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THE FOKKER-PLANCK EQUATION

WITH SUBCRITICAL CONFINEMENT FORCE

O. KAVIAN, S. MISCHLER, M. NDAO

Abstract. We consider the Fokker-Planck equation with subcritical confine-
ment force field which may not derive from a potential function. We prove the
existence of an equilibrium (in the case of a general force) and we establish
some subgeometric rate of convergence to the equilibrium (depending on the
space to which belongs the initial datum) in many spaces. Our results general-
ize similar results introduced by Toscani, Villani [33] and Röckner, Wang [31]
for some forces associated to a potential and extended by Douc, Fort, Guillin
[12] and Bakry, Cattiaux, Guillin [4] for some general forces: the spaces are
more general, the rates are sharper.
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1. Introduction

In the present work, we consider the Fokker-Planck equation

(1.1) ∂tf = Lf = ∆f + div(f F)

on the density function f = f(t, x), t > 0, x ∈ Rd, d ≥ 1, in the case of a subcritical
confinement force F, and which is complemented with an initial condition

(1.2) f(0, x) = f0(x), ∀x ∈ R
d.
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More precisely, we will always assume that the force field F ∈ C1(Rd,Rd) satisfies

(1.3) x · F(x) ≥ |x| 〈x〉γ−1, div(F(x)) ≤ CF |x|γ−2, ∀x ∈ Bc
R0
,

as well as

(1.4) |DF(x)| ≤ C′
F 〈x〉γ−2, ∀x ∈ R

d,

for some constants CF ≥ d, R0 > 0, C′
F > 0 and an exponent

(1.5) γ ∈ (0, 1).

Here and below, we denote 〈x〉 := (1 + |x|2)1/2 for any x ∈ R
d.

It is worth mentioning that we have made two normalization hypotheses by tak-
ing a diffusion coefficient equal to 1 in (1.1) as well as a lower bound constant
equal to 1 in the first condition in (1.3). Of course, these two normalization hy-
potheses can be removed by standard scaling arguments (in the time and position
variables) and thus do not restrict the generality of our analysis, but on the other
hand noticeably simplify the presentation.

A typical example of a force field is the one associated to a confinement potential

(1.6) F(x) := ∇V (x), V (x) :=
〈x〉γ

γ
+ V0, V0 ∈ R.

In this case, we may observe that

(1.7) G(x) := e−V (x) ∈ L1(Rd) ∩ C2(Rd),

is a stationary solution of (1.1), and even an equilibrium state. We may assume
that G is a probability measure, by choosing the constant V0 adequately. We recall
that when F is given by (1.6) with γ ≥ 1, the following Poincaré inequality

∃ c > 0,

∫

Rd

|f(x)|2 exp(−V (x))dx ≤ c

∫

Rd

|∇f(x)|2 exp(−V (x)),

holds for any f such that
∫
Rd f(x) exp(−V (x))dx = 0. Such a Poincaré inequality

does not hold when γ ∈ (0, 1), which is the case studied in this paper, but only
a weak version of this inequality remains true (see [31], and below (1.14) and sec-
tion 4.1). In particular, there is no spectral gap for the associated operator L, nor
is there an exponential trend to the equilibrium for the associated semigroup. Sim-
ilarly, the classical logarithmic Sobolev inequality does not hold but only a modified
version of it, see the discussion in [33, Section 2].

In the general case of a force field which is not the gradient of a potential, one
may see easily that the above Fokker-Planck equation preserves positivity, that is

f(t, .) ≥ 0, ∀ t ≥ 0, if f0 ≥ 0,

and that it conserves mass, that is

(1.8) M(f(t, ·)) = M(f0), ∀ t ≥ 0, with M(g) :=

∫

Rd

g(x) dx.

Moreover, the Fokker-Planck operator L generates a (Markov) semigroup in many
Lebesgue spaces which has a unique positive normalized steady state (or invariant
probability measure).
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Before stating our existence result, let us introduce some notation. For any
exponent p ∈ [1,∞], we define the polynomial and exponential weight functions
m : Rd → R+, by

(1.9) m(x) := 〈x〉k, for some k > k∗, with k∗ := max(d, CF )/p
′,

where p′ := p/(p− 1) is the conjugated exponent associated to p,

(1.10) m(x) := exp(κ 〈x〉s), for some 0 < s < γ and κ > 0,

or

(1.11) m(x) := exp(κ 〈x〉γ), for some κ ∈ (0, 1/γ),

as well as the associated Lebesgue spaces

Lp(m) = { f ∈ L1
loc(R

d); ‖ f‖Lp(m) := ‖ fm‖Lp <∞}.

We also use the shorthands Lp
k = Lp(m) when m(x) = 〈x〉k. It is noteworthy that,

for such a choice of weights m, we have Lp(m) ⊂ L1(Rd).

As a first step, we have the following existence and uniqueness result.

Theorem 1.1. For any exponent p ∈ [1,∞], any weight function m satisfying
either of definitions (1.9), (1.10) or (1.11), and any initial datum f0 ∈ Lp(m),
there exists a unique global solution f to the Fokker-Planck equation (1.1)–(1.2),
such that for any T > 0,

f ∈ C([0, T ];L1(Rd)) ∩ L∞(0, T ;Lp(m)).

Moreover the associated flow preserves positivity and conserves mass. Also, the
operator L generates a strongly continuous semigroup SL(t) in Lp(m) when p ∈
[1,∞).

On the other hand, there exists a unique positive, unit mass, stationary solution
G such that

G ∈ L1
1, M(G) = 1 and ∆G+ div(GF) = 0.

More precisely, there exists κ∗1 ≥ κ∗0 := 1/γ such that for any κ0 ∈ (0, κ∗0), κ1 ∈
(κ∗1,∞), there holds

(1.12) C1e
−κ1〈x〉

γ

≤ G ≤ C0e
−κ0〈x〉

γ

on R
d,

for some constructive constants C0, C1 > 0.

The well-posedness for the evolution equation is not surprising and the proof
follows classical dissipativity arguments. Due to the lack of compactness of the
associated semigroup, the standard Krein-Rutman theory does not apply directly in
the case γ ∈ (0, 1), and the existence of a stationary solution is not straightforward.
We follow here a similar fixed point theorem strategy as in the recent work [30]
(see also [16, 15] and the references therein) where the Fokker-Planck equation
with general force field (1.1)–(1.5) in the case γ ≥ 1 is considered. Our approach
provides an alternative deterministic proof of the existence of a stationary solution
which may also be established using the probabilistic approach developed by Douc,
Fort and Guillin in [12]. Another deterministic approach is also presented in [9]
(which applies to much more general Markov semigroups).

Once the existence of a stationary solution is known, we are interested in the
long time behaviour of the solution f(t, ·) to the Fokker-Planck equation (1.1). For
the sake of clarity, we consider separately the following two cases.
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Case 1. Following [31, Example 1.4(c)], we consider the case when furthermore the
above steady state G fulfills a weak weighted Poincaré-Wirtinger inequality. More
precisely, in this case we assume that there exist some constants R0, c1, c2 > 0 such
that the function V := − logG ∈ C1(Rd) satisfies

(1.13) ∀x ∈ Bc
R0
, c1 |x|

γ ≤ V (x) ≤ c2 |x|
γ ,

and also that there exists µ > 0 such that for any f ∈ D(Rd) with M(f) = 0, the
following weak weighted Poincaré-Wirtinger inequality holds

(1.14)

∫
|∇(f/G)|2Gdx ≥ µ

∫
f2 〈x〉2γ−2G−1 dx.

Inequality (1.14) holds when c1 = c2 in (1.13), see Lemma 4.1. Although this
inequality probably belongs to folklore, we were not be able to find a precise refer-
ence. We however refer to [31, Theorem 3.3] and [11, Theorem 2.18] where related
inequalities are established.

The weak Poincaré inequality (1.14) is a consequence of a “local Poincaré inequal-
ity” (or “Poincaré-Wirtinger inequality”) together with the fact that the following
Lyapunov condition (see for instance [4, 3])

(1.15) ∆w −∇V · ∇w ≤ (−ζ(x) +MχR)w, ∀x ∈ R
d,

holds for some well chosen function w : Rd → [1,∞). Here it is assumed that
M and R are two positive constants, χR(x) := χ(x/R) is a truncation function
defined through a certain χ ∈ D(Rd) such that 1[|x|≤1] ≤ χ ≤ 1[|x|≤2] and ζ(x) :=

ζ0 〈x〉2(1−γ) for a constant ζ0 > 0. It is worth emphasizing that, in this case, the
force field F can be written as

(1.16) F = ∇V + F0, div(e−V F0) = 0,

with no other specific condition on F0 except that F still satisfies conditions (1.3)–
(1.5). Under these circumstances, we can give a simpler proof than in the general
case.

Case 2. This corresponds to the general case when F satisfies only conditions
(1.3)–(1.5), without any further assumption on the stationary state G, which in
general cannot be determined explicitly. Using the above notations for M,R, χR

and ζ introduced in the inequality (1.15), the assumptions (1.3)–(1.5) made on F
imply in particular the following inequality

(1.17) L∗mp := ∆mp − F · ∇mp ≤ (−ζ(x) +MχR)m
p, ∀x ∈ R

d,

which is another version of the Lyapunov condition (1.15).

The main and fundamental difference between these two cases is that the first
one involves assumptions on the equilibrium state G = e−V while the second one
only involves an assomption on the force field F.

In the sequel, when a(t) ≥ 0 and b(t) ≥ 0 are two functions of time t > 0, we
write a(t) . b(t) to mean that there exists a positive constant c0 independent of t
such that one has a(t) ≤ c0 b(t) for all t > 0.

Our main result is as follows:

Theorem 1.2. Let F satisfy (1.3)–(1.5), and let p ∈ [1,∞]. For a weight function
m satisfying either of definitions (1.9), (1.10) or (1.11), we define the subgeometric
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rate function Θm as follows: when m(x) = 〈x〉k, we take β ∈ (0, (k − k∗)/(2 − γ))
arbitrary and we set

(1.18) Θm(t) := (1 + t)−β .

When m(x) = exp(κ 〈x〉s), we take σ := s/(2− γ) and we set for a λ > 0

(1.19) Θm(t) := exp(−λtσ).

Then for any initial datum f0 ∈ Lp(m), the associated solution f = f(t, x) to the
Fokker-Planck equation (1.1) satisfies

(1.20) ‖f(t, .)−M(f0)G‖Lp . Θm(t) ‖f0 −M(f0)G‖Lp(m),

where we recall that M(f0) denotes the mass of f0 defined in (1.8).

Remark 1.3. We believe that Theorem 1.2 is new in the sense that the decay
estimate (1.18)-(1.20) is optimal and constructive and that the Lebesgue spaces
involded appear with the same exponent p ∈ [1,∞]. This last fact is of main
importance when one is interested in the stability of nonlinear evolution PDEs, see
for instance [10].

We discuss below in details some of the existent literature about the same kind
of results, some possible extensions and the general strategy of our approach.

Remark 1.4. When the force field F and the equilibrium G satisfy similar assump-
tions as described in Case 1, several previous results are known. A less accurate
rate of decay than the one given by (1.18)-(1.20), actually a decay rate of order
O(t−(k−2)/(2(2−γ))) in L1-norm, has been proved by G. Toscani, C. Villani in [33,
Theorem 3] under the additional assumptions that the initial datum f0 is nonneg-
ative, has finite energy and finite Boltzmann entropy. The proof of this first result
relies on a modified and weak version of the log-Sobolev inequality. (It is known
that the standard (and stronger) version of the log-Sobolev inequality only holds
when γ ≥ 2). In [31, Example 1.4 (c) and Section 3 for the proof], M. Röckner,
F.Y. Wang have established the exponential rate

(1.21) ‖f(t, ·)−M(f0)G‖L2 . e−λtσ
♯

‖ f0 −M(f0)G‖L∞(G−1),

with σ♯ := γ/(4 − 3γ), some λ > 0 and any f0 ∈ L∞(G−1). The proof of (1.21)
is based on a weak Poincaré inequality and the existence of a family of entropy
functionals.

Estimate (1.18)-(1.20) is more accurate than (1.21) since, when the weight func-
tion m(x) := exp(κ〈x〉γ) we have σ = γ/(2 − γ), and the function Θm(t) :=

exp(−λtγ/(2−γ)) decays faster than exp(−λtσ
♯

). Also, more importantly, the same
Lebesgue exponent p on both sides of the inequality is involved in (1.20) while it
is not the case in (1.21). Also, as we shall see below, from (1.18)-(1.20) one easily
deduces by interpolation that for any θ ∈ (0, 1) one has

‖f(t, .)−M(f0)G‖Lp(mθ) . Θm(t) ‖f0 −M(f0)G‖Lp(m).

Remark 1.5. D. Bakry, P. Cattiaux & A. Guillin in [4] have extended the approach
of M. Röckner, F.Y. Wang to the case of a general force field. More precisely, they
establish an inequality, which they call weak Lyapunov-Poincaré inequality, in [4,
Theorem 3.10 and Section 4.2.1] from which they deduce the same rate of conver-
gence (1.21). That work is based on the Lyapunov condition method, which we
have already discussed in the presentation of Case 1 and which is closely related
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to the method we use here. The Lyapunov condition method has then been exten-
sively studied during the last decade, and we refer for instance to [4, 3, 11] and the
references therein for more details.

