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Abstract

In this article, we investigate the summability of the formal power
series solutions in time of a certain class of inhomogeneous partial differ-
ential equations with a polynomial semilinearity, and with variable coef-
ficients. In particular, we give necessary and sufficient conditions for the
k-summability of the solutions in a given direction, where k is a positive
rational number entirely determined by the linear part of the equation.
These conditions generalize the ones given by the author for the linear case
[?,?] and for the semilinear heat equation [?]. In addition, we present some
technical results on the generalized binomial and multinomial coefficients,
which are needed for the proof our main theorem.

Summability, Inhomogeneous partial differential equation, Nonlinear
partial differential equation, Formal power series, Divergent power series
35C10, 35C20, 40B05

1 Declarations

Not applicable

2 Introduction

2.1 Setting the problem

The summation theory is a very powerful tool initially developed within the
framework of the analytic ordinary differential equations with an irregular sin-
gular point (see for instance [?,?]). In particular, it allows the construction of
explicit solutions from formal solutions.

For several years, various works have been done on the divergent solutions of
some classes of linear partial differential equations or integro-differential equa-
tions in two variables or more, allowing thus to formulate many results on Gevrey
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properties, summability or multisummability (e.g. [?,?,?,?,?,?,?,?,?,?,?,?,?,
?,?,?] and references inside).

In the case of the nonlinear partial differential equations, the situation is
much more complicated. The existing results concern mainly Gevrey proper-
ties, especially the convergence (e.g. [?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?] and
references inside), and there are very few results about the summation (see
[?,?,?,?,?,?]).

In this article, we are interested in the summability of the formal power series
solutions in time of the inhomogeneous semilinear partial differential equation

(2.1)

#

Bκ
t u ´ apt, xqBp

xu ´ P puq “ rfpt, xq

B
j
tupt, xq|t“0 “ φjpxq, j “ 0, ..., κ ´ 1

in two variables pt, xq P C2, where

• κ, p ě 1 are two positive integers;

• the coefficient apt, xq is analytic on a polydisc Dρ0
ˆ Dρ1

centered at the
origin p0, 0q of C2 (Dρ denotes the disc with center 0 P C and radius ρ ą 0)
and satisfies the condition ap0, xq ı 0;

• P pXq “

d
ÿ

m“2

bmpt, xqXm P OpDρ0
ˆ Dρ1

qrXs is a polynomial in X with

analytic coefficients on Dρ0
ˆ Dρ1

;

• the inhomogeneity rfpt, xq is a formal power series in t with analytic coef-

ficients in Dρ1 (we denote by rfpt, xq P OpDρ1qrrtss) which may be smooth,
or not1;

• the initial conditions φjpxq are analytic on Dρ1
for all j “ 0, ..., κ ´ 1.

Equation (2.1) is fundamental in many physical, chemical, biological, and eco-
logical problems. For example: for pκ, pq “ p1, 2q, Eq. (2.1) arises in problems
involving diffusion and nonlinear growth such as heat and mass transfer, com-
bustion theory, and spread theory of animal or plant populations (nonlinear
heat equation); for pκ, pq “ p2, 2q, Eq. (2.1) describes the propagation of non-
linear waves in an inhomogeneous medium (nonlinear Klein-Gordon equation);
and, for pκ, pq “ p2, 4q, Eq. (2.1) describes the relationship between the beam’s
deflection and an applied lateral nonlinear force (nonlinear Bernoulli-Euler equa-
tion).

The work presented in this article is a natural extension of the work [?]
in which the nonlinearity P puq is reduced to a term of the form bpxqu2 and
pκ, pq “ p1, 2q (see Eq. (2.2) just below). Before stating our main result (see
Theorem 3) making explicit a characterization of the summability of the formal
series solutions in time of Eq. (2.1), let us first start by recalling some known
results about these ones.

1We denote rf with a tilde to emphasize the possible divergence of the series rf .
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2.2 Formal solutions and known results

First of all, we have the following.
Equation (2.1) admits a unique solution rupt, xq P OpDρ1

qrrtss. Let us
write the coefficients apt, xq and bmpt, xq for m “ 2, ..., d, and the inhomogeneity
rfpt, xq in the form

apt, xq “
ÿ

jě0

aj,˚pxq
tj

j!
, bmpt, xq “

ÿ

jě0

bm;j,˚pxq
tj

j!
, rfpt, xq “

ÿ

jě0

fj,˚pxq
tj

j!

with aj,˚pxq, bm;j,˚pxq, fj,˚pxq P OpDρ1
q for all j ě 0 and all m “ 2, ..., d.

Looking for rupt, xq on the same type:

rupt, xq “
ÿ

jě0

uj,˚pxq
tj

j!
with uj,˚pxq P OpDρ1

q for all j ě 0,

one easily checks that its coefficients uj,˚pxq are uniquely determined for all
j ě 0 by the recurrence relations

uj`κ,˚pxq “ fj,˚pxq `

j
ÿ

j0“0

ˆ

j

j0

˙

aj0,˚pxqBp
xuj´j0,˚pxq`

d
ÿ

m“2

ÿ

j0`j1`...`jm“j

ˆ

j

j0, j1, ..., jm

˙

bm;j0,˚pxquj1,˚pxq...ujm,˚pxq,

together with the initial conditions uj,˚pxq “ φjpxq for j “ 0, ..., κ´ 1. The no-

tations

ˆ

j

j0

˙

and

ˆ

j

j0, j1, ..., jm

˙

stand respectively for the binomial coefficients

and for the multinomial coefficients.
In a 1999 article [?], M. Miyake proved in the particular case of the equation

Bκ
t u ´ Bp

xu “ 0

that the formal solution rupt, xq is convergent when κ ě p and s-Gevrey with
s “ p{κ ´ 1 otherwise. This result was then generalized by the author, first of
all, to the inhomogeneous linear case P ” 0 [?] and, afterwards, to the general
Eq. (2.1) [?,?]. In particular, he showed that the Gevrey regularity of rupt, xq

does not depend on the nonlinear term P puq, but only on κ, p and rfpt, xq.
[[?,?]] Let s be the nonnegative rational number defined by s “ maxp0, p{κ´

1q. Then, the formal solution rupt, xq and the inhomogeneity rfpt, xq are together
s-Gevrey.

Thereby, in the case κ ě p, Proposition 2.2 provides us a necessary and
sufficient condition for rupt, xq to be convergent, and, in the opposite case p ą κ,
it naturally leads us to the question of the k-summability (k “ 1{sq of rupt, xq.

In the linear case, M. Miyake [?] and the author [?] gave necessary and
sufficient conditions for rupt, xq to be k-summable in a given direction argptq “
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θ. To do that, they used two different approaches: the first one based on
the definition of the k-summability in terms of the Borel transformation, and
the second one based on the definition of the k-summability in terms of the
successive derivatives.

More recently [?], the author considered Eq. (2.1) with pκ, p, dq “ p1, 2, 2q

and with constant coefficients in t, that is the semilinear heat equation

(2.2)

#

Btu ´ apxqB2
xu ´ bpxqu2 “ rfpt, xq

up0, xq “ φpxq

Using the same approach as the one developed in [?], he gave a necessary and
sufficient condition for rupt, xq to be 1-summable, generalizing thus the condition
already proved in the linear case by W. Balser and M. Loday-Richaud [?]. In
particular, he showed, as for the Gevrey regularity (see Proposition 2.2), that
this condition is not affected by the nonlinear term u2.

