
HAL Id: hal-03993034
https://hal.science/hal-03993034

Submitted on 6 Mar 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - ShareAlike 4.0 International License

Collections exceptionnelles sur certains espaces de
Hassett

Ana Maria Castravet, Jenia Tevelev

To cite this version:
Ana Maria Castravet, Jenia Tevelev. Collections exceptionnelles sur certains espaces de Hassett. Épi-
journal de Géométrie Algébrique, 2021, 4, �10.46298/EPIGA.2021.VOLUME4.6456�. �hal-03993034�

https://hal.science/hal-03993034
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
https://hal.archives-ouvertes.fr


Épijournal de Géométrie Algébrique
epiga.episciences.org

Volume 4 (2020), Article Nr. 20

Exceptional collections on certain Hassett spaces

Ana-Maria Castravet and Jenia Tevelev

Abstract. We construct an S2 × Sn invariant full exceptional collection on Hassett spaces of weighted stable
rational curves with n+2 markings and weights (12 + η, 12 + η, 1n , . . . ,

1
n ), for 0 < η� 1. These Hassett spaces

can be identified with the symmetric GIT quotients of (P1)n by the diagonal action of Gm, when n is odd,
and their Kirwan desingularization, when n is even. The existence of such an exceptional collection is one of
the needed ingredients in order to prove the existence of a full Sn-invariant exceptional collection onM0,n.
To prove exceptionality we use the method of windows in derived categories. To prove fullness we use previous
work on the existence of invariant full exceptional collections on Losev–Manin spaces.
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[Français]

Collections exceptionnelles sur certains espaces de Hassett

Résumé. Nous construisons une collection exceptionnelle pleine S2×Sn–invariante sur les espaces de Hassett
de courbes rationnelles stables pondérées avec n+2 marquages et poids (12 +η,

1
2 +η,

1
n , . . . ,

1
n ), pour 0 < η� 1.

Ces espaces de Hassett peuvent être identifiés avec les quotients symétriques (au sens de la TGI) de (P1)n

par l’action diagonale de Gm lorsque n est impair, et leur désingularisation de Kirwan lorsque n est pair.
L’existence d’une telle collection exceptionnelle est l’un des ingrédients nécessaires afin de prouver l’existence
d’une collection exceptionnelle Sn-invariante pleine surM0,n. Pour prouver le caractère exceptionnel, nous
utilisons la méthode des fenêtres dans les catégories dérivées. Pour prouver que la collection est pleine, nous
utilisons un travail précédent portant sur l’existence de collections exceptionnelles pleines sur les espaces de
Losev–Manin.
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1. Introduction

A conjecture of Manin and Orlov states that Grothendieck-Knudsen moduli spaceM0,n of stable, rational
curves with n markings admits a full, exceptional collection which is invariant (as a set) under the action
of the symmetric group Sn permuting the markings. The conjecture has been proved by the authors in
[CT20b] by reducing it to the similar statement for several Hassett spaces, one of which is the space under
consideration in this paper. While the proof presented in [CT20b] for other needed Hassett spaces is valid
in this particular case as well, it was not discussed in [CT20b] and we prefer to give a different and much
simpler proof here.

For a vector of rational weights a = (a1, . . . , an) with 0 < ai ≤ 1 and
∑
ai > 2, the Hassett space Ma is

the moduli space of weighted pointed stable rational curves, i.e., pairs (C,
∑
aipi) with slc singularities,

such that C is a genus 0, at worst nodal, curve and the Q-line bundle ωC(
∑
aipi) is ample. For example,

M0,n =M(1,...,1). There exist birational reduction morphisms Ma→Ma′ every time the weight vectors are
such that ai ≥ a′i for every i.

Understanding the derived categories of the Hassett spaces Ma was considered in the work of Ballard,
Favero and Katzarkov [BFK19], and earlier, forM0,n in the work of Manin and Smirnov [MS13] (see also
[Smi13, MS14]). However, here we consider a modified question. If Γa ⊆ Sn denotes the stabilizer of the set of
weights a, we ask whether there exists a full, Γa-invariant exceptional collection on Ma. Theorem [CT20b,
Theorem 1.5] reduces the existence of such collections onM0,n, as well as many other Hassett spaces Ma, to
the following cases:

(I) The Losev–Manin spaces Ma, where a = (1,1,ε, . . . ,ε), 0 < ε� 1.
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(II) The Hassett spaces Mp,q, for p+ q = n (q ≥ 0, p ≥ 2) having p heavy weights and q light weights with
the following properties:

(1.1) a1 = . . . = ap = a+ η, ap+1 = . . . = an = ε, pa+ qε = 2,

where 0 < η,ε� 1.

To reduce to the above cases, the authors were inspired by results of Bergstrom and Minabe [BM13, BM14]
that used reduction maps between Hassett spaces. The existence of a full, invariant, exceptional collection
in case (I) was proved in [CT20a]. The work in [CT20b] proves the statement for the spaces Mp,q in (II)

with p ≥ 3 and is the most difficult part of the argument. The current paper treats the spaces Mp,q in (II)
with p = 2. We emphasize that this case is not explicitly proved in [CT20b]. However, the proof for p > 2
is valid even when p = 2. The proof for p > 2 requires a lot of different comparisons between different
Hassett spaces. Here we prove that this can be avoided when p = 2. More precisely, the main space under
consideration when p = 2 is the following:

Notation 1.1. Let ZN denote the Hassett moduli space of rational curves with markings N ∪ {0,∞} with
weights of markings 0 and ∞ equal to 1

2 + η and the markings from N equal to 1
n , where 0 < η � 1. We

also write Zn := ZN for n = |N | when there is no ambiguity.

The condition on the weights is equivalent to the condition (1.1) for p = 2 (in which case, a = 1− (n−2)ε
2 ).

Explicitly, all light points may coincide with one another and one heavy point may coincide with at most
bn−12 c heavy points. We have the following description:

Theorem 1.2. When n is odd, the space Zn is isomorphic to the symmetric GIT quotient Zn = (P1)n //O(1,...,1)Gm,
with respect to the diagonal action of Gm on (P1)n, coming from Gm acting on P

1 by z · [x,y] = [zx,z−1y]. When
n is even, Zn is isomorphic to the Kirwan desingularization of the same GIT quotient.

Theorem 1.2 for n odd is stated in [Has03] within a more general set-up. Theorem 1.2 for n even is a direct
consequence of [Has03]. For the reader’s convenience, we give the proofs in Lemma 3.4 and Lemma 4.3.

The group S2 × Sn acts on Zn by permuting 0, ∞, and the markings from N respectively. In a similar
fashion, the Losev–Manin space LMN (or LMn, for n = |N |) of dimension (n− 1) is the Hassett space with
weights (1,1,ε, . . . ,ε), with markings from N ∪ {0,∞} with the weights of 0, ∞ equal to 1, while markings
from N are equal to ε, with 0 < ε� 1. The space LMN is isomorphic to an iterated blow-up of Pn−1 along
points q1, . . . , qn in linearly general position, and all linear subspaces spanned by {qi}. In particular, LMn is
a toric variety. The action of Sn permuting the markings from N corresponds to a relabeling of the points
{qi}, while the action of S2, permuting 0, ∞, corresponds, at the level of Pn−1, to a Cremona transformation
with center at the points {qi}. There is a birational S2 ×SN -equivariant morphism, reducing the weights of 0
and ∞: p : LMN → ZN . In particular, ZN is also a toric variety. Our main theorem is the following:

Theorem 1.3. The Hassett space Zn has a full exceptional collection which is invariant under the action of
(S2 × Sn). In particular, the K-group K0(Zn) is a permutation (S2 × Sn)-module.

Theorem 1.3 is the immediate consequence of Theorem 1.6 (case of n odd) and Theorem 1.8 (case of n
even). We now describe the collections.

Definition 1.4. If (π : U → M,σ1, . . . ,σn) is the universal family over the Hassett space M, one defines
tautological classes

ψi := σ
∗
i ωπ, δij = σ

∗
i σj .

Note that when n is odd, we have ψ0 +ψ∞ = 0 on Zn. For other relations, including the case when n is even,
see Section 2.
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Definition 1.5. Assume n is odd. Let E ⊆N and p ∈Z, such that if e = |E| we have that p+ e is even. We
define line bundles on Zn as follows:

LE,p := −
(e − p

2

)
ψ∞ −

∑
j∈E

δj∞.

As sums of Q-line bundles, LE,p =
p
2ψ∞ + 1

2
∑
j∈Eψj = −

p
2ψ0 +

1
2
∑
j∈Eψj . In particular, the action of S2

exchanges LE,p with LE,−p. The line bundles LE,p are natural from the GIT point of view, see (3.1).

Theorem 1.6. Let n = 2s + 1 odd. The line bundles {LE,p} (Definition 1.5) form a full, (S2 × Sn) invariant
exceptional collection in Db(Zn) under the condition:

|p|+min(e,n− e) ≤ s, where e = |E|, p+ e even.

The line bundles are ordered by decreasing e, and for a fixed e, arbitrarily.

The collection in Theorem 1.6 is the dual of the collection in [CT20b, Theorem 1.10] for p = 2, with some
of the constraints on the order removed. See also Remark 3.7 for a more precise statement.

Consider now the case when n = 2s+2 ≥ 2 is even. In this case the universal family over Zn has reducible
fibers. For each partition N = T t T c, |T | = |T c| = s+1, we denote δT∪{∞} ⊆ Zn the boundary component
parametrizing nodal rational curve with two components, with markings from T ∪ {∞} on one component
and T c ∪ {0} on the other. Moreover, δT∪{∞} = P

s ×Ps and we have that Zn→ (P1)n //O(1,...,1) PGL2 is a
Kirwan resolution of singularities with exceptional divisors δT∪{∞}.

Definition 1.7. Assume n is even. Let E ⊆N and p ∈Z, such that if e = |E| we have that p+ e is even. We
define line bundles on Zn as follows:

LE,p := −
(e − p

2

)
ψ∞ −

∑
j∈E

δj∞ −
∑

|E∩T |− e−p2 >0

(
|E ∩ T | −

e − p
2

)
δT∪{∞}.

The line bundles LE,p are natural from the GIT point of view, see Definition 4.6 and the discussion thereafter.
From this point of view, it is also clear that the action of S2 exchanges LE,p with LE,−p.

Theorem 1.8. Assume n = 2s + 2 is even, s ≥ 0. The following form a full, (S2 × Sn) invariant exceptional
collection in Db(Zn):

• The torsion sheaves O(−a,−b) supported on δT∪{∞} = P
s ×Ps, for all T ⊆N , |T | = |T c| = s+1, such that

one of the following holds:
– 0 < a ≤ s, 0 < b ≤ s,
– a = 0, 0 < b < s+1

2 ,

– b = 0, 0 < a < s+1
2 .

• The line bundles {LE,p} (Definition 1.7) under the following condition:

|p|+min(e,n+1− e) ≤ s+1, where e = |E|, p+ e even.

The order is as follows: all torsion sheaves precede the line bundles, the torsion sheaves are arranged in order of
decreasing (a+ b), while the line bundles are arranged in order of decreasing e, and for a fixed e, arbitrarily.

The torsion part of the collection in Theorem 1.8 is the same as the torsion part of the collection in
[CT20b, Theorem 1.15] for p = 2. However, the remaining parts are not the same, nor are they dual to each
other, as in the case of Theorem 1.6. There is a relationship between the dual collection {L∨E,p} and the
torsion free part of the collection in [CT20b, Theorem 1.15] for p = 2, but this is more complicated – see
Remark 4.23 for a precise statement.

To prove that our collections are exceptional, we use the method of windows [HL15, BFK19]. We then
use some of the main results of [CT20a, Proposition 1.8, Theorem 1.10] to prove fullness, by using the
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reduction map p : LMn → Zn in order to compare our collections on Zn with with the push forward of
the full exceptional collection on the Losev–Manin space. We emphasize that while in [CT20b] we prove
exceptionality and fullness on spaces like ZN indirectly, by working on their contractions (small resolutions
of the singular GIT quotient when n is even), in this paper we prove both exceptionality and fullness directly,
by using the method of windows (for n even on the Kirwan resolution, the blow-up of the strictly semistable
locus).

As remarked in [CT20a], we do not know any smooth projective toric varieties X with an action of a
finite group Γ normalizing the torus action which do not have a Γ -equivariant exceptional collection {Ei} of
maximal possible length (equal to the topological Euler characteristic of X). From this point of view, the
Losev–Manin spaces LMN and their birational contractions ZN provide evidence that this may be true in
general. The existence of such a collection implies that the K-group K0(X) is a permutation Γ -module. In
the Galois setting (when X is defined over a field which is not algebraically closed and Γ is the absolute
Galois group), an analogous statement was conjectured by Merkurjev and Panin [MP97]. Of course one may
further wonder if {Ei} is in fact full, which is related to (non)-existence of phantom categories on X, another
difficult open question.

We refer to [CT15, CT13, CT12] for background information on the birational geometry of M0,n, the
Losev–Manin space and other related spaces.

Organization of paper. In Section 2 we discuss preliminaries on Hassett spaces and prove some general
results on how tautological classes pull back under reduction morphisms. These results are of independent
interest and have been already used in a crucial way in [CT20b]. In Section 3, we discuss the GIT
interpretation of the Hassett spaces Zn in the n odd case and prove Theorem 1.6. In Section 4, we do the
same for the n even case and prove Theorem 1.8. Section 5 serves as an appendix, recalling results on
Losev–Manin spaces from [CT20a] and calculating the push forward to Zn of the full exceptional collection
on the Losev–Manin space LMn. These results are used in Sections 3 and 4 to prove fullness in Theorems
1.6 and 1.8. Throughout the paper, we do not distinguish between line bundles and the corresponding divisor
classes.

Acknowledgements. We are grateful to Alexander Kuznetsov for suggesting the problem about the derived
categories of moduli spaces of pointed curves in the equivariant setting. We thank Daniel Halpern–Leistner
for his help with windows in derived categories. We thank Valery Alexeev and the anonymous referee for
useful comments.

2. Preliminaries on Hassett spaces

We refer to [Has03] for background on the Hassett moduli spaces. Recall that for a choice of weights

a = (a1, . . . , an), ai ∈Q, 0 < ai ≤ 1,
∑

ai > 2,

we denote by Ma the fine moduli space of weighted rational curves with n markings which are stable with
respect to the set of weights a. Moreover, Ma is a smooth projective variety of dimension (n− 3). Note that
the polytope of weights has a chamber structure with walls

∑
i∈I ai = 1 for every subset I ⊆ {1, . . . ,n}. One

obtains the Losev–Manin space LMN by considering weights on the set of markings {0,∞}∪N :(
1,1,

1
n
, . . . ,

1
n

)
, n = |N |.

