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Abstract

In this article, we investigate the summability of the formal power series solu-
tions in time of the inhomogeneous heat equation with a power-law nonlinearity
of degree two, and with variable coefficients. In particular, we give necessary
and sufficient conditions for the 1-summability of the solutions in a given direc-
tion. These conditions generalize the ones given for the linear heat equation by
W. Balser and M. Loday-Richaud in a 2009 article [? ].
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1. Introduction

For several years, various works have been done on the divergent solutions of
some classes of linear partial differential equations or integro-differential equa-
tions in two variables or more, allowing thus to formulate many results on Gevrey
properties, summability or multisummability (e.g. [? ? ? ? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ]).

In the case of the nonlinear partial differential equations, the situation is
much more complicated. The existing results concern mainly Gevrey proper-
ties, especially the convergence (e.g. [? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
? ? ? ]), and there are very few results about the summation (see [? ? ? ? ? ]).
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In this article, we are interested in the summability of the formal solutions
of the inhomogeneous semilinear heat equation

#

Btu ´ apxqB2
xu ´ bpxqu2 “ rfpt, xq

up0, xq “ φpxq
(1.1)

in two variables pt, xq P C2, where the coefficients apxq and bpxq, and the initial
condition φpxq are analytic on a disc Dρ with center 0 P C and radius ρ ą 0,

and where the inhomogeneity rfpt, xq is a formal power series in t with analytic

coefficients in Dρ (denoted in the sequel by rfpt, xq P OpDρqrrtss) which may be
smooth, or not1. Observe that an important particular case of Eq. (1.1) is the
inhomogeneous linear heat equation

#

Btu ´ apxqB2
xu “ rfpt, xq

up0, xq “ φpxq
(1.2)

obtained for bpxq “ 0.
Equation (1.1) arises in many physical, chemical, biological, and ecological

problems involving diffusion and nonlinear growth such as heat and mass trans-
fer, combustion theory, and spread theory of animal of plant populations. For
example, if a chemical reaction generates heat depending on the temperature u,
then u satisfies Eq. (1.1). In biological and ecological problems, the nonlinear
term u2 represents the growth of animal or plant population.

Proposition 1.1. Equation (1.1) admits a unique solution rupt, xq P OpDρqrrtss.

Proof. Writing the inhomogeneity rfpt, xq in the form

rfpt, xq “
ÿ

jě0

fj,˚pxq
tj

j!
with fj,˚pxq P OpDρq,

and looking for rupt, xq on the same type, one easily checks that the coefficients
uj,˚pxq P OpDρq are uniquely determined for all j ě 0 by the initial condition
u0,˚pxq “ φpxq and by the recurrence relations

uj`1,˚pxq “ fj,˚pxq ` apxqB2
xuj,˚pxq ` bpxq

j
ÿ

k“0

ˆ

j

k

˙

uk,˚pxquj´k,˚pxq.

In 1999, D. A. Lutz, M. Miyake and R. Schäfke considered the case of Eq.
(1.2) with apxq “ 1 and rfpt, xq “ 0. Using an approach based on the definition
of the 1-summability in terms of the Borel transformation, they gave necessary

1We denote rf with a tilde to emphasize the possible divergence of the series rf .
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and sufficient conditions on φpxq for rupt, xq to be 1-summable in a fixed direction
argptq “ θ [? ]. Afterwards, and using the same approach, various authors have

extended this result in the case where, either apxq “ a P C˚, or rfpt, xq “ 0 [?
? ? ] (see also [? ? ? ] for an extension in higher spatial dimensions). The
general case of Eq. (1.2) was treated by W.Balser and M. Loday-Richaud in [?
], but with a different approach based on the definition of the 1-summability in
terms of the successive derivatives.

In this article, we propose to extend the results of [? ] to the general equation
(1.1). In Section 2, we recall some basic definitions and properties about the
1-summable formal series and we state the main result of our article (Theorem
2.4). This result is proved in Section 3.