In this article, we propose to extend all these results to the general Eq.
(2.1). In Section 3, we recall some basic definitions and properties about the
k-summable formal series. Then, we state our main result (Theorem 3) which
gives, under some various assumptions on the coefficient apt, xq, a necessary and
sufficient condition for rupt, xq to be k-summable in a given direction argptq “ θ
with k “ 1{s “ κ{pp ´ κq. The proof of this result is developed in the next two
sections. In Section 4, it is detailed in the case of the first assumption, namely
ap0, 0q ‰ 0. Our approach is similar to the one presented in [?] for the linear
case. However, because of the variable coefficients and the nonlinear terms um,
the calculations are much more complicated and require some technical results
on the generalized binomial and multinomial coefficients, that is on the bino-
mial and multinomial coefficients with nonnegative real terms. These technical
results are all proved in Section 6, which can also be read independently of the
rest of the article, so as not to burden the main proof. In Section 5, we show
how to adapt the calculations of Section 4 within the framework of the other
assumptions on apt, xq.

3 k-summability of rupt, xq

All along the article, we consider t as the variable and x as a parameter. Thereby,
to define the notion of summability of formal power series in OpDρ1

qrrtss, one
extends the classical notion of summability of elements in Crrtss to families
parametrized by x in requiring similar conditions, the estimates being how-
ever uniform with respect to x. Doing that, any formal power series rupt, xq P

OpDρ1
qrrtss can be seen as a formal power series in t with coefficients in a con-

venient Banach space defined as the space of functions that are holomorphic on
a disc Dr1 (0 ă r1 ă ρ1) and continuous up to its boundary, equipped with the
usual supremum norm. For a general study of the series with coefficients in a
Banach space, we refer for instance to [?].
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Among the many equivalent definitions of the k-summability in a given di-
rection argptq “ θ at t “ 0, we choose in this article a generalization of Ramis’
definition which states that a formal series rgptq P Crrtss is k-summable in direc-
tion θ if there exists a holomorphic function g which is 1{k-Gevrey asymptotic
to rg in an open sector Σθ,ąπs bisected by θ and with opening larger than πs
with s “ 1{k [?, Def. 3.1]. To express the 1{k-Gevrey asymptotic, there also
exist various equivalent ways. We choose here the one which sets conditions on
the successive derivatives of g (see [?, p. 171] or [?, Thm. 2.4] for instance).

[k-summability] Let k ą 0 and s “ 1{k. A formal series rupt, xq P OpDρ1
qrrtss

is said to be k-summable in the direction argptq “ θ if there exist a sector Σθ,ąπs,
a radius 0 ă r1 ď ρ1 and a function upt, xq called k-sum of rupt, xq in direction
θ such that

1. u is defined and holomorphic on Σθ,ąπs ˆ Dr1 ;

2. For any x P Dr1 , the map t ÞÑ upt, xq has rupt, xq “
ÿ

jě0

uj,˚pxq
tj

j!
as Taylor

series at 0 on Σθ,ąπs;

3. For any proper2 subsector Σ Ť Σθ,ąπs, there exist two positive constants
C ą 0 and K ą 0 such that, for all ℓ ě 0, all t P Σ and all x P Dr1 ,

ˇ

ˇBℓ
tupt, xq

ˇ

ˇ ď CKℓΓp1 ` ps ` 1qℓq.

We denote byOpDρ1
qttuk;θ the subset ofOpDρ1

qrrtss made of all the k-summable
formal series in the direction argptq “ θ.

Note that, for any fixed x P Dr1 , the k-summability of rupt, xq coincides with
the classical k-summability. Consequently, Watson’s lemma [?, Theorem 5.1.3]
implies the unicity of its k-sum, if any exists.

Note also that the k-sum of a k-summable formal series rupt, xq P OpDρ1
qttuk;θ

may be analytic with respect to x on a disc Dr1 smaller than the common disc
Dρ1

of analyticity of the coefficients uj,˚pxq of rupt, xq.
Denote by B

´1
t ru (resp. B´1

x ru) the anti-derivative of ru with respect to t (resp.
x) which vanishes at t “ 0 (resp. x “ 0). Proposition 3 below specifies the
algebraic structure of OpDρ1

qttuk;θ.
Let k ą 0 and θ P R{2πZ. Then, pOpDρ1

qttuk;θ, Bt, Bxq is a C-differential
algebra stable under the anti-derivations B

´1
t and B´1

x .
We refer for instance to [?, Prop. 2] for a proof of this result.

With respect to t, the k-sum upt, xq of a k-summable series rupt, xq P OpDρ1qttuk;θ
is analytic on an open sector for which there is no control on the angular open-
ing except that it must be larger than π{k (hence, it contains a closed sector
Σθ,π{k bisected by θ and with opening π{k) and no control on the radius except
that it must be positive. Thereby, the k-sum upt, xq is well-defined as a section

2A subsector Σ of a sector Σ1 is said to be a proper subsector and one denotes Σ Ť Σ1 if
its closure in C is contained in Σ1 Y t0u.
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of the sheaf of analytic functions in pt, xq on a germ of closed sector of opening
π{k (that is, a closed interval Iθ,π{k of length π{k on the circle S1 of directions
issuing from 0; see [?, 1.1] or [?, I.2]) times t0u (in the plane C of the variable
x). We denote by OIθ,π{kˆt0u

the space of such sections.

The operator of k-summation

Sk;θ : OpDρ1
qttuk;θ ÝÑ OIθ,π{kˆt0u

rupt, xq ÞÝÑ upt, xq

is a homomorphism of differential C-algebras for the derivations Bt and Bx.
Moreover, it commutes with the anti-derivations B

´1
t and B´1

x .
We are now able to state the main result in this article.
Let argptq “ θ P R{2πZ be a direction issuing from 0.

Let us assume p ą κ and let us set k “ κ{pp ´ κq.
Let us also assume that either ap0, 0q ‰ 0, or there exists q P t1, ..., p ´ 1u such
that Bn

xapt, xq|x“0 ” 0 for all n “ 0, ..., q ´ 1, and Bq
xap0, 0q ‰ 0. Then,

1. The unique formal series solution rupt, xq P OpDρ1qrrtss of Eq. (2.1) is k-

summable in the direction θ if and only if the inhomogeneity rfpt, xq and
the formal series Bn

x rupt, xq|x“0 P Crrtss for n “ 0, ..., p ´ 1 are k-summable
in the direction θ.

2. Moreover, the k-sum upt, xq, if any exists, satisfies Eq. (2.1) in which
rfpt, xq is replaced by its k-sum fpt, xq in the direction θ.

Observe that the necessary condition of the first point is straightforward
from Proposition 3 and that the second point stems obvious from Corollary 3.
Consequently, we are left to prove the sufficient condition of the first point.
This is the subject of the next two sections below. In the first one (Section 4),
we focus on the case ap0, 0q ‰ 0. In the second one (Section 5), we show how
the calculations made in Section 4 can be adapted within the framework of the
other assumptions on apt, xq.