Replacing the weights equal to 1
n with some ε ∈Q, for some 0 < ε� 1, defines the same moduli problem,

hence, gives isomorphic moduli spaces.
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Similarly, the moduli space ZN of Notation 1.1 is the moduli space with set of markings {0,∞}∪N and
weights (1

2
+ η,

1
2
+ η,

1
n
, . . . ,

1
n

)
, η ∈Q, 0 < η� 1.

If a = (a1, . . . , an) and a′ = (b1, . . . , bn) are such that ai ≥ bi , for all i, there is a reduction morphism
ρ : Ma → M

′
a. This is a birational morphism whose exceptional locus consists of boundary divisors δI

(parametrizing reducible curves with a node that disconnects the markings from I and Ic) for every subset
I ⊆ N such that

∑
i∈I ai > 1, but

∑
i∈I bi ≤ 1. For us a special role will be played by the reduction map

p : LMN → ZN which reduces the weights of {0,∞} from 1 to the minimum possible.

For a Hassett space M =Ma, with universal family (π : U →M, {σi}), recall that we define ψi := σ ∗i ωπ,
δij = σ ∗i σj . Since the sections σi lie in the locus where the map π is smooth, the identity σi ·ωπ = −σ2

i holds

on U . Therefore, −ψi = π∗
(
σ2
i

)
= σ ∗i σi .

Lemma 2.1. Assume M is a Hassett space whose universal family π : U →M is a P1-bundle. Then the identity
−ωπ = 2σi +π∗(ψi) holds on U , and therefore, on M we have for all i , j :

ψi +ψj = −2δij .

Hence, for all distinct i, j,k, we have ψi = −δij − δik + δjk .

Proof. Indeed, −ωπ − 2σi restricts to the fibers of the P1-bundle trivially, and therefore is of the form π∗(L)
for some line bundle on M. Pulling back by σi shows that L = ψi . �

When n is odd, the universal family U → ZN is a P
1-bundle and the sections σ0 and σ∞ are distinct.

Lemma 2.1 has the following:

Corollary 2.2. The following identities hold on ZN when n is odd:

(2.1) ψ0 = −ψ∞ = −δi0 + δi∞, ψi = −δi0 − δi∞.

Lemma 2.3. Let M =Ma, M
′
=Ma′ be Hassett spaces, with a = (ai), a′ = (bi), ai ≥ bi for all i. Consider the

corresponding reduction map p :M
′→M. Let (π : U →M, {σi}), (π′ : U ′→M

′
, {σ ′i }) be the universal families.

Denote by (ρ : V →M
′
, {si}) the pull-back of (π′ : U →M, {σi}) to M

′
. Then there exists a commutative diagram:

U ′ v−−−−−→ V
q

−−−−−→ Uyπ′ ρ
y π

y
M
′ Id−−−−−→ M

′ p
−−−−−→ M

Furthermore, identifying U ′ with a Hassett space Mã, where ã = (a1, . . . , an,0) (with an additional marking x
with weight 0) [Has03, 2.1.1], we have:

v∗ωρ =ωπ′ −
∑

|I |≥2,
∑
i∈I ai>1,

∑
i∈I bi≤1

δI∪{x},

v∗si = σi +
∑

i∈I,|I |≥2,
∑
i∈I ai>1,

∑
i∈I bi≤1

δI∪{x},

p∗ψi = ψi −
∑

i∈I,|I |≥2,
∑
i∈I ai>1,

∑
i∈I bi≤1

δI ,

p∗δij = δij +
∑

i,j∈I,|I |≥3,
∑
i∈I ai>1,

∑
i∈I bi≤1

δI .
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Proof. The spaces U and U ′ are smooth [Has03, Propositions 5.3 and 5.4]. The existence of the commutative
diagram follows from semi-stable reduction [Has03, Proof of Theorem 4.1]. The map v is obtained by
applying the relative MMP for the line bundle ωπ′ (

∑
biσ
′
i ). Concretely, the relative MMP results in a

sequences of blow-downs, followed by a small crepant map:

U ′ = S1→S2→ . . .→S r = V ,

(all over M
′
). The resulting map v : U ′→V is a birational map which contracts divisors in U ′ to codimension

2 loci in V (as the relative dimension drops from 1 to 0). Note that V is generically smooth along these loci.
The v-exceptional divisors can be identified via U ′ �Mã with boundary divisors δI∪{x} (I ⊆ N ), with the
property that

∑
i∈I ai > 1,

∑
i∈I bi ≤ 1.

For a flat family of nodal curves u : C → B with Gorenstein base B (in our case smooth) the relative
dualizing sheaf ωu is a line bundle on C with first Chern class KC − u∗KB, where KC and KB denote the
corresponding canonical divisors. In particular:

ωπ′ = KU ′ −π′
∗KM

′ , ωρ = KV − ρ∗KM
′ .

Since the map v on an open set is the blow-up of codimension 2 loci in V , it follows that KU ′ = v∗KV +
∑
E,

by the blow-up formula. Hence, v∗ωρ = ωπ′ −
∑
E, where the sum runs over all prime divisors E which

are v-exceptional. This proves the first identity. For the second, we identify the sections σ ′i (resp., σi ) with
the boundary divisors δix in U ′ (resp., in U ). Note that the proper transform of the section si is σ

′
i and

si contains v(δI∪{x}) (|I | ≥ 2), for δI∪{x} v-exceptional if and only if i ∈ I . Moreover, in this case, v(δI∪{x})
is contained in si (with codimension 1) and si is smooth (since M

′
is). The second identity follows. By

Definition 1.4 and the diagram,

p∗ψi = p
∗σ ∗i ωπ = s∗iq

∗ωπ = s∗iωρ = σ
′
i
∗v∗ωρ,

p∗δij = p
∗σ ∗i (σj ) = s

∗
iq
∗(σj ) = s

∗
i sj = σ

′∗
iv
∗sj .

The last two formulas now follow using the first two and the fact that σ ′∗iδI∪{x} = δI if i ∈ I and is 0
otherwise. �

Corollary 2.4. Let p : LMN → ZN be the reduction map. Let s :=
⌊
n−1
2

⌋
. Then

p∗ψ0 = ψ0 −
∑

I⊆N,1≤|I |≤s
δI∪{0},

p∗ψi = −
∑

i∈I⊆N,1≤|I |≤s

(
δI∪{0} + δI∪{∞}

)
(i ∈N ),

p∗δi0 =
∑

i∈I⊆N,1≤|I |≤s
δI∪{0} (i ∈N ),

p∗δij = δij +
∑

i,j∈I⊆N,1≤|I |≤s

(
δI∪{0} + δI∪{∞}

)
(i, j ∈N ).

Lemma 2.5. On the Losev–Manin space LMN , we have ψi = 0 for all i ∈N .

Proof. Apply Lemma 2.3 to a reduction map p :M0,N∪{0,∞}→ LMN :

p∗ψi = ψi −
∑

i∈I,|I |≥2,0,∞∈Ic
δI .

The right hand side of the equality is 0 [KL09, Lemma 3.4]. Therefore, p∗ψi = 0. As p∗O = O, by the
projection formula, we have ψi = 0. �
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Proof of Corollary 2.4. Follows from Lemma 2.3 and Lemma 2.5. In the notation of Lemma 2.3, the universal
family U ′ over M′ = LMN can be identified with Mã, where ã = (1,1,ε, . . . ,ε,0), with an additional marking
x with 0 weight. But U ′ can also be identified with LMN∪{x} = M(1,1,ε,...ε) (here x has weight ε). Via this
identification, boundary divisors δJ correspond to boundary divisors δJ , for any J ⊆ N ∪ {0,∞,x}. The

v-exceptional divisors appearing in the sum are δI∪{x,0}, δI∪{x,∞}, I ⊆N , |I | ≤
⌊
n−1
2

⌋
. �

When n = |N | is even, the Hassett space ZN =M( 12+η,
1
2+η,

1
n ,...,

1
n )

of Notation 1.1 is closely related to the
following Hassett spaces:

Z ′N =M( 12+ε,
1
2 ,

1
n ,...,

1
n )
, Z ′′N =M( 12 ,

1
2+ε,

1
n ,...,

1
n )
,

with weights assigned to (∞,0,p1, . . . ,pn). There exist p′ : ZN → Z ′N , p
′ : ZN → Z ′′N , reduction maps that

contract the boundary divisors using the two different projections. The universal families over Z ′N and Z ′′N
are P

1-bundles. Lemma 2.3 applied to the reduction maps p′ , p′′ leads to:

Lemma 2.6. Assume n = |N | is even. The following relations hold between the tautological classes on the Hassett
space ZN :

ψ0 = δi∞ − δi0 +
∑

i∈T ,|T |= n
2

δT∪{∞}, ψ∞ = δi0 − δi∞ +
∑

i<T ,|T |= n
2

δT∪{∞},

ψ0 +ψ∞ =
∑
|T |= n

2

δT∪{∞}.

Proof. The second relation follows from the first using the S2 symmetry, while the third follows by adding
the first two. To prove the first relation, consider the reduction map p′ : ZN → Z ′N . To avoid confusion, we
denote by ψ′i , δ

′
ij (resp., ψi , δij ) the tautological classes on Z

′
N (resp., on ZN ). The universal family C′→ Z ′N

is a P
1-bundle. By Lemma 2.1, we have ψ′∞ = δ′i0 − δ

′
i∞ (since δ′0∞ = 0). The relation follows, as by Lemma

2.3, we have

p′∗ψ′∞ = ψ∞ −
∑
|T |= n

2

δT∪{∞}, p′∗δ′i∞ = δi∞ +
∑

i∈T ,|T |= n
2

δT∪{∞}, p′∗δ′i0 = δi0.

�

3. Proof of Theorem 1.6

We start with a few generalities on GIT quotients (P1)nss // Gm. For n odd, we first show that the Hassett
space ZN introduced in (1.1) can be identified with symmetric GIT quotients (P1)nss //Gm. We use the method
of windows from [HL15] to prove exceptionality of the collections in Theorem 1.6. We then prove that the
collection is full, by using the full exceptional collection on the Losev–Manin spaces LMN (see Section 5).

3.1. Generalities on GIT quotients (P1)nss // Gm

Assume n is an arbitrary positive integer. Let Gm = Speck[z,z−1] act on A
2 by z · (x,y) = (zx,z−1y).

Let PGm := Gm/{±1}. Note that PGm acts on P
1 faithfully. Let 0 ∈ P1 be the point with homogeneous

coordinates [0 : 1] and let ∞ = [1 : 0].

We use concepts of “linearized vector bundles” and “equivariant vector bundles” interchangeably. For
(complexes of) coherent sheaves, we prefer “equivariant”. We endow the line bundle O

P
1(−1) with a

Gm-linearization induced by the above action of Gm on its total space VO
P

1(−1) ⊂ P
1 ×A2.

Consider the diagonal action of Gm on (P1)n. For j̄ = (j1, . . . , jn) in Z
n, we denote O(j̄) the line bundle

O(j1, . . . , jn) on (P1)n with Gm-linearization given by the tensor product of linearizations above. We denote
O ⊗ zk the trivial line bundle with Gm-linearization given by the character Gm→ Gm, z 7→ zk . For every
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equivariant coherent sheaf F (resp., a complex of sheaves F •), we denote by F ⊗ zk (resp., F • ⊗ zk ) the
tensor product with O⊗ zk . Note that O(j̄)⊗ zk is PGm-linearized iff j1 + . . .+ jn + k is even.

There is an action of S2 × Sn on (P1)n which normalizes the Gm action. Namely, Sn permutes the factors
of (P1)n and S2 acts on P

1 by z 7→ z−1. This action permutes linearized line bundles O(j̄)⊗ zk as follows:
Sn permutes components of j̄ and S2 flips k 7→ −k.

Notation 3.1. Consider the GIT quotient

Σn := (P1)nss //LGm, L = O(1, . . . ,1),

with respect to the ample line bundle L (with its canonical Gm-linearization described above). Here (P1)nss
denotes the semi-stable locus with respect to this linearization. Let φ : (P1)nss→ Σn denote the canonical
morphism.

As GIT quotients X //L G are by definition Proj
(
R(X,L)G

)
, where R(X,L)G is the invariant part of the

section ring R(X,L), we may replace L with any positive multiple. As the action of PGm on (P1)n is induced
from the action of Gm, Σn is isomorphic to the GIT quotient (P1)nss // PGm (with respect to any even multiple
of L). The action of S2 × Sn on (P1)n descends to Σn.

By the Hilbert-Mumford criterion, a point (zi) in (P1)n is semi-stable (resp., stable) if ≤ n
2 (resp., < n

2 ) of
the zi equal 0 or equal ∞.

3.2. The space ZN as a GIT quotient when n is odd

When n is odd, there are no strictly semistable points and the action of PGm on (P1)nss is free. In
particular, Σn is smooth and by Kempf’s descent lemma, any PGm-linearized line bundle on (P1)nss descends
to a line bundle on Σn. Furthermore, Σn can be identified with the quotient stack [(P1)nss/PGm] and its
derived category Db(Σn) with the equivariant derived category DbPGm

((P1)nss).
Consider the trivial P1-bundle on (P1)n with the following sections:

ρ : (P1)n ×P1 = Proj(Sym(O⊕O))→ (P1)n,

s0(z) = (z,0), s∞(z) = (z,∞), si(z) = (z,pri(z)),

where pri : (P1)n → P
1 is the i-th projection. The sections s0, resp., s∞ are induced by the projection

p2 : O⊕O →O, resp., p1 : O⊕O →O, while the section si is induced by the map O⊕O → pr∗iO(1) given
by the sections xi = pr∗i x,yi = pr

∗
i y of pr∗O(1) that define 0 and ∞ on the i-th copy of P1.

Notation 3.2. Let ∆i0 = pr
−1
i ({0}) ⊆ (P1)n and ∆i∞ = pr−1i ({∞}) ⊆ (P1)n.

Note that ∆i0 is the zero locus of the section xi , or the locus in (P1)n where si = s0. Similarly, let ∆i∞ the
zero locus of the section yi .

We now endow all the above vector bundles with Gm-linearizations. Let

L0 = O⊗ z, L∞ = O⊗ z−1, Li = pr∗iO(1)⊗ 1, E = L0 ⊕L∞.

The maps L0→Li , L∞→Li (given by the sections xi , yi ) are Gm-equivariant, hence, induce Gm-equivariant
surjective maps E → Li . The projection maps E → L0 and E → L∞ are clearly Gm-equivariant. While
none of E , L0,L∞,Li are PGm-linearized vector bundles, tensoring with O(1, . . . ,1) solves this problem,
and we obtain a non-trivial P1-bundle π : P(E)→ Σn with disjoint sections σ0, σ∞ and additional sections
σ1, . . . ,σn.