2. 1-summability of rupt, xq

All along the article, we consider t as the variable and x as a parame-
ter. Thereby, to define the notion of 1-summability of formal power series in
OpDρqrrtss, one extends the classical notions of 1-summability of elements in
Crrtss to families parametrized by x in requiring similar conditions, the esti-
mates being however uniform with respect to x. Doing that, any formal power
series in OpDρqrrtss can be seen as a formal power series in t with coefficients in a
convenient Banach space defined as the space of functions that are holomorphic
on a disc Dr (0 ă r ă ρ) and continuous up to its boundary, equipped with
the usual supremum norm. For a general study of series with coefficients in a
Banach space, we refer for instance to [? ].

2.1. 1-summable formal series

Among the many equivalent definitions of 1-summability in a given direction
argptq “ θ at t “ 0, we choose in this article a generalization of Ramis’ definition
which states that a formal series rgpt, xq P Crrtss is 1-summable in direction θ if
there exists a holomorphic function g which is 1-Gevrey asymptotic to rg in an
open sector Σθ,ąπ bisected by θ and with opening larger than π [? , Def. 3.1].
To express the 1-Gevrey asymptotic, there also exist various equivalent ways.
We choose here the one which sets conditions on the successive derivatives of g
(see [? , p. 171] or [? , Thm. 2.4] for instance).

Definition 2.1 (1-summability). A formal series rupt, xq P OpDρqrrtss is said to
be 1-summable in the direction argptq “ θ if there exist a sector Σθ,ąπ, a radius
0 ă r ď ρ and a function upt, xq called 1-sum of rupt, xq in direction θ such that

1. u is defined and holomorphic on Σθ,ąπ ˆ Dr;

2. For any x P Dr, the map t ÞÑ upt, xq has rupt, xq “
ÿ

jě0

uj,˚pxq
tj

j!
as Taylor

series at 0 on Σθ,ąπ;
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3. For any proper2 subsector Σ Ť Σθ,ąπ, there exist constants C ą 0 and
K ą 0 such that, for all ℓ ě 0, all t P Σ and all x P Dr,

ˇ

ˇBℓ
tupt, xq

ˇ

ˇ ď CKℓΓp1 ` 2ℓq.

We denote by OpDρqttu1;θ the subset of OpDρqrrtss made of all the 1-summable
formal series in the direction argptq “ θ.

Note that, for any fixed x P Dr, the 1-summability of rupt, xq coincides with
the classical 1-summability. Consequently, Watson’s lemma implies the unicity
of its 1-sum, if any exists.

Note also that the 1-sum of a 1-summable formal series rupt, xq P OpDρqttu1;θ
may be analytic with respect to x on a disc Dr smaller than the common disc
Dρ of analyticity of the coefficients uj,˚pxq of rupt, xq.

Denote by B
´1
t ru (resp. B´1

x ru) the anti-derivative of ru with respect to t (resp.
x) which vanishes at t “ 0 (resp. x “ 0). Proposition 2.2 below specifies the
algebraic structure of OpDρqttu1;θ.

Proposition 2.2. Let θ P R{2πZ. Then, pOpDρqttu1;θ, Bt, Bxq is a C-differential
algebra stable under the anti-derivatives B

´1
t and B´1

x .

We refer for instance to [? , Prop. 3.2] for a proof of this result.

With respect to t, the 1-sum upt, xq of a 1-summable series rupt, xq P OpDρqttu1;θ
is analytic on an open sector for which there is no control on the angular open-
ing except that it must be larger than π (hence, it contains a closed sector Σθ,π

bisected by θ and with opening π) and no control on the radius except that it
must be positive. Thereby, the 1-sum upt, xq is well-defined as a section of the
sheaf of analytic functions in pt, xq on a germ of closed sector of opening π (that
is, a closed interval Iθ,π of length π on the circle S1 of directions issuing from 0;
see [? , 1.1] or [? , I.2]) times t0u (in the plane C of the variable x). We denote
by OIθ,πˆt0u

the space of such sections.

Corollary 2.3. The operator of 1-summation

S1;θ : OpDρqttu1;θ ÝÑ OIθ,πˆt0u

rupt, xq ÞÝÑ upt, xq

is a homomorphism of differential C-algebras for the derivations Bt and Bx.
Moreover, it commutes with the anti-derivations B

´1
t and B´1

x .

Let us now turn to the study of the 1-summability of the formal solution
rupt, xq P OpDρqrrtss of Eq. (1.1).