From now on, we fix a direction θ and we suppose that the inhomogeneity
rfpt, xq and the formal power series Bn

x rupt, xq|x“0 P Crrtss for n “ 0, ..., p ´ 1 are
all k-summable in the direction θ. To prove that the formal solution rupt, xq is
also k-summable in this direction, we shall proceed through a fixed point method
similar to the ones already used by W. Balser and M. Loday-Richaud in [?] and
by the author in [?,?,?,?]. However, as we shall see below, the calculations are
much more complicated because of the nonlinear terms um.

4 Proof of the sufficient condition: the case ap0, 0q ‰

0

All along this section, we assume that the coefficient apt, xq satisfies ap0, 0q ‰ 0.
Before starting the calculations, let us first begin this proof with a preliminary
remark on the coefficients ru˚,nptq “ Bn

x rupt, xq|x“0 of rupt, xq.
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4.1 First step: a preliminary remark

Let us write the coefficients apt, xq and bmpt, xq for m “ 2, ..., d in the form

apt, xq “
ÿ

ně0

a˚,nptq
xn

n!
, bmpt, xq “

ÿ

ně0

bm;˚,nptq
xn

n!

with a˚,nptq, bm;˚,nptq P OpDρ0
q for all n ě 0 and all m “ 2, ..., d. Let us also

write the formal solution rupt, xq and the inhomogeneity rfpt, xq in the same way:

rupt, xq “
ÿ

ně0

ru˚,nptq
xn

n!
, rfpt, xq “

ÿ

ně0

rf˚,nptq
xn

n!
.

Observe that the coefficients ru˚,nptq and rf˚,nptq are divergent in general (hence,
the notation with the tilde). By identifying the terms in xn in Eq. (2.1), we get
the identities

(4.1) a˚,0ptqru˚,n`pptq `

n
ÿ

n0“1

ˆ

n

n0

˙

a˚,n0ptqru˚,n`p´n0ptq “ Bκ
t ru˚,nptq ´ rf˚,nptq

´

d
ÿ

m“2

ÿ

n0`n1`...`nm“n

ˆ

n

n0, n1, ..., nm

˙

bm;˚,n0
ptqru˚,n1

ptq...ru˚,nm
ptq

for all n ě 0. By assumption, a˚,0p0q ‰ 0; hence, 1{a˚,0ptq is well-defined in
Crrtss and, consequently, each coefficient ru˚,nptq is uniquely determined from the

inhomogeneity rfpt, xq and from the formal series ru˚,n1 ptq with n1 “ 0, ..., p ´ 1.
In particular, the same applies to rupt, xq.

4.2 Second step: the associated equation

Let us set

rvpt, xq “

p´1
ÿ

n“0

ru˚,nptq
xn

n!

and rupt, xq “ rvpt, xq ` B´p
x rwpt, xq. With these notations, Eq. (2.1) becomes

(4.2) rw ´ Apt, xqBκ
t B´p

x rw `

d
ÿ

m“2

m
ÿ

j“1

ˆ

m

j

˙

Bmpt, xqrvm´jpt, xqpB´p
x rwqj “ rgpt, xq

with

rgpt, xq “ Apt, xq

˜

Bκ
t rvpt, xq ´

d
ÿ

m“2

bmpt, xqrvmpt, xq ´ rfpt, xq

¸

,

where Apt, xq and Bmpt, xq stand respectively for the functions

Apt, xq “
1

apt, xq
and Bmpt, xq “

bmpt, xq

apt, xq
.
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Observe that, thanks to the assumption ap0, 0q ‰ 0, these functions are all
well-defined and holomorphic on a common convenient polydisc Dρ1

0
ˆDρ1

1
with

0 ă ρ1
0 ď ρ0 and 0 ă ρ1

1 ď ρ1.
According to our assumption on the k-summability of the inhomogeneity

rfpt, xq and of the formal power series ru˚,nptq for n “ 0, ..., p ´ 1, the formal
series rvpt, xq and rgpt, xq are both k-summable in the direction θ (see Proposition
3). Thereby, the identity (4.2) above tells us that it is sufficient to prove that
it is the same for the formal series rwpt, xq P OpDρ1qrrtss. To do that, we shall
proceed as in [?,?,?,?,?] by using a fixed point method. Of course, as we shall
see below, our calculations will be much more complicated due to the presence
of the nonlinear terms Bmpt, xqrvm´jpt, xqpB´p

x rwqj .

4.3 Third step: the fixed point procedure

Let us set rwpt, xq “
ÿ

µě0

rwµpt, xq and let us choose the solution of Eq. (4.2)

recursively determined for all µ ě 0 by the relations

(4.3) rwµ`1pt, xq “ Apt, xqBκ
t B´p

x rwµpt, xq

´

d
ÿ

m“2

m
ÿ

j“1

ÿ

µ1`...`µj“µ

«

ˆ

m

j

˙

Bmpt, xqrvm´jpt, xq

˜

j
ź

i1“1

B´p
x rwµi1 pt, xq

¸ff

together with the initial condition rw0 “ rg. Observe that rwµpt, xq P OpDρ1
1
qrrtss

for all µ ě 0. Observe also that the rwµpt, xq’s are of order Opxpµq in x for all
µ ě 0, and, consequently, the series rwpt, xq itself makes sense as a formal series
in t and x.

Let us now respectively denote by w0pt, xq and vpt, xq the k-sums of rw0

and rv in the direction θ and, for all µ ą 0, let wµpt, xq be determined by the
relations (4.3) in which rv is replaced by v and all the rwµ are replaced by wµ.
By construction, all the functions wµpt, xq are defined and holomorphic on a
common domain Σθ,ąπs ˆ Dρ2

1
, where s “ 1{k “ p{κ ´ 1, and where the radius

ρ2
0 of Σθ,ąπs and the radius ρ2

1 of Dρ2
1
can always be chosen so that 0 ă ρ2

0 ă ρ1
0

and 0 ă ρ2
1 ă ρ1

1.

To end the proof, it remains to prove that the series
ÿ

µě0

wµpt, xq is convergent

and that its sum wpt, xq is the k-sum of rwpt, xq in the direction θ.

4.4 Fourth step: some estimates on the wµpt, xq’s

According to Definition 3, the k-summability of rw0 and rv implies that there
exists 0 ă r1

1 ă minp1, ρ2
1q such that, for any proper subsector Σ Ť Σθ,ąπs,

there exist two positive constants C,K ą 0 such that, for all ℓ ě 0 and all
pt, xq P Σ ˆ Dr1

1
, the functions w0 and v satisfy the inequalities

(4.4)
ˇ

ˇBℓ
tw0pt, xq

ˇ

ˇ ď CKℓΓp1`ps`1qℓq and
ˇ

ˇBℓ
tvpt, xq

ˇ

ˇ ď CKℓΓp1`ps`1qℓq.
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Let us now fix a proper subsector Σ Ť Σθ,ąπs. Let r1
0 denote the radius

of Σ and let us choose for the constant K of the property above a constant

ě max

ˆ

1,
1

ρ2
0 ´ r1

0

˙

. Observe that such a choice is already possible since the

inequalities (4.4) still hold for any constant K 1 ě K. Observe also that the
quotient 1{pρ2

0 ´ r1
0q makes sense since the definition of a proper subsector (see

Footnote 2) implies 0 ă r1
0 ă ρ2

0.
Proposition 4.4 below provides us some estimates on the derivatives Bℓ

twµ.
Let us denote by

• α (resp. βm for m “ 2, ..., d) the maximum of |Apt, xq| (resp. |Bmpt, xq|)
on the closed polydisc Dρ2

0
ˆ Dρ2

1
(Dρ denotes the closed disc with center

0 P C and radius ρ ą 0);

• Cs “ s1p2 ` Γpss1qq, where s1 is the positive integer ě 1 defined by

s1 “

$

&

%

1 if s ě 1
Z

1

s

^

` 1 if s ă 1
ptxu stands for the floor of x P Rq;

• C 1 “

˜

αCs `

d
ÿ

m“2

m
ÿ

j“1

ˆ

m

j

˙

βmCm´1Cm
s ζppqj´1

¸

, where ζ is the Riemann

Zeta function:

ζpzq “
ÿ

ně1

1

nz
for all z P C,Repzq ą 1.