Denote δi0 the locus in Σn where σi = σ0. This is the zero locus of the section giving the map L∞→Li
on Σn, i.e., the section whose pull-back to (P1)n is the section xi . Similarly, we let δi∞ the locus in Σn
where σi = σ∞. Hence, the sections xi , yi of pr

∗
iO(1)⊗1 defining ∆i0, ∆i∞ descend to global sections of the

corresponding line bundle on Σn and define δi0, δi∞.
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Lemma 3.3. Assume n is odd. We have the following dictionary between line bundles on the GIT quotient Σn
and PGm-linearized line bundles on (P1)n:

O(δi0) = pr∗iO(1)⊗ z, O(δi∞) = pr
∗
iO(1)⊗ z

−1

ψ0 = O⊗ z−2, ψ∞ = O⊗ z2, ψi = pr
∗
iO(−2)⊗ 1.

Proof. The first two formulas follows from the previous discussion: O(δi0) corresponds to the PGm-linearized
line bundle Li ⊗L∨∞. The remaining formulas follow from Lemma 3.4 and the identities (2.1). �

Lemma 3.4. If n = |N | is odd, the Hassett space ZN (see Notation 1.1) is isomorphic to the GIT quotient
Σn = (P1)nss //O(1,...,1)Gm.

Proof. The trivial P1-bundle ρ : (P1)nss ×P1 → (P1)nss with sections s0, s∞, si is the pull-back of the P
1-

bundle π : P(E)→ Σn and sections σ0, σ∞, σi . Since the former is a family of A-stable rational curves,
where A = (12 + η, 12 + η, 1n , . . . ,

1
n ), we have an induced morphism f : Σn → ZN . Clearly, every A-stable

pointed rational curve is represented in the family over (P1)nss (hence, Σn). Furthermore, two elements of this
family are isomorphic if and only if they belong to the same orbit under the action of Gm. It follows that f is
one-to-one on closed points. As both ZN and Σn are smooth, f must be an isomorphism. Alternatively, there
is an induced morphism F : (P1)nss→ ZN which is Gm-equivariant (with Gm acting trivially on ZN ). As Σn
is a categorical quotient, it follows that F factors through Σn and as before, the resulting map f : Σn→ ZN
must be an isomorphism. �

3.3. Exceptionality

When n is odd, Σn is a smooth polarized projective toric variety for the torus Gn−1m and its polytope is a
cross-section of the n-dimensional cube (the polytope of (P1)n with respect to L) by the hyperplane normal
to and bisecting the big diagonal. In particular, the topological Euler characteristic e(Σn) is equal to the
number of edges of the hypercube intersecting that hyperplane:

e(Σn) = n
(
n− 1
n−1
2

)
= n

(
n
0

)
+ (n− 2)

(
n
1

)
+ (n− 4)

(
n
2

)
+ . . . .

By Lemma 3.3, the line bundles {LE,p} in Theorem 1.6 correspond to restrictions to (P1)nss of PGm
linearized line bundles on (P1)n

(3.1) LE,p = O(−E)⊗ zp,

where O(−E) = O(j̄), and j̄ is a vector of 0’s and (−1)’s, with −1’s corresponding to the indices in E ⊆ N .
(Here we abuse notations and we denote by LE,p both the line bundle on (P1)n and the corresponding one
on Σn.) The collection is (S2 × Sn)-equivariant and consists of e(Σn) line bundles.

Proof of Theorem 1.6 – exceptionality. Let G := PGm. We use the method of windows [HL15]. We describe the
Kempf–Ness stratification [HL15, Section 2.1] of the unstable locus (P1)nus with respect to L. The G-fixed
points are

ZI = {(xi) |xi = 0 for i < I, xi =∞ for i ∈ I}

for every subset I ⊆ {1, . . . ,n}. Let σI : ZI ↪→ (P1)n be the inclusion map. The stratification comes from an
ordering of the pairs (λ,Z), where λ :Gm→ G is a 1-PS and Z is a connected component of the λ-fixed
locus (the points ZI in our case). The ordering is such that the function

µ(λ,Z) = −
weightλL|Z
|λ|

,
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is decreasing. Here |λ| is an Euclidean norm on Hom(Gm,G)⊗ZR. We refer to [HL15, Section 2.1] for the
details. As µ(λ,Z) = µ(λk ,Z) for any integer k > 0, it follows that, in our situation, one only has to consider
pairs (λ,ZI ) and (λ′ ,ZI ), for the two 1-PS λ(z) = z and λ′(z) = z−1. Recall that

weightλO(−1)|∞ = +1, weightλO(−1)|0 = −1,

weightλ(O⊗ z
p)|q = p for all points q ∈ P1.

It follows that weightλ′O(−1)|∞ = −1, weightλ′O(−1)|0 = +1 and

weightλL|ZI = |I
c| − |I |, weightλ′L|ZI = −|I

c|+ |I |.

The unstable locus is the union of the following Kempf–Ness strata:

SI = {(xi) |xi =∞ if i ∈ I,xi ,∞ if i < I} �A
|Ic | for |I | > n/2,

S ′I = {(xi) |xi = 0 if i < I,xi , 0 if i ∈ I} 'A
|I | for |I | < n/2.

The destabilizing 1-PS for SI (resp. for S
′
I ) is λ (resp. λ′ ). The 1-PS λ (resp., λ′ ) acts on the conormal bundle

N∨SI |(P1)n (resp., N
∨
S ′I |(P1)n ) restricted to ZI with positive weights and their sum ηI (resp., η

′
I ) can be computed

as

ηI = 2|I |, resp. η′I = 2|Ic|.

To see this, note that the sum of λ-weights of
(
N∨SI |(P1)n

)
|ZI

equals

weightλ
(
detN∨SI |(P1)n

)
|ZI

= weightλ
(
detTSI

)
|ZI
−weightλ

(
detT(P1)n

)
|ZI
.

Note that SI can be identified with A
|Ic | and the point ZI ∈ SI with the point 0 ∈A|Ic |. The action of G on

A
|Ic | is via z · (xj ) = (z2xj ). It follows that weightλTSI |ZI = 2|Ic|. Similarly, the tangent space

(
detT(P1)n

)
|ZI

can be identified with the tangent space of T0A
n, with the action of G on (xj ) ∈An being z · xj = z2xj if

j ∈ Ic and z · xj = z−2xj if j ∈ I . It follows that weightλ
(
T(P1)n

)
|ZI

= 2|Ic| − 2|I |. Hence, ηI = 2|I |. Similarly,

η′I = 2|Ic|.
For the Kempf-Ness strata SI and S

′
I we make a choice of “weights”

wI = w
′
I = −2s, where n = 2s+1.

By the main result of [HL15, Theorem 2.10], DbG((P
1)nss) is equivalent to the window Gw in the equivariant

derived category DbG((P
1)n), namely the full subcategory of all complexes of equivariant sheaves F • such

that all weights (with respect to corresponding destabilizing 1-PS) of the cohomology sheaves of the complex
σ ∗I F

• lie in the segment

[wI ,wI + ηI ) or [w′I ,w
′
I + η

′
I ), respectively.

We prove that the window Gw contains all linearized line bundles LE,p = O(−E)⊗ zp from Theorem 1.6.
Recall that n = 2s + 1. Since the collection is S2 invariant and S2 flips the strata SI and S

′
I , it suffices to

check the window conditions for SI . The λ-weight of O(−E)⊗ zp restricted to ZI equals |I ∩E| − |Ic ∩E|+p.
It is straightforward to check that the maximum of this quantity over all E is equal to 2s+2|I | −n+1 when
s is odd, or 2s+2|I | −n− 1 when s is even, and the minimum to −2s, hence the claim. Since our collection
of linearized line bundles is clearly an exceptional collection on DbG((P

1)n), it follows it is an exceptional
collection in DbG(Zn). �
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3.4. Fullness

We will prove the following general statement.

Theorem 3.5. The collection in Theorem 1.6 generates all line bundles

LE,p := O(−E)⊗ zp,

for all E ⊆N , e = |E|, p ∈Z with e+ p even.

Proof of Theorem 1.6 - fullness. By Theorem 3.5, the collection in Theorem 1.6 generates all the objects
Rp∗(π∗IĜ) from Corollary 5.11. Fullness then follows by Corollary 5.5. Alternatively, it is easy to see that
line bundles LE,p generate the derived category of the stack [(P1)n/PGm] and we can finish as in [CT20b,
Proposition 4.1]. �

Proof Theorem 3.5. For simplicity, denote by C the collection in the theorem. We introduce the score of a pair
(E,p), with e = |E| as

s(E,p) := |p|+min{e,n− e}.
The collection C consists of LE,p with s(E,p) ≤ s. We prove the statement by induction on the score s(E,p),
and for equal score, by induction on |p|.

Let (E,p) be any pair as in Theorem 3.5. If s(E,p) ≤ s, there is nothing to prove. Assume s(E,p) > s.
Using S2-symmetry, we may assume w.l.o.g. that p ≥ 0. We will use the two types of PGm-equivariant Koszul
resolutions from Lemma 3.6 to successively generate all objects.

Case e ≤ s. The sequence (1) in Lemma 3.6 for a set I with |I | = s + 1 followed by tensoring with
LE,p = O(−E)⊗ zp, gives an exact sequence

0→ LE∪I,p−s−1→ . . .→
⊕

J⊆I,|J |=j
LE∪J,p−j → . . .→ LE,p→ 0.

We prove that each term LE∪J,p−j is generated by C for all j > 0. Note that s(E,p) = |p| + e = p + e. If
p − j ≥ 0, then

s(E ∪ J,p − j) ≤ (p − j) + (e+ j) = p+ e = s(E,p),

but as p − j < p, we are done by induction on |p|. If p − j < 0 then

s(E ∪ J,p − j) ≤ (j − p) +n− (e+ j) = n− e − p < e+ p = s(E,p)

since we assume e+ p > s. In particular, LE∪J,p−j is in C.
Case e ≥ s+1. Let I ⊆ E, with |I | = s + 1. The sequence (2) in Lemma 3.6 for the set I , followed by

tensoring with LE′ ,p−s−1 = O(E′)⊗ zp−s−1, where E′ = E \ I , gives an exact sequence

0→ LE,p→ . . .→
⊕

J⊆I,|J |=j
LE′∪J,j+p−s−1→ . . .→ LE′ ,p−s−1→ 0.

We prove that each term LE∪J,j+p−s−1 is generated by C for all J , I (when (E′ ∪ J, j + p − s − 1) = (E,p)).
Note that s(E,p) = p+n− e. We let e′ := |E′ | = e − s − 1. If j + p − s − 1 ≥ 0, then

s(E′ ∪ J, j + p − s − 1) ≤ (j + p − s − 1) + (n− e′ − j) = p+n− e = s(E,p).

As p+ j − s−1 ≤ p with equality if and only if J = I , we are done by induction on |p|. If j +p− s−1 < 0, then

s(E′ ∪ J, j + p − s − 1) ≤ −(j + p − s − 1) + (e′ + j) = e − p < s(E,p) = p+n− e,

since we assume s(E,p) > s, which gives e − p ≤ s. �

Lemma 3.6. Let n = 2s+1, I ⊆N , |I | = s+1. There are two types of PGm-equivariant resolutions:
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(1) The restriction to (P1)nss of the Koszul complex of the intersection of the divisors ∆i0 (Notation 3.2) for i ∈ I ,
which takes the form

0→O(−I)⊗ z−(s+1)→ . . .→
⊕

J⊆I,|J |=j
O(−J)⊗ z−j → . . .→O⊗ 1→ 0

(2) The restriction to (P1)nss of the Koszul complex of the intersection of the divisors ∆i∞ (Notation 3.2) for
i ∈ I , which takes the form

0→O(−I)⊗ z(s+1)→ . . .→
⊕

J⊆I,|J |=j
O(−J)⊗ zj → . . .→O⊗ 1→ 0

Proof. Let G = PGm. Denote for simplicity Di = ∆i0, for all i ∈ N . The divisors D1, . . . ,Dn intersect with
simple normal crossings. Let YI := ∩i∈IDi ⊆ (P1)n. Consider the Koszul resolution of YI :

. . .→⊕i<j,i,j∈IO(−Di −Dj )→⊕i∈IO(−DI )→O→OYI → 0.

Each of these maps in the sequence is a direct sum of maps of the form

O(−Dj1 − . . .−Djt )→O(−Dj1 − . . .−Djt−1)

obtained by multiplication with a canonical section corresponding to the effective divisor Djt . This can be
made into a G-equivariant map:

O(−Dj1 − . . .−Djt )⊗ z
−t→O(−Dj1 − . . .−Djt−1)⊗ z

−(t−1).

since O(−Di) ⊗ z−1 → O is the G-equivariant map given by multiplication with xi , whose zero locus is
Di = ∆i0 (see Lemma 3.3 and the discussion preceding it). The Lemma follows by restriction to (P1)nss. Note
that YI ∩ (P1)nss = ∅. The proof of (2) is similar, with the only difference that multiplication with yi , the
canonical section of ∆i∞ corresponds to a G-equivariant map O(−∆i∞)⊗ z→O. �

Remark 3.7. We explain the connection with case p = 2, q = n = 2s + 1 of [CT20b, Theorem 1.10]. The
collection there is the following:

(i) The line bundles F0,E := −12
∑
j∈Eψj (e = |E| is even) in the so-called group 1 (group 1A and group 1B

of the theorem coincide in this case).
(ii) The line bundles in the so-called group 2:

Tl,{u}∪E := σ ∗u
(
ω

e+1−l
2

π (E ∪ {u})
)
=
e − l − 1

2
ψu +

∑
j∈E

δju = −
l +1
2
ψu −

∑
j∈E

1
2
ψj

where e = |E|, u ∈ {0,∞}, l ≥ 0, l + |E ∩ {u}| even (i.e., l + e odd), with

l +min{e,n− e} ≤ s − 1.

This collection is the dual of the one in Theorem 1.6. The elements in group 2 with l = p − 1, u =∞
recover the dual of the collection in Theorem 1.6 when p > 0. Similarly, elements in group 2 with l = −p − 1,
u = 0 recover the dual of the collection in Theorem 1.6 when p < 0. The elements of group 1 recover the
dual of the collection in Theorem 1.6 when p = 0.

4. Proof of Theorem 1.8

We employ a similar strategy as in Section 3. We identify the Hassett space ZN (see (1.1)) when n = |N | is
even with the Kirwan resolution of the symmetric GIT quotient Σn. We use the method of windows [HL15]
to prove the exceptionality part of Theorem 1.8. We prove fullness using previous results on Losev–Manin
spaces LMN (see Section 5).
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4.1. The space ZN as a GIT quotient, n even

Assume n = 2s +2. There are
( n
s+1

)
strictly semistable points {pT } ∈ (P1)nss one for each subset T ⊆ N ,

|T | = s+1. More precisely, the point pT is obtained by taking∞ for spots in T and 0 for spots in T c. Instead
of the GIT quotient Σn, which is singular at the images of these points, we consider its Kirwan resolution
Σ̃n constructed as follows.