2A subsector Σ of a sector Σ1 is said to be a proper subsector and one denotes Σ Ť Σ1 if
its closure in C is contained in Σ1 Y t0u.
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2.2. Main result

Before stating our main result, let us start with a preliminary remark. Write
the coefficients apxq and bpxq in the form

apxq “
ÿ

ně0

an
xn

n!
, bpxq “

ÿ

ně0

bn
xn

n!

and the formal series rupt, xq and rfpt, xq in the form

rupt, xq “
ÿ

ně0

ru˚,nptq
xn

n!
, rfpt, xq “

ÿ

ně0

rf˚,nptq
xn

n!
.

By identifying the terms in xn in Eq. (1.1), we get the identities

$

’

’

&

’

’

%

a0ru˚,2ptq “ Btru˚,0ptq ´ b0ru˚,0ptqru˚,0ptq ´ rf˚,0ptq

a0ru˚,3ptq ` a1ru˚,2ptq “ Btru˚,1ptq ´ 2b0ru˚,0ptqru˚,1ptq ´ b1ru˚,0ptqru˚,0ptq

´ rf˚,1ptq,
(2.1)

for n “ 0 and n “ 1, and the identities

a0ru˚,n`2ptq ` na1ru˚,n`1ptq “ Btru˚,nptq ´

n
ÿ

k“2

ˆ

n

k

˙

akru˚,n`2´kptq

´
ÿ

k0`k1`k2“n

n!

k0!k1!k2!
bk0

ru˚,k1ptqru˚,k2ptq ´ rf˚,nptq

for n ě 2. Consequently, each formal series ru˚,nptq is uniquely determined from

ru˚,0ptq, ru˚,1ptq and rfpt, xq.
In the case of the linear heat equation (1.2), W. Balser and M. Loday-

Richaud proved, under the assumption that pa0, a1q ‰ p0, 0q, that the terms

ru˚,0ptq, ru˚,1ptq and rfpt, xq allow to fully characterize the 1-summability of the
formal solution rupt, xq in a given direction [? ].

In the case of our semilinear heat equation (1.1), Theorem 2.4 below tells us
that this characterization remains valid. More precisely, we have:

Theorem 2.4. Let argptq “ θ P R{2πZ be a direction issuing from 0. Assume
that either ap0q ‰ 0, or ap0q “ 0 and a1p0q ‰ 0. Then,

1. The unique formal series solution rupt, xq P OpDρqrrtss of Eq. (1.1) is 1-

summable in the direction θ if and only if the inhomogeneity rfpt, xq and
the coefficients ru˚,0ptq and ru˚,1ptq are 1-summable in the direction θ.

2. Moreover, the 1-sum upt, xq, if any exists, satisfies Eq. (1.1) in which
rfpt, xq is replaced by its 1-sum fpt, xq in the direction θ.

When apxq “ Opx2q, Theorem 2.4 fails: the formal solution rupt, xq may

not be 1-summable in a given direction, while ru˚,0ptq, ru˚,1ptq and rfpt, xq are
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1-summable. Such a situation occurs for example in the case where apxq “ x2,

bpxq “ 0, rfpt, xq “ 0 and φpxq “ 1
1´x . We refer to [? , Counter example 3.5]

for the details of the calculations.
Let us now turn to the proof of Theorem 2.4.

3. Proof of Theorem 2.4

3.1. Case ap0q ‰ 0

Ÿ Point 1 (necessary condition). This is straightforward from Proposition 2.2.
We have indeed ru˚,0ptq “ rupt, 0q, ru˚,1ptq “ Bxrupt, xq|x“0, and

rfpt, xq “ Btupt, xq ´ apxqB2
xupt, xq ´ bpxqupt, xq2.

Ÿ Point 1 (sufficient condition). To prove that the condition is sufficient, we
shall proceed in a similar way as the proof of [? , Thm. 3.4] (see also [? ? ? ]).

By assumption, we have ap0q ‰ 0. Hence, the functions Apxq “ 1{apxq and
Bpxq “ bpxq{apxq are both well-defined and holomorphic on a convenient disc
Dρ1 with 0 ă ρ1 ď ρ.

Let us set rupt, xq “ rvpt, xq ` B´2
x rwpt, xq with rvpt, xq “ ru˚,0ptq ` ru˚,1ptqx.