Then, the following inequalities

(4.5)
ˇ

ˇBℓ
twµpt, xq

ˇ

ˇ ď CC 1µKκµ`ℓΓp1 ` ps ` 1qpκµ ` ℓqq
|x|

pµ

ppµq!

hold for all ℓ, µ ě 0 and all pt, xq P Σ ˆ Dr1
1
.

Observe that the constant ζppq is well-defined since p ě 2.
The proof proceeds by recursion on µ. The case µ “ 0 is straightforward

from the first inequality of (4.4). Let us now suppose that the inequalities (4.5)
hold for all the functions wjpt, xq with j “ 0, ..., µ for a certain µ ě 0.

According to the relations (4.3), we first derive from the generalized Leibniz
Formula the identities

Bℓ
twµ`1pt, xq “

ℓ
ÿ

ℓ0“0

ˆ

ℓ

ℓ0

˙

B
ℓ´ℓ0
t Apt, xqB

κ`ℓ0
t B´p

x wµpt, xq

´

d
ÿ

m“2

m
ÿ

j“1

ˆ

m

j

˙

«

ÿ

µ1`...`µj“µ

ÿ

ℓ0`ℓ1`...`ℓm“ℓ

ˆ

ℓ

ℓ0, ℓ1, ..., ℓm

˙

B
ℓ0
t Bmpt, xqˆ

˜

m´j
ź

i“1

B
ℓi
t vpt, xq

¸ ˜

j
ź

i1“1

B
ℓm´j`i1

t B´p
x wµi1 pt, xq

¸ff
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for all ℓ ě 0 and all pt, xq P Σ ˆ Dr1
1
, with the classical convention that the first

product is 1 when j “ m.
Let us now apply the Cauchy Integral Formula to the function B

j
tA with

j ě 0. Thanks to the definition of the radii r1
0 and r1

1, we have

B
j
tApt, xq “

j!

p2iπq2

ż

|t1
´t|“ρ2

0´r1
0

|x1
´x|“ρ2

1´r1
1

Apt1, x1q

pt1 ´ tqj`1px1 ´ xq
dt1dx1,

for all pt, xq P Σ ˆ Dr1
1
, and so the estimates

ˇ

ˇ

ˇ
B
j
tApt, xq

ˇ

ˇ

ˇ
ď j!α

ˆ

1

ρ2
0 ´ r1

0

˙j

ď j!αKj

by definition of the constant K. In the same way, we have
ˇ

ˇ

ˇ
B
j
tBmpt, xq

ˇ

ˇ

ˇ
ď j!βmKj

for all j ě 0, all m “ 2, ..., d and all pt, xq P Σ ˆ Dr1
1
.

Thereby, using the second inequality of (4.4), the inequalities (4.5) applied
to the functions wj for j “ 0, ..., µ, and the fact that r1

1 ă 1 and K ě 1, we
finally get the inequalities

(4.6)

ˇ

ˇBℓ
twµ`1pt, xq

ˇ

ˇ ď CC 1µKκpµ`1q`ℓΓp1 ` ps ` 1qpκpµ ` 1q ` ℓqq
|x|

ppµ`1q

pppµ ` 1qq!
ˆ

˜

αSµ,ℓ `

d
ÿ

m“2

m
ÿ

j“1

ˆ

m

j

˙

βmCm´1S1
µ,ℓ,m,j

¸

for all ℓ ě 0 and all pt, xq P Σ ˆ Dr1
1
, with, as the constants Sµ,ℓ and S1

µ,ℓ,m,j ,
the constants respectively defined by

Sµ,ℓ “

ℓ
ÿ

ℓ0“0

ˆ

ℓ

ℓ0

˙

pℓ ´ ℓ0q!Γp1 ` ps ` 1qpκµ ` κ ` ℓ0qq

Γp1 ` ps ` 1qpκµ ` κ ` ℓqq

and

S1
µ,ℓ,m,j “

ÿ

µ1`...`µj“µ

ÿ

ℓ0`ℓ1`...`ℓm“ℓ

¨

˚

˚

˚

˚

˝

ˆ

ℓ

ℓ0, ℓ1, ..., ℓm

˙

ppµ ` pq!
j

ź

i1“1

ppµi1 ` pq!

ˆ

ℓ0!

˜

m´j
ź

i“1

Γp1 ` ps ` 1qℓiq

¸ ˜

j
ź

i1“1

Γp1 ` ps ` 1qpκµi1 ` ℓm´j`i1 qq

¸

Γp1 ` ps ` 1qpκµ ` κ ` ℓqq

˛

‹

‹

‹

‹

‚

,
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where, as previously, the product on i is 1 when j “ m.
The inequality (4.5) for wµ`1 stems then from Lemmas 4.4 and 4.4 below

which allow to bound Sµ,ℓ and S1
µ,ℓ,m,j . This completes the proof of Proposition

4.4.
Let µ, ℓ ě 0 be. Then, Sµ,ℓ ď Cs.
First of all, let us observe that pℓ ´ ℓ0q! ď Γp1 ` ps ` 1qpℓ ´ ℓ0qq for all

ℓ0 P t0, ..., ℓu. This is obvious when ℓ0 “ ℓ and stems from the increasing of
the Gamma function on r2,`8r otherwise. Thereby, using the notation of the
generalized binomial coefficients (see Section 6) and the fact that ps ` 1qκ “ p,
we get

Sµ,ℓ ď

ℓ
ÿ

ℓ0“0

ˆ

ℓ

ℓ0

˙

ˆ

ps ` 1qℓ ` ppµ ` 1q

ps ` 1qℓ0 ` ppµ ` 1q

˙ .

Applying then the Vandermonde’s inequality (see Proposition 6, 1)

ˆ

ps ` 1qℓ ` ppµ ` 1q

ps ` 1qℓ0 ` ppµ ` 1q

˙

ě

ˆ

sℓ

sℓ0

˙ˆ

ℓ

ℓ0

˙ˆ

ppµ ` 1q

ppµ ` 1q

˙

“

ˆ

sℓ

sℓ0

˙ˆ

ℓ

ℓ0

˙

,

we derive the following

Sµ,ℓ ď

ℓ
ÿ

ℓ0“0

1
ˆ

sℓ

sℓ0

˙

and we conclude by Proposition 6, 1.
Let µ, ℓ ě 0 be, m P t2, ..., du and j P t1, ...,mu.