Let W =Wn be the blow-up of (P1)n at the points {pT } and let {ET } be the corresponding exceptional
divisors. The action of Gm lifts toW . To describe this action locally around a point pT , assume for simplicity
T = {s+2, . . . ,n} around the point pT . Consider the affine chart

A
n = (P1 \ {∞})s+1 × (P1 \ {0})s+1

In the new coordinates, we have pT = 0 = (0, . . . ,0). We let ((xi), (yi)), resp., ((ti), (ui)), for i = 1, . . . , s, be
coordinates on A

n, resp., Pn−1. Then W is locally the blow-up Bl0A
n, with equations

xitj = xjti , xiuj = yjti , yiuj = yjui .

The action of Gm on W is given by

z ·
(
(xi , yi), [ti ,ui]

)
=

(
(z2xi , z

−2yi), [z
2ti , z

−2ui]
)
.

The fixed locus of the action of Gm on ET consists of the subspaces

Z+
T = {u1 = . . . = us+1 = 0} = P

s ⊆ P
n−1 = ET ,

Z−T = {t1 = . . . = ts+1 = 0} = P
s ⊆ P

n−1 = ET .

As Bl0A
n is the total space V (OET (−1)) of the line bundle OET (−1) = OET (ET ) and the action of Gm on

Bl0A
n coincides with the canonical action of Gm on V (OET (−1)) coming from the action of G on ET = P

n−1

given by
z · [t1, . . . , ts+1,u1, . . . ,us+1] = [z2t1, . . . , z

2ts+1, z
−2u1, . . . , z

−2us+1],

it follows that OET (ET ) (and hence, O(ET )) has a canonical Gm-linearization. With respect to this lineariza-
tion, we have:

(4.1) weightλOET (−1)|q = weightλO(ET )|q = +2, q ∈ Z+
T , λ(z) = z,

weightλOET (−1)|q = weightλO(ET )|q = −2, q ∈ Z−T , λ(z) = z.

and similarly,
weightλ′OET (−1)|q = weightλ′O(ET )|q = −2, q ∈ Z+

T , λ′(z) = z−1.

weightλ′OET (−1)|q = weightλ′O(ET )|q = +2, q ∈ Z−T , λ′(z) = z−1.

We denote by O(j̄)(
∑
αT ET ) the line bundle π∗O(j1, . . . , jn)(

∑
αT ET ) on Wn (where ji ,αT integers and

π :Wn→ (P1)n is the blow-up map), with the Gm-linearization given by the tensor product of the canonical
linearizations above. As before, for every equivariant coherent sheaf F , we denote by F ⊗ zk the tensor
product with O⊗ zk . For a subset E ⊆N , we denote

O(−E) := π∗O(j̄)

with ji = −1 if i ∈ E and ji = 0 otherwise. Note that the action of S2 exchanges O(−E)⊗zp with O(−E)⊗z−p
and ET with ET c (Lemma 4.4).

Consider the GIT quotient with respect to a (fractional) polarization

L = O(1, . . . ,1)
(
−ε

∑
ET

)
,

where 0 < ε � 1, ε ∈ Q, and the sum is over all exceptional divisors (with the canonical polarization
described above):

Σ̃n = (Wn)ss //LGm.
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Lemma 4.1. The Gm-linearized line bundle O(j̄)(
∑
αTET )⊗ zp descends to the GIT quotient Σ̃n if and only if

for all subsets I ⊆N with |I | , s+1

−
∑
i∈I
ji +

∑
i∈Ic

ji + p is even

and for all subsets I ⊆N with |I | = s+1, we have

−
∑
i∈I
ji +

∑
i∈Ic

ji + p ± 2αI is divisible by 4.

Proof. By Kempf’s descent lemma, a G-linearized line bundle L descends to the GIT quotient if and only if
the stabilizer of any point in the semistable locus acts trivially on the fiber of L at that point, or equivalently,
weightλL|q = 0, for any semistable point q and any 1-PS λ :Gm→ G. By definition, weightλL|q = weightλL|p0 ,
where p0 is the fixed point limt→0λ(t) · q.

For any point q in (P1)n \ {pT } such that q = (zi) has zi =∞ for i ∈ I and zi ,∞ for i ∈ Ic, we have for
λ(z) = z that limt→0λ(t) · q is the point with coordinates zi =∞ for i ∈ I and zi = 0 for i ∈ Ic, and hence:

(4.2) weightλ
(
O(j̄)(

∑
αT ET )⊗ zp

)
|q
= −

∑
i∈I
ji +

∑
i∈Ic

ji + p.

Note that such a point q is semistable if and only if |I | < s+1. Similarly, if q has zi = 0 for i ∈ Ic and zi , 0
for i ∈ I , λ′(z) = z−1:

weightλ′
(
O(j̄)(

∑
αTET )⊗ zp

)
|q
=

∑
i∈I
ji −

∑
i∈Ic

ji + p.

Note, q is semistable iff |I | > s+1. The stabilizer of q is {±1} in both cases.
If q ∈ ET \ (Z+

T tZ
−
T ) then limt→0λ(t) · q ∈ Z−T , limt→0λ

′(t) · q ∈ Z+
T and using (4.1) we obtain

weightλ
(
O(j̄)(

∑
αT ET )⊗ zp

)
|q
= −

∑
i∈I
ji +

∑
i∈Ic

ji + p − 2αT ,

weightλ′
(
O(j̄)(

∑
αTET )⊗ zp

)
|q
=

∑
i∈I
ji −

∑
i∈Ic

ji + p − 2αT .

A point q ∈ ET \ (Z+
T tZ

−
T ) has stabilizer {±1,±i}. The conclusion follows. �

Corollary 4.2. For E ⊆N , p ∈Z, the line bundle O(−E)(
∑
αT ET )⊗ zp descends to the GIT quotient Σ̃n if and

only if for all subsets I ⊆N with |I | , s+1

|I ∩E| − |Ic ∩E|+ p is even

and for all subsets I ⊆N with |I | = s+1, we have

|I ∩E| − |Ic ∩E|+ p − 2αI is divisible by 4.

Lemma 4.3. If n = |N | is even, the Hassett space ZN = M0,( 12+η,
1
2+η,

1
n ,...,

1
n )
is isomorphic to the GIT quotient

Σ̃n = (Wn)ss //O(1,...,1)(−ε∑ET )Gm.

Proof. The trivial P1-bundle (P1)n ×P1→ (P1)n has sections s0, s∞, si . We still denote by s0, s∞, si the
induced sections of the pull back Wss ×P1 → Wss. The family is not A-stable at the points pT , where
si = s∞ for all i ∈ T and si = s0 for all i ∈ T c (markings in T are identified with ∞, and markings in T c with
0). Here A = (12 + η,

1
2 + η,

1
n , . . . ,

1
n ). Let C

′ be the blow-up of W ×P1 along the codimension 2 loci

ET × {0} = s0(ET ), ET × {∞} = s∞(ET ).

Denote by Ẽ0
T and Ẽ∞T the corresponding exceptional divisors in C′ . The resulting family π′ : C′→W has

fibers above points p ∈ ET a chain of P1’s of the form C0 ∪ F̃ ∪C∞, where F̃ is the proper transform of the
fiber of W ×P1→W and F̃ meets each of C0 (the fiber of Ẽ0

T → ET at p) and C∞ (the fiber of Ẽ∞T → ET
at p). The proper transforms of si for i ∈ T (resp., i ∈ T c) intersect C∞ (resp., C0) at distinct points. The
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dualizing sheaf ωπ′ is relatively nef, with degree 0 on F̃. It follows that ωπ′ induces a morphism C′→C over
Wss which contracts the component F̃ in each of the above fibers, resulting in an A-stable family. Therefore,
we have an induced morphism F :Wss→ ZN . Clearly, the map F is Gm-equivariant (where Gm acts trivially
on ZN ). As the GIT quotient Σ̃n is a categorical quotient, there is an induced morphism f : Σ̃n→ ZN . Two
elements of the family C →Wss are isomorphic if and only if they belong to the same orbit under the action
of Gm. Hence, the map f is one-to-one on closed points (as there are no strictly semistable points in Wss,
Σ̃n is a good categorical quotient [Dol03, p. 94]). It follows that f is an isomorphism. �

Lemma 4.4. Assume n = 2s+2 is even. We have the following dictionary between tautological line bundles on
the Hassett space ZN (idenitified with the GIT quotient Σ̃n) and Gm-linearized line bundles on Wn:

O(δi0) = pr∗iO(1)

−∑
i<T

ET

⊗ z, O(δi∞) = pr∗iO(1)
−∑

i∈T
ET

⊗ z−1
ψ0 = O

(∑
ET

)
⊗ z−2, ψ∞ = O

(∑
ET

)
⊗ z2, ψi = pr

∗
iO(−2)

(∑
ET

)
⊗ 1,

O(δT∪{∞}) = O(2ET )⊗ 1 (|T | = s+1).

Proof. Denote δT = δT∪{∞}. We start with the proof of O(δT ) = O(2ET )⊗ 1. Consider the affine chart

A
n = (P1 \ {∞})s+1 × (P1 \ {0})s+1

around the point pT (markings in T = {s+2, . . . ,n} are identified with ∞, and markings in T c with 0). We
have coordinates x1, . . . ,xs+1, y1, . . . , ys+1. The GIT quotient map (P1)nss→ Σ is locally at pT given by

f :An→ Y = f (An) ⊆A
(s+1)2 , f ((xi), (yj )) = (xiyj )ij .

The morphism F :Wss→ Σ̃n = Σ̃ induced by the universal family over Wss (proof of Lemma 4.3) is locally
the restriction to the semistable locus of the rational map (which we still call F)

F : Bl0A
nd Bl0Y ⊆ Bl0A

(s+1)2 .

Consider coordinates ((xi , yi), [ti ,ui]) (with xitj = xjti , xiuj = yjti , xitj = xjti ) on Bl0A
n ⊆A

n ×Pn−1 and

coordinates (zij , [wij ]) on Bl0A
(s+1)2 (with zijwkl = zklwij ). Consider the affine charts U1 = {t1 , 0} ⊆ Bl0A

n

and V1j = {w1j , 0} ⊆ Bl0A
r2 . The map F|U1

is the rational map

F :U1 =A
n
x1,t2,...,tr ,u1,...,ur d V1j =A

r2

z1j ,(wkl )kl,1j
,

z1j = x
2
1uj , wkl =

tkul
uj

.

The exceptional divisor Ẽ in Bl0A
(s+1)2 has local equation z1j = 0 in V1j , while the exceptional divisor ET

of Bl0A
n has equation x1 = 0 in U1. It follows that F

∗O(Ẽ) = O(2ET ). In particular, as δT = Bl0Y ∩ Ẽ, it
follows that F∗O(δT ) = O(2ET ). It follows that O(δT ) = O(2ET )⊗ zk , for some integer k (the same for all T ,
by the Sn-symmetry). On the other hand, by the S2-symmetry, O(δT c ) = O(2ET c )⊗ z−k . Hence, we must
have k = 0.

We now prove that O(δi0) = pr∗iO(1)(−
∑
i<T ET )⊗ z. (Note that all other relations will then follow by

S2-symmetry and Lemma 2.6.) Clearly, F∗O(δi0) is the line bundle O(∆̃i0)|Wss
, where ∆̃i0 is the proper

transform in W of the diagonal ∆i0 in (P1)n defined by xi = 0, where zi = [xi , yi] now denote coordinates
on (P1)n. As ∆̃i0 = ∆i0 −

∑
i<T ET (markings in T c are identified with 0), it follows that

O(δi0) = pr∗iO(1)

−∑
i<T

ET

⊗ zk ,
for some integer k. The pull-back of the canonical section of the effective divisor δi0 (which is xi ) must be
an invariant section. The section xi of OP

1(1) becomes the constant section 1 in the open chart U : xi , 0.
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Considering a point q = (q1, . . . , qn) in U , with qi =∞ and qj ∈ P1 general for j , i, it follows that for the

1-PS λ(z) = z we have weightλpr
∗
iO(1)|q = −1, weightλO ⊗ z

k
|q = k, hence, the constant section 1 becomes

z−1+k under the action of λ and we must have k = 1 for the section to be invariant. �

Lemma 4.5. Let δT := δT∪{∞} = P
s ×Ps. We have

δi∞|δT =

O(1,0) if i ∈ T
O if i < T

, δi0|δT =

O(0,1) if i < T

O if i ∈ T ,
,

ψ∞|δT = O(−1,0), ψ0|δT = O(0,−1), δT |δT = O(−1,−1).

Proof. By symmetry, it suffices to compute δi∞|δT and ψ∞|δT . Clearly, the intersection δi∞ ∩ δT = ∅ if i < T .
We identify δT =M

′ ×M′′ = P
s ×Ps, where M′ , resp., M′′ are Hassett spaces with weights (12 +η,

1
n , . . . ,

1
n ,1),

with the attaching point x having weight 1. We identify M
′
= P

s via the isomorphism |ψx| : M
′ → P

s.
We have δi∞|δT = δi∞ ⊗O, ψ∞|δT = ψ∞ ⊗O. By Lemma 2.1, on M

′
we have ψ∞ +ψx = 0 since δx∞ = 0,

and δi∞ = −ψ∞ = O(1) if i ∈ T . The identity δT |δT = O(−1,−1) follows now from the previous ones by
restricting to δT any of the identities in Lemma 2.6. �

4.2. Exceptionality

Note that Wn is a polarized toric variety with the polytope ∆ obtained by truncating the n-dimensional
cube at vertices lying on the hyperplane H normal to and bisecting the big diagonal. Then Σ̃n is a smooth
polarized projective toric variety for the torus Gn−1m and its polytope is ∆∩H . In particular, the topological
Euler characteristic e(Σ̃n) is equal to the number of edges ∆ intersecting H :

e(Z̃n) = (s+1)2
(
n
s+1

)
= s2

(
n
s+1

)
+ (n− 1)

(
n
s+1

)
(n = 2s+2).

Note that (s+1)
( n
s+1

)
= n

(n
0
)
+ (n− 2)

(n
1
)
+ (n− 4)

(n
2
)
+ . . .+2

(n
s

)
.