With these notations, Eq. (1.1) becomes

rw ´ ApxqBtB
´2
x rw ` 2Bpxqrvpt, xqB´2

x rw ` BpxqpB´2
x rwq2 “ rgpt, xq (3.1)

with
rgpt, xq “ ApxqpBtrvpt, xq ´ bpxqrvpt, xq2 ´ rfpt, xqq.

Let us now assume that ru˚,0ptq, ru˚,1ptq and rfpt, xq are 1-summable in a given
direction θ. Then, rvpt, xq and rgpt, xq are both 1-summable in the direction θ
(see Proposition 2.2) and identity (3.1) above tells us it suffices to prove that it
is the same for rwpt, xq. To this end, we shall proceed similarly as [? ? ? ? ]
through a fixed point method. Of course, as we shall see below, the nonlinear
term pB´2

x rwq2 induces much more complicated calculations.

Let us set rwpt, xq “
ÿ

mě0

rwmpt, xq and let us choose the solution of Eq. (3.1)

recursively determined for all m ě 0 by the system

$

’

&

’

%

rw0 “ rg

rwm`1 “ ApxqBtB
´2
x rwm ´ 2BpxqrvB´2

x rwm ´ Bpxq

m
ÿ

k“0

pB´2
x rwkqpB´2

x rwm´kq

(3.2)
Observe that rwmpt, xq P OpDρ1 qrrtss for all m ě 0. Observe also that the
rwmpt, xq’s are of order Opx2mq in x for all m ě 0, and, consequently, the series
rwpt, xq itself makes sense as a formal series in t and x.

Let us now respectively denote by w0pt, xq and vpt, xq the 1-sums of rw0 “ rg
and rv in direction θ and, for allm ą 0, let wmpt, xq be determined as the solution
of System (3.2) in which rv is replaced by v and all the rwm are replaced by wm.
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By construction, all the functions wmpt, xq are defined and holomorphic on a
common domain Σθ,ąπ ˆ Dρ2 with a convenient radius 0 ă ρ2 ď ρ1.

To end the proof, it remains to prove that the series
ÿ

mě0

wmpt, xq is conver-

gent, and that its sum wpt, xq is the 1-sum of rwpt, xq in direction θ.
According to Definition 2.1, the 1-summability of rw0 and rv implies that there

exists 0 ă r1 ă minp1, ρ2q such that, for any proper subsector Σ Ť Σθ,ąπ, there
exist two positive constants C ą 0 and K ě 1 such that, for all ℓ ě 0 and all
pt, xq P Σ ˆ Dr1 , the functions w0 and v satisfy the inequalities

ˇ

ˇBℓ
tw0pt, xq

ˇ

ˇ ď CKℓΓp1 ` 2ℓq and
ˇ

ˇBℓ
tvpt, xq

ˇ

ˇ ď CKℓΓp1 ` 2ℓq. (3.3)

Let us now fix a proper subsector Σ Ť Σθ,ąπ and let us denote by α (resp. β)
the maximum of |Apxq| (resp. |Bpxq|) on the closed disc |x| ď r1. Proposition
(3.1) below provides us some estimates on the derivatives Bℓ

twm.

Proposition 3.1. The following inequalities

ˇ

ˇBℓ
twmpt, xq

ˇ

ˇ ď Cpα ` 2π2CβqmKℓ`mΓp1 ` 2pℓ ` mqq
|x|

2m

p2mq!
(3.4)

hold for all ℓ,m ě 0 and all pt, xq P Σ ˆ Dr1 .

Proof. The proof proceeds by recursion onm. The casem “ 0 is straightforward
from the first inequality of (3.3). Let us now suppose that the inequalities (3.4)
hold for all 0 ď k ď m for a certain m ě 0. According to the relations (3.2), we
deduce from the Leibniz Formula that

Bℓ
twm`1pt, xq “ ApxqB

ℓ`1
t B´2

x wmpt, xq

´ 2Bpxq

ℓ
ÿ

j“0

ˆ

ℓ

j

˙

B
j
t vpt, xqB

ℓ´j
t B´2

x wmpt, xq

´ Bpxq

m
ÿ

k“0

ℓ
ÿ

j“0

ˆ

ℓ

j

˙

B
j
t B´2

x wkpt, xqB
ℓ´j
t B´2

x wm´kpt, xq

for all ℓ ě 0 and pt, xq P ΣˆDr1 . Hence, applying the second inequality of (3.3)
and the inequalities (3.4) for all the wk’s with k “ 0, ...,m, and using the fact
that K ě 1 and r1 ă 1, we get the inequalities

ˇ

ˇBℓ
twm`1pt, xq

ˇ

ˇ ď Cpα ` 2π2CβqmKℓ`m`1Γp1 ` 2pℓ ` m ` 1qq
|x|

2m`2

p2m ` 2q!