Remark 1.6. A completely different approach has been developed by R. Douc,
G. Fort & A. Guillin in [12] generalizing the classical Harris-Meyn-Tweedie theory
to the weak confinement setting and adapted to both the potential case and the
general force case. We also refer to the notes on the convergence of Markov pro-
cesses by M. Hairer, and more precisely to [19, Theorem 4.1], for a more explicite
formulation of the subgeometric convergence result and a simplified proof (starting
from a slightly different set of hypotheses). It provides estimate (1.20) in the case
p := 1 and m := G−1 (with same rate), see [19, (7.3)]. The drawback is that the
approach is definitively probabilistic and the constants are maybe not so explicit.
In a forthcoming paper [9], J.A. Cañizo and S. Mischler provide a deterministic
and elementary proof of the above mentioned theorem. We also refer to A. Eberle,
A. Guillin & R. Zimmze [14] for recent related results.

Remark 1.7. The same kind of decay estimates remains true when, on the left
hand side of (1.20), the Lebesgue norm Lp is replaced by a weighted Lebesgue
norm Lp(mθ) with 0 ≤ θ < 1. More precisely, when m(x) = 〈x〉k and θ is such that
k∗/k < θ < 1, we choose β := k(1 − θ)/(2 − γ), and if 0 ≤ θ ≤ k∗/k, we choose
β ∈ (0, (k − k∗)/(2 − γ)) arbitrary. In both cases, we define Θm through (1.18).
When m(x) = exp(κ 〈x〉s) the definition of the decay rate Θm is unchanged.

Remark 1.8. When an exponential weight function m(x) := exp(κ〈x〉γ) is con-
sidered, one could have a field force F satisfying the first condition of (1.3) and

div(F) ≤ C′
F 〈x〉γ

′−2, with γ′ < 2γ, or γ′ = 2γ but with C′
F small enough, and

obtain similar results. However we do not push our investigations in that direction,
since the general ideas of the proof are essentially the same.

Remark 1.9. When a polynomial weight function m(x) = 〈x〉k is considered,
the decay rate in (1.20) is given by (1.18), which is better than the decay rate
one might obtain by a mere interpolation argument between L2(exp(κ〈x〉γ)) and
L1(Rd). More precisely, assume that when the weight function m(x) = exp(κ〈x〉γ),
the function Θm being given by (1.19) with s := γ/(2−γ), we have (1.20), as well as
the estimate ‖f(t)‖L1 . ‖f0‖L1 for any f0 ∈ L1(exp(κ〈x〉γ)) such that M(f0) = 0.
Then for any R > 0 we have M(f01BR) = −M(f01Bc

R
), and thus we may write

f0 = f01 + f02 + f03 where

f01 := (f0 −M(f01BR)) 1BR , f02 := f01Bc
R
, f03 := M(f01Bc

R
)1BR .

Therefore for t > 0, denoting by fj(t) the solution of (1.1) with initial datum f0j,
one has

‖f(t)‖L1 ≤ ‖f1(t)‖L1 + ‖f2(t)‖L1 + ‖f3(t)‖L1

. exp(−λtγ/(2−γ)) ‖f01‖L1(exp(κ〈x〉γ)) + ‖f02‖L1 + ‖f03‖L1

. exp(−λtγ/(2−γ)) ‖ (f0 −M(f0 1BR))1BR‖L1(exp(κ〈x〉γ))

+ ‖M(f0 1Bc
R
)1BR‖L1 + ‖f0 1Bc

R
‖L1

. exp(−λtγ/(2−γ)) eκ 〈R〉γ ‖ f0‖L1 + (Rd−k +R−k )‖ f‖L1
k

.
(
exp(−λtγ/(2−γ) + κ〈R〉γ) +Rd−k

)
‖ f‖L1

k
.



SUBCRITICAL FOKKER-PLANCK EQUATION 7

Assuming that t > (2κ/λ)(2−γ)/γ, we may choose R so that κ〈R〉γ = λtγ/(2−γ)/2,
we find that when k > d, for any t > (2κ/λ)(2−γ)/γ we have

‖f(t)‖L1 . t
−(k−d)

2−γ ‖f0‖L1
k
.

This decay estimate is not as sharp as the one given by Theorem 1.2 when the
weight function is m := 〈x〉k, since according to the definition (1.18) in this case
we have actually a decay rate of O(t−K) for any K ∈ (0, k/(2− γ)). �

Remark 1.10. In a few previous papers, due in particular to R.E. Caflisch [7, 8],
T.M. Liggett [23], G. Toscani & C. Villani [33], Y. Guo [18] or K. Aoki & F. Golse [1],
a certain number of models, arising from statistical physics, has been considered
for which only subgeometric (but not geometric) rate of decay to the equilibrium
can be established. As it is the present case, one can associate to each of these
models a linear operator which does not enjoy any spectral gap in its spectrum set
and that is the reason why exponential rate of convergence fails.

An abstract theory for non-uniformly exponentially stable semigroups (with non
exponential decay rate) has also been recently developed and we refer the interested
reader to [5, 6] and the references therein. We finally refer to K. Carrapatoso & S.
Mischler [10] where similar semigroup analysis as here is developed and applied in
order to establish the well-posedness of the Landau equation in large spaces.

Let us briefly explain the main ideas behind our method of proof. In Case 1,
and as a first step, we may use the argument introduced in M. Röckner & F.Y.
Wang [31] (see also O. Kavian [20, Lemma 1.3]) which we briefly recall now. We
consider three Banach spaces E2, E1 and E0, such that E2 ⊂ E1 ⊂ E0 ⊂ L1, and
more precisely E1 is an interpolation space of order 1− 1/α between E0 and E2 for
some α ∈ (1,∞), that is

(1.22) ‖f‖E1 ≤ Cα ‖f‖
1/α
E0

‖f‖
1−1/α
E2

, ∀ f ∈ E2,

and such that the semigroup SL(t) associated to the Fokker-Planck equation can be
solved in each of these spaces. Moreover, assume that for any f0 ∈ E2, the solution
SL(t)f0 = f(t) to the Fokker-Planck equation (1.1)–(1.2) satisfies the following two
differential inequalities

(1.23)
d

dt
‖f(t)‖E1 ≤ −λ ‖f(t)‖E0,

d

dt
‖f(t)‖E2 ≤ 0,

for some constant λ > 0. Using the fact that ‖f(t)‖E2 ≤ ‖f0‖E2 , as a consequence
of the above second differential inequality, together with (1.22), we obtain the closed
differential inequality

d

dt
‖f(t)‖E1 ≤ −λC−α

α ‖f0‖
−(α−1)
E2

‖f(t)‖αE1
.

We may readily integrate this inequality and we obtain the estimate

(1.24) ‖f(t)‖E1 . t−1/(α−1)‖ f0‖E2 .

Now, choosing E1 = L2(G−1/2), E0 := L2(G−1/2〈x〉γ−1) and E2 = L∞(G−1), one
may see that the first differential inequality in (1.23) is an immediate consequence
of the weak Poincaré inequality (1.14). The second differential inequality is a kind
of generalized relative entropy principle (see [31, 24]). The above estimate (1.24) is
a somewhat rough variant of estimate (1.19). It is noteworthy that for α ∈ (1, 2),
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we get that the associated semigroup SL defined by SL(t)f0 = f(t) satisfies in
particular ‖ SL‖E2→E1 ∈ L1(0,∞).

We then generalize the decay estimate to a wider class of Banach spaces by adapt-
ing the extension theory introduced and developed in C. Mouho [29], M.P. Gual-
dani, S. Mischler & C. Mouhot [17] and S. Mischler & C. Mouhot [26], and used in
M. Ndao [30] for the case 1 ≤ γ ≤ 2. In order to do so, we consider the two Banach
spaces E2 := Lp(m) and E1 := Lp, and we introduce a splitting L = A+ B, where
A is an appropriately defined bounded operator so that B becomes a dissipative
operator. Then, we show that for i = 1 and i = 2

‖SBA‖Ei→Ei ∈ L1(R+), ‖SB‖E2→E1 ∈ L1(R+), ‖ ASB‖E1→E1 ∈ L1(R+).

If Ti, with i = 1, 2, are two given operator valued, measurable functions, defined on
(0,∞), we denote by

(T1 ∗ T2) (t) :=

∫ t

0

T1(τ)T2(t− τ) dτ

their convolution on R+. We then set T (∗0) := I, T (∗1) := T and, for any k ≥ 2,
T (∗k) := T ∗(k−1) ∗ T . We may show that for n ∈ N sufficiently large (actually
n ≥ 1 + (d/2) is enough), we have

(1.25) ‖ (SBA)(∗n)‖E1→E1 ∈ L1(R+), ‖ (ASB)
(∗n)‖E1→E1 ∈ L1(R+).

Then, from the usual Duhamel formula, the solution of (1.1) can be written as

f(t) = SB(t)f0 +

∫ t

0

SB(t− τ)ASL(τ)f0 dτ.

Thus, using the above notations for the convolution of operator valued functions,
we have SL = SB + SB ∗ (ASL), and interchanging the role played by L and B in
this expression, we get the following operator versions of Duhamel formulas

SL = SB + SB ∗ (ASL) = SB + (SBA) ∗ SL(1.26)

= SB + SL ∗ (ASB) = SB + (SLA) ∗ SB.(1.27)

Upon replacing recursively SL in either of the expressions on the right hand side
by either of the Duhamel’s formula, we get, for instance:

SL = SB + SB ∗ A{SB + (SBA) ∗ SL}

= SB + (SBA) ∗ SB + (SBA)(∗2) ∗ SL.

By induction on the integers n1 ≥ 0, n2 ≥ 0 and n1 + n2 ≥ 1, we thus obtain

(1.28) SL =

n1+n2−1∑

k=0

SB ∗ (ASB)
(∗k) + (SBA)(∗n1) ∗ SL ∗ (ASB)

(∗n2).

Using the above formulas (1.28) and estimates (1.25), as well as the decay esti-
mate (1.24) for initial data in the space E2, we conclude that ‖ SL‖E2→E1 ∈ L1(R+)
which is nothing but a rough version of the estimates presented in Theorem 1.2.
While the method leading to (1.24) in Ei can be performed only in very specific
(Hilbert) spaces, the above extension method is very general and can be used in
a large class of Banach spaces Ei (once we already know the decay in one pair of
spaces (E1, E2)).

On the other hand, in Case 2, we start proving an equivalent to estimate (1.24)
in one appropriate pair of (small) spaces. We then argue similarly as in the previous
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case. We present three different strategies in order to establish an equivalent to
estimate (1.24). On the one hand, we may adapt the strategy of M. Röckner and
F.Y. Wang introduced to deal with Case 1 by using a generalization of the weak
Poincaré inequality (1.14) which also holds in the case of a general force field and
which has been established by D. Bakry, P. Cattiaux & A. Guillin in [4].

A second approach consists in using the generalization of the well-known Doeblin-
Harris-Meyn-Tweedie theory by R. Douc, G. Fort & A. Guillin in [12] to the so-
called subgeometric framework, namely to the case when exponential trend to the
equilibrium is not available.

A third and more original way consists in adapting the Krein-Rutman theory to
the present context. On the one hand, it is a simple version of the Krein-Rutman
theory because the equation is mass conserving, a property which implies that the
largest eigenvalue of L is λ1 = 0. On the other hand, it is not a classical version
because the operator L does not have a compact resolvent (however it has power-
compact resolvent in the sense of J. Voigt [34]) and, more importantly, 0 is not
necessarily an isolated point in the spectrum. First adapting (from [15, 28] for
instance) some more or less standard arguments, we prove that there exists G, a
unique stationary solution of (1.1) which is positive, has unit mass and is such that
G ∈ L∞(exp(κ〈x〉γ)), for all κ ∈ (0, 1/γ). Next, we prove an estimate similar to
(1.24) by establishing a set of accurate estimates on the resolvent operators RB(z),
RL(z) and by using the iterated Duhamel formula

SL =

5∑

k=0

SB ∗ (ASB)
(∗k) + SL ∗ (ASB)

(∗6),

together with the inverse Laplace formula

SL ∗ (ASB)
(∗6)(t) =

i

2π

1

tn

∫ +i∞

−i∞

ezt
dn

dzn
[
RL(z)(ARB(z))

6
]
dz,

which holds true for any time t > 0 and any integer n.

To finish this introduction, let us describe the plan of the paper. In Section 2,
we introduce an appropriate splitting L = A + B and present the main estimates
on the semigroup SB. In Section 3, we deduce that the semigroup SL is bounded
in the spaces Lp(m). In Section 4, the proof of Theorem 1.2 is carried out in the
case when a weak Poincaré inequality (1.14) is satisfied (Case 1). In Section 5, the
second part of the proof of Theorem 1.1 on the stationary problem is presented in
the general case (Case 2). Finally, Section 6 is devoted to the proof of Theorem 1.2
in the general case.

Acknowledgements. The second author’s work is supported by the french “ANR
blanche” project Stab: ANR-12-BS01-0019. We thank M. Hairer and A. Guillin
for enlightening discussions on several results in relation with the present work.

2. The splitting L = A+ B and growth estimates on SB

We introduce the splitting of the operator L defined by

(2.1) Af :=MχRf, Bf := Lf −MχRf

where M is positive constant, and for a fixed truncation function χ ∈ D(Rd) such
that 1B(0,1) ≤ χ ≤ 1B(0,2), and for R > 1 which will be chosen appropriately as
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well as M , we set χR(x) := χ(x/R). We establish several growth and regularity
estimates on the semigroup SB and the family of operators ASB which will be of
fundamental importance in the sequel.

2.1. Basic growth estimates.

Lemma 2.1. For any exponent p ∈ [1,∞] and any polynomial or exponential weight
function m given by (1.9), (1.10) or (1.11), we can choose R,M large enough in
the definition (2.1) of B such that the operator B is dissipative in Lp(m), namely

(2.2) ‖ SB(t)‖Lp(m)→Lp(m) ≤ 1, ∀ t ≥ 0.