Then, S1
µ,ℓ,m,j ď Cm

s ζppqj´1.
‹ Let us start with the case j “ 1. We must prove the inequality S1

µ,ℓ,m,1 ď

Cm
s , where

S1
µ,ℓ,m,1 “

ÿ

ℓ0`ℓ1`...`ℓm“ℓ

ˆ

ℓ

ℓ0, ℓ1, ..., ℓm

˙

ˆ

ℓ0!

˜

m´1
ź

i“1

Γp1 ` ps ` 1qℓiq

¸

Γp1 ` ps ` 1qpκµ ` ℓmqq

Γp1 ` ps ` 1qpκµ ` κ ` ℓqq
.

Using the inequalities ℓ0! ď Γp1 ` ps ` 1qℓ0q and Γp1 ` ps ` 1qpκµ ` ℓmqq ď

Γp1 ` ps ` 1qpκpµ ` 1q ` ℓmqq, and the fact that ps ` 1qκ “ p, the sum S1
µ,ℓ,m,1

can be first majorized in a similar way as the proof of Lemma 4.4 by means of
generalized multinomial coefficients (see Section 6):

S1
µ,ℓ,m,1 ď

ÿ

ℓ0`ℓ1`...`ℓm“ℓ

ˆ

ℓ

ℓ0, ℓ1, ..., ℓm

˙

Mµ,ℓ,m,1
,

12



with

Mµ,ℓ,m,1 “

ˆ

ps ` 1qℓ ` ppµ ` 1q

ps ` 1qℓ0, ps ` 1qℓ1, ..., ps ` 1qℓm´1, ps ` 1qℓm ` ppµ ` 1q

˙

.

Thereby, applying the Vandermonde’s inequality (see Proposition 6, 2)

Mµ,ℓ,m,1 ě

ˆ

sℓ

sℓ0, sℓ1, ..., sℓm´1, sℓm

˙ˆ

ℓ

ℓ0, ℓ1, ..., ℓm´1, ℓm

˙ˆ

ppµ ` 1q

0, 0, ..., 0, ppµ ` 1q

˙

“

ˆ

sℓ

sℓ0, sℓ1, ..., sℓm´1, sℓm

˙ˆ

ℓ

ℓ0, ℓ1, ..., ℓm´1, ℓm

˙

we get

S1
µ,ℓ,m,1 ď

ÿ

ℓ0`ℓ1`...`ℓm“ℓ

1
ˆ

sℓ

sℓ0, sℓ1, ..., sℓm´1, sℓm

˙

and we conclude by Proposition 6, 2.
‹ Let us now assume j P t2, ...,mu and let us first observe that

ppµ ` pq!
j

ź

i1“1

ppµi1 ` pq!

“
1

j´1
ź

i1“1

ppµi1 ` 1q...ppµi1 ` pq

ˆ
pppµ ` 1qq!

ppµ1q!...ppµj´1q!pppµj ` 1qq!

ď
1

j´1
ź

i1“1

pµi1 ` 1qp

ˆ

ppµ ` 1q

pµ1, ..., pµj´1, ppµj ` 1q

˙

“
1

j´1
ź

i1“1

pµi1 ` 1qp

ˆ

ppµ ` 1q

0, ..., 0, pµ1, ..., pµj´1, ppµj ` 1q

˙

,

where 0 occurs m ´ j times. Thereby, reasoning as in the case j “ 1, we get

S1
µ,ℓ,m,j ď

ÿ

µ1`...`µj“µ

¨

˚

˚

˚

˚

˝

1
j´1
ź

i1“1

pµi1 ` 1qp

ˆ

ÿ

ℓ0`ℓ1`...`ℓm“ℓ

ˆ

ℓ

ℓ0, ℓ1, ..., ℓm

˙ˆ

ppµ ` 1q

0, ..., 0, pµ1, ..., pµj´1, ppµj ` 1q

˙

Mµ,ℓ,m,j

˛

‹

‹

‚

,

where Mµ,ℓ,m,j stands for the generalized multinomial coefficient
¨

˝

ps ` 1qℓ ` ppµ ` 1q

ps ` 1qℓ0, ps ` 1qℓ1, ..., ps ` 1qℓm´j , ps ` 1qℓm´j`1 ` pµ1,
..., ps ` 1qℓm´1 ` pµj´1, ps ` 1qℓm ` ppµj ` 1q

˛

‚,
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and so

S1
µ,ℓ,m,j ď

ÿ

µ1`...`µj“µ

¨

˚

˚

˚

˚

˝

1
j´1
ź

i1“1

pµi1 ` 1qp

ÿ

ℓ0`ℓ1`...`ℓm“ℓ

1
ˆ

sℓ

sℓ0, sℓ1, ..., sℓm

˙

˛

‹

‹

‹

‹

‚

ď Cm
s

ÿ

µ1`...`µj“µ

¨

˚

˚

˚

˚

˝

1
j´1
ź

i1“1

pµi1 ` 1qp

˛

‹

‹

‹

‹

‚

.

Lemma 4.4 follows then from the inequalities

ÿ

µ1`...`µj“µ

1
j´1
ź

i1“1

pµi1 ` 1qp

ď

µ
ÿ

µ1“0

...
µ

ÿ

µj´1“0

1
j´1
ź

i1“1

pµi1 ` 1qp

“

˜

µ
ÿ

µ1“0

1

pµ1 ` 1qp

¸j´1

ď

˜

`8
ÿ

µ1“1

1

µ1p

¸j´1

“ ζppqj´1.

This completes the proof.
The following result, which provides the estimates on the wµ’s in view in

this section, is a direct consequence of Proposition 4.4.
Let us set K1 “ 2pK and c “ 2pC 1Kκ. Then, the inequalities

ˇ

ˇBℓ
twµpt, xq

ˇ

ˇ ď CKℓ
1Γp1 ` ps ` 1qℓq pc |x|

p
q
µ

hold for all ℓ, µ ě 0 and all pt, xq P Σ ˆ Dr1
1
.

Using the relation ps ` 1qκ “ p, we first derive from the recurrence relation
Γp1 ` zq “ zΓpzq applied pµ times the identity

Γp1 ` ps ` 1qpκµ ` ℓqq “ Γp1 ` ps ` 1qℓq
pµ
ź

i“1

pps ` 1qℓ ` iq.

Next, applying the inequality s ` 1 ď p, we get the following relations:

Γp1 ` ps ` 1qpκµ ` ℓqq ď Γp1 ` ps ` 1qℓq
pµ
ź

i“1

ppℓ ` iq

“ Γp1 ` ps ` 1qℓq

ˆ

pℓ ` pµ

pµ

˙

ppµq!

ď 2pℓ`pµppµq!Γp1 ` ps ` 1qℓq.
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Proposition 4.4 stems then from the inequality (4.5).
We are now able to complete the proof of Theorem 3.

4.5 Fifth step: conclusion

Let us now choose for Σ a sector containing a proper subsector Σ1 bisected by
the direction θ and opening larger than πs “ π{k (such a choice is already
possible by definition of a proper subsector, see Footnote 2). Let us also choose

a radius 0 ă r1 ă minpr1
1, c

´1{pq and let us set C1 :“ C
ÿ

µě0

pcrp1qµ P R˚
`.