Definition 4.6. For E ⊆N , e = |E|, p ∈Z such that p+ e is even, let

LE,p := O(−E)

 ∑
T⊆N,|T |=s+1

αT ,E,pET

⊗ zp where

(4.3) αT ,E,p := −|xT ,E,p|, xT ,E,p := |E ∩ T | −
e − p
2

i.e., the descent to Σ̃n of the restriction to (Wn)ss of the above Gm-linearized line bundle on Wn. By Lemma
4.4 we recover Definition 1.7:

(4.4) LE,p = −
(e − p

2

)
ψ∞ −

∑
i∈E

δi∞ −
∑

xT ,E,p>0

xT ,E,pδT∪{∞}.

We write xT if there is no ambiguity. Note that xT ,E,p = −xT c ,E,−p.

Lemma 4.7. The action of S2 on ZN exchanges LE,p with LE,−p.

Proof. The statement follows immediately from (4.4) and Lemma 2.6. �

Proof of Theorem 1.6 - exceptionality. Lemma 4.9 implies that the torsion sheaves Oδ(−a,−b) form an excep-
tional collection. Let now δ := δT∪{∞}. To prove that {Oδ(−a,−b),LE,p} form an exceptional pair, i.e., that
L∨|δ ⊗O(−a,−b) is acylic, note that by Lemma 4.5 and (4.6) we have, letting αT := αT ,E,p:

L∨|δ =

O(0,αT ) if p+ |E ∩ T | − |E ∩ T c| ≥ 0

O(αT ,0) if p+ |E ∩ T | − |E ∩ T c| ≤ 0,
.
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Clearly, if a,b > 0 then L∨|δ ⊗O(−a,−b) is acylic. Consider now the case when one of a,b is 0. Using the

S2-symmetry, we may assume a = 0. Let 0 < b < s+1
2 . Since by (4.5) we have −b s+12 c ≤ αT ≤ 0, the result

follows.

We describe the Kempf-Ness stratification of the unstable locus in Wn. Let G = Gm. As before, we
consider (λ,Z), with a 1-PS λ :Gm→ G and Z a connected component of the λ-fixed locus. It suffices to
consider λ(z) = z and λ′(z) = z−1. The G-fixed locus in W =Wn consists of the points

ZI = {(xi) |xi =∞ for i ∈ I, xi = 0 for i < I, } ∈ (P1)n \ {pT }

for every subset I ⊆N with |I | , s+1 and the loci Z+
T tZ

−
T ⊆ ET , for each subset T ⊆N , |T | = s+1. The

pairs (λ,Z) to be considered are therefore

(λ,ZI ), (λ′ ,ZI ) (I ⊆N, |I | , s+1),

(λ,Z+
T ), (λ′ ,Z+

T ), (λ,Z−T ), (λ′ ,Z−T ) (T ⊆N, |T | = s+1).

Recall that our polarization is L = O(1, . . . ,1)(−ε
∑
ET ) and for any subset I ⊆N with |I | , s+1 we have

weightλL|ZI = |I
c| − |I |, weightλ′L|ZI = −|I

c|+ |I |,

while for all subsets T ⊆N with |T | = s+1 we have:

weightλL|q = −2ε, weightλ′L|q = +2ε (q ∈ Z+
T ),

weightλL|q = +2ε, weightλ′L|q = −2ε (q ∈ Z−T ).
As in the n odd case, we define for any subset I ⊆N affine subsets:

SI = {(xi) |xi =∞ if i ∈ I,xi ,∞ if i < I} �A
|Ic |

S ′I = {(xi) |xi = 0 if i < I,xi , 0 if i ∈ I} �A
|I |.

The unstable locus arises from the pairs with negative weight:

(λ,ZI ) (for |I | > s+1), (λ′ ,ZI ) (for |I | < s+1),

(λ,Z+
T ), (λ′ ,Z−T ) (for |T | = s+1) :

SI �A
|Ic | (for |I | > r), S ′I �A

|I | (for |I | < s+1),

S+T = BlpT ST = Bl0A
|T c |, S−T = BlpT S

′
T = Bl0A

|T | (for |T | = s+1).

The destabilizing 1-PS for SI (resp., for S
′
I ) is λ (resp. λ′ ). The 1-PS λ (resp., λ′ ) acts on the restriction to

ZI of the conormal bundle N∨SI |(P1)n (resp., N
∨
S ′I |(P1)n ) with positive weights. Their sum ηI (resp., η

′
I ) is:

ηI = 2|I |, resp., η′I = 2|Ic|.

When |T | = s+1, the destabilizing 1-PS for S+T (resp. for S−T ) is λ (resp. λ′ ). The 1-PS λ (resp., λ′ ) acts on
N∨S+T |W

(resp., N∨S−T |W
) restricted to q ∈ Z+

T (resp., Z−T ), with positive weights. Their sum η+T (resp., η−T ) is:

η+T = 4|T | = 2n, resp., η−T = 4|T c| = 2n.

To see this, let q ∈ Z+
T . The sum of λ-weights of

(
N∨S+T |W

)
|q
equals

weightλ
(
detN∨S+T |W

)
|q
= weightλ

(
detTS+T

)
|q
−weightλ

(
detTW

)
|q
.

We use the local coordinates introduced in 4.1 (assume again w.l.o.g. that T = {s+2, . . . ,n}). We may assume
also that the point

q = [t1, . . . , ts+1,0 . . . ,0] ∈ Z+
T ⊆ ET = P

n−1

has t1 = 1. Then local coordinates on an open set U = A
n ⊆ W around q are given by x1, t2, . . . , ts+1,

u1, . . . ,us+1, with the blow-up map A
n→A

n:

(x1, t2, . . . , ts+1,u1, . . . ,us+1) 7→ (x1,x1t2, . . . ,x1ts+1,x1u1, . . . ,x1us+1).
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Then S+T ∩U ⊆U has equations u1 = . . . = us+1 (the proper transform of ST : y1 = . . . = ys+1). The action of
G on W induces an action on U :

z · x1 = z2x1, z · ti = ti (i = 2, . . . , s+1), z · ti = z−4ti (i = 1, . . . , s+1).

It follows that
weightλ

(
detTW

)
|q
= −2− 4s, weightλ

(
detTS+T

)
|q
= 2.

Hence, ηT = 4s +4 = 2n. Similarly, η′T = 2n: for q ∈ Z−T and coordinates y1, t1, . . . , ts+1,u2, . . . ,us+1 on the
chart u1 = 1, the action of G given by:

z · y1 = z−2y1, z · ti = z4ti (i = 1, . . . , s+1), z ·ui = ui (i = 2, . . . , s+1).

Letting m :=
⌊
n
4

⌋
=

⌊
s+1
2

⌋
, we make a choice of windows Gw:

[wI ,wI + ηI ), [w′I ,w
′
I + η

′
I ), [w+

T ,w
+
T + η+T ), [w−T ,w

−
T + η−T ),

wI = w
′
I = −(s+1), w+

T = w−T = −4m = −n if s is odd,

wI = w
′
I = −s, w+

T = w−T = −4m = −n+2 if s is even.

We prove that Gw contains the G-linearized line bundles that descend to the LE,p in Theorem 1.8. Since
the collection is S2 invariant and S2 flips the strata SI and S

′
I , it suffices to check the window conditions for

the strata SI , S
+
T . For I ⊆N , |I | > s+1, at the point ZI ∈ SI we have by (4.2)

weightλ
(
LE,p

)
|ZI

= |E ∩ I | − |E ∩ Ic|+ p,

which lies in [wI ,wI + ηI ) by Lemma 4.10.
For T ⊆N with |T | = s+1, we have by (4.1) and (4.2) that

weightλ
(
LE,p

)
|q∈Z+

T

= |E ∩ T | − |E ∩ T c|+ p − 2|xT |

=

0 if |E ∩ T | − |E ∩ T c|+ p ≥ 0

−4|xT | if |E ∩ T | − |E ∩ T c|+ p ≤ 0,

which by (4.5) lies in [w+
T ,w

+
T + η+T ). Hence, all {LE,p} in Theorem 1.8 are contained in the window Gw.

We now check exceptionality. Consider two line bundles as in Theorem 1.8:

LE,p = O(−E)

∑
|T |=r

αT ET

⊗ zp, LE′ ,p′ = O(−E′)

∑
|T |=r

α′T ET

⊗ zp′ .
where αT := αT ,E,p, α′T := αT ,E′ ,p′ . Assume that e = |E| ≥ e′ = |E′ |. Hence, E * E′ unless E = E′ . By the
main result of [HL15, Theorem 2.10], we have that RHom(LE′ ,p′ ,LE,p) equals the weight (p′ − p) part (with
respect to the canonical action of G) of

RHomW (LE′ ,p′ ,LE,p) = RΓ

O(E′ −E)⊗O(∑
T

(α′T −αT )ET )

 .
Hence, letting

M0 := O(E′ −E)⊗O

∑
βT≤0

(−βT )ET

 , where βT := αT −α′T ,

we need to understand the weight (p′ − p) part of

RΓ

M0 ⊗O

 ∑
|T |=r,βT >0

(−βT )ET


 .
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Note that M0 is a pull-back from (P1)n; hence, by the projection formula, RΓ (M0) = RΓ (O(E′ −E)) (which
is 0 if E * E′).

Consider a simplified situation. For a line bundle M on W , G := ET , β := βT > 0 consider the exact
sequences:

0→M(−(i +1)G)→M(−iG)→M(−iG)|G→ 0, (i = 0, . . .β − 1).
To prove that the weight (p′ − p) of RΓ (M(−βG)) is 0, it suffices to prove that

RΓ (M), RΓ (M(−iG)|G) (i = 0,1, . . . ,β − 1),

have no weight (p′ − p) part. Put an arbitrary order on the subsets T with βT > 0 (T1,T2, . . .). Applying the
above observation successively, first for M0, ET1 , then inductively for M0(−β1T1 − . . .−βiTi), ETi+1 , it suffices
to prove that for all T , the following spaces

RΓ (M0), RΓ (M0(−iET )|ET ) (i = 0,1, . . . ,β − 1)

have no weight (p′ − p) part.
We start with RΓ (M0). If E , E′ , then RΓ ∗(M0) = 0. If E = E′ , then M0 = O and the action of G on

RΓ (M0) is trivial. Hence, unless p = p′ (i.e., LE,p = LE′ ,p), RΓ (M0) has no weight (p′ − p) part.
We now continue with RΓ (M0(−iET )|ET ). By the projection formula,

RΓ (M0(−iET )|ET ) =M0|pT ⊗RΓ (O(−iET )|ET ),

where M0|pT is the fiber of M0 at pT (we denote M0 both the line bundle on (P1)n and its pull back to W ).
By (4.2), the action of G on M0|pT has weight(

|E ∩ T | − |E ∩ T c|
)
−
(
|E′ ∩ T | − |E′ ∩ T c|

)
.

Consider coordinates ti ,ui on E = P
n−1, such that ti (resp., ui ) have weight 2 (resp., weight −2). There is a

canonical identification

RΓ (O(−iET )|ET ) = C

{∏
t
ak
k

∏
u
bk
k | ak ,bk ∈Z≥0,

∑
ak +

∑
bk = i

}
,

with the weight of
∏
t
ak
k

∏
u
bk
k equal to 2

∑
ak − 2

∑
bk . As 2

∑
ak − 2

∑
bk ranges through all even numbers

between −2i and 2i, it follows that the possible weights of elements in RΓ (M0(−iET )|ET ) are(
|E ∩ T | − |E ∩ T c|

)
−
(
|E′ ∩ T | − |E′ ∩ T c|

)
+2j,

for all the values of j between −i and i.
Assume now that for some 0 ≤ i ≤ βT − 1 = αT −α′T − 1, −i ≤ j ≤ i,(

|E ∩ T | − |E ∩ T c|
)
−
(
|E′ ∩ T | − |E′ ∩ T c|

)
+2j = p′ − p.

Using the definition of αT , αT ′ , it follows that ±2αT ± 2α′T = −2j .

Claim 4.8. None of ±αT ±α′T lies in the interval [−(αT −α
′
T − 1), (αT −α

′
T − 1)].

Proof. By symmetry, it is enough to prove that none of ±αT ±α′T lies in the interval [0, (αT −α′T − 1)]. As
αT ,α

′
T ≤ 0 and αT > α

′
T . Hence, it remains to prove that −αT − α′T , αT − α

′
T do not lie in the interval

[0, (αT −α′T − 1)]. But clearly, −αT −α
′
T > αT −α

′
T − 1 and αT −α′T > αT −α

′
T − 1. �

This finishes the proof that the collection in Theorem 1.8 is exceptional. �

Lemma 4.9. Let 0 ≤ a,b ≤ s. Let δ be a divisor in a Hassett space M such that δ = P
s ×Ps and with normal

bundle O(−1,−1). Assume that the restriction map Pic(M)→ Pic(δ) is surjective. Then {Oδ(−a,−b),Oδ(−a′ ,−b′)}
is not an exceptional collection if and only if one of the following happens:

• a′ ≥ a, b′ ≥ b,
• a′ = 0, a = s, b′ > b,
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• b′ = 0, b = s, a′ > a,

• a′ = b′ = 0, a = b = s.

When a = a′ , b = b′ , we have RHom(Oδ(−a′ ,−b′),Oδ(−a,−b)) = C.

Proof. As any line bundle on δ is the restriction of a line bundle on M, we have that

RHom(Oδ(−a′ ,−b′),Oδ(−a,−b)) = RHom(Oδ,Oδ(a′ − a,b′ − b)).

Applying RHom(−,Oδ(a′ − a,b′ − b)) to the canonical sequence

0→O(−δ)→O→Oδ→ 0,

it follows that there is a long exact sequence on M

. . .→ Exti(Oδ,Oδ(a′ − a,b′ − b))→

→ Hi(Oδ(a′ − a,b′ − b))→ Hi(Oδ(a′ − a− 1,b′ − b − 1))→ . . .

It is clear now that if any of the conditions in the Lemma hold, then

RHom(Oδ(−a′ ,−b′),Oδ(−a,−b)) , 0.

Assume now that none of the conditions holds. Then either a′ < a or b′ < b. Assume a′ < a. Since
a′ − a ≥ −a ≥ −s, Oδ(a′ − a,b′ − b) is acyclic. But in this case Oδ(a′ − a− 1,b′ − b − 1) is not acyclic if and
only if a′ = 0, a = s and either b′ − b > 0 or b′ − b ≤ −s (in which case, we must have b′ = 0, b = s). This
gives precisely two of the listed cases. The case b′ < b is similar. �

Lemma 4.10. Let n = 2s+2. For a fixed set I ⊆N with |I | > s+1, we have

max
(E,p)

(
|E ∩ I | − |E ∩ Ic|+ p

)
=

2|I | − (s+3) if s is odd

2|I | − (s+2) if s is even,

min
(E,p)

(
|E ∩ I | − |E ∩ Ic|+ p

)
=

−(s+1) if s is odd

−s if s is even,

where the maximum and the minimum are taken over all the pairs (E,p) corresponding to each line bundle LE,p in
Theorem 1.8. Similarly, for T ⊆N , |T | = s+1

max
(E,p)

(
p+ |E ∩ T | − |E ∩ T c|

)
= 2m, min

(E,p)

(
p+ |E ∩ T | − |E ∩ T c|

)
= −2m,

where m :=
⌊n
4

⌋
=

⌊s+1
2

⌋
.