ˆ pα ` 2CβSm,ℓ ` CβS1
m,ℓq

for all ℓ ě 0 and pt, xq P Σ ˆ Dr1 , where Sm,ℓ and S1
m,ℓ are respectively defined
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by

Sm,ℓ “

ℓ
ÿ

j“0

ˆ

ℓ

j

˙

Γp1 ` 2jqΓp1 ` 2pℓ ´ j ` mqq

Γp1 ` 2pℓ ` m ` 1qq
and

S1
m,ℓ “

m
ÿ

k“0

ℓ
ÿ

j“0

ˆ

ℓ

j

˙

p2m ` 2q!Γp1 ` 2pj ` kqqΓp1 ` 2pℓ ´ j ` m ´ kqq

p2k ` 2q!p2m ´ 2k ` 2q!Γp1 ` 2pℓ ` m ` 1qq
.

Inequalities (3.4) follow then from Lemmas (3.2) and (3.3) below and from the
fact that 2 ď π2. This ends the proof.

Lemma 3.2. Sm,ℓ ď 1 for all m, ℓ ě 0.

Proof. Lemma (3.2) stems obvious from the identity

Sm,ℓ “
1

p2ℓ ` 2m ` 2qp2ℓ ` 2m ` 1q

ℓ
ÿ

j“0

ˆ

ℓ

j

˙

ˆ

2ℓ ` 2m

2j

˙

and the combinatorial inequalities

ˆ

2ℓ ` 2m

2j

˙

ě

ˆ

ℓ

j

˙ˆ

ℓ ` 2m

j

˙

ě

ˆ

ℓ

j

˙

.

Lemma 3.3. S1
m,ℓ ď π2 for all m, ℓ ě 0.

Proof. First of all, let us observe that

S1
m,ℓ ď

m
ÿ

k“0

ℓ
ÿ

j“0

ˆ

ℓ

j

˙

p2m ` 2q!Γp1 ` 2pj ` kqqΓp1 ` 2pℓ ´ j ` m ´ k ` 1qq

p2k ` 2q!p2m ´ 2k ` 2q!Γp1 ` 2pℓ ` m ` 1qq

“

m
ÿ

k“0

ℓ
ÿ

j“0

ˆ

ℓ

j

˙ˆ

2m ` 2

2k

˙

p2k ` 2qp2k ` 1q

ˆ

2ℓ ` 2m ` 2

2j ` 2k

˙

ď

m
ÿ

k“0

¨

˚

˚

˝

1

pk ` 1q2

ℓ
ÿ

j“0

ˆ

ℓ

j

˙ˆ

2m ` 2

2k

˙

ˆ

2ℓ ` 2m ` 2

2j ` 2k

˙

˛

‹

‹

‚

.

Applying then the combinatorial inequality

ˆ

2ℓ ` 2m ` 2

2j ` 2k

˙

ě

ˆ

ℓ

j

˙2ˆ

2m ` 2

2k

˙

,

we finally get

S1
m,ℓ ď

m
ÿ

k“0

¨

˚

˚

˝

1

pk ` 1q2

ℓ
ÿ

j“0

1
ˆ

ℓ

j

˙

˛

‹

‹

‚

.
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Let us now observe that
ℓ

ÿ

j“0

1
ˆ

ℓ

j

˙ ď 6

for all ℓ ě 0: the inequality is clear for ℓ P t0, 1, 2, 3u, and, for ℓ ě 4, we have

ℓ
ÿ

j“0

1
ˆ

ℓ

j

˙ “ 2 `
2

ℓ
`

ℓ´2
ÿ

j“2

1
ˆ

ℓ

j

˙ ď 2 `
2

ℓ
`

ℓ´2
ÿ

j“2

1
ˆ

ℓ

2

˙ “ 2 `
2

ℓ
`

2pℓ ´ 3q

ℓpℓ ´ 1q
ď 6.