Moreover, if m(x) = 〈x〉k, set β := k(1 − θ)/(2 − γ) for k∗/k < θ < 1, and
β ∈ (0, (k − k∗)/(2 − γ)) arbitrary when θ ≤ k∗/k. Then the function Θm being
defined by (1.18), we have

(2.3) ‖SB(t)‖Lp(m)→Lp(mθ) . Θm(t).

If m(x) = exp(κ〈x〉s) satisfies (1.10) or (1.11), the above inequality holds, provided
the function Θm is defined by

Θm(t) := exp(−λts/(2−γ)),

where λ > 0 can be chosen arbitrarily when s < γ, and λ < λ∗, with

λ∗ := (κ(1− θ))(2−2γ)/(2−γ)(κγ(1− κγ))γ/(2−γ),

when s = γ.

Proof of Lemma 2.1. The proof is similar to the proof of [17, Lemma 3.8] and [26,
Lemma 3.8].

Step 1. We first fix p ∈ [1,∞), assuming m is as in the statement of the Lemma.
We start recalling an identity satisfied by the operator B (see the proof of [26,
Lemma 3.8]). For any smooth, rapidly decaying and positive function f , we have

∫

Rd

(B f) fp−1mpdx =

= −(p− 1)

∫

Rd

|∇(mf)|2 (mf)p−2dx+

∫

Rd

fpmp ψ0
m,p(x)dx,

with

(2.4) ψ0
m,p(x) :=

(2− p)

p

∆m

m
+

2

p′
|∇m|2

m2
+

1

p′
div(F)− F ·

∇m

m
−M χR.

Observe that

∇m

m
= kκx〈x〉s−2

∆m

m
= kκd〈x〉s−2 + s(s− 2)κ|x|2〈x〉s−4 + ν|x|2〈x〉2s−4,

where we have set

s := 0, κ := 1, ν := k(k − 2), when m(x) = 〈x〉k,

k := s, ν := (sκ)2, when m(x) = exp(κ 〈x〉s).
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In this latter case, for s ∈ (0, γ], the third term in the definition of ψ0
m,p is negligible

with respect to the first and second terms, and thus

ψ0
m,p(x) |x|

2−γ−s −→
|x|→∞

−a∗ := (κγ)2 − κγ < 0 if s = γ,

ψ0
m,p(x) |x|

2−γ−s −→
|x|→∞

−a∗ := −∞ if 0 < s < γ.

When m = 〈x〉k, and k > k∗(p) := CF /p
′, the first and second terms are

negligible with respect to the third term, and then

lim sup
|x| →∞

ψ0
m,p(x) |x|

2−γ ≤ −a∗ := (1−
1

p
)CF − k < 0.

We deduce that for any a ∈ (0, a∗(m, p)), we can choose R > 1 and M large
enough in such a way that ψ0

m,p(x) ≤ −a〈x〉γ+s−2 for all x ∈ Rd, and then

(2.5)

∫
(Bf) fp−1mp ≤ −a

∫
|f |pmp 〈x〉γ+s−2 − (p− 1)

∫
|∇(fm)|2(fm)p−1.

In particular, using only the fact that the RHS term is negative, we conclude that
the operator B is dissipative and we classically deduce that the semigroup SB is
well-defined on Lp(m) for p ∈ [1,∞) and that it is a strongly continuous contraction
semigroup, in other words, (2.2) holds for any p ∈ [1,∞). Since we may chooseR,M
such that the above inequality holds true for any p ∈ [1,∞) when a ∈ (0, a∗(m,∞)),
we may pass to the limit as p→ ∞ in (2.2) and we conclude that SB is a contraction
semigroup in Lp(m), for any p ∈ [1,∞].

Step 2. Take p ∈ [1,∞) and k > k∗(p) = CF /p
′, and finally, assuming first

that θ > k∗/k, set ℓ := θk ∈ (k∗, k). If f0 ∈ Lp(m) with m := 〈x〉k, denote
f(t) := SB(t)f0. Dropping the last term in (2.5), we have for a ∈ (0, a∗(m, p))

d

dt

∫
|f |p 〈x〉pℓ ≤ −ap

∫
|f |p 〈x〉pℓ+γ−2.

Using Hölder’s inequality
∫
fp 〈x〉pℓ ≤

(∫
fp 〈x〉pℓ+γ−2

)η(∫
fp 〈x〉pk

)1−η

with η := (k − ℓ)/[k − ℓ + (2 − γ)/p] ∈ (0, 1), and the fact that the semigroup
SB is a contraction semigroup in Lp

k by (2.2), upon denoting α := η/(1 − η) =
p (k − ℓ)/(2− γ), we get

d

dt
Yθ(t) ≤ −a p Yθ(t)

(α+1)/α Y1(0)
−1/α, where Yτ (t) :=

∫
fp〈x〉pτ .

Integrating the above differential inequality yields

Yθ(t) ≤
( α
apt

)α
Y1(0),

which in turn implies (2.3) with Θm(t) replaced with
(

(k−ℓ)/(2−γ)
at

) k−ℓ
2−γ

. Since for

0 ≤ t ≤ 1 we have clearly Yθ(t) . Y1(0) the proof of (2.3) is complete when p <∞
and m(x) = 〈x〉k and ℓ := kθ > k∗.

In the case where ℓ = kθ ≤ k∗, it is enough to pick θ0 > θ so that kθ0 > k∗ and
observe that we have Yθ ≤ Yθ0 : in this way one is convinced that (2.3) holds for all
p <∞ and 0 ≤ θ < 1.

We deduce the same estimate for p = ∞ by letting p→ ∞ in (2.3).
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Step 3. Similarly, when the weight function m is an exponential as defined in
(1.10) or (1.11), take p ∈ [1,∞). Given an initial datum f0 ∈ Lp(m), denote
f(t) := SB(t)f0, and set Yθ(t) := ‖ f(t)‖p

Lp(mθ)
. Thanks to the above Step 1 we

have for all t ≥ 0 and 0 < θ ≤ 1

Yθ(t) ≤ Yθ(0).

For ρ > 0 denote by Bρ the ball of Rd centered at the origin with radius ρ. Using
the estimate (2.5) with the weight function mθ, neglecting the last term of that
inequality, we have successively

d

dt
Yθ(t) = p

∫
(Bf) fp−1 mpθ

≤ −a p

∫

Bρ

|f |p mpθ 〈x〉γ+s−2

≤ −a p 〈ρ〉γ+s−2

∫

Bρ

|f |pmpθ

≤ −a p 〈ρ〉γ+s−2 Yθ + a p 〈ρ〉γ+s−2

∫

Bc
ρ

|f |p mpθ

≤ −a p 〈ρ〉γ+s−2 Yθ + a p 〈ρ〉γ+s−2m(ρ)−p(1−θ)

∫

Bc
ρ

|f0|
p mp

≤ −a p 〈ρ〉γ+s−2Yθ + a p 〈ρ〉γ+s−2 m(ρ)−p(1−θ)

∫
|f0|

p mp.

Integrating this differential inequality we deduce

Yθ(t) ≤ exp(−ap t 〈ρ〉γ+s−2) Yθ(0) +m(ρ)−p(1−θ) Yθ(0).

≤
(
exp(−ap t 〈ρ〉γ+s−2) + exp(−p(1− θ) ρs)

)
Yθ(0).

We may choose ρ such that a 〈ρ〉γ+s−2t = (1− θ) ρs, that is we may take ρ of order
t1/(2−γ), which allows us to conclude that (2.3) also holds in the exponential case.
As indicated above, the estimate (2.3) for p = ∞ is obtained by letting p→ ∞. �

The following two lemmas state that when the weight function is exponential,
that is m(x) := exp(κ〈x〉γ), the semigroup SB is ultracontractive in the spaces
Lp(m), that is it maps L1(m) into L∞(m) for t > 0. As it is pointed out in
[21] (see Remark 2.2 of this reference for a proof based on Probability arguments,
and Remark 5.2 for a simple proof based on comparison theorems for parabolic
equations), when one considers an operator of the type Lf := ∆f +∇V · ∇f with
V satisfying, for some constants R > 0 and c0 ≥ 0,

∀x ∈ Bc
R,

∆V 1/2

V 1/2
+ c0 ≥ 0,

and if there exists a positive constant c1 > 0 such that V (x) ≥ c1 for all x ∈ Bc
R,

then the semigroups SL(t) and SL∗(t) are ultracontractive in the spaces Lp(exp(V ))
(the above condition on ∆V 1/2/V 1/2 is a sort of convexity condition at infinity).
Here the operator B is not exactly of the same type as L, but nevertheless the
ultracontractivity of the semigroup SB(t), as well as that of (SB)

∗, holds. (Recall
also that the ultracontractivity of the semigroup SB is equivalent to an appropriate
form of Nash inequality for the operator B).
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Lemma 2.2. Consider the weight function m0 := exp(κ〈x〉γ), for 0 < κγ < 1.
Then there exists R0,M0 > 0 such that for M ≥M0 and R ≥ R0 we have

(2.6) ∀ t > 0, ‖ SB(t)‖L1(m0)→L2(m0) . t−d/4.

Proof of Lemma 2.2. The proof is similar to the proof of [17, Lemma 3.9], see also
[26, Section 3], [27, Section 2] and [20]. For the sake of completeness we sketch it
below.

Consider f0 ∈ L2(m0) and denote f(t) = SB(t)f0. From (2.4) with p = 2 and
throwing out the last term in that inequality, we find

d

dt

1

2

∫

Rd

f(t)2m2
0dx ≤ −

∫

Rd

|∇(f(t)m0)|
2dx.

Using Nash’s inequality for g := f(t)m0 ([22, Chapter 8]) stating that for some
constant c > 0

(2.7)

∫

Rd

g2dx ≤ c

(∫

Rd

|∇g|2dx

) d
d+2

(∫

Rd

|g|dx

) 4
d+2

we get (for another constant c > 0)

(2.8) X ′(t) ≤ −2 c Y (t)−4/dX(t)1+
2
d ,

where for brevity of notations we have set

X(t) := ‖f(t)‖2L2(m0)
, Y (t) := ‖f(t)‖L1(m0).

Since according to (2.2) we have Y (t) ≤ Y0 for t > 0, we may integrate the differ-
ential inequality (2.8) and obtain (2.6). �

The next result states that the adjoint of B generates also an ultracontractive
semigroup in the spaces Lp(m0).

Lemma 2.3. Consider the weight function m0 := exp(κ〈x〉γ), for 0 < κγ < 1.
Then there exists R1 ≥ R0 and M1 ≥ M0 (where M0 and R0 are defined in the
previous lemma) such that for M ≥ M1 and R ≥ R1, the semigroup generated by
B∗, the formal adjoint of B, satisfies

(2.9) ∀ t > 0, ‖SB∗
(t)‖L1(m0)→L2(m0) . t−d/4.

Consequently, for M ≥M1 and R ≥ R1, we have

(2.10) ∀ t > 0, ‖ SB(t)‖L2(m0)→L∞(m0) . t−d/4.

Proof of Lemma 2.3. We first observe that if the operator B is of the form

Bf = ∆f + b(x) · ∇f + a(x) f,

and we make the transform h := f m, then the corresponding operator Bmh :=
mB(m−1 h) is of the same type and is given by

Bmh = ∆h+

[
b(x)− 2

∇m

m

]
· ∇h+

[
−
∆m

m
+ 2

|∇m|2

m2
+ a− b(x) ·

∇m

m

]
h.

Observe also that the formal adjoint of B, denoted by B∗ to avoid any misunder-
standing, is given by

B∗g = ∆g − b(x) · ∇g + (a(x) − div(b(x))) g.
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Applying these observations to Bf = ∆f +F ·∇f +(div(F)−MχR) f , we get that
for h := g m0 the operator B∗,m, associated to the formal adjoint B∗, is given by

(2.11) B∗,mh = ∆h−

[
F− 2

∇m

m

]
· ∇h+

[
∆m

m
−MχR − F ·

∇m

m

]
h.

Thus, if g0 ≥ 0 is a smooth initial datum, then the solution g of

∂tg = B∗g, g(0, x) = g0(x),

yields the function h := gm0 which satisfies the evolution equation

(2.12) ∂th = B∗,m0h, h(0, x) = h0(x).

Now, one can verify easily that for h0 ∈ C∞
c (Rd) and h0 ≥ 0, the solution h to the

equation

∂th = ∆h+ b(x) · ∇h+ a(x)h, h(0, x) = h0(x)

satisfies h(t, x) ≥ 0 and for 1 ≤ p <∞ we have the identity

d

dt

1

p

∫
h(t, x)p dx = −(p− 1)

∫
|∇h|2 hp−2 dx+

1

p

∫
(p a(x)− div(b(x)))hp dx.

As a consequence, applying this to the operator B∗,m0 , we have that the solution h
of equation (2.12) verifies

d

dt

1

p

∫
h(t, x)p dx ≤ −(p− 1)

∫
|∇h|2hp−2 dx+

∫
hp ψ∗,m0,p dx,

where, for convenience, we have set

(2.13) ψ∗,p,m0 :=
(p− 2)

p
)
∆m0

m0
+

2

p

|∇m0|2

m2
0

+
1

p
div(F)− F ·

∇m0

m0
−MχR.

Proceeding as we did above in the study of the function defined in (2.4), we may
choose, if necessary, M and R large enough (in particular larger than M0, R0 given
by Lemma 2.2), so that for all x ∈ Rd we have ψ∗,m0, ≤ 0. Therefore we conclude
that

(2.14)
d

dt

1

p
‖h(t)‖pLp ≤ −(p− 1)

∫
|∇h|2hp−2 dx.