Thanks to Proposition 4.4, the series
ÿ

µě0

Bℓ
twµpt, xq are normally convergent

on Σ ˆ Dr1 for all ℓ ě 0 and satisfy the inequalities

ÿ

µě0

ˇ

ˇBℓ
twµpt, xq

ˇ

ˇ ď C1K
ℓ
1Γp1 ` ps ` 1qℓq

for all pt, xq P Σ ˆ Dr1 . In particular, the sum wpt, xq of the series
ÿ

µě0

wµpt, xq

is well-defined, holomorphic on Σ ˆ Dr1 and satisfies the inequalities

ˇ

ˇBℓ
twpt, xq

ˇ

ˇ ď C1K
ℓ
1Γp1 ` ps ` 1qℓq

for all ℓ ě 0 and all pt, xq P Σ ˆ Dr1 . Hence, Conditions 1 and 3 of Definition 3
hold, since Σ1 Ť Σ.

To prove the second condition of Definition 3, we proceed as follows. The
removable singularities theorem implies the existence of lim

tÑ0
tPΣ1

Bℓ
twpt, xq for all

x P Dr1 and, thereby, the existence of the Taylor series of w at 0 on Σ1 for
all x P Dr1 (see for instance [?, Cor. 1.1.3.3]; see also [?, Prop. 1.1.11]). On
the other hand, considering recurrence relations (4.3) with wµpt, xq and the k-
sums vpt, xq and gpt, xq instead of rwµpt, xq, rvpt, xq and rgpt, xq, it is clear that
wpt, xq satisfies equation (4.2) with vpt, xq in place of rvpt, xq and right-hand side
gpt, xq in place of rgpt, xq and, consequently, so does its Taylor series. Then, since
equation (4.2) has a unique formal series solution rwpt, xq, we then conclude that
the Taylor expansion of wpt, xq is rwpt, xq. Hence, Condition 2 of Definition 3
holds.

This achieves the proof of the k-summability of rwpt, xq and, thereby, the fact
that the condition is sufficient when ap0, 0q ‰ 0.

5 Proof of the sufficient condition: the other
cases

In this section, we assume that there exists q P t1, ..., p´1u such that Bn
xapt, xq|x“0 ”

0 for all n “ 0, ..., q ´ 1, and Bq
xap0, 0q ‰ 0.
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Let us first observe that, under this assumption, the identities (4.1) become

(5.1) Bκ
t ru˚,nptq ´ rf˚,nptq

´

d
ÿ

m“2

ÿ

n0`n1`...`nm“n

ˆ

n

n0, n1, ..., nm

˙

bm;˚,n0
ptqru˚,n1

ptq...ru˚,nm
ptq “ 0

for all n ď q ´ 1, and

(5.2)

ˆ

n

q

˙

a˚,qptqru˚,n`p´qptq `

n
ÿ

n0“q`1

ˆ

n

n0

˙

a˚,n0ptqru˚,n`p´n0ptq “ Bκ
t ru˚,nptq

´ rf˚,nptq ´

d
ÿ

m“2

ÿ

n0`n1`...`nm“n

ˆ

n

n0, n1, ..., nm

˙

bm;˚,n0ptqru˚,n1ptq...ru˚,nmptq

for all n ě q, with a˚,qp0q ‰ 0. In particular, the identities (5.2) tell us, as
in the case ap0, 0q ‰ 0, that each coefficient ru˚,nptq (hence, the formal solution

rupt, xq too) is uniquely determined from the inhomogeneity rfpt, xq and from the
formal series ru˚,n1 ptq with n1 “ 0, ..., p ´ 1.

Observe also that our assumption allows us to write the function apt, xq in
the form apt, xq “ xqaqpt, xq with aqp0, 0q ‰ 0. Thereby, the functions

Aqpt, xq “
1

aqpt, xq
and Bm;qpt, xq “

bmpt, xq

aqpt, xq

with m “ 2, ..., d, are all well-defined and holomorphic on a convenient common
polydisc centered at the origin p0, 0q P C2, say Dρ1

0
ˆ Dρ1

1
with 0 ă ρ1

0 ď ρ0 and
0 ă ρ1

1 ď ρ1 to use the same notations as the case ap0, 0q ‰ 0.
Setting as before rupt, xq “ rvpt, xq ` B´p

x rwpt, xq with

rvpt, xq “

p´1
ÿ

n“0

ru˚,nptq
xn

n!
,

Eq. (2.1) becomes now
(5.3)

rw ´
Aqpt, xq

xq
Bκ
t B´p

x rw `

d
ÿ

m“2

m
ÿ

j“1

ˆ

m

j

˙

Bm;qpt, xq

xq
rvm´jpt, xqpB´p

x rwqj “ rgpt, xq

where

rgpt, xq “ Aqpt, xq

Bκ
t rvpt, xq ´

d
ÿ

m“2

bmpt, xqrvmpt, xq ´ rfpt, xq

xq

is again a formal power series in t and x. Indeed, due to the identities (5.1), the
term

Bκ
t rvpt, xq ´

d
ÿ

m“2

bmpt, xqrvmpt, xq ´ rfpt, xq
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is of order Opxqq in x. Assuming then rvpt, xq and rgpt, xq to be k-summable
in the direction θ, we can prove as in the case ap0, 0q ‰ 0 that rwpt, xq is also
k-summable in the direction θ. The proof being similar to the one developed in
Section 4, we give below only the key points to modify. In particular, we keep
all the notations on the choices of the sectors Σ and Σ1, and on the choices of
the various radii.

First of all, let us start by observing that the rwµpt, xq’s are now recursively
determined for all µ ě 0 by the relations

(5.4) rwµ`1pt, xq “
Aqpt, xq

xq
Bκ
t B´p

x rwµpt, xq

´

d
ÿ

m“2

m
ÿ

j“1

ÿ

µ1`...`µj“µ

«

ˆ

m

j

˙

Bm;qpt, xq

xq
rvm´jpt, xq

˜

j
ź

i1“1

B´p
x rwµi1 pt, xq

¸ff

together with the initial condition rw0 “ rg. In particular, the operator
1

xq
B´p
x

in place of B´p
x implies that the rwµpt, xq’s are of order Opxpp´qqµq in x for all

µ ě 0, instead of Opxpµq as in the case ap0, 0q ‰ 0. Still, rwpt, xq is again a
formal power series in t and in x since p ´ q ě 1

In doing so, the estimates on the derivatives Bℓ
twµ given in Proposition 4.4

are modified as follows.
For all ℓ, µ ě 0 and all pt, xq P Σ ˆ Dr1

1
,

ˇ

ˇBℓ
twµpt, xq

ˇ

ˇ ď CC 1µKκµ`ℓΓp1 ` ps ` 1qpκµ ` ℓqq
|x|

pp´qqµ

pµ!qqppp ´ qqµq!

with

C 1 “

˜

αqCs `

d
ÿ

m“2

m
ÿ

j“1

ˆ

m

j

˙

βm;qC
m´1Cm

s ζppqj´1

¸

,

where αq (resp. βm;q for m “ 2, ..., d) stands for the maximum of |Aqpt, xq|

(resp. |Bm;qpt, xq|) on the closed polydisc Dρ2
0

ˆ Dρ2
1
.