Hence,

S1
m,ℓ ď 6

m
ÿ

k“0

1

pk ` 1q2
ď 6

`8
ÿ

k“1

1

k2
“ π2,

which proves Lemma (3.3).

From Proposition (3.1), we next derive the inequalities

ˇ

ˇBℓ
twmpt, xq

ˇ

ˇ ď CK 1ℓΓp1 ` 2ℓqpc |x|
2
qm (3.5)

for all ℓ,m ě 0 and all pt, xq P Σ ˆ Dr1 , where K 1 and c are the two positive
constants defined by K 1 “ 4K and c “ 4Kpα ` 2π2Cβq. Indeed, applying the
inequalities (3.4), we easily have

ˇ

ˇBℓ
twmpt, xq

ˇ

ˇ ď Cpα ` 2π2CβqmKℓ`mΓp1 ` 2ℓq |x|
2m

ˆ

ˆ

2ℓ ` 2m

2m

˙

ď C22ℓ`2mpα ` 2π2CβqmKℓ`mΓp1 ` 2ℓq |x|
2m

.

Let us now choose for Σ a sector containing a proper subsector Σ1 bisected
by the direction θ and opening larger than π (such a choice is already possible
by definition of a proper subsector, see Footnote 2). Let us also choose a radius

0 ă r ă minpr1, 1{
?
cq and let us set C 1 :“ C

ÿ

mě0

pcr2qm P R˚
`.

Thanks to the inequalities (3.5), the series
ÿ

mě0

Bℓ
twmpt, xq are normally con-

vergent on Σ ˆ Dr for all ℓ ě 0 and satisfy the inequalities
ÿ

mě0

ˇ

ˇBℓ
twmpt, xq

ˇ

ˇ ď C 1K 1ℓΓp1 ` 2ℓq

for all pt, xq P Σ ˆ Dr. In particular, the sum wpt, xq of the series
ÿ

mě0

wmpt, xq

is well-defined, holomorphic on Σ ˆ Dr and satisfies the inequalities
ˇ

ˇBℓ
twpt, xq

ˇ

ˇ ď C 1K 1ℓΓp1 ` 2ℓq

for all ℓ ě 0 and all pt, xq P ΣˆDr. Hence, Conditions 1 and 3 of Definition 2.1
hold.
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To prove the second condition of Definition 2.1, we proceed as follows. The
removable singularities theorem implies the existence of lim

tÑ0
tPΣ1

Bℓ
twpt, xq for all

x P Dr and, thereby, the existence of the Taylor series of w at 0 on Σ1 for all
x P Dr (see for instance [? , Cor. 1.1.3.3]; see also [? , Prop. 1.1.11]). On
the other hand, considering recurrence relations (3.2) with wm and the 1-sums
vpt, xq and gpt, xq instead of rwm, rvpt, xq and rgpt, xq, it is clear that wpt, xq satisfies
equation (3.1) with vpt, xq in place of rvpt, xq and right-hand side gpt, xq in place
of rgpt, xq and, consequently, so does its Taylor series. Then, since equation (3.1)
has a unique formal series solution rwpt, xq, we then conclude that the Taylor
expansion of wpt, xq is rwpt, xq. Hence, Condition 2 of Definition 2.1 holds.

This achieves the proof of the 1-summability of rwpt, xq and, thereby, the fact
that the condition is sufficient.

Ÿ Point 2. The fact that the 1-sum upt, xq of rupt, xq in direction θ satisfies Eq.

(1.1) with right-hand side the 1-sum fpt, xq of rfpt, xq in direction θ in place

of rfpt, xq is a direct consequence of Corollary 2.3. This completes the proof of
Theorem 2.4 in the case ap0q ‰ 0.

3.2. Case ap0q “ 0 and a1p0q ‰ 0

The necessary condition of the first point and the second point result as
before from Proposition 2.2 and Corollary 2.3. We sketch here below the proof
of the sufficient condition of the first point.

Denote apxq “ xa1pxq. By assumption, a1p0q ‰ 0. Then, the functions
A1pxq “ 1{a1pxq and B1pxq “ bpxq{a1pxq are both well-defined and holomorphic
on a convenient common disc centered at the origin 0 P C.

