Oc <9X> <90>

Let assumptions (A1) and (Az2) hold (the asymptotics below are x — +00 and t | 0).
(1) We have

1 if0<7xy <10 <1,
0 f0< 710 <T7x <1,

) =p=d
X =CL1/TX if0<TX:Tc<1,

G + o0
and, more precisely,

D (logz)" 1 [1 + g(r)(log x)max(=1r=1(1 4+ o(1))] if 0 <7x # 7C

i

<1
p(z) —p = D 2~ V/0x (log z)7e 1 [14+ Ac(logz) (1 +0(1))] f0=7x <7c <1,
Dm’_l/@c(logaj)ﬁ?l_1 [1+ Ax(logz) '(1+0(1))] if0=7c<7x <1,
D (logz)~Y(1 + O(1/log z)) if0 <710 =71x <1,
where
—-B if0<71y <710 <1,
B! if0<10o <T1x <1,
D= —(70/90)751_1(0)(/900)() if0=7x <710 <1,
(tx/0x)™ ~1(0c/0xcc) if 0 =710 <71x <1,
—AB(1 + B)™2 if0 <70 =71x <1,
and
(r) = Al <o + (A= B)L—o + (=B)Lejo,1 if0<71x <710 <1,
TV (Ahco+ (A= B Lo+ (B Loy #0<70 <7x <1

(15) When 17z >0 and 7x # 7¢, ast | 0 we have

r(t) = p = D(0z/m2) " (~logt) =) (140 (= log ) e mintii=rl) ),
in particular, when 0 < 10 < 7x < 1,

r(t) = al/m ('rx/TC>'r§1—1(_]ogt):TC;_1 <1 L0 <(_ logt)max{—rc,rc/rx—l})> .
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When 77 > 0 and 7x = 1¢, we have
r(t) —p = —AB[(1+ B)*(62/72)] " (=logt)™™ (1+ O ((—logt) ™)) .

When 77 = 0, if 74 = max(7rx,7c) we have
r(t) — p = cst(—logt) ' (log log(l/t))ii1 (1 +0 ((log log(l/t))_l)) :

-
with the constant being equal to T4~ al/™ when 0 = 7o < 7x < 1.

E.2. Technical Lemmas

The proofs of the following Lemmas can be found in the Supplementary Material document.

Lemma 3. The denominator of the estimator HAXJX satisfies the relation

k
1 A . S
Dk,Tx E KTX(AnX(anj#l,n)) 7KTX (AnX(Zn—k,n)) = AkX lpk +R1,na
j=1
where
Tx—lATxl k Aj,k 2 1 T Tx—2 if 0 1
MR () A+T)™ 7", f0<7x <1,
= Ak A, .
f =) b (o (14 ) - %) =0

0 ifrx =1

~

with, for each j = 1,...k, Ajj = /A\nX(Zn_jH,n) — AnX(ank,n) and the random variable T},

lies between 0 and %
k

For the following lemma, recall that (E;) denote the i.i.d. standard exponential variable (Ej)
satisfying Z; = H, (exp(K7, (F;)), and that [(-) denotes the slowly varying function which properties
are described in Lemma 1 and which is such that Hy o H, (x) = x®l(x). Note that in part (i7) of
this lemma, the results also hold when one replaces E,,_j , by Ly, or replaces Z,,_j , and E,,_j
by Zn—j+1,mn and Ep_ji1, (this will occasionally prove useful).

Lemma 4. (i) For everyi = 1,...,n, and whether 77 > 0 or is equal to 0, we have
Ax(Z;) = K7 (aK.,(E;) + logl(exp K+, (E;))).

TX

(1) When 77 > 0, we have

1/TX 1/7’){
AxZra) = (a25) BT oe) = (o2) B (14 BB (1)

Tz TZ
(E2)
Tz when either Tx = 17, or Tx # 70 and r < 0,

for some constant 5 and exponent o = { r2(1=1)  when x # 70 and r €]0, 1[.

When 0 = 7x < ¢, we have Ax(Zp_n) = En—kpnl(En—gn) = En—kn(1+ op(1)).

When 0 = 10 < Tx, we have
AX(Zn-tn) = (a7x)"™ (10g Eppen) ™ (14 B(log Engn) ™ (14 0p(1))) -

Note that the constant /3 is negative in the case 7x # 7¢ and r €]0, 1[.
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Lemma 5. Let Eq,...,E, be i.i.d. standard exponential random variables.

<ﬂ) 1-1/7x gz (=1/m0)

Ty n—k,n

Dr + Ron, if tx #0 and ¢ # 0

Tx—14 5
Akx Pr = Epk +R2’n, ifOZTx<Tc<1

n—k,n

(aTx)l_l/TX (1Og(En,k7n))1_1/TX ﬁk + Rg,n ifO =T0 < Tx < 1,

where
aTx 17% ETZ(l_i) ~ 1 E~Tz 17% 1 1+7x logl(exp(K,, (En_k,n))) 17% 1
ﬁ n—k,n Pk ( - n_kvn) . + aTXKTZ (En—k,n) - ’
if0<7x <landTtc #0
Rop=1{ 52— (Z(En{m) - 1) L if0=Tx <70 <1
1-L - rx 1og U(Enen) \ 1™ 7x .
(atx) 7x (log(En—kn)) ™ Dk ((1 + 1;}( 1ggg(é,kk,7:))> - 1) , if0=1c<1x <l
0, ifrx=1
Lemma 6. Let Eq,...,E, be i.i.d. standard exponential random variables.
—1/7x —T7/Tx ~ .
(%) Enfk,/n Pr + RRay, if Tx # 0 and 7¢ # 0
—1 A R
A 'Pr =19 52— + RRy,, ifo=ry <70 <1
(a7x) V™ (108(Ep_n)) ™ P + RRom  if 0 =70 <7x <1,
where
N\ g oy 17 log Uexp(K oy (Fu 1)) ) "7
(%) n7k7npk’ <(1 o Enilﬁn) . (1 + aTXKTZ (Enfk‘n) - ) N 1) ’
if0<71x <landTtc #0
RRQJL = < Enﬁ—kkn <Z(En1—kn) — 1) , z‘fO =Tx < T < 1

1

(atx) ™ (log(En-kn)) ™ Pk <<1 + WM) - 1) , if0=1c<71x <1

Loa ZfTle

Lemma 7. Under the assumptions of Theorem 1, we have, as n — o0,
ifTx #0 and 7¢ # 0, log(Ag) = T2 log Lk (1 + op(1))
if x =0, log(Ag) = alog Ly (1 + op(1))
iftx #0, and 7o =0 log(Ag) = % loglog L, (1 + op(1))

Lemma 8. Under the assumptions of Theorem 4, we have, as n tends to infinity,

Op(log Lnk) if x # 0,7¢ # 0 and (x = 7¢ orr < 0),
Ak 1 Op(L;}7log L)  if Tx # 0,7¢ # 0,7x # ¢ and r €]0, 1],
u™ " logudu = n .
Ly Op(loglog L) if x # 0 and ¢ = 0,
Op(log Lnk) Zf T = 0.

35