On the one hand, taking p := 1, we deduce that the semigroup generated by B∗,m0

is a contraction semigroup in L1(Rd), that is ‖h(t)‖L1 ≤ ‖h0‖L1 for all t ≥ 0.
On the other hand, taking p := 2 and using Nash’s inequality (2.7), together with

the fact that ‖h(t)‖L1 is non increasing, we deduce that if we set X(t) := ‖h(t)‖2L2,
then for some constant c > 0, the function X(t) satisfies the differential inequality

d

dt
X(t) ≤ −c ‖h0‖

−4/d
L1 X(t)(2+d)/d.

Integrating this, we get that for all t > 0

‖h(t)‖L2 . t−d/4 ‖h0‖L1.

From this, by a density argument and the splitting of any initial datum as the
difference of two nonnegative functions, we conclude that for any g0 ∈ L1(m0) the
associated solution to ∂tg = B∗g satisfies

(2.15) ‖SB∗
(t)g0‖L2(m0) = ‖g(t)‖L2(m0) . t−d/4 ‖g0‖L1(m0), ∀t > 0,
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which is precisely (2.9). To conclude the proof of the Lemma, observe that for
f, g ∈ C∞

c (Rd) we have

(Bf |g)L2(m0) =

∫
Bf g m2

0 dx =

∫
Bm0(f m0) (g m0) dx

=

∫
(f m0)B∗,m0(g m0) dx =

∫
(f m0)m

−1
0 B∗,m0(g m0)m0(x)

2 dx

= (f |B∗g)L2(m0).

This allows one to verify that (SB(t))
∗ = SB∗

(t), the adjoint being taken in the sense
of the Hilbert space L2(m0), where we assume that this space is identified with its
dual. Therefore, since with these conventions we have (L1(m0))

′ = L∞(m0), thanks
to (2.15), we conclude (2.10). �

Putting together the previous estimates, we get the following ultracontractivity
result on the semigroup SB and on the iterated convolution family of operators
(ASB)

(∗n).

Lemma 2.4. Consider the weight function m0 := exp(κ〈x〉γ), for 0 < κγ < 1.
Then, M,R being large enough as in Lemma 2.3, there exists λ∗ ∈ (0,∞) such that
for any p, q ∈ [1,∞], p ≤ q, and for any 0 ≤ θ2 < θ1 ≤ 1, the semigroup SB satisfies

(2.16) ‖SB(t)‖Lp(m
θ2
0 )→Lq(m

θ1
0 )

. t−(d/2)(1/p−1/q) e−λ∗ tγ/(2−γ)

, ∀ t > 0.

Moreover, if n ≥ d/2 is an integer, for all λ < λ∗ and all t > 0, we have

(2.17) ‖(ASB)
(∗n)(t)‖L1(m0)→L∞(m2

0)
. e−λ tγ/(2−γ)

.

Proof of Lemma 2.4. Step 1. Writing SB(t) = SB(t/2)SB(t/2), and using (2.6)
together with (2.10), we deduce that for any t > 0

‖SB(t)‖L1(m0)→L∞(m0) ≤ ‖SB(t/2)‖L2(m0)→L∞(m0) ‖SB(t/2)‖L1(m0)→L2(m0)

. t−d/2.(2.18)

Since on the other hand we have also ‖SB(t)f0‖Lp(m0) ≤ ‖f0‖Lp(m0), a classical
interpolation argument yields that for 1 ≤ p ≤ q ≤ ∞, we have

(2.19) ‖SB(t)‖Lp(m0)→Lq(m0) . t−(d/2)(1/p−1/q).

Using Lemma 2.1, since

‖SB(t)‖Lq(m0)→Lq(mθ
0)

. exp(−λtγ/(2−γ)),

one sees that the proof of (2.16) with θ1 = 1 is complete. To see that (2.16)

holds with θ1 < 1, it is enough to observe that mθ1
0 (x) is of the same type as

m0(x) = exp(κ〈x〉γ) provided κ is replaced with θ1κ.

Step 2. In order to show (2.17), first note that the operator A consisting simply
in a multiplication by a smooth compactly supported function, thanks to the above
lemmas, we clearly have, for all t > 0,

(2.20) ‖ ASB(t)‖Lp1(m0)→Lp2(m2
0)

. t−α e−λ tσ
∗

,

with σ∗ := γ/(2 − γ) ≤ 1 and where it is understood that α := d/2 if (p1, p2) :=
(1,∞), and α := 0 when p1 = p2. We claim that the three estimates for three
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choices (p1, p2) = (1,∞), and p1 = p2 = 1, as well as p1 = p2 = ∞, imply that for
all integers n ≥ 1 we have

(2.21) ‖(ASB)
(∗n)(t)‖Lp1(m0)→Lp2(m2

0)
≤ Cn t

n−1−α e−λ tσ
∗

,

from which one readily deduces (2.17). We prove (2.21) by induction. Estimates
(2.21) are clearly true for n = 1. Let us assume that p1 = 1 and p2 = ∞, for which
(2.21) is true for a certain n ≥ 1. Introducing the shorthand notation u := ASB

and ‖ · ‖p1→p2 = ‖ · ‖Lp1(m0)→Lp2(m2
0)
, we have

‖u(∗(n+1))(t)‖1→∞ ≤

∫ t/2

0

‖ u(n)(t− s)‖1→∞ ‖ u(s)‖1→1 ds

+

∫ t

t/2

‖ u(n)(t− s)‖∞→∞ ‖ u(s)‖1→∞ ds

≤ Cn C1 e
−λ tσ

∗

∫ t/2

0

(t− s)−α+n−1 ds

+ Cn C1 e
−λ tσ

∗

∫ t

t/2

(t− s)n−1 s−α ds

≤ Cn C1 e
−λ tσ

∗

t−α+n

{∫ 1/2

0

(1− τ)−α+n−1 dτ

+

∫ 1

1/2

(1 − τ)n−1 τ−α dτ

}
,

where we have used the fact that tσ
∗

≤ (t − s)σ
∗

+ sσ
∗

for any 0 ≤ s ≤ t, since
0 < σ∗ ≤ 1. This proves estimate (2.21) at rank n+ 1 and (p1, p2) = (1,∞).

The proof of the other cases (p1, p2) = (1, 1) and (p1, p2) = (∞,∞) is similar, if
not much simpler, and can be left to the reader. �

2.2. Additional growth estimates. In order to deal with the general case in
Section 6, we will need a more accurate version of the previous estimates.

Lemma 2.5. Consider m0 := e2κ〈x〉
γ

with κ ∈ (0, 1/(4γ)) and define the sequence
of spaces

(2.22) Xk := L2(mk), mk :=
m0

νk
, νk(x) :=

k∑

ℓ=0

(κ 〈x 〉γ)ℓ

ℓ!
,

for any k ∈ N. There exist some constants R and M in the definition of B and
some constant β > 0 such that for any k, j ∈ N, k ≥ j and any α ∈ (0, α∗),
α∗ := 1/2(1− γ), the semigroup SB satisfies the growth estimate

(2.23) ‖ SB(t)‖Xk−j→Xk
. e−λ 〈tα〉2(γ−1)t +

(
1 ∧

kj

κj 〈tα〉γj

)
∀ t > 0.

Proof of Lemma 2.5. We easily compute

∇mk

mk
= γ κ x 〈x〉γ−2

[
2−

1 + ...+ (κ 〈x 〉γ)k−1/(k − 1)!

1 + ...+ (κ 〈x 〉γ)k/k!

]
,

from which we deduce ∣∣∣
∇mk

mk

∣∣∣ ≤ 2 γ κ |x| 〈x〉γ−2 ,
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and

−F ·
∇mk

mk
≤ −γ κ |x|γ 〈x〉γ−2 ∀x ∈ Bc

R0
.

As a consequence, for f(t) := SB(t)f0, we have

d

dt

∫
f2m2

k ≤ −

∫
|∇f |2m2

k +

∫
f2m2

k ψk,

with

ψk =
|∇mk|2

m2
k

+
1

2
div(F)− F ·

∇mk

mk
−M χR

≤ 4 γ2 κ2 |x|2 〈x〉2γ−4 +
1

2
C′

F 〈x〉γ−2

−γ κ |x|γ 〈x〉γ−2 1Bc
R0

−M χR

≤ −2λ 〈x〉2(γ−1)

for any x ∈ Rd and k ∈ N, by fixing κ > 0 small enough (as we did) and then R
and M large enough. We deduce

(2.24)
d

dt

∫
f2m2

k ≤ −

∫
|∇f |2m2

k − 2λ

∫
f2m2

k 〈x〉
2(γ−1),

and in particular

Yk(t) :=

∫
f2m2

k ≤ Yk(0) for any k ≥ 0.

We now observe that for any j ∈ N, 0 ≤ j ≤ k, there hold mk ≤ mk−j as well as

mk(x) ≤
m0(x)

νk−j(x) (κ 〈x〉γ/k)j
=

kj

κj 〈x〉γj
mk−j(x) ∀x ∈ R

d.

The two inequalities together, we have proved

(2.25) ∀ j ≤ k, ∀x ∈ R
d mk(x) ≤

(
1 ∧

kj

κj 〈x〉γj

)
mk−j(x).

As a consequence, for any ρ > 0, we have

Yk =

∫

Bρ

f2m2
k +

∫

Bc
ρ

f2m2
k

≤ 〈ρ〉2(1−γ)

∫
f2m2

k 〈x〉
2(γ−1) +

(
1 ∧

kj

κj 〈ρ〉γj

)2
Yk−j .

Coming back to (2.24), we deduce

d

dt
Yk ≤ −2λ 〈ρ〉2(γ−1) Yk + 2λ 〈ρ〉2(γ−1)

(
1 ∧

kj

κj 〈ρ〉γj

)2
Yk−j(0),

which in turn implies

Yk(t) ≤
{
e−2λ 〈ρ〉2(γ−1)t +

(
1 ∧

kj

κj 〈ρ〉γj

)2}
Yk−j(0) ∀ t ≥ 0, ρ > 0.

We conclude by making the choice ρ = tα for α ∈ (0, α∗). �
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Lemma 2.6. Consider m0 := eκ〈x〉
γ

with κ ∈ (0, 1/(2γ)). There exist two constants
C, λ > 0 such that SB satisfies (recall that σ∗ = γ/(2− γ))

(2.26) ‖ SB(t)‖L2(m0)→H1 ≤
C

t1/2
e−λ tσ

∗

∀ t > 0.

Proof of Lemma 2.6. The function f = SB(t)f0 satisfies

∂t∂if = ∆∂if+(∂idiv(F))f+div(F) ∂if+∂iFj∂jf+F·∇∂if−M∂iχRf−MχR∂if,

so that

1

2

d

dt

∫
|∇f |2m2

0 = −

∫
|D2f |2m2

0 +
1

2

∫
|∇f |2∆m2

0 −

∫
(divF) f(∆f)m2

0

−

∫
(div(F)) f ∇f · ∇m2

0 −

∫
∂iFj∂if∂jf m

2
0 −

1

2

∫
(div(F)) |∇f |2m2

0

−
1

2

∫
|∇f |2F · ∇m2

0 +M

∫
div(∇χRm

2
0)f

2 −

∫
MχR|∇f |

2

≤ −
1

2

∫
|D2f |2m2

0dx+

∫
|∇f |2m2

0ψ1 dx+

∫
f2m2

0ψ2 dx,

with

ψ1(x) :=
1

2

∆m2
0

m2
0

+
1

2
|div(F)|

|∇m2
0|

m2
0

+
3

2
|DF| − F ·

∇m0

m0
−MχR

and

ψ2(x) := (div(F))2 +
1

2

∆m2
0

m2
0

+
1

2
|divF|

|∇m2
0|

m2
0

+M |∆χR| +M |∇χR|
|∇m2

0|

m2
0

.

Choosing M and R large enough, we have for some constants a > 0 and C ∈ R

ψ1(x) ≤ −a 〈x〉2(γ−1), ψ2(x) ≤ C 〈x〉2(γ−1),

and, choosing then η > 0 small enough, we get

d

dt

∫
(f2 + η|∇f |2)m2

0 ≤ −
1

2

∫
(|∇f |2 + η|D2f |2)m2

0

−a

∫
(f2 + η|∇f |2)m2

0 〈x〉
2(γ−1).

On the one hand, keeping only the second term and arguing as in the proof of
Lemma 2.1, we get

(2.27) ‖ SB(t)‖B(H1(m0),H1) ≤ Θm(t), ∀ t ≥ 0.

On the other hand, using the elementary inequality
∫

|∇f |2m2
0 = −

∫
fD2fm2

0+
1

2

∫
f2∆m2

0 ≤ ‖ f‖L2(m0) ‖ f‖H2(m0)+C ‖ f‖2L2(m0)
,

the differential inequality

d

dt
‖ ∇f‖2L2(m0)

≤ −‖ D2f‖2L2(m0)
+ ‖ψ2‖L∞‖f‖2L2(m0)

and the contraction in L2(m0), we then obtain

d

dt
‖ ∇f‖2L2(m0)

≤ −‖ f0‖
−2
L2(m0)

‖ ∇f‖4L2(m0)
+ ‖ψ2‖L∞‖f0‖

2
L2(m0)

.
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As in the proof of Lemma 2.1, we deduce

(2.28) ‖ ∇f‖2L2(m0)
≤
C

t
‖f0‖

2
L2(m0)

∀ t ∈ (0, 1).

We easily deduce (2.26) by gathering (2.27) and (2.28). �

3. Boundedness of SL

In this section, we establish some estimates on SL which are simple results yielded
by the iterated Duhamel formula (1.28) and the previous estimates on SB.

Lemma 3.1. For any exponent p ∈ [1,∞] and any weight function m given by
(1.9), (1.10) or (1.11), there exists C(m, p) such that

‖ SL(t)‖B(Lp(m)) ≤ C(m, p), ∀ t ≥ 0.