In particular, when (E,p) are as in Theorem 1.8, the coefficients αT ,E,p in (4.3) satisfy

(4.5) −m ≤ αT ,E,p = −|xT ,E,p| ≤ 0

The proof is straightforward and we omit it.

4.3. Fullness

Let C be the collection in Theorem 1.8. We denote by A ⊂ C the collection of torsion sheaves in Theorem
1.8. We prove more generally:

Theorem 4.11. The collection C in Theorem 1.8 generates all line bundles {LE,p} (see Definition 1.7 and Definition
4.6) for all E ⊆N , e = |E|, p ∈Z with e+ p even.

Proof of Theorem 1.8 - fullness. By Theorem 4.11, the collection C generates all the objects Rp∗(π∗IĜ) from
Corollary 5.11. Fullness then follows by Corollary 5.5. �
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To prove Theorem 4.11 we do an induction on the score S(E,p):

(4.6) S(E,p) := |p|+min{e,n− e},

(4.7) written as S(E,p) = 2
⌊ s
2

⌋
+2q, q ∈Z.

Remark 4.12. As S(E,p) is even, the range of (E,p) in Theorem 1.8 is precisely:

• If s is even: S(E,p) ≤ s,
• If s is odd: S(E,p) ≤ s+1 if e ≤ s+1 and S(E,p) ≤ s − 1 if e ≥ s+2.

Using notation (4.7), (E,p) is not in the range of Theorem 1.8 if q ≥ 1 when s is even or s is odd and
e ≥ s+2, and if q ≥ 2 when s is odd and e ≤ s+1.

To prove Theorem 4.11 we introduce three other types of line bundles.

Notation 4.13. Let n = 2s+2, E ⊆N , e = |E| and p ∈Z. On ZN let

RE,p = −
(e − p

2

)
ψ∞ −

∑
i∈E

δi∞, QE,p = −
(e+ p

2

)
ψ0 −

∑
i∈E

δi0,

(4.8) VE,p := RE,p +
∑

xT ,E,p<0

|xT ,E,p|δT∪{∞} =QE,p +
∑

xT ,E,p>0

|xT ,E,p|δT∪{∞},

where the last equality follows from (4.9) and (4.10).

We recall for the reader’s convenience that using Notation 4.3 we have

LE,p = −
(e − p

2

)
ψ∞ −

∑
i∈E

δi∞ −
∑

xT ,E,p>0

xT ,E,pδT∪{∞}.

Therefore,

(4.9) RE,p = LE,p +
∑

xT ,E,p>0

|xT ,E,p|δT∪{∞}

and by using Lemma 2.6, we have also

(4.10) QE,p = LE,p +
∑

xT ,E,p<0

|xT ,E,p|δT∪{∞}.

We remark that using Lemma 4.4, we have:

RE,p = O(−E)(
∑

xT ET )⊗ zp, QE,p = O(−E)(−
∑

xT ET )⊗ zp,

LE,p = O(−E)(−
∑
|xT |ET )⊗ zp, VE,p = O(−E)(

∑
|xT |ET )⊗ zp.

Remark 4.14. It is clear by the definition that by the S2 symmetry (i.e., exchanging 0 with ∞) the line
bundle RE,p is exchanged with QE,−p. The line bundles RE,p, QE,p will be crucial for the proof of Theorem
4.11. We note that the line bundles VE,p are used only in the proof of Corollary 4.18.

For every divisor δT := δT∪{∞}, we have by Lemma 4.5 that

(4.11) RE,p |δT
= O(−xT ,E,p,0), QE,p |δT

= O(0,xT ,E,p).

From here on, the notation O(−a,−b) indicates that O(−a) (resp., O(−b)) corresponds to the component
marked by ∞ (resp., marked by 0).
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Definition 4.15. We say that line bundles L and L′ are related by quotients Qi if there are exact sequences

0→ Li−1→ Li →Qi → 0 (i = 1, . . . , t),

L0 = L, Lt = L
′ .

Note that when L′ = L+
∑
βT δT with βT ≥ 0 for all T , the quotients Qi are direct sums of torsion sheaves

of type OδT (−a,−b).

Lemma 4.16. Let E ⊆N , e = |E|, p ∈Z, such that e+ p even. Then:
(i) LE,p and RE,p are related by quotients which are direct sums of type

OδT (−xT + i, i), 0 ≤ i < |xT | = xT (xT > 0)

(ii) LE,p and QE,p are related by quotients which are direct sums of type

OδT (i,xT + i), 0 ≤ i < |xT | = −xT (xT < 0)

(iii) RE,p and VE,p are related by quotients which are direct sums of type

OδT (−xT − i,−i), 0 < i ≤ |xT | = −xT (xT < 0)

(iv) QE,p and VE,p are related by quotients which are direct sums of type

OδT (−i,xT − i), 0 < i ≤ |xT | = xT (xT > 0),

where we denote for simplicity δT := δT∪{∞} and xT := xT ,E,p. In particular, all pairs are related by quotients of
type

O(−a,∗), O(∗,−a), with 0 < a ≤
S(E,p)

2
.

Proof. This follows immediately from (4.11), (4.9), (4.10) and (4.8). The last statement follows by Lemma
4.17. �

Lemma 4.17. Let n = 2s+2, E ⊆N , e = |E|, p ∈Z, e+ p even. Then for all T

(4.12) |xT ,E,p| ≤
S(E,p)

2
,

where S(E,p) is the score of the pair (E,p) (Notation 4.6). Furthermore,

|xT ,E,p| = xT ,E,p =
S(E,p)

2
if and only if T ⊆ E, p ≥ 0

The proof is straightforward and we omit it. Note, (4.5) is a particular case.

Corollary 4.18. Let e = s+1, p ≥ 0, and (E,p) such that

S(E,p) = 2
⌊ s
2

⌋
+2q,

with p = 2q − 1, q ≥ 1 if s is even, and p = 2q − 2, q ≥ 2 if s is odd. Assume the following objects are generated
by C:

(i) All torsion sheaves OδT (−a,0) for all 0 < a <
⌊
s
2

⌋
+ q and all T ,

(ii) The line bundles RE,p, QE,p.

Then OδT (−(
⌊
s
2

⌋
+ q),0) with T = E is generated by C. Here δT := δT∪{∞}.

As C is invariant under the action of S2, it follows from Corollary 4.18 that a similar statement holds
when replacing OδT (−a,0) with OδT (0,−a).
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Proof. We claim that VE,p is generated by C. Since RE,p is generated by C by assumption, using Lemma
4.16(iii), it suffices to prove that when xT < 0, O(−xT − i,−i) is generated by A, for all 0 < i ≤ |xT |, i.e.,
|xT | < s+1

2 . Since the assumptions on q imply that p > 0, we have that

|xT | = −xT =
e − p
2
− |E ∩ T | ≤

e − p
2

=
s+1− p

2
<
s+1
2
,

and the claim follows. By Lemma 4.16(iv), the quotients relating QE,p and VE,p have the form OδT (−i,xT − i)

for 0 < i ≤ xT . By Lemma 4.17, we have that xT ≤
S(E,p)

2 =
⌊
s
2

⌋
+ q, with equality if and only if T ⊆ E. Since

e = s + 1, we must have T = E. It follows that all but one quotient, namely OδT (−(
⌊
s
2

⌋
+ q),0) for T = E

(when i = xT = S(E,p)
2 ) are already by assumption generated by C. Note that this quotient appears exactly

once. Since QE,p, VE,p are generated by C, it follows that this quotient is also. �

Corollary 4.19. Let q ∈ Z, q > 0. Assume that RE,p, QE,p are generated by C whenever S(E,p) = 2
⌊
s
2

⌋
+2q′ ,

with 0 < q′ ≤ q, and e = s+1. Then for all T , δT := δT∪{∞}, the following torsion sheaves are generated by C:

OδT (−a,0), OδT (0,−a) when 0 < a ≤
⌊ s
2

⌋
+ q

Proof. By the S2 symmetry, it suffices to prove the statement for OδT (−a,0). For any q > 0, taking E ⊆N with

e = s+1 and p = 2q−1 when s is even, or p = 2q−2 when s is odd, gives a pair (E,p) with S(E,p) = 2
⌊
s
2

⌋
+2q.

If s is even, or if s is odd and q ≥ 2, the assumptions of Corollary 4.18 are satisfied. By induction on q > 0,

OδT (−a,0) is generated by C when T = E, a =
⌊
s
2

⌋
+ q.

The only case left is when s is odd and q = 1 (p = 0). By assumption RE,0, QE,0 are generated by C if
e = s +1 (S(E,0) = s +1). We have to prove that OδT (−

s+1
2 ,0) is generated by C. Taking E = T , p = 0, we

have that the pair (E,0) is in the range of Theorem 1.8. Hence, LE,0 is in C. By Lemma 4.16 and Lemma
4.17 LE,0 and RE,0 are related by quotients which are direct sums of sheaves in A, with only one quotient

which is OδT (−
s+1
2 ,0) for T = E (the only possibility to have xT = S(E,0)

2 = s+1
2 is when T = E). Note that

this quotient appears exactly once. The statement follows. �

Lemma 4.20. (Koszul resolutions) Let p ∈Z, E ⊆N .
(K1) If e ≤ s+1, letting I ⊆N \E, |I | = s+1, there is a long exact sequence:

0→QE∪I,p−s−1→ . . .→
⊕

J⊆I,|J |=j
QE∪J,p−j → . . .→QE,p→ 0.

(K2) If e ≥ s+1, letting I ⊆ E, |I | = s+1, there is a long exact sequence:

0→ RE,p→ . . .→
⊕

J⊆I,|J |=j
RE\J,p−j → . . .→ RE\I,p−s−1→ 0.

Proof. We have
⋂
i∈I δi∞ = ∅ and the boundary divisors {δi∞}i∈I intersect transversely (the divisors intersect

properly and the intersection is smooth, being a Hassett space). It follows that there is a long exact sequence

0→O

−∑
i∈I
δi∞

→⊕
j∈I
O

− ∑
i∈I\{j}

δi∞

→⊕
j,k∈I
O

− ∑
i∈I\{j,k}

δi∞

→ . . .

. . .→
⊕
i∈I
O(−δi∞)→O→ 0.

Tensoring this long exact sequence by −
∑
i∈E\I δi∞ −

e−p
2 ψ∞, gives the second long exact sequence in the

lemma. The first long exact sequence is obtained in a similar way by considering the Koszul resolution of
the intersection of the boundary divisors {δi0}i∈I . �
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Lemma 4.21. Assume p ≥ 0 and E ⊆N such that

S(E,p) = 2
⌊ s
2

⌋
+2q,

and the pair (E,p) is such that q ≥ 1 if s is even and q ≥ 2 if s is odd. In the notations of Lemma 4.20, we have:

(1) If e ≤ s +1 then QE∪J,p−j in Lemma 4.20(K1) satisfies S(E ∪ J,p − j) ≤ S(E,p). If equality holds, then
|p − j | < p if j , 0

(2) If e ≥ s + 1 then RE\J,p−j in Lemma 4.20(K2) satisfies S(E \ J,p − j) ≤ S(E,p). If equality holds, then
|p − j | < p if j , 0.

Proof. We prove (1). We have S(E,p) = p+ e. If p − j ≥ 0, then

S(E ∪ J,p − j) ≤ (p − j) + e+ j = p+ e = S(E,p),

and clearly |p − j | = p − j < p if j , 0. If p − j < 0, we prove that the inequality on slopes is strict. We have

S(E ∪ J,p − j) ≤ (j − p) + (n− e − j) = n− p − e < e+ p = S(E,p),

since S(E,p) = e+ p = 2
⌊
s
2

⌋
+2q > s+1.

We prove (2). We have S(E,p) = p+ (n− e). If p − j ≥ 0, then

S(E \ J,p − j) ≤ (p − j) + (n− e+ j) = p+ (n− e) = S(E,p),

and clearly |p − j | = p − j < p if j , 0. If p − j < 0, we prove that the inequality on slopes is strict. We have

S(E \ J,p − j) ≤ (j − p) + (e − j) = e − p < p+n− e = S(E,p),

since e − p < s+1, as S(E,p) = p+n− e = 2
⌊
s
2

⌋
+2q > s+1. �

Proof of Theorem 4.11. Case s even. For any (E,p) write the score S(E,p) as

(4.13) S(E,p) = s+2q.

Note that if q ≤ 0 then LE,p is already in C (Remark 4.12). Moreover, if q ≤ 0, by Lemma 4.16 RE,p and
QE,p are related by quotients which are direct sums of torsion sheaves of the form O(−a,∗) or O(∗,−a), with
0 < a ≤ |xT |. As |xT | ≤

S(E,p)
2 ≤ s

2 <
s+1
2 , such quotients are in A.

We prove by induction on q ≥ 0, and for equal q, by induction on |p|, that RE,p, QE,p with S(E,p) = s+2q
are generated by C. By Corollary 4.19, it follows that all OδT (−a,−b) are generated by C. Then Lemma 4.16
implies then that all line bundles LE,p are generated by C.

We now prove the inductive statement. For q ≤ 0, we already proved that RE,p, QE,p are generated by C.
Assume q ≥ 1. Take a pair (E,p) with score S(E,p) = s+2q. Using the S2 symmetry, we may assume p ≥ 0.
For any (E′ ,p′) with strictly smaller score than s + 2q, or equal score and strictly smaller |p|, we have by
induction that QE′ ,p′ , RE′ ,p′ are generated by C.

If e ≤ s +1, we apply Lemma 4.20 and get a resolution for QE,p. Using Lemma 4.21(i), all terms in the
resolution are generated by C by induction. Hence, QE,p is generated by C if e ≤ s + 1. Similarly, using
Lemma 4.20, Lemma 4.21(ii) and induction, RE,p is generated by C if e ≥ s+1.

We have that both QE,p, RE,p are generated by C if e = s + 1. By Corollary 4.19 and the induction
assumption, OδT (−a,0), OδT (0,−a) if 0 < a ≤

s
2 + q are generated by C. By Lemma 4.16 we have that

LE,p is related to each of QE,p, RE,p by quotients which are direct sums of OδT (−a,∗), OδT (∗,−a) with
0 < a ≤ S(E,p)

2 = s
2 + q. Since for any e , s + 1, one of QE,p, RE,p is generated by C, it follows that LE,p is

generated by C.
Case s odd. For any (E,p) write the score S(E,p) as

(4.14) S(E,p) = (s − 1) + 2q.
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We prove by induction on q ≥ 0, and for equal q, by induction on |p|, that the line bundles RE,p and
QE,p with S(E,p) = (s − 1) + 2q are generated by C. This proves the theorem, as Corollary 4.19 gives that all
torsion sheaves supported on boundary are generated by C. The inductive argument we did for s even goes
through verbatim if q ≥ 2 (the assumption is used in Lemma 4.21). Hence, we only need to prove that RE,p,
QE,p are generated by C for q = 0 and q = 1. We may assume w.l.o.g. that p ≥ 0.