We proceed as in the proof of Proposition 4.4 by replacing the inequality
(4.6) by the inequality

(5.5)

ˇ

ˇBℓ
twµ`1pt, xq

ˇ

ˇ ď
CC 1µKκpµ`1q`ℓΓp1 ` ps ` 1qpκpµ ` 1q ` ℓqq |x|

pp´qqpµ`1q

ppµ ` 1q!qqppp ´ qqpµ ` 1qq!
ˆ

˜

αqSµ,ℓ,q `

d
ÿ

m“2

m
ÿ

j“1

ˆ

m

j

˙

βm;qC
m´1S1

µ,ℓ,m,j,q

¸

,

where the constants Sµ,ℓ,q and S1
µ,ℓ,m,j,q are respectively defined by

Sµ,ℓ,q “

ℓ
ÿ

ℓ0“0

ˆ

ℓ

ℓ0

˙

pℓ ´ ℓ0q!Γp1 ` ps ` 1qpκµ ` κ ` ℓ0qq

Γp1 ` ps ` 1qpκµ ` κ ` ℓqq
Fµ,ℓ,q
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and

S1
µ,ℓ,m,j,q “

ÿ

µ1`...`µj“µ

ÿ

ℓ0`ℓ1`...`ℓm“ℓ

ˆˆ

ℓ

ℓ0, ℓ1, ..., ℓm

˙

F 1
µ,ℓ,j,q ˆ

ℓ0!

˜

m´j
ź

i“1

Γp1 ` ps ` 1qℓiq

¸ ˜

j
ź

i1“1

Γp1 ` ps ` 1qpκµi1 ` ℓm´j`i1 qq

¸

Γp1 ` ps ` 1qpκµ ` κ ` ℓqq

˛

‹

‹

‹

‹

‚

,

with

Fµ,ℓ,q “
ppµ ` 1q!qqppp ´ qqpµ ` 1qq!

pµ!qqppp ´ qqµq!ppp ´ qqµ ` 1q...ppp ´ qqµ ` pq
and

F 1
µ,ℓ,j,q “

ppµ ` 1q!qqppp ´ qqpµ ` 1qq!
j

ź

i1“1

pµi1 !qqppp ´ qqµi1 q!ppp ´ qqµi1 ` 1q...ppp ´ qqµi1 ` pq

.

As previously, the product on i in S1
µ,ℓ,m,j,q is 1 when j “ m.

Observe that F 1
µ,ℓ,1,q “ Fµ,ℓ,q. Observe also that the term Fµ,ℓ,q is obvious

ď 1. Indeed, the inequalities p ą p ´ q ě 1 imply

Fµ,ℓ,q “
ppµ ` 1q!qq

pµ!qqppp ´ qqµ ` p ´ q ` 1q...ppp ´ qqµ ` pq
ď

ppµ ` 1q!qq

pµ!qqpµ ` 1qq
“ 1.

Thereby, Lemmas 4.4 and 4.4 provide us the inequalities

Sµ,ℓ,q ď Sµ,ℓ ď Cs and S1
µ,ℓ,m,1,q ď S1

µ,ℓ,m,1 ď Cm
s “ Cm

s ζppq0.

By reasoning in the same way for F 1
µ,ℓ,j,q when j ě 2, we first have

F 1
µ,ℓ,j,q ď

ppµ ` 1q!qqppp ´ qqpµ ` 1qq!
j

ź

i1“1

ppµi1 ` 1q!qqppp ´ qqpµi1 ` 1qq!

“

ˆ

µ ` 1

µ1, ..., µj´1, µj ` 1

˙ˆ

pp ´ qqpµ ` 1q

pp ´ qqµ1, ..., pp ´ qqµj´1, pp ´ qqpµj ` 1q

˙

j´1
ź

i1“1

pµi1 ` 1qqppp ´ qqµi1 ` 1q...ppp ´ qqµi1 ` p ´ qq

ď

ˆ

µ ` 1

µ1, ..., µj´1, µj ` 1

˙ˆ

pp ´ qqpµ ` 1q

pp ´ qqµ1, ..., pp ´ qqµj´1, pp ´ qqpµj ` 1q

˙

j´1
ź

i1“1

pµi1 ` 1qp

.
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Applying then the calculations made in the proof of Lemma 4.4, we finally get

S1
µ,ℓ,m,j,q ď

ÿ

µ1`...`µj“µ

¨

˚

˚

˚

˚

˝

1
j´1
ź

i1“1

pµi1 ` 1qp

ÿ

ℓ0`ℓ1`...`ℓm“ℓ

1
ˆ

sℓ

sℓ0, sℓ1, ..., sℓm

˙

˛

‹

‹

‹

‹

‚

ď Cm
s ζppqj´1,

which ends the proof of Proposition 5.
Using now the inequality

Γp1 ` ps ` 1qpκµ ` ℓqq ď 2pℓ`pµppµq!Γp1 ` ps ` 1qℓq

proved in the proof of Proposition 4.4, Proposition 5 leads us to the inequality

ˇ

ˇBℓ
twµpt, xq

ˇ

ˇ ď Cp2pKqℓp2pC 1Kκ |x|
p´q

qµΓp1 ` ps ` 1qℓq ˆ

ˆ

pµ

µ, ..., µ, pp ´ qqµ

˙

,

where µ occurs q times in the multinomial coefficient. Hence, the following
Let us set K1 “ 2pK and c “ p2q ` 2qpC 1Kκ.

Then, the inequalities

ˇ

ˇBℓ
twµpt, xq

ˇ

ˇ ď CKℓ
1Γp1 ` ps ` 1qℓq

´

c |x|
p´q

¯µ

hold for all ℓ, µ ě 0 and all pt, xq P Σ ˆ Dr1
1
.

The end of the proof is similar to the one of the case ap0, 0q ‰ 0 and is left
to the reader. This completes the proof of Theorem 3.

6 Some technical results on the generalized bi-
nomial and multinomial coefficients

In combinatorial analysis, the binomial coefficients

ˆ

n

m

˙

and the multinomial

coefficients

ˆ

n

n1, ..., nq

˙

are defined for any nonnegative integers 0 ď m ď n and

any tuples pn, n1, ..., nqq of nonnegative integers satisfying q ě 2 and n1 ` ... `

nq “ n by the relations

ˆ

n

m

˙

“
n!

k!pn ´ kq!
and

ˆ

n

n1, ..., nq

˙

“
n!

n1!...nq!
.

They respectively denote the number of ways of choosing m objects from a
collection of n distinct objects without regard to order, and the number of ways
of putting n “ n1 ` ... ` nq different objects into q different boxes with ni in
the i-th box for all i “ 1, ..., q.
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Using the fact that n! “ Γp1`nq for any integer n ě 0, one can easily extend
the definitions of these coefficients to the case where their terms are no longer
necessarily integers by setting

(6.1)

ˆ

a

b

˙

“
Γp1 ` aq

Γp1 ` bqΓp1 ` a ´ bq

for any nonnegative real numbers 0 ď b ď a and

(6.2)

ˆ

a

a1, ..., aq

˙

“
Γp1 ` aq

Γp1 ` a1q...Γp1 ` aqq
“

Γp1 ` aq
q

ź

i“1

Γp1 ` aiq

for any tuples pa, a1, ..., aqq of nonnegative real numbers satisfying q ě 2 and
a1 ` ... ` aq “ a. Observe that all these coefficients are positive. Observe also
that one has the following decomposition

(6.3)

ˆ

a

a1, ..., aq

˙

“

q
ź

i“2

ˆ

a1 ` ... ` ai
a1 ` ... ` ai´1

˙

.