Proof of Lemma 3.1. The estimate

(3.1) ‖ SL(t)‖B(L1) ≤ 1, ∀ t ≥ 0,

is clear and is a consequence of the fact that SL is a positive and mass conserving
semigroup.

Step 1. We consider first the case p = 1 and we write the Duhamel formula

SL = SB + SB ∗ ASL,

which allows one to deduce that

‖SL‖L1
k→L1

k
≤ ‖SB‖L1

k→L1
k
+ ‖SB‖L1

k+ℓ→L1
k

∗ ‖ ASL‖L1→L1
k+ℓ

≤ C,

because t 7→ ‖ ASL(t)‖L1→L1
k+ℓ

is a bounded function thanks to (3.1), and, upon

choosing ℓ := 2(2 − γ) and applying Lemma 2.1, we have ‖SB‖L1
k+ℓ

→L1
k
. 〈t〉−2,

showing that ‖SB(t)‖L1
k+ℓ→L1

k
belongs to L1(0,∞).

Step 2. In order to study the case 1 < p ≤ ∞, we write the iterated Duhamel
formula (1.28) with n1 := ℓ+ 1 and n2 := 0 and we get

SL = SB + · · ·+ SB ∗ (ASB)
(∗(ℓ−1)) + SB ∗ (ASB)

(∗ℓ) ∗ (ASL)

with ℓ := d/2 + 1 and then we infer that

‖ SL‖B(Lp(m)) ≤
ℓ−1∑

j=0

‖SB‖B(Lp(m)) ∗ ‖ ASB‖
(∗j)
B(Lp(m))

+ ‖SB‖Lp(̟)→Lp(m) ∗ ‖ (ASB)
(∗ℓ)‖L1(̟)→L∞(̟2) ∗ ‖ ASL‖Lp(m)→L1(̟) ,

where ̟ := eν 〈x〉γ with ν ∈ (0, 1/γ) large enough. Using (2.20) and (2.17), we see
that the RHS term is uniformly bounded as the sum of ℓ + 1 functions, each one
being the convolution of one L∞ function with integrable functions. �

Remark 3.2. When p = 1, m = 〈x〉k and f(t) ≥ 0, the above estimate means
exactly that for k > 2− γ > 1, there exists a constant Ck such that

Mk(SL(t)f0) ≤ CkMk(f0), Mk(f) :=

∫

Rd

f 〈x〉k dx.

We then recover (with a simpler proof) and generalize (to a wider class of confine-
ment force fields) a result obtained by Toscani and Villani in [33, section 2].
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4. The Case 1 when a Poincaré inequality holds

In this section we restrict our analysis to Case 1, that is when furthermore the
steady state G to the Fokker-Planck equation (1.1) is such that the weak weighted
Poincaré-Wirtinger inequality (1.14) holds true and the function V := − logG is of
order 〈x〉γ , that is it satisfies (1.13). We startb by showing the probably classical
fact that (1.14) holds in the case when c1 = c2 in (1.13). The proof uses some of
the arguments exposed in [3, 11].

Lemma 4.1. Consider a potential function V such that (1.13) holds with c1 = c2
and denote G := e−V (that we assume to have mass 1). There exists µ ∈ (0,∞)
such that the following weak weighted Poincaré inequality

∫
|∇h|2Gdx ≥ µ

∫
h2〈x〉2(γ−1)Gdx

holds for any h ∈ C1
b (R

d) such that M(hG) = 0.

Proof of Lemma 4.1. We observe that |∇V (x)|2 ∼ c21γ
2|x|2γ−2 and |∆V (x)| ∼

c1γ|γ + d− 2||x|γ−2, so that

(4.1) ∀ θ ∈ (0, 1), ∃R1 > 0, θ|∇V |2 ≥ ∆V on Bc
R1
.

We fix h ∈ D(Rd) such that M(hG) = 0. On the one hand, defining g = h e−aV

and using the identity
∫

|∇h|2 e−V =

∫
|∇g|2 e(2a−1)V + a

∫
h2[(1 − a)|∇V |2 −∆V ] e−V

with a := (1 − θ)/2 together with (4.1), we obtain a first estimate

(4.2)
(1− θ)2

4

∫
h2|∇V |2 e−V ≤

∫
|∇h|2 e−V + b

∫

BR0

h2 e−V .

On the other hand, using the Poincaré-Wirtinger inequality in H1(BR, Gdx), we
get

(4.3)

∫

BR

h2
G

M(G1BR)
≤ CR

∫

BR

|∇h|2
G

M(G1BR)
+
(∫

BR

h
G

M(G1BR)

)2
,

with possibly CR → ∞ when R → ∞. Using the vanishing moment condition
M(hG) = 0 and the Cauchy-Schwarz inequality, we also have

(4.4)
(∫

BR

hG
)2

=
(∫

Bc
R

hG
)2

≤ εR

∫

Bc
R

h2 |∇V |2G,

with

εR :=

∫

Bc
R

|∇V |−2 e−V → 0 as R → ∞.

Gathering (4.3) and (4.4) for R ≥ R2, we obtain the second estimate
∫

BR

h2 e−V ≤ CR

∫

BR

|∇h|2 e−V dx+ 2
(∫

BR

h e−V dx
)2

≤ CR

∫

BR

|∇h|2 e−V dx+ 2εR

∫

Bc
R

h2 |∇V |2 e−V .(4.5)
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Inserting (4.5) into (4.2) with R ≥ max(R1, R2), we obtain

(1 − θ)2

4

∫
h2|∇V |2 e−V ≤ (1 + CR)

∫
|∇h|2 e−V + 2εR

∫

Bc
R

h2 |∇V |2 e−V ,

and we conclude by taking R large enough in such a way that 2εR < (1− θ)2/4. �

4.1. Decay estimate in a small space.
We first recall the following decay estimate in a small space. We define

E1 := L2(G−1/2), E2 := L∞(G−1).

Theorem 4.2 (Röckner-Wang [31]). Under assumptions (1.14)–(1.13) on the steady
state G, set

(4.6) ΘG−1(t) := exp(−λtγ/(2−γ)).

Then there exists λ∗ such that for λ < λ∗ the semigroup SL satisfies for all t > 0

(4.7) ‖SL(t)f0 −M(f0)G‖E1 . ΘG−1(t) ‖ f0 −M(f0)G‖E2 .

We briefly sketch a proof of Theorem 4.2 which uses as a cornerstone the weak
Poincaré inequality (1.14). We refer to [31] for a more detailed proof which uses
closedly related (but different) arguments and more precisely which are based on
the so-called weak Poincaré inequality (see [31, 11, 4]).

Proof of Theorem 4.2. We define V := − logG, we set F0 := F − ∇V and we
observe that div(GF0) = 0. The Fokker-Planck equation (1.1) can be rewritten as

(4.8) ∂tf = div[ G∇(fG−1) + fF0].

Now, since fF0 = fG−1 ·GF0 and div(GF0) = 0, we have

div(fF0) = ∇(fG−1) ·GF0.

Thus if j : R −→ R is a locally Lispchitz function such that j(fG−1) ∈ L1, we see
that j′(fG−1)div(fF0) = ∇j(fG−1) ·GF0 and therefore

(4.9)

∫
j′(fG−1)div(fF0) =

∫
∇j(fG−1) ·GF0 = −

∫
j(fG−1)div(GF0) = 0.

In particular, taking j(s) := s2/2 we see that
∫
fG−1div(fF0) = 0,

and as a consequence, multiplying (4.8) by fG−1 we obtain

1

2

d

dt

∫
f2G−1 = −

∫
G | ∇(fG−1)|2 +

∫
div[fF0]fG

−1

≤ −µ

∫
f2 〈x〉2γ−2G−1,(4.10)

thanks to the weak Poincaré inequality (1.14).
More generally, for any convex function j : R → R, locally in W 2,∞, using (4.9)

on sees easily that the following generalized relative entropy inequality holds (see
[24], and also [31] and the references therein)

d

dt

∫
j(fG−1)G =

∫
j′(fG−1)div[ G∇(fG−1)] +

∫
j′(fG−1)div[fF0]

= −

∫
j′′(fG−1)|∇(fG−1)|2 ≤ 0.
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In particular, taking j(s) = |s|p, we obtain

‖f(t)G−1‖Lp ≤ ‖f0G
−1‖Lp ,

and passing to the limit p→ ∞, we get

(4.11) ‖f(t)G−1‖L∞ ≤ ‖f0G
−1‖L∞ , ∀ t ≥ 0.

We obtain (4.7) by gathering the two estimates (4.10) and (4.11). More precisely,
we write, with k := 2− 2γ,

∫
f2G−1 ≤

∫

BR

f2G−1 +

∫

Bc
R

f2G−1

≤ Rk

∫

BR

f2 G−1 〈x〉−k + ‖fG−1‖2L∞

∫

Bc
R

G.

Together with (4.10) and (4.11), we get for R ≥ R0

d

dt

∫
f2G−1 ≤ −R−k

∫
f2G−1 + ‖f0G

−1‖2L∞

∫

Bc
R

e−c1|x|
γ

.

Integrating in time, for any θ ∈ (0, 1), we find a constant Cθ > 0 such that
∫
f2G−1 ≤ e−tR−k

∫
f2
0 G

−1 + Cθ e
−θc1R

γ

‖f0G
−1‖2L∞

≤ e−λ tγ/(2−γ)

‖f0G
−1‖2L∞ ,

by choosingR := (t/(θc1))
1/(2−γ) for t large enough and defining λ := (θc1)

−1/(2−γ),
which is nothing but (4.7). �

4.2. Rate of decay in a large space. We now present the proof of our main
Theorem 1.2 in the Case 1 when furthermore G satisfies the weak Poincaré in-
equality (1.14) and the asymptotic estimates (1.13). We recall that the projection
operator Π is defined by

Πf := M(f)G.

Step 1. Here we consider the case p ∈ [1, 2]. We begin by fixingm a polynomial or
exponential weight function, and we introduce a stronger confinement exponential
weightm0(x) := exp(κ0 〈x〉γ), with κ0 ∈ (0, 1/γ). We denote by Θm(t), Θm0(t) and
ΘG−1(t) the associated rate of decay defined in (1.18), (1.19) and in the statement
of Theorem 4.2, and we may assume that Θm0/Θm,ΘG−1/Θm ∈ L1(0,∞). We
split the semigroup on invariant spaces

SL = ΠSL + (I −Π)SL,

and together with the iterated Duhamel formula (1.28) with n1 = 0 and n2 := n ≥
d/2 + 1, we can write

SL −Π = SL(I −Π) = (I −Π)SL = T1 + T2,

where

T1 := (I −Π)

(
SB +

n−1∑

ℓ=1

(SBA)(∗ℓ) ∗ SB

)
(4.12)

T2 := ((I −Π)SL) ∗ (ASB)
(∗n).
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In order to estimate the first term T1, we recall that

‖ SB(t)‖Lp(m)→Lp ≤ Θm(t), ‖ SB(t)A‖Lp→Lp ≤ Θm0(t),

thanks to Lemma 2.1. We write

‖T1‖B(Lp(m),Lp) ≤ u0 + ...+ un−1

where, for ℓ ∈ {1, ..., n− 1}, we set

uℓ := C ‖ SBA‖
(∗ℓ)
B(Lp) ∗ ‖ SB‖B(Lp(m),Lp).

Since clearly Θ−1
m (t) ≤ Θ−1

m (s)Θ−1
m (t− s) for all 0 ≤ s ≤ t, we deduce

‖ Θ−1
m uℓ‖L∞

t
≤ ‖ Θ−1

m SBA‖ℓL1
t (B(Lp)) ‖ Θ−1

m SB‖L∞

t (B(Lp(m),Lp)),

and then
∀ t ≥ 0, ‖ T1(t)‖B(Lp(m),Lp) ≤ C Θm(t).

In order to estimate the second term T2, we recall that from Lemma 2.1, Lemma 2.4
and Theorem 4.2, we have

‖ ASB(t)‖B(Lp(m),L1(m0)) ≤ Θm(t),

‖ (ASB)
(∗(n−1))(t)‖B(L1(m0),L∞(m1)) ≤ Θm0(t),

‖ SL(t)(I −Π)‖B(L∞(G−1),L2(G−1/2)) ≤ ΘG−1(t),

where m1 := m0 +G−1. We thus obtain that T2 satisfies the same estimate as T1.
We deduce (1.20) by gathering the two estimates obtained on T1 and T2.

Step 2. We consider next the case p ∈ [2,∞]. Thanks to the iterated Duhamel
formula (1.28) with n1 := n ≥ d/2 + 1 and n2 = 1, and using the fact that

(SBA)(∗n) = SB ∗ (SBA)(∗(n−1)) ∗ A,

we can write
SL −Π = T1 + T3

where T1 is defined again by (4.12) and

T3 := (I −Π)SB ∗ (ASB)
(∗(n−1)) ∗ ASL ∗ (ASB)

and we conclude in a similar way as in Step 1. �

5. The general case - the stationary problem

In this section, we present the proof of the existence and uniqueness of the solu-
tion to the stationary problem as claimed in Theorem 1.1 in the general case, that
is assuming that the force field satisfies conditions (1.3)–(1.5), without any further
assumption on the existence and particular properties of a positive stationary state.

In order to do so, we define the “small” Hilbert space

X := L2(m0), m0 := exp(κ 〈x〉γ), κ ∈ (0, 1/γ),

and we study some of the spectral properties of the opertaor L acting in X . We
consider below the eigenvalue problem on the imaginary axis. We start recalling
some standard notions and notations. For an operator Λ acting in a Banach space
X , we denote N(Λ) := Λ−1({ 0}) its null space, Σ(Λ) its spectrum, ΣP (Λ) its point
spectrum set, that is the set of the eigenvalues of Λ, while ρ(Λ) := C\Σ(Λ) will
denote its resolvent set and RΛ(z), for z ∈ ρ(Λ), the resolvent operator defined by

RΛ(z) := (Λ− zI)−1.
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We denote X+ the positive cone of X . In this section we shall prove

Theorem 5.1. There exists a unique steady state G ∈ X, positive, normalized with
total mass M(G) = 1, such that

(5.1) N(Ln) = span(G), ∀n ≥ 1.