Assume q = 0. Fix a pair (E,p) with S(E,p) = s − 1. Then (E,p) is in the range of Theorem 1.8 and LE,p
is in C. As in the previous case, by Lemma 4.16, the line bundles RE,p, QE,p are related to LE,p by quotients
generated by A. Hence, RE,p, QE,p are generated by C.

Assume now q = 1 and fix a pair (E,p) with S(E,p) = s+1.

Claim 4.22. OδT (−
s+1
2 ,0), OδT (0,−

s+1
2 ) are generated by C.

Proof. By Corollary 4.19, it suffices to prove that RE,0, QE,0 are generated by C for some E with e = |E| = s+1.
Take such an E. By Remark 4.14, RE,0 and QE,0 are exchanged by the action of S2. Hence, by symmetry, it
suffices to prove that RE,0 is generated by C. Consider the resolution in Lemma 4.20(ii) for (E,0), with I = E.
The terms that appear, other than RE,0, are RE\J,−j , with J ⊆ E, j > 0. For all j ≥ 0, S(E \ J,−j) = s+1 and
all (E \ J,−j) are in the range of Theorem 1.8. Hence, LE\J,−j are generated by C.

We claim that if j > 0, the quotients relating RE\J,−j to LE\J,−j are generated by A. By Lemma 4.16 the
quotients relating RE\J,−j to LE\J,−j are

OδT (−xT + i, i), 0 ≤ i < xT = xT ,E\J,−j where

xT = |(E \ J)∩ T | − s+1
2
≤ |E \ J | − s+1

2
≤ s − s+1

2
=
s − 1
2
.

The claim follows. It follows that for j > 0, RE\J,−j is generated by C. Using the resolution, it follows that
RE,0 is generated by C. �

Assume that e ≤ s+1. Then (E,p) is in the range of Theorem 1.8 and LE,p is in C. Since RE,p, QE,p are

related to LE,p by quotients OδT (−a,∗), OδT (∗,−a) with 0 < a ≤ S(E,p)
2 = s+1

2 , it follows by Claim 4.22 that
RE,p, QE,p are generated by C.

Assume now that e > s+1. Then (E,p) is not in the range of Theorem 1.8. Note that it suffices to prove
that RE,p is generated by C, since by Lemma 4.16 RE,p, LE,p are related by quotients which are direct sums of

OδT (−a,∗) with 0 < a ≤ S(E,p)
2 = s+1

2 (generated by C by Claim 4.22). To prove RE,p is generated by C, we do
an induction on e ≥ s+1 (for (E,p) of fixed score s+1) by using a resolution as in Lemma 4.20 for RE,p. �

Remark 4.23. For n = 2s+2 ≥ 2, the exceptional collection on Zn given in [CT20b, Theorem 1.15] consists
of:

(i) The same torsion sheaves OδT (−a,−b) as in Theorem 1.8.
(ii) The line bundles in the so-called group 1 (group 1A and group 1B of that theorem coincide in this

case): for all E ⊆N , with e = |E| even,

(4.15) F0,E =
e
2
ψ∞ +

∑
j∈E

δj∞ −
∑

e
2−|E∩T |>0

( e
2
− |E ∩ T |

)
δT∪{∞}.

The line bundles F0,E are defined in [CT20b] as Rπ∗(N0,E), for certain line bundles N0,E on the universal
family over Zn. One checks directly (or see the proof of [CT20b, Lemma 5.8]) that N0,E restrict trivially to
every component of any fiber of the universal family π : U → Zn. Hence,

N0,E = π∗F0,E , F0,E = σ ∗uN0,E ,

for any marking u. In particular, for u ∈ {0,∞}, we obtain formula (4.15).
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(iii) The objects in the so-called group 2B, which in this case are line bundles (corresponding only to the
J = ∅ term in [CT20b, Notation 11.5]):

T̃l,{u}∪E :=
e − l − 1

2
ψu +

∑
j∈E

δju −
∑

e−l−1
2 −|E∩T |>0

(
e − l − 1

2
− |E ∩ T |

)
δT∪{u}

where u ∈ {0,∞}, E ⊆N , e = |E|, l ∈Z, l ≥ 0 such that |E ∩ {u}|+ l is even (i.e., e+ l is odd), subject to the
condition

l +min{e,n+1− e} ≤ s (group 2B).

The formula generalizing both expressions in (ii) and (iii) is

e − p
2
ψu +

∑
j∈E

δju −
∑

e−p
2 −|E∩T |>0

(e − p
2
− |E ∩ T |

)
δT∪{u}

which, when u =∞, is exactly the line bundle V ∨E,p (the dual of VE,p - see (4.13). Hence, the group 2B with

l = p − 1, u =∞ recovers all the {V ∨E,p} when p > 0. Similarly, the group 2B with l = −p − 1, u = 0 recovers

all the {V ∨E,p} when p < 0. The elements of group 1 recover all the {V ∨E,p} when p = 0. A similar proof as
in this section will prove that the collection in [CT20b, Theorem 1.15] - the torsion sheaves (i) and the line
bundles {V ∨E,p}, for (E,p) as in Theorem 1.8- is a full exceptional collection.

5. Pushforward of the exceptional collection on the Losev–Manin space
LMN to ZN

We refer to [CT20a] for background on Losev–Manin spaces. Recall that the Losev–Manin moduli space
LMN is the Hassett space with markings N ∪ {0,∞} and weights (1,1, 1n , . . . ,

1
n ), where n = |N |. The space

LMN parametrizes nodal linear chains of P1’s marked by N ∪ {0,∞} with 0 is on the left tail and ∞ is on
the right tail of the chain. Both ψ0 and ψ∞ induce birational morphisms LMN → P

n−1 (Kapranov models)
which realize LMN as an iterated blow-up of Pn−1 in n points (standard basis vectors) followed by blowing
up

(n
2
)
proper transforms of lines connecting points, etc. In particular, LMN is a toric variety of dimension

n − 1. Its toric orbits (or their closures, the boundary strata as a moduli space) are given by partitions
N =N1 t . . .tNk , |Ni | > 0 for all i, which correspond to boundary strata

ZN1,...,Nk = δN1∪{0} ∩ δN1∪N2∪{0} ∩ . . .∩ δN1∪...∪Nk−1∪{0}

which parametrizes (degenerations of) linear chains of P1’s with points marked by, respectively, N1 ∪ {0},
N2,. . . , Nk−1, Nk ∪ {∞}. We can identify

ZN1,...,Nk ' LMN1
× . . .×LMNk ,

where the left node of every P
1 is marked by 0 and the right node by ∞.

There are forgetful maps πK : LMN → LMN\K , for all K ⊆N , 1 ≤ |K | ≤ n− 1, given by forgetting points
marked by K and stabilizing.

Definition 5.1 (cf. [CT20a, Definition 1.4]). The cuspidal block Dbcusp(LMN ) consists of objects E ∈Db(LMN )
such that for all i ∈N we have

Rπi ∗E = 0.

Proposition 5.2 (cf. [CT20a, Proposition 1.8]). There is a semi-orthogonal decomposition

Db(LMN ) = 〈Dbcusp(LMN ), {π∗KD
b
cusp(LMN\K )}K⊂N , O〉

where subsets K with 1 ≤ |K | ≤ n− 2 are ordered by increasing cardinality.
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Definition 5.3 (cf. [CT20a, Definition 1.9]). Let GN = {G∨1 , . . . ,G
∨
n−1} be the set of following line bundles on

LMN :

Ga = aψ0 − (a− 1)
∑
k∈N

δk0 − (a− 2)
∑
k,l∈N

δkl0 − . . .−
∑

J⊂N,|J |=a−1
δJ∪{0}

for every a = 1, . . . ,n− 1. Let Ĝ be the collection of sheaves of the form

T = (iZ )∗L, L = G∨a1 � . . .�G
∨
at

for all massive strata Z = ZN1,...,Nt , i.e., such that Ni ≥ 2 for every i and for all 1 ≤ ai ≤ |Ni | − 1. Here
iZ : Z ↪→ LMN is the inclusion map. If t = 1 we get line bundles GN and for t ≥ 2 these sheaves are torsion
sheaves.

Theorem 5.4 (cf. [CT20a, Theorem 1.10]). Ĝ is a full exceptional collection in Dbcusp(LMN ), which is invariant
under the group S2 × SN .

Clearly, by Theorem 5.4, Proposition 5.2 and adjointness, we have the following

Corollary 5.5. If E ∈ Db(ZN ) is such that RHom(E,F) = 0 for all F of the form Rp∗(πK ∗Ĝ), for all K ⊆ N ,
including K = ∅, then E = 0.

We now proceed to calculate the objects in the collection Rp∗(πK ∗Ĝ).

Proposition 5.6. Let p : LMN → ZN be the reduction map.

(1) For all I ⊆N with 0 ≤ |I | ≤ n− 2 and all 1 ≤ a ≤ n− |I | − 1, we have

Rp∗
(
π∗IG

∨
a

)
= −aψ0 −

∑
j∈N\I

δj0 if n is odd,

Rp∗
(
π∗IG

∨
a

)
= −aψ0 −

∑
j∈N\I

δj0 +
∑

J⊆N,|J |= n
2 ,|J∩(N\I)|<a

(
a− |J ∩ (N \ I)|

)
δJ∪{0},

if n is even. Moreover, Rp∗O = O.
(2) If n is odd, all the torsion sheaves and their pull-backs, i.e, all sheaves T in the collection Ĝ not considered

in (1), have Rp∗(T ) = 0.

(3) If n is even, we have Rp∗
(
G∨a1� . . .�G

∨
at

)
= 0, except for sheaves G∨a �G

∨
b with support Z = LMN1

×LMN2
,

where |N1| = |N2| = n
2 , when

Rp∗
(
G∨a �G

∨
b

)
= O(−a)�O(−b),

where we use the identification p(Z) = P

n
2−1 ×P

n
2−1.

(4) If n is even, I , ∅ and T ∈ ĜN\I is a torsion sheaf, then either

Rp∗
(
π∗IT

)
= 0,

or Rp∗
(
π∗IT

)
is generated by the sheaves O(−a)�O(−b) supported on the images P

n
2−1 ×P

n
2−1 of strata

LMN1
×LMN2

with |N1| = |N2| = n
2 and with 0 < a,b ≤

n
2 − 1.

We use here that if n = 2s+2 is even, the restriction of the map p to a stratum of the form LMs+1×LMs+1
is a product of reduction maps of type LMs+1→Ma, where a = (1, 12 + η,

1
n , . . . ,

1
n ) (with

1
n appearing (s+1)

times). By [Has03, Remark 4.6], we have M0,A = P
s (the Kapranov model of LMs+1 with respect to the first

marking).
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Proof of Proposition 5.6. Throughout, we denote s :=
⌊
n−1
2

⌋
. We first prove (1). As p is a birational morphism

between smooth projective varieties, we have Rp∗O = O. We write π∗IG
∨
a and p∗

(
− aψ0 −

∑
j∈N\I δj0

)
in the

Kapranov model with respect to the 0 marking. We denote

H := ψ0, EJ := δJ∪{0} (J ⊆N, |J | ≤ n− 2),

be the hyperplane class and the exceptional divisors respectively. We have:

π∗IG
∨
a = −aH +

∑
J⊆N,|J |≥1,|J∩(N\I)|<a

(
a− |J ∩ (N \ I)|

)
EJ .

p∗
(
− aψ0 −

∑
j∈N\I

δj0
)
= −aH +

∑
J⊆N,1≤|J |≤s

(
a− |J ∩ (N \ I)|

)
EJ ,

where the last equality follows by Corollary 2.4. It follows that

π∗IG
∨
a = p∗

(
− aψ0 −

∑
j∈N\I

δj0
)
+Σ1 +Σ2,

where Σ1 consists of all the terms that appear in π∗IG
∨
a , but do not appear in p∗

(
− aψ0 −

∑
j∈N\I δj0

)
, and

Σ2 consists of the terms that appear in p∗
(
− aψ0 −

∑
j∈N\I δj0

)
, but do not in π∗IG

∨
a , taken with a negative

sign:

Σ1 =
∑

J⊆N,|J |≥1,|J∩(N\I)|<a,|J |>s

(
a− |J ∩ (N \ I)|

)
EJ ,

Σ2 =
∑

J⊆N,|J |≥1,|J∩(N\I)|>a,|J |≤s

(
|J ∩ (N \ I)| − a

)
EJ .

When |J | ≤ s, the codimension of p(EJ ) in ZN is |J |. For the terms in the sum Σ2, the coefficient of EJ
satisfies

|J ∩ (N \ I)| − a ≤ |J | − 1 = codim(p(EJ ))− 1.
Hence, one may apply Lemma 5.9 successively to the terms of the sum Σ2. We use here that the map p
can be decomposed into a sequence of blow-ups, with exceptional divisors δJ∪{0}, δJ∪{∞}, with 1 ≤ |J | ≤ s, in
order of increasing |J |. Note that the divisors EJ with fixed |J | are disjoint.

Similarly, when |N \ J | ≤ s, the codimension of p(EJ ) in ZN is |N \ J |. For the terms in the sum Σ1, the
coefficient of EJ with |N \ J | ≤ s, satisfies

a− |J ∩ (N \ I)| ≤ n− 1− |I | − |J ∩ (N \ I)| ≤ n− 1− |J | = codim(p(EJ ))− 1,

so one may apply again Lemma 5.9 to the terms of the sum Σ1 which satisfy |N \ J | ≤ s. When n = 2s+1,
the inequality |N \ J | ≤ s is equivalent to |J | > s. However, when n = 2s + 2, the inequality |N \ J | ≤ s is
equivalent to |J | > s +1. Hence, in the case when n = 2s +2, one is left with the terms in the sum Σ1 that
have |J | = s+1. This proves (1).