Setting as before rupt, xq “ rvpt, xq ` B´2
x rwpt, xq with rvpt, xq “ ru˚,0ptq `

ru˚,1ptqx, Eq. (1.1) becomes

rw ´
A1pxq

x
BtB

´2
x rw ` 2

B1pxq

x
rvpt, xqB´2

x rw `
B1pxq

x
pB´2

x rwq2 “ rgpt, xq (3.6)

with

rgpt, xq “ A1pxq
Btrvpt, xq ´ bpxqrvpt, xq2 ´ rfpt, xq

x
.

By assumption, we have ap0q “ a0 “ 0; hence, due to the first equality of

(2.1), the constant term in x of Btrvpt, xq ´ bpxqrvpt, xq2 ´ rfpt, xq is zero, and,
consequently, rgpt, xq is again a formal power series in t and x. Assuming then
rvpt, xq and rgpt, xq to be 1-summable in the direction θ, we can prove as previously
that rwpt, xq is also 1-summable in the direction θ.

Observe that the rwmpt, xq are now recursively determined for all m ě 0 by
the system
$

’

&

’

%

rw0 “ rg

rwm`1 “
A1pxq

x
BtB

´2
x rwm ´ 2

B1pxq

x
rvB´2

x rwm ´
B1pxq

x

m
ÿ

k“0

pB´2
x rwkqpB´2

x rwm´kq
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In particular, the operator
1

x
B´2
x in place of B´2

x implies that the rwmpt, xq’s are

now of order Opxmq in x for all m ě 0, instead of Opx2mq as in the previous
case. Still, rwpt, xq is again a formal power series in t and x.

The estimates on the derivatives Bℓ
twm given in Proposition 3.1 are modified

as follows: for all m, ℓ ě 0 and all pt, xq P Σ ˆ Dr1 ,

ˇ

ˇBℓ
twmpt, xq

ˇ

ˇ ď Cpα1 ` 2π2Cβ1qmKℓ`mΓp1 ` 2pℓ ` mqq
|x|

m

pm!q2
,

where α1 (resp. β1) stands for the maximum of |A1pxq| (resp. |B1pxq|) on the
closed disc |x| ď r1. Consequently, the inequalities (3.5) obtained in the case
ap0q ‰ 0 become

ˇ

ˇBℓ
twmpt, xq

ˇ

ˇ ď CK 1ℓΓp1 ` 2ℓqpc |x|qm

for all ℓ,m ě 0 and all pt, xq P Σ ˆ Dr1 , where K 1 and c are the two positive
constants defined by K 1 “ 4K and c “ 16Kpα1 ` 2π2Cβ1q.

The end of the proof is similar to the one of the case ap0q ‰ 0 and is left to
the reader. This completes the proof of Theorem 2.4.

4. Conclusion and directions for further researches

In this article, we presented a method to characterize the 1-summability of
the formal power series solutions in time of the inhomogeneous semilinear heat
equation (1.1). Although this equation is among the simplest semilinear partial
differential equations, it has the merit of easily showing how our approach makes
it possible to manage the nonlinear term u2.

In the forthcoming article [? ], we will show that this approach can be
successfully applied to the more general equation

Bκ
t u ´ apt, xqBp

xu ´ P puq “ rfpt, xq

where p and κ are two positive integers satisfying p ą κ ě 1, apt, xq is an
analytic function at the origin of C2, and where P pXq is a polynomial with
analytic coefficients at the origin of C2. However, even though the general
philosophy of studying this equation is similar to the one developed in the
present paper for the heat equation (1.1), the calculations are slightly different
and more complicated insofar as we are no longer interested in the 1-summability
but in the k “ κ{pp ´ κq-summability. In particular, this leads us, among
other things, to use different technical results on the generalized binomial and
multinomial coefficients, that is on the binomial and multinomial coefficients
with nonnegative real terms.

Therefore, it seems that the approach developed in the present paper is
interesting to investigate the summability, even the multisummability, of the
formal power series solutions of semilinear, even nonlinear, partial differential
equations much more general.

Another possible direction of research to investigate the summability of the
formal power series solutions of the semilinear partial differential equations is

11



the “Borel-Laplace summation” point of view, as it could already have been
done in the linear case; for example [? ? ? ? ? ? ? ] for the linear heat
equation.
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