Moreover, there holds

(5.2) ΣP (L) ∩ {z ∈ C ; ℜe z ≥ 0} = {0}.

Finally, estimate (1.12) holds true.

We start by recalling some elementary properties regarding the positivity of the
semigroup SL(t).

Proposition 5.2. The operator L and its semigroup SL satisfy the following prop-
erties:
(a) The semigroup SL is positive, namely SL(t)f ≥ 0 for any f ≥ 0 and t ≥ 0.
(b) The operators L and L∗ satisfy Kato’s inequality, that is if f ∈ D(L) is complex
valued, then we have

(5.3) L|f | ≥
1

|f |
ℜe(f Lf), L∗|g| ≥

1

|g|
ℜe(gL∗g) in D′(Rd).

The above inequality means in particular that for all ψ ∈ D(L∗) ∩ X+ and all
ϕ ∈ D(L) ∩X+, we have

〈|f |,L∗ψ〉 ≥ ℜe〈|f |−1 f Lf, ψ〉, 〈Lϕ, |g|〉 ≥ ℜe〈ϕ, |g|−1 gLg〉.

(c) The operator −L satisfies a “weak maximum principle”, namely for any a > 0
and g ∈ X+, there holds

(5.4) f ∈ D(L) and (−L+ a)f = g imply f ≥ 0.

(d) The opposite of the resolvent operator is a positive operator, namely for any
a > 0 and g ∈ X+, there holds −RL(a)g ∈ X+.

Proof of Proposition 5.2. The argument to establish (5.3) is a classical one,
but we outline it briefly. For a smooth complex valued function f if we set fε :=
(ε2 + |f |2)1/2 − ε, then for 1 ≤ j ≤ d we have

∂jfε =
ℜe(f ∂jf)

(ε2 + |f |2)1/2
,(5.5)

∂jjfε =
ℜe(f ∂jjf)

(ε2 + |f |2)1/2
+

|∂jf |2

(ε2 + |f |2)1/2
−

(
ℜe(f ∂jf)

)2

(ε2 + |f |2)3/2
.(5.6)

Observe that fε → |f | in H1
loc(R

d) as ε → 0, we have ∂j |f | = |f |−1ℜe(f ∂jf) in
H1

loc(R
d). Also since

|∂jf |2

(ε2 + |f |2)1/2
−

(
ℜe(f ∂jf)

)2

(ε2 + |f |2)3/2
≥ 0,

we conclude that ∂jjfε ≥ f−1
ε ℜe(f ∂jjf). Passing to the limit in the sense of the

distributions we obtain ∂jj |f | ≥ |f |−1 ℜe(f ∂jjf), and using the expressions of the
operators L and L∗ we obtain (5.3).

The properties (a), (c) and (d) are classical consequences of (5.3), applied to
real valued functions, see for instance [2] or [25]. �
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Remark 5.3. For later use, we point out that if f ∈ H2
loc(R

d) is complex valued
and moreover is such that |f | > 0 on Rd, then as ε → 0 one may pass to the limit
in (5.5) and (5.6) and obtain the following equalities

∂j |f | =
ℜe(f ∂jf)

|f |
,(5.7)

∂jj |f | =
ℜe(f ∂jjf)

|f |
+

|∂jf |2

|f |
−

(
ℜe(f ∂jf)

)2

|f |
.(5.8)

Proposition 5.4. The operator −L satisfies a “strong maximum principle”, namely
for any given real valued function f ∈ X\{0}, there holds

f, |f | ∈ D(L), Lf = 0 and L|f | = 0 imply f > 0 or f < 0.

Proof of Proposition 5.4. Consider f ∈ X\{0} such that f ∈ D(L) and Lf =
0. By a bootstrap regularization argument, we classically have f ∈ C(Rd). By
assumption, there exist then x0 ∈ R

d, and two constants c, r > 0 such that |f | ≥ c
on B(x0, r). From Lemma 2.1, we also have that the operator L−aI is dissipative
for a large enough, in the sense that

(5.9) ∀ f ∈ D(L) ((L − a)f |f)X ≤ −‖ f‖2X .

For instance one can take a := M + 1, where M is the constant entering in the
definition of B, using the fact that B is then dissipative and that the same holds
for L−MI because 0 ≤ A ≤M .

We next observe that for σ > 0 large enough, the function

g(x) := c exp(σr2/2− σ|x − x0|
2/2)

satisfies g = c on ∂B(x0, r) and

(−L+ a)g = (a+ dσ + σF · (x− x0)− divF− σ2|x− x0|
2) g ≤ 0 on B(x0, r)

c.

We define h := (g − |f |)+ and Ω := Rd\B(x0, r). We have h ∈ H1
0 (Ω,mdx) and

(L − a)h ≥ θ′(g − |f |)L(g − |f |)− a h

= θ′(g − |f |) [ (L − a)g + a|f |] ≥ 0,

where we have used the notation θ(s) = s+. Thanks to a straightforward general-
ization of (5.9) to H1

0 (Ω,m), we deduce

0 ≤ ((L − a)h|h)L2(Ω,m) ≤ −‖ h‖2L2(Ω,m),

and then h = 0. This implies that we have |f | ≥ g on Ω = B(x0, r)
c
, and thus

|f | > 0 on R
d. Since f ∈ C(Rd), we must have either f ≥ g > 0 or f ≤ −g < 0. �

Proof of Theorem 5.1. We split the proof into six steps.

Step 1. We prove that there exists G ∈ N(L) such that G > 0, which yields in
particular that 0 ∈ ΣP (L). In other words, we prove that there exists a positive
and normalized (with mass 1) steady state G ∈ X . For the equivalent norm ||| · |||
defined on X by

|||f ||| := sup
t>0

‖ SL(t)f‖X ,

we have |||SL(t)f ||| ≤ |||f ||| for all t ≥ 0, that is the semigroup SL is a contraction
semigroup on (X, ||| · |||). There exists R > 0 large enough such that the intersection
of the closed hyperplane H := {f ; M(f) = 1} and the closed ball of radius R in
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(X, ||| · |||) is a convex, non empty subset. Then consider the closed, weakly compact
convex set

K := {f ∈ X+ ; |||f ||| ≤ R, M(f) = 1} .

Since SL(t) is a linear, weakly continuous, contraction in (X, |||·|||) and M(SL(t)f) =
M(f) for all t ≥ 0, we see that K is stable under the action of the semigroup.
Therefore we apply the Markov–Kakutani fixed point theorem (see for instance [13,
Theorem 6, chapter V, § 10.5, page 456] or its (possibly nonlinear) variant [15,
Theorem 1.2]) and we conclude that there exists G ∈ K such that SL(t)G = G.
Therefore we have in particular G ∈ D(L) and LG = 0. Moreover since G ≥ 0,
G 6≡ 0 and G ∈ C(Rd), we may conclude that G > 0 on Rd by the strong maximum
principle.

Step 2. In this step we prove that N(L2) = N(L), which implies that N(Ln) =
N(L) for all n ≥ 1. Otherwise, there would exist g1 ∈ D(L) with ‖g1‖ = 1 and
g2 ∈ D(L) such that Lg1 = 0 and Lg2 = g1. Since SL(t)g1 = g1 for all t ≥ 0, one
sees easily that one must have SL(t)g2 = g2 + tg1. However, since g1 6= 0, this is
in contradiction with the fact that the semigroup SL is bounded on X as stated in
Lemma 3.1.

Step 3. We prove here that N(L) = span(G). Since L is a real operator, we may
restrict ourselves to real valued eigenfunctions. Consider a real valued eigenfunction
f ∈ N(L) with f 6≡ 0. First we observe that thanks to Kato’s inequality we have

0 = (Lf) sgn(f) ≤ L|f |.

Actually this inequality must be an equality, since otherwise we would have

0 6= 〈L|f |, 1〉 = 〈|f |,L∗1〉 = 0,

which is a contradiction. As a consequence, we have also |f | ∈ N(L), so that the
strong maximum principle, Proposition 5.4, implies that either f > 0 or f < 0, and
without loss of generality we may assume that f > 0, and up to a multiplication
by a normalization factor, we may also assume that M(f) = 1. Now, using once
more Kato’s inequality we have

0 = 1[f−G>0]L(f −G) ≤ L(f −G)+,

and due to the same reasons as above, we may conclude that this last inequality is
in fact an equality, that is (f−G)+ ∈ N(L). The strong maximum principle implies
that either (f −G)+ ≡ 0 or (f −G)+ > 0 on Rd. This means that either we have
f ≤ G or f > G on Rd. Thanks to the normalization hypothesis M(f) = M(G) = 1,
the second possibility must be excluded and thus we have f ≤ G on Rd. Repeating
the same argument with (G − f)+ we deduce that G ≤ f and we conclude that
f = G.

Step 4. We prove here that iR ∩ ΣP (L) = {0}: that is that the only eigenvalue
with vanishing real part is zero, or in other words, (5.2) holds. We consider a couple
(f, µ) of eigenfunction and eigenvalue, with µ := iω ∈ iR, and normalized so that
M(|f |) = 1. Using the complex version of Kato’s inequality (5.3), we have

(5.10) L|f | ≥
1

|f |
ℜe(f Lf) = 0.

Computing 〈L|f |, 1〉, thanks to the above inequality, we get

0 ≤ 〈L|f |, 1〉 = 〈|f |,L∗1〉 = 0,
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which implies that the inequality is in fact an equality, that is L|f | = 0, and since
M(G) = M(|f |) = 1, we conclude that |f | = G > 0.

Next, using Remark 5.3 and (5.7)–(5.8), we have

|f | L|f | = ℜe(f ∆f) + ℜe(f F · ∇f) + div(F)|f |2 + |∇f |2 −
1

|f |2
∣∣ℜe(f ∇f)

∣∣2

= ℜe(f Lf) + |∇f |2 −
1

|f |2
∣∣ℜe

(
f ∇f

)∣∣2 .

Together with L|f | = 0 and ℜe(f Lf) = 0 (since Lf = iωf), the above identity
implies

(5.11) |∇f |2 −
1

|f |2
∣∣ℜe(f ∇f)

∣∣2 = 0.

From this, as explained below, we infer that f = exp(i θ)G for some constant
θ ∈ [0, 2π], and thus Lf = exp(i θ)LG = 0 and ω = 0.

Indeed, in order to see that f = exp(i θ)G, for some θ ∈ [0, 2π], let us write

f = u+ i v

for two real valued functions u and v. Then, since ℜe(f ∇f) = u∇u+v∇v, relation
(5.11) means that

(u2 + v2)
(
|∇u|2 + |∇v|2

)
= |u∇u+ v∇v|2 ,

which yields v∇u− u∇v = 0. Since u and v are both continuous functions and are
not both identically equal to zero, we may assume for instance that there exists
x0 ∈ R

d such that u(x0) > 0. Thus, if we denote by Ω the connected component
of {x ∈ Rd; u(x) > 0} containing x0, we have ∇(v/u) = 0 on Ω. Hence v = αu
on Ω for some α ∈ R. However we must have Ω = Rd, since otherwise we would
have |f | = 0 on ∂Ω, which would be a contradiction with the fact that G = |f | > 0
in Rd. Thus, setting a := 1 + iα we get f = a u and thus u = |u| = |f |/|a| is
a positive steady state, so that |u| = G/|a| > 0 from Step 3. We conclue that
f = aG/|a| = exp(i θ)G for some θ ∈ [0, 2π].

Step 5. Denoting m := eκ〈x〉
γ

, with κ ∈ (0, 1/γ), and α := κγ(1− κγ)/2 > 0, the
function ψ0

m,1 being defined by (2.4) for p = 1, M,R > 0 large enough so that

mψ0
m,1 = L∗m−MχRm = ∆m− F · ∇m−MχRm ≤ −αm,

with α > 0, we have

0 =

∫
(LG)m =

∫
G (L∗m) =

∫
G (mψ0

m,1 +MχRm),

and therefore ∫
Gm ≤

1

α

∫
GMχRm ≤

M

α
M(G).

We have proved G ∈ L1(m). Using the regularization property of SB established
in Lemma 2.3 and Lemma 2.4 as well as the same Duhamel formula as in Step 1 in
the proof of Lemma 3.1, we deduce G ∈ L∞(m).

Step 6. We define κ∗1 := γ−1 lim sup|x|→∞ x · F(x)/|x|γ and we know that

κ∗ ∈ [1/γ,∞) from assumptions (1.3) and (1.4). We then denote g := c eκ|x|
γ

, with
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κ > κ∗1, and we compute

g−1[(−L+ a)g] = −κ2γ2|x|2(γ−1) + κγF · x |x|γ−2

+a− divF+ κγ(d+ γ − 2)|x|γ−2 ≤ 0 on B(0, R)c,

for some R > 0 large enough. Arguing as in the proof of Proposition 5.4, we deduce
that G ≥ g on B(0, R)c, and this yields the claimed lower bound (see also the proof
of Lemma 6.2 below for similar aguments). �

6. The general case - decay estimate

In this section we present the proof of the our main Theorem 1.2 in the general
case, that is assuming that the force field satisfies conditions (1.3)–(1.5). We denote
by X0 the “small” Banach space

X0 := Lp(m0), m0 := exp(κ 〈x〉γ), κ ∈ (0, κ∗0), p = 1 or 2,

and we will establish a semigroup decay in that space using three different strategies.
The proof of the decay of the semigroup in a general Banach space Lp(m), with a
weight function m which is a polynomial or an exponential function, then follows
the same arguments as the ones which have been developed in section 4.2 and may
be skipped here.