Now we turn to the torsion objects, i.e., objects of the form π∗I (T ), where

T = iZ ∗
(
G∨a1 � . . .�G

∨
at

)
, Z = LMK1

× . . .×LMKt ,

where I ⊆N , N \ I = K1 t . . .tKt and |Kj | ≥ 2, for all j . Consider first the case when I = ∅. If |K1| ≤ s, the
map Z→ p(Z) is a product of reduction maps, the first of which is the constant map LMK1

→ pt. It follows
in this case that Rp∗(T ) = 0, since RΓ (G∨ai ) = 0. The same argument applies when |Kt | ≤ s. It follows that
Rp∗(T ) = 0, except possibly in the case when n = 2s+2, t = 2 and |K1| = |K2| = s+1. In this case, the map
Z→ p(Z) is a product of Kapranov maps LMs+1 ×LMs+1→ P

s ×Ps, and it follows (for example by Lemma
[CT20a, Lemma 5.7]) that in this case Rp∗(T ) = OP

s (−a)�O
P
s(−b). This proves (3) and the case I = ∅ of (2).
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Consider now the case when I , ∅. To compute Rp∗(π∗IT ), consider the boundary divisors D1,D2, . . . ,Dt−1
whose intersection is Z, denoting

Di = LMK1t...tKi ×LMKi+1t...tKt
(i = 1, . . . , t − 1).

For the remaining part of the proof, we denote for simplicity

K ′ = K1, K ′′ = K2 t . . .tKt

and consider the canonical inclusions

i1 : Z ↪→D1 = LMK ′ ×LMK ′′ , iD1
:D1→ LMN\I .

We resolve i1∗OZ using the Koszul complex

. . .→⊕2≤i<j≤tO(−Di −Dj )|D1
→⊕2≤i≤tO(−Di)|D1

→OD1
→ i1∗OZ → 0.

By our choice of D1, for all 2 ≤ i ≤ t we have O(Di)|D1
= O�O(D ′i ), for the corresponding boundary divisor

on LMK ′′ :

D ′i = LMK2t...tKi ×LMKi+1t...tKt
.

By Lemma 5.10, we may choose a line bundleM on LMK ′′ such that the restriction ofM to the massive
stratum LMK2

× . . .×LMKt is G
∨
a2 � . . .�G

∨
at andM⊗O(−D

′
i1
− . . .−D ′ik ) is acyclic for any 2 ≤ i1 < . . . < ik ≤ t.

Consider the line bundle L = G∨a1 �M on D1. Then L|Z = G∨a1 � . . .�G
∨
at . We now: (1) Tensor the Koszul

sequence with L, (2) Apply RiD1 ∗(−), and (3) Apply Lπ∗I (−). Since πI is flat, we obtain a resolution for π∗IT
with sheaves whose support is contained in π−1I (D1). To prove (4) and the remaining part of (2), it suffices to
show that for all 2 ≤ i1 < . . . < ik ≤ t

Rp∗π
∗
IRiD1 ∗

(
L⊗O(−Di1 − . . .−Dik )|D1

)
is 0 when n is odd, or generated by the sheaves O(−a) � O(−b) (a,b > 0) supported on the divisors
P

n
2−1×P

n
2−1 as in (4), when n is even. Here we need the same statement also for Rp∗π

∗
IRiD1 ∗

(
L
)
(i.e., k = 0).

Note that

L⊗O(−Di1 − . . .−Dik )|D1
= G∨a1 �

(
M⊗O(−D ′i1 − . . .−D

′
ik
)
)
.

There is a commutative diagram

π−1I (D1)
iπ−1(D1)−−−−−−→ LMN

p
−−−−−→ ZN

ρI

y πI

y
D1

iD1−−−−−→ LMN\I

where iπ−1I (D1) is the canonical inclusion map and ρI is the restriction of πI to π
−1
I (D1). Let q = p ◦ iπ−1(D1).

As πI is flat, we have

Rp∗π
∗
IRiD1 ∗

(
L⊗O(−Di1 − . . .−Dik )|D1

)
= Rq∗ρ

∗
I

(
L⊗O(−Di1 − . . .−Dik )|D1

)
.

The preimage π−1I (D1) has several components BI1,I2 :

BI1,I2 = LMK ′∪I1 ×LMK ′′∪I2 for every partition I = I1 t I2

We order the set {BI1,I2} as follows: BI1,I2 must come before BJ1,J2 if |I1| > |J1| and in a random order if
|I1| = |J1|. Hence, if BI1,I2 comes before BJ1,J2 , then BI1,I2 ∩BJ1,J2 , ∅ if and only if J1 ( I1, in which case, the
intersection takes the form

BI1,I2 ∩BJ1,J2 = LMK ′∪J1 ×LM(I1\J1) ×LMK ′′∪I2 .
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For simplicity, we rename the resulting ordered sequence as B1,B2, . . . ,Br . A consequence of the ordering is
that Br is the component BI1,I2 with I1 = ∅, I2 = I , and if 1 ≤ i ≤ r −1 and Bi is BI1,I2 = LMK ′∪I1 ×LMK ′′∪I2 ,
then

OBi (Bi+1 + . . .+Br ) = O(
∑
J(I1

δJ∪K ′∪{0})�O = O(
∑
∅,S⊆I1

δS∪{x})�O,

where the first sum runs over all J ( I1 (including J = ∅), while for the second sum we use the identification

δJ∪K ′∪{0} = δ(I1\J)∪{x} = LMJ∪K ′ ×LMI1\J ,

as divisors in LMK ′∪I1 (with x being the attaching point). Consider now the following exact sequences
resolving Oπ−1I (D1) = OB1∪...∪Br :

0→OB1∪...∪Br−1(−Br )→OB1∪...∪Br →OBr → 0,

0→OB1∪...∪Br−2(−Br−1 −Br )→OB1∪...∪Br−1(−Br )→OBr−1(−Br )→ 0,
...

0→OB1
(−B2 − . . .−Br )→OB1∪B2

(−B3 − . . .−Br )→OB2
(−B3 − . . .−Br )→ 0.

We tensor all the above exact sequences with L⊗O(−Di1 − . . .−Dik )|D1
and apply first ρ∗I (−), then Rq∗(−).

As the restriction of the map ρI to a component Bi of the form BI1,I2 for some partition I = I1 t I2, is the
product of forgetful maps πI1 ×πI2 , it follows that, if i , r, then

OBi (−Bi+1 − . . .−Br )⊗ ρ
∗
I

(
L⊗O(−Di1 − . . .−Dik )|D1

)
=(

π∗I1G
∨
a1 ⊗O(−

∑
∅,S⊆I1

δS∪{x})
)
�π∗I2

(
M⊗O(−D ′i1 − . . .−D

′
ik
)
)
,

while
OBs ⊗ ρ

∗
I

(
L⊗O(−Di1 − . . .−Dik )|D1

)
= G∨a1 �π

∗
I

(
M⊗O(−D ′i1 − . . .−D

′
ik
)
)
.

(Recall that Br corresponds to the partition I1 = ∅, I2 = I .)
We claim that both components of all the above sheaves are acyclic. To prove the claim, recall that

M⊗O(−D ′i1− . . .−D
′
ik
) is acyclic by the choice ofM. We are left to prove that π∗I1(G

∨
a1)⊗O(−

∑
∅,S⊆I1 δS∪{x})

is acyclic when I1 , ∅. Since we may rewrite the line bundle G∨a1 using the x marking, we are done by the
following:

Claim 5.7. Consider the forgetful map πI : LMN∪I → LMN for some subset I , ∅. For all 1 ≤ b ≤ |N | − 1, the
line bundle π∗I (G

∨
b )⊗O(−

∑
∅,S⊆I δS∪{0}) is acyclic.

Proof. Using the Kapranov model with respect to the 0 marking, we have

π∗I (G
∨
b ) = −bH +

∑
J⊆N∪I,|J∩N |<b

(b − |J ∩N |)EJ , O

− ∑
∅,S⊆I

δS∪{0}

 = − ∑
∅,S⊆I

ES .

As b − |J ∩N | − 1 ≥ 0, the result follows by Lemma 5.8. �

Recall that the map p either contracts BI1,I2 = LMK ′∪I1 × LMK ′′∪I2 by mapping LMK ′∪I1 to a point if
|I1 +K ′ | < n

2 , or by mapping LMK ′′∪I2 to a point if |I2 +K ′′ | < n
2 ), or, we have |I1 +K ′ | = |I2 +K ′′ | = n

2 and
p(BI1,I2) is a divisor in ZN which is isomorphic to P

n
2−1 ×P

n
2−1. Hence,

Rq∗
(
OBi (−Bi+1 − . . .−Bs)⊗ ρ

∗
I

(
L⊗O(−Di1 − . . .−Dik )|D1

))
,

Rq∗
(
OBs ⊗ ρ

∗
I

(
L⊗O(−Di1 − . . .−Dik )|D1

))
,

are either 0 or they are supported on the divisors P
n
2−1×P

n
2−1 as above (in particular, n is even). In the latter

case, writing n = 2s +2, as both components of the above sheaves are acyclic, such objects are generated
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by O(−a)�O(−b) for 0 < a,b ≤ s. We use here that if A is an object in Db(LMs+1) with RΓ (A) = 0 and
f : LMs+1→ P

s is a Kapranov map, then Rf∗A has the same property, therefore it is generated by O(−a),
for 0 < a ≤ s. Using the above exact sequences,

Rq∗ρ
∗
I

(
L⊗O(−Di1 − . . .−Dik )|D1

)
is either 0 or, when n is even, generated by O(−a)�O(−b) (0 < a,b ≤ s) on P

s ×Ps. Proposition 5.6 now
follows. �

Lemma 5.8 (cf. [CT20a, Lemma 4.6]). Consider the divisor D = −dH +
∑
mIEI on LMN written in some

Kapranov model. The divisor D is acyclic if

1 ≤ d ≤ n− 3, 0 ≤mI ≤ n− 3− |I |.

The following lemma is well known:

Lemma 5.9. Let p : X→ Y be a blow-up of a smooth subvariety Z of codimension r +1 of a smooth projective
variety Y . Let E be the exceptional divisor. Then for all 1 ≤ i ≤ r we have Rp∗OX(iE) = OY .

Lemma 5.10. Let Z = LMN1
× . . .×LMNt be a massive stratum in LMN and let D1, . . . ,Dt−1 be the boundary

divisors whose intersection is Z . Let

T = T1 � . . .� Tt
be a sheaf supported on Z, with either Ti = O or Ti = G∨ai , for some 1 ≤ ai < |Ni |, and not all Ti = O. Then there
exists a line bundle L on LMN such that:

(a) L|Z = T ;
(b) L is acyclic;
(c) For all 1 ≤ i1 < . . . < ik ≤ t, the restriction L|Di1∩...∩Dik is acyclic.

In addition, L⊗O(−Di1 − . . .−Dik ) is acyclic for all 1 ≤ i1 < . . . < ik ≤ t.

Proof. The proof is by induction on t ≥ 1. The statement is trivially true when t = 1, i.e., when Z = LMn (as
L = T and there are no boundary divisors to be considered). In addition, if all but one of the Ti ’s are trivial,
say Ti = G∨ai , we are done by [CT20a, Lemma 4.3(3)], as we can take

L = G∨ai+|N1|+...+|Ni−1|.

Assume now t ≥ 2 and at least two of the Ti ’s are non-trivial. Consider πN1
: LMN → LMN\N1

and let
Z ′ = πN1

(Z). Then Z ′ can be identified with LMN2
× . . .×LMNt and the map πN1

: Z→ Z ′ is the second
projection. Let T ′ = T2 � . . .� Tt . By induction, there is an acyclic line bundle L′ on LMN\N1

such that
L′|Z ′ = T

′ and whose restriction to every stratum containing Z ′ is also acyclic. If T1 = O, we let L = π∗N1
L′

and clearly all of the properties are satisfied. If T1 = G∨a , we define L = G∨a ⊗π∗N1
L′ . Clearly, L|Z = T . By the

projection formula, RπN1 ∗(L) = L
′ ⊗RπN1 ∗(G

∨
a ). As Rπi ∗(G

∨
a ) = 0 for all i, it follows that RπN1 ∗(L) = 0,i.e.,

L is acyclic.
The same argument applies to show that the restriction of L to a stratum W containing Z is acyclic.

Consider such a stratum:

W = LMM1
× . . .×LMMs

,

and let W ′ = LMM2
× . . .×LMMs

, considered as a stratum in in LMN\M1
. If M1 = N1, the restriction L|W

equals G∨a � (L′|W ′ ) and is clearly acyclic. If M1 ,N1, then M1 =N1 + . . .+Ni , with i ≥ 2, and πN1
(W ) is

the stratum LMM1\N1
×W ′ in LMN\N1

. The restriction of L′ to this stratum has the form L′1 �L
′
2. Then

L|W = (G∨a ⊗ π′
∗
N1
L′1) �L

′
2, where π

′
N1

: LMM1
→ LMN1

is the forgetful map. Again, by the projection
formula, L|W is acyclic.
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We now prove the last assertion in the lemma. As L, LDi are both acyclic, L(−Di) is acyclic (case
k = 1). The statement follows by induction on k using the Koszul resolution for the intersection ∩j∈IDj ,
I = {i1, . . . , ik}:

. . .→⊕l<j,l,j∈IO(−Dl −Dj )→⊕j∈IO(−Dj )→O→ODi1∩...∩Dik → 0.

�

Proposition 5.6 and Lemma 3.3 have the following:

Corollary 5.11. Assume n = |N | is odd. Let p : LMN → ZN be the reduction map. For all I ⊆ N with
0 ≤ |I | ≤ n− 2 and all 1 ≤ a ≤ n− |I | − 1, we have

Rp∗
(
π∗IG

∨
a

)
= O(−Ic)⊗ z2a−|I

c |, Ic =N \ I.

Alternatively, this is the collection of PGm-linearized line bundles

O(−E)⊗ zp, 0 ≤ |p| ≤ e − 2, 2 ≤ e ≤ n (e = |E|, E ⊆N ).

Moreover, Rp∗O = O and Rp∗E = 0 for all other objects E in the collection Ĝ.

Proposition 5.6 and Lemma 4.4 have the following:

Corollary 5.12. Assume |N | = 2s + 2 is even. Let p : LMN → ZN be the reduction map. For all E ⊆ N ,
e = |E| ≥ 2 and all 1 ≤ a ≤ e − 1,

Rp∗
(
π∗N\EG

∨
a

)
= O(−E)

(∑
|a− |E ∩ T c||ET

)
⊗ z2a−e,

where |a− |E ∩ T c|| denotes the absolute value of (a− |E ∩ T c|). Moreover, Rp∗O = O. For all G∨a ⊗G∨b supported
on strata LMs+1 ×LMs+1 we have

Rp∗
(
G∨a ⊗G∨b

)
= O(−a)�O(−b) (0 < a,b ≤ s),

All other pushforwards are either 0 or are generated by the above torsion sheaves.

When n = 4, the map p : LMN → ZN is an isomorphism. In particular, the objects in Rp∗π
∗
IĜ form a

full exceptional collection. However, it is straightforward to see that this is different than the collection in
Theorem 1.8.
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