6.1. Modified Poincaré inequality approach. In this section we fix the weight
function m = m0 as defined above. We recall the so-called Lyapunov condition

(6.1) L∗m0 ≤ −ξ0 +M1BR0
, ξ0(x) := ζ0m0(x)〈x〉

2(γ−1),

which holds for some appropriate constants ζ0,M,R0 ∈ (0,∞) and which has been
established in Step 1 in the proof of Lemma 2.1. We also recall that the sta-
tionary state G given by Theorem (5.1) satisfies estimate (1.12), and thus a local
Poincaré (or Poincaré-Wirtinger) inequality on any ball with constants which may
be estimated explicitely. Under both above assumptions, we may adapt the proof
of [4, Theorem 3.6] by Bakry, Cattiaux and Guillin in order to get the following
“weak Lyapunov-Poincaré inequality” which is a generalisation of the weak weighted
Poincaré-Wirtinger inequality (1.14) established in Lemma 4.1.

Lemma 6.1. There exists a constant β ∈ (0,∞) such that denoting w0 := 1+βm0

and recalling that the function ξ0 has been defined by (6.1), the following inequality

(6.2)
1

4

∫
h2ξ0G ≤

∫ (
w0|∇h|

2 −
1

2
h2L∗w0

)
G,

holds for all functions h ∈ C1
b (R

d) such that M(hG) = 0.

Proof of Lemma 6.1. We take h ∈ C1
b (R

d) such that M(hG) = 0. From (6.1), we
have ∫

h2ξ0G ≤

∫
h2
(
M 1BR0

− L∗m0

)
G.

For any R ≥ R0, the local Poincaré inequality writes
∫
h2 1BR G ≤ κR

∫

BR

|∇h|2G+
1

M(G1BR)

(∫

Bc
R

hG
)2

≤
κR

1 + β

∫
|∇h|2 w0G+

M(ξ−1
0 G1Bc

R
)

M(G1BR)

∫
h2 ξ0G,
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where we have used the the zero mass condition M(hG) = 0 in the first line and
the Cauchy-Schwarz inequality in the second line. We then deduce

(
1−M

M(ξ−1
0 G1Bc

R
)

M(G1BR)

) ∫
h2ξ0G ≤

MκR
1 + β

∫
|∇h|2 w0G+

∫
h2 (−L∗w0

)
G.

We may then first fix R > R0 large enough and next β > 0 large enough in such a
way that (6.2) holds. �

We introduce the weight function m := w
1/2
0 G−1/2 and the associated Hilbert

space L2(m). Despite the fact that in general the operator L is not symmetric in
L2(m), the associated Dirichlet form has a nice positivity property. More precisely,
in order to make the discussion simpler, we shall consider the conjugate operator
h 7→ Lh := G−1L(Gh), which amounts to make the change of function h := G−1f ,
and thus we define

Lh := G−1 L(Gh) = ∆h+
(
2
∇G

G
+ F

)
· ∇h.

For any smooth function f , defining the quadratic form E(f) := (−Lf |f)L2(m), we
compute, upon integrating by parts

E(f) := (−Lf |f)L2(m) = (−Lh|h)
L2(w

1/2
0 G1/2)

= −

∫ [
∆h+

(
2
∇G

G
+ F

)
· ∇h

]
hw0G

=

∫
|∇h|2Gw0 −

1

2

∫
∇(h2)

[
−G∇w0 + w0∇G+ Fw0G

]

=

∫
|∇h|2Gw0 +

1

2

∫
h2
[
−G∆w0 + w0∆G+ div(w0GF)

]

=

∫
|∇h|2Gw0 −

1

2

∫
h2GL∗w0,

where we have used the fact that G is a steady state in the last line. For any
smooth function f such that M(f) = 0, we deduce from the weak Lyapunov-
Poincaré inequality (6.2) that

E(f) ≥
1

4

∫
f2ξ0G

−1.

As a consequence, denoting f(t) := SL(t)f0 for f0 ∈ X0 with M(f0) = 0, we
compute

d

dt

∫
f2w0G

−1 = −E(f) ≤ −
1

4

ζ0
1 + β

∫
f2〈x〉2(γ−1)w0G

−1.

This differential inequality is similar to (4.10) and we thus may conclude as in
Section 4 that

‖ ft‖L2 . ΘG−1(t)‖ f0‖L2(m), ∀ t ≥ 0.

6.2. Harris-Meyn-Tweedie approach. We present now a second way to get a
decay estimate in one small space. We start establishing a strict positivity estimate
which will be the main technical estimate in our analysis.
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Lemma 6.2. For any R > 0, there exist T > 0 and ψ ∈ L∞(Rd), ψ ≥ 0, ψ 6≡ 0,
such that

SL(T )g0 ≥ ψ

∫

BR

g0 dx, ∀ g0 ≥ 0.

Proof of Lemma 6.2. We split the proof into three parts.
Step 1. We prove that for any p ∈ [1,∞) and m := 〈x〉k, k > 0 large enough,
there exist C,α > 1, such that for any g0 ∈ L1(m), the function g(t) := SL(t)g0
satisfies

(6.3) ‖ ∇g(t)‖Lp ≤
C

tα
‖ g0‖L1(m), ∀ t > 0.

First, as a consequence of Lemma 2.4 and the iterated Duhamel formula

SL = SB + · · ·+ (SBA)(∗(n−1)) ∗ SB + (SBA)(∗n) ∗ SL,

we have that SL is ultra-contractive, that is

‖g(t)‖L∞ ≤
C

td/2
‖ g0‖L1(m), ∀ t > 0.

Next, we differentiate the Fokker-Planck equation and proceeding in a similar way
as in the proof of Lemma 2.6, we get

‖g(t)‖H1 ≤
C

t1/2
‖ g0‖L2(m), ∀ t > 0.

Repeating the proof of Lemma 2.4 for the derivative of g(t), we may conclude in a
quite standard way to (6.3).
Step 2. We prove that for any t > 0, R > 0, there exist r, λ > 0 and x0 ∈ BR

such that

SL(t)g0 ≥ λ1B(x0,r)

∫

BR

g0 dx.

We fix R > 0 and g0 ∈ L1(Rd) with supp g ⊂ BR. With the same notations as in
the previous step, we have

∫
g(t, x) dx =

∫
g0(x) dx =

∫

BR

g0 dx.

Moreover, thanks to Lemma 3.1, there exists A > 0, such that
∫
g(t, x) |x| dx ≤ A

∫
g0 |x| dx ≤ AR

∫

BR

g0 dx.

For any ρ > 0, , we write
∫

Bρ

g(t, x)dx =

∫
g(t, x)dx −

∫

Bc
ρ

g(t, x)dx

≥

∫
g0dx−

1

ρ

∫
g(t, x)|x|dx

≥
(
1−

AR

ρ

)∫

BR

g0(x)dx ≥
1

2

∫

BR

g0(x)dx,

by choosing ρ > 0 large enough. As a consequence we infer that there exists
x0(t) ∈ Bρ such that

g(t, x0(t)) ≥ 2λ :=
1

2|Bρ|

∫

Bρ

g(t, x)dx dx ≥
1

4|Bρ|

∫

BR

g0(x)dx.
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Thanks to (6.3) and Morrey embedding W 1,p(Rd) ⊂ C0,1/2(Rd), which holds true
for p ∈ (1,∞) large enough, we know that there exists a constant c0 > 0 such that
for all t > 0 and x, y ∈ Rd

|g(t, x)− g(t, y)| ≤ c0‖∇g(t, ·)‖Lp · |x− y|1/2 ≤ c0C‖g0‖L1 t−α|x− y|1/2.

Therefore, we have

g(t, x) ≥ g(t, x0(t)) − c0C‖g0‖L1t−α|x− x0(t)|
1/2 ≥ λ

for x ∈ B(x0(t), r), where r is chosen by setting c0C‖g0‖L1t−αr1/2 = λ.

Step 3. (Spreading of the positivity.) We prove that that for any r0, r1 > 0 and
x0 ∈ Rd, there exist t1, κ1 > 0 (computable) such that

g0 ≥ 1B(x0,r0) ⇒ g(t1, ·) ≥ κ11B(x0,r1).

We first observe that h(t, x) := g(t, x) et‖ divF‖∞ is a super solution of the Fokker-
Planck equation with initial data g0, that is ∂th− Lh ≥ 0 and

∂th ≥ L♯h := ∆h+ F · ∇h.

We introduce the function

ϕ(t, x) := ϕ0 − ε, ϕ0 := (t+ t0)
−αe−µ|x−x0|

2/(t+t0),

for some parameters α, µ, ε, t0 > 0 to be specified latter. We compute

∂tϕ =
(
µ
|x− x0|2

(t+ t0)2
−

α

t+ t0

)
ϕ0, ∇xϕ = −2µ

x− x0
t+ t0

ϕ0,

∆xϕ =
(
4µ2 |x− x0|2

(t+ t0)2
− 2

µd

t+ t0

)
ϕ0.

To simplify notations, we only consider the case x0 = 0 (the general case can be
dealt exactly in the same way) and we denote r = |x| and τ = t + t0, and we
consider ϕ as function of τ and r. For µ ≥ 1, T > 0 and t ∈ (0, T ), we deduce

∂tϕ− L♯ϕ

ϕ0
= µ

r2

τ2
−
α

τ
+ 2d

µ

τ
− 4µ2 r

2

τ2
+ 2µ

F · x

τ

≤ −
α

τ
− 2µ2 r

2

τ2
+ 2d

µ

τ
+ 4‖ F‖L∞,

and then

(6.4) ∂tϕ ≤ L♯ϕ on (0, T )× R
d

for any α ≥ 2dµ+ 4T ‖ F‖L∞ . We fix ε such that

ϕ(0, r0) = t−α
0 e−µr20/t0 − ε = 0.

We have built ϕ such that

∂t(h− ϕ) ≥ L♯(h− ϕ) on (0, T )× R
d, (h− ϕ)(0) ≥ 0 on R

d.

Because (h − ϕ)− ∈ L1((0, T ) × Rd), by the weak maximum principle we deduce
that h ≥ ϕ on (0, T )× R

d, so that

g(t, x) ≥ e−t‖ div F‖L∞ ϕ(t, x) on (0, T )× R
d.

We now define r1 := r0t
−β
0 τβ as well as

ψ(t) := ϕ(t, r1) = τ−αe−µr20t
−2β
0 τ2β−1

− t−α
0 e−µr20/t0 .
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We have (recall that τ = t+ t0)

(6.5) ψ(0) = 0, ψ′(t) =
(µr20t

−2β
0 (1− 2β)

τ1−2β
− α

)
τ−α−1e−µr20τ

2β−1

≥ 0

whenever α ≤
µr20t

−2β
0 (1−2β)

τ1−2β . We choose µ = 1 + r−2
0 , T = 2t0 ≤ 1 to be fixed

below, β = 1/4 and α := 2d+ 4‖ F‖L∞ ≥ 2. We observe that (6.4) is true on the
time interval (0, T ) and (6.5) is true on (0, 2t0) by choosing t0 := 1/(4α) ≤ 1/2. In
particular, ψ(2t0) ≥ 0. As a consequence,

ϕ(2t0, x) ≥ ϕ̄1 := ϕ(2t0, rt0) = (3t0)
−αe−µr202

−1/2/t0 − t−α
0 e−µr20/t0 > 0,

for any |x| < rt0 := r02
1/4 and then

g(2t0, x) ≥ ϕ̄1e
−2t0‖ div F‖L∞ 1B(x0,r021/4),

by the above weak maximum principle. Iterating this argument, we get the an-
nounced estimate with

t1 := 2nt0, n :=
(
1 +

(
4
log r1/r0
log 2

])
, κ1 := e−2t1‖ div F‖L∞Πn

k=1ϕ̄k

and

ϕ̄k := (3t0)
−αe−µρ2

k2
−1/2/t0 − t−α

0 e−µρ2
k/t0 , ρk := r02

k/4.

Step 4 and conclusion. From Step 2, we know that we may find τ0, r0, R, λ > 0
and x0 ∈ B(0, R) such that

g(τ0, ·) ≥ c0 1B(x0,r0), c0 := λ

∫

BR

g0 dx.

Using Step 3 with r1 := 2R, we obtain

g(τ0 + t1, ·) ≥ λκ1 1B(0,R)

∫

BR

g0 dx,

which is nothing but the announced Harris condition. �

We recall the following so called “abstract subgeometric Harris-Meyn-Tweedie
theorem”.

Theorem 6.3 (subgeometric Harris-Meyn-Tweedie). Consider a semigroup S in
L1(m0) which is positive and mass conservative. Assume furthermore that the
following two additional conditions hold:
(1) the Lyapunov condition

L∗m ≤ −ϕ(m) + b,

for some weight function m : Rd → [1,∞) converging to infinity and some positive,
concave and converging to infinity function ϕ : R+ → R+ and some constant b > 0;
(2) the strict positivity (or irreducibility) condition

ST f ≥ ν

∫

BR

f, ∀ f ≥ 0,

for any R > 0 and some T > 0 and ν ≥ 0, ν 6≡ 0. Then, there exists some constant
C > 0 such that

(6.6) ‖Stf0‖L1 ≤
C

(ϕ ◦H−1
ϕ )(t)

‖ f0‖L1(m),
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for any f0 ∈ L1(m), M(f0) = 0, where Hϕ is the function defined by

Hϕ(u) :=

∫ u

1

ds

ϕ(s)
.

Theorem 6.3 is stated in [4, Theorem 1.2] and it is proved in [12, (3.5) in The-
orem 3.2] (see also [12, Section 5.1]) by the mean of probabilistic tools. A simple
semigroup proof is presented in [9]. A variant of [4, Theorem 1.2] is also presented
in [19, Section 4]. Gathering the Lyapunov condition (6.1), the strict positivity
property established in Lemma 6.2 and the subgeometric Harris-Meyn-Tweedie
Theorem 6.3, we deduce the following decay estimate.

Corollary 6.4. For any f0 ∈ L1(m0) such that M(f0) = 0, the associated solution
f(t, ·) = SL(t)f0 to the Fokker-Planck equation (1.1) satisfies

(6.7) ‖f(t, .)‖L1 . Θm0(t) ‖f0‖L1(m0),

which is nothing but the conclusion of Theorem 1.2 in L1(m0).

Proof of Corollary 6.4. We write (1.17) (or (6.1)) as

(6.8) L∗m0 ≤ −ϕ(m0) +M,

with

ϕ(y) := C
y

(log y)α
, α := 2

1− γ

γ
.

We easily compute

Hϕ(u) = C

∫ u

1

(log y)α
dy

y
= C

∫ log u

1

zαdz = C(log u)α+1,

so that H−1
ϕ (v) = exp(cv

1
α+1 ). From (6.6), we conclude (6.7) with Θm0(t) :=

K exp(−λt
γ

2−γ ), K ≥ 1, λ > 0. �

6.3. Krein-Rutman type approach. We finally present a third approach which
is mainly an adaptation of an argument used in the proof of [28, Theorem 2.1]. The
key argument is an accurate estimate on the confinement process of the semigroup
and it does not deeply use the positivity estimates. The drawback comes from the
fact that the rate of decay in the small space X0 is lower than in the small space
L2(G−1/2) (see section 4.2 for the notations).

We consider the sequence of spaces (Xk)k∈N, as defined in (2.22), and X∞ :=

L2(m
1/2
0 ). We observe that Xk ⊂ Xk+1 ⊂ X∞ for any k ∈ N. For 0 ≤ η ≤ 1 we

also denote Xk,η the space defined by Hilbertian interpolation between Xk,0 = Xk

and Xk,1 := { f ∈ Xk; Lf ∈ Xk}, that is, with the notations of L. Tartar [32,
Chapter 22, page 109],

Xk,η := (Xk, Xk,1)η,2 .

Lemma 6.5. Let us fix an integer j > 2(1− γ)/γ > 0. There exists a constant C
such that for any ℓ1, ℓ2, k ∈ N, k ≥ j, ℓi ≥ 1, we have for all z ∈ C with ℜe z > 0

‖RB(z)‖Xk−j→Xk
≤ Ck := C kj,(6.9)

‖ARB(z)
ℓ1ARB(z)

ℓ2‖X0→X0 ≤ (ℓ1!ℓ2!)
jCℓ1+ℓ2/〈y〉1/2,(6.10)

where z = x+ iy, x, y ∈ R.
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Proof of Lemma 6.5. We use the representation formula

RB(z) = −

∫ ∞

0

e−zt SB(t) dt

together with the estimates established in Lemmas 2.1, 2.4 and 2.5 in the following
way. In order to simplify the presentation, we only consider in the sequel the
boundary case ℜe z = x = 0.

On the one hand, we define, as in Lemma 2.5, α∗ := 1/2(1−γ), so that α∗γj > 1,
and we observe that the LHS term of (2.23) belongs to L1(R+). Therefore, with
the notations of Lemma 2.5, we have for any y ∈ R

‖RB(iy)‖Xk−j→Xk
≤ C1 +

(k
κ

)j 1

αγj − 1
≤ C kj.

On the other hand, from (2.26), we have

(6.11) sup
y∈R

‖RB(iy)‖X∞→H1 ≤

∫ ∞

0

‖SB(t)‖X∞→H1 dt ≤ C.

The latter estimate together with (6.9) yield that, for any y ∈ R and ℓ2 ∈ N∗, we
have

‖ARB(iy)
ℓ2‖X0→X0,1/2

≤

≤ ‖ARB(iy)‖X∞→X0,1/2
‖ RB(iy)‖X(ℓ2−2)j→X(ℓ2−1)j

· · · ‖ RB(iy)‖X0→Xj

≤ (ℓ2!)
jCℓ2 .(6.12)

On the other hand, from the identity

RB(z) = z−1(RB(z)B − I)

and an interpolation argument, we deduce that

‖RB(iy)‖X0,1/2→Xj ≤ C/〈y〉1/2,

and therefore for any ℓ1 ∈ N

‖ ARB(iy)
ℓ1‖X0,1/2→X0 ≤ (ℓ1!)

jCℓ1/〈y〉1/2.

It is now clear that the above estimate together with (6.12) completes the proof of
estimate (6.10). �

Lemma 6.6. Let us fix again an integer j > 2(1 − γ)/γ > 0. There exists a
constant C such that for any ℓ ∈ N∗, denoting by Π the projection on G, that is
Π(f) := M(f)G, we have

(6.13) sup
ℜe z>0

‖ (I −Π)RL(z)
ℓ‖X0→X∞

≤ Cℓ (ℓ!)j .

Proof of Lemma 6.6. Since the operator L − aI is dissipative for any a > 0, we
clearly have

CL,a := sup
ℜe z≥a

‖ (I −Π)RL(z)‖X0→X∞
. sup

ℜe z≥a
‖RL(z)‖X0→X∞

<∞,

and thus we have only to prove that the constant CL,a does not blow up when
a→ 0+.

Step 1. We claim that for any fixed M , there holds

(6.14) sup
z∈ΩM

‖ (I −Π)RL(z)‖Xk−j→Xk
≤ CM Ck,
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where we define ΩM := { z = x + iy ∈ C, 0 < x ≤ 1, |y| ≤ M} and we recall
that Ck is defined in (6.9). We argue by contradiction, assuming that there exists
y ∈ [−M,M ] and a sequence (zn) in ΩM such that

zn → z := iy and C−1
n ‖ RL1 (zn)‖B(Xn−j ,Xn) → ∞,

with L1 := Π⊥L, where for brevity we note Π⊥ := I −Π, despite the fact that Π is
not an orthogonal projection. The last family of blowing up estimates means that

there exist sequences (f̃n)n and (g̃n)n such that

C−1
n ‖ f̃n‖Xn → ∞, ‖ g̃n‖Xn−j = 1, f̃n = RL1 (zn) g̃n,

or, equivalently, that there exist (fn)n in Xn and (gn)n in Xn−j satisfying

‖fn‖Xn = 1, Cn‖ gn‖Xn−j → 0, gn = (L1 − zn) fn.

This in turn would imply that

(6.15) RB(zn)AΠ⊥fn +Π⊥fn − znRB(zn)Πfn = RB(zn)gn,

with

‖ RB(zn)gn‖Xn ≤ Cn‖ gn‖Xn−j → 0,

by using (6.9). Since (fn)n is bounded in Xn ⊂ X∞ = L2(eκ 〈x〉γ ), by weak com-
pactness of this sequence in X∞, we find f ∈ X∞ and a subsequence denoted again
by (fn)n such that fn ⇀ f weakly in X∞, and then AΠ⊥fn ⇀ AΠ⊥ weakly in X0.
Together with (6.11), we deduce that

(6.16) RB(zn)AΠ⊥fn → RB(z)AΠ⊥f strongly in X0.

Now, passing (weakly) to the limit in (6.15), we have

RB(z)AΠ⊥f +Π⊥f − zRB(z)Πf = 0.

We claim that f 6= 0. If not, we get from (6.16) that

RB(zn)AΠ⊥fn → 0 and Πfn → 0 strongly in X0

and then together with (6.15) that ‖ Π⊥fn‖Xn → 0. Thus we would have

1 = ‖fn‖Xn ≤ ‖Πfn‖X0 + ‖Π⊥fn‖Xn → 0,

which is a contradiction. As a consequence, we have exhibited an f ∈ X∞\{ 0}
such that (L1 − zI)f = 0. This means that f is an eigenvector for L1 = Π⊥L
associated to an eigenvalue z ∈ iR; however this is in contradiction with the fact
that ΣP (Π

⊥L) ∩ iR = ∅. Thus the proof of (6.14) is complete.

Step 2. In this step we complete the proof of the Lemma. We begin by recalling
that L = A+ B and then we write

RL(z) = RB(z)−RL(z)ARB(z)

and

RL(z)(1− V(z)) = RB(z)−RB(z)ARB(z), where V(z) := (ARB(z))
2
.

Let X̃k be defined as Xk but with a coefficient κ̃ > κ so that X̃k ⊂ X̃∞ ⊂ X0 ⊂ Xk

with embedding constants uniformly bounded with respect to k. First we may fix
M large enough such that ‖V(z)‖B(X0) ≤ 1/2 and ‖V(z)‖

B(X̃0)
≤ 1/2, for any
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z = x + iy, with |y| ≥ M : this is indeed possible thanks to (6.10) by choosing
ℓ1 = ℓ2 = 1. Next, we write the expansion

RL(z) = RB(z)−
(
RB(z)−RB(z)ARB(z)

)( ∞∑

j=0

V(z)j
)
ARB(z),

where the series converges normally in B(X0) and in B(X̃0). More precisely, for
z = x+ iy and |y| ≥M we have

‖ RL (z)‖Xk−j→Xk
≤ ‖RB(z) ‖Xk−j→Xk

+ ‖ (RB −RB ARB)(z)‖X̃0→X0

( ∞∑

j=0

‖ V(z)‖j
B(X̃0)

)
‖ARB‖Xk−j→X̃0

,

≤ ‖RB(z) ‖Xk−j→Xk
+ 2 ‖(RB −RB ARB)(z)‖X̃0→X0

‖ARB‖Xk−j→X̃0
.(6.17)

The right hand side of the above inequality being bounded by a constant C Ck, we
conclude that

sup
|ℜe z|≥M

‖(I −Π)RL(z)‖Xk−j→Xk
≤ C Ck.

Together with (6.14), we conclude the proof of (6.13) in the case when ℓ = 1. For
the general case ℓ ≥ 1, we argue similarly as we did in the proof of (6.10). �

Theorem 6.7. Let σ∗
L := 1/⌊2/γ⌋, where ⌊s⌋ stands for the integer part of the

real number s, and let m0(x) := exp(κ〈x〉γ) and 0 < κγ < 1/8. Then for any
σ ∈ (0, σ∗

L] and θ < 1 there exist λ > 0 such that for all t > 0

‖f(t)−M(f0)G‖L2(mθ
0)

. exp(−λtσ) ‖f0 −M(f0)G‖L2(m0).

Proof of Theorem 6.7. We write the representation formulas (taken from [28])

SL(t)f = Πf +

5∑

ℓ=0

(I −Π)SB ∗ (ASB)
(∗ℓ)(t)f + T (t)f,(6.18)

where T (t) := lim
M→∞

i

2π

∫ a+iM

a−iM

ezt (I −Π)RL(z) (ARB(z))
6 dz,

for any f ∈ D(L), t ≥ 0 and a > 0.

Thanks to Lemma 2.4, we know that each term ‖(I − Π)SB ∗ (ASB)
(∗ℓ)(t)f‖ in

the above expression of SL(t) is bounded by O(Θm0(t)). In order to conclude, we
have to estimate the last term.

We introduce the shorthands Φ1 := RL(I − Π), Φℓ = ARB, for 2 ≤ ℓ ≤ 7, and
we perform n integration by part in the formula giving T (t) to get

(6.19) T (t) =
i

2π

1

tn

∫ a+i∞

a−i∞

ezt
dn

dzn
( 7∏

i=1

Φi(z)
)
dz.

Using the fact that all the functions appearing in the integral are bounded on the
imaginary axis, together with the resolvent identity

Rn
Λ(z) :=

dn

dzn
RΛ(z) = n!RΛ(z)

n,
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we find in B(X0), thanks to Leibniz formula and for any z = x + iy ∈ C with
0 ≤ y ≤ 1,

‖
dn

dzn
( 7∏

ℓ=1

Φℓ(z)
)
‖ ≤ 7n sup

α∈Nn,|α|=n

‖
7∏

ℓ=1

dαℓ

dzαℓ
Φℓ(z)‖

≤ 7n sup
α∈N7,|α|=n

7∏

i=1

‖α1! (I −Π)R1+α1

L α2!AR
1+α2

B ... α7!AR
1+α7

B (z)‖

≤ Cn (n!)1+j 〈y〉−3/2 ,

where in the last step we have used Lemma 6.6 for some integer j which will be
fixed later. Next, using the bound n! ≤ (C n)n, we get

‖T (t)‖ ≤ Cn n(1+j)n t−n ∀ t > 0, ∀ k ≥ 0.

For any t ≥ t∗, where t∗ is large enough and depends on j, we choose n ∈ N such
that

t ≥ 2Cn1+j ≥ t/2,

and we obtain

‖T (t)‖ ≤ (Cn1+jt−1)n ≤ (1/2)n ≤ (1/2)(t/4C)
1

j+1
∀ t > 0.

As a consequence, with the choice j := ⌊[2(1− γ)/γ⌋+ 1, we have proved that for
all t ≥ 0 we have

‖T (t)‖ ≤ exp(−λ t
1

1+j ),

which clearly ends the proof. �
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Mathématiques de Versailles; 45 avenue des Etats Unis; 78035 Versailles cedex, France.

Email address: ndao75019@yahoo.fr


	1. Introduction
	2. The splitting L= A+ B and growth estimates on SB 
	3. Boundedness of SL 
	4. The Case 1 when a Poincaré inequality holds
	5. The general case - the stationary problem
	6. The general case - decay estimate
	References