The four propositions below extend to the generalized binomial coefficients
(6.1) and the generalized multinomial coefficients (6.2) some well-known results
in combinatorial analysis.

In the proof of Theorem 3 (see Sections 4 and 5), we essentially used the
inequalities stated in Propositions 6 and 6. The result of Proposition 6 is useful
for the proof of Proposition 6 and the one of Proposition 6 is used in the proof
of Proposition 6.

[Pascal’s formula] Let 0 ď b ď a be two nonnegative real numbers and
1 ď m ď n two nonnegative integers. Then,

(6.4)

ˆ

a ` n ` 1

b ` m

˙

“

ˆ

a ` n

b ` m

˙

`

ˆ

a ` n

b ` m ´ 1

˙

.
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We compute:

ˆ

a ` n

b ` m

˙

`

ˆ

a ` n

b ` m ´ 1

˙

“
Γp1 ` a ` nq

Γp1 ` b ` mqΓp1 ` a ´ b ` n ´ mq

`
Γp1 ` a ` nq

Γp1 ` b ` m ´ 1qΓp1 ` a ´ b ` n ´ m ` 1q

“
pa ´ b ` n ´ m ` 1qΓp1 ` a ` nq

Γp1 ` b ` mqΓp1 ` a ´ b ` n ´ m ` 1q

`
pb ` mqΓp1 ` a ` nq

Γp1 ` b ` mqΓp1 ` a ´ b ` n ´ m ` 1q

“
pa ` n ` 1qΓp1 ` a ` nq

Γp1 ` b ` mqΓp1 ` a ´ b ` n ´ m ` 1q

“
Γp1 ` a ` n ` 1q

Γp1 ` b ` mqΓp1 ` a ´ b ` n ´ m ` 1q

“

ˆ

a ` n ` 1

b ` m

˙

;

hence, the identity (6.4).
[Vandermonde’s inequality]

1. (Binomial case) Let 0 ď b ď a be two nonnegative real numbers and
0 ď m ď n two nonnegative integers. Then,

(6.5)

ˆ

a ` n

b ` m

˙

ě

ˆ

a

b

˙ˆ

n

m

˙

.

2. (Multinomial case) Let q ě 2 be an integer, pa, a1, ..., aqq a tuple of non-
negative real numbers and pn, n1, ..., nqq a tuple of nonnegative integers
such that a1 ` ... ` aq “ a and n1 ` ... ` nq “ n. Then,

(6.6)

ˆ

a ` n

a1 ` n1, ..., aq ` nq

˙

ě

ˆ

a

a1, ..., aq

˙ˆ

n

n1, ..., nq

˙

.

‹ First point. The inequality (6.5) is clear for n “ m “ 0. Let us now fix
0 ď b ď a and let us prove by induction on n ě 1 the property

pPnq : @m P t0, ..., nu,

ˆ

a ` n

b ` m

˙

ě

ˆ

a

b

˙ˆ

n

m

˙

.
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A direct calculation gives us the property pP1q:

ˆ

a ` 1

b

˙

ˆ

a

b

˙ “
Γp1 ` a ` 1qΓp1 ` bqΓp1 ` a ´ bq

Γp1 ` aqΓp1 ` bqΓp1 ` a ` 1 ´ bq
“

a ` 1

a ` 1 ´ b
ě 1 “

ˆ

1

0

˙

,

ˆ

a ` 1

b ` 1

˙

ˆ

a

b

˙ “
Γp1 ` a ` 1qΓp1 ` bqΓp1 ` a ´ bq

Γp1 ` aqΓp1 ` b ` 1qΓp1 ` a ´ bq
“

a ` 1

b ` 1
ě 1 “

ˆ

1

1

˙

.

Assuming now the property pPnq for a certain n ě 1, let us prove the
property pPn`1q. As for the property pP1q, the sought inequality stems from a
direct calculation when m “ 0 and m “ n ` 1:

ˆ

a ` n ` 1

b

˙

ˆ

a

b

˙ “
Γp1 ` a ` n ` 1qΓp1 ` bqΓp1 ` a ´ bq

Γp1 ` aqΓp1 ` bqΓp1 ` a ` n ` 1 ´ bq
“

n`1
ź

k“1

pa ` kq

n`1
ź

k“1

pa ` k ´ bq

ě 1 “

ˆ

n ` 1

0

˙

,

ˆ

a ` n ` 1

b ` n ` 1

˙

ˆ

a

b

˙ “
Γp1 ` a ` n ` 1qΓp1 ` bqΓp1 ` a ´ bq

Γp1 ` aqΓp1 ` b ` n ` 1qΓp1 ` a ´ bq
“

n`1
ź

k“1

pa ` kq

n`1
ź

k“1

pb ` kq

ě 1 “

ˆ

n ` 1

n ` 1

˙

.

When m P t1, ..., nu, it stems from Proposition 6 and the property pPnq as
follows:

ˆ

a ` n ` 1

b ` m

˙

“

ˆ

a ` n

b ` m

˙

`

ˆ

a ` n

b ` m ´ 1

˙

ě

ˆ

a

b

˙ˆ

n

m

˙

`

ˆ

a

b

˙ˆ

n

m ´ 1

˙

“

ˆ

a

b

˙ ˆˆ

n

m

˙

`

ˆ

n

m ´ 1

˙˙

“

ˆ

a

b

˙ˆ

n ` 1

m

˙

.

This ends the induction and proves the first point of Proposition 6.
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‹ Second point. Let us apply the relation (6.3) and the inequality (6.5) to
each factor of the product. We get

ˆ

a ` n

a1 ` n1, ..., aq ` nq

˙

“

q
ź

i“2

ˆ

a1 ` ... ` ai ` n1 ` ... ` ni

a1 ` ... ` ai´1 ` n1 ` ... ` ni´1

˙

ě

q
ź

i“2

ˆ

a1 ` ... ` ai
a1 ` ... ` ai´1

˙ˆ

n1 ` ... ` ni

n1 ` ... ` ni´1

˙

“

˜

q
ź

i“2

ˆ

a1 ` ... ` ai
a1 ` ... ` ai´1

˙

¸ ˜

q
ź

i“2

ˆ

n1 ` ... ` ni

n1 ` ... ` ni´1

˙

¸

.

The inequality (6.6) follows then by applying again the relation (6.3), which
ends the proof of the second point of Proposition 6.

Let s, a ą 0 be. Then, the function

Ba : b P r0, as ÞÝÑ

ˆ

sa

sb

˙

is increasing on
”

0,
a

2

ı

and decreasing on
”a

2
, a

ı

.

In particular, Bapbq ě 1 for all b P r0, as.
The derivative of Ba is defined for all b P r0, as by

B1
apbq “ sBapbqpΨp1 ` spa ´ bqq ´ Ψp1 ` sbqq,

where Ψ “ Γ1{Γ is the Psi (or Digamma) function. The latter being increasing
on r0, as (the function ln Γ is indeed convex on s0,`8r), Proposition 6 follows
from Lagrange Theorem.

[Sum of the inverses of binomial and multinomial coefficients] Let s ą 0 be
and let us set Cs “ s1p2 ` Γpss1qq, where s1 is the positive integer ě 1 defined
by

s1 “

$

&

%

1 if s ě 1
Z

1

s

^

` 1 if s ă 1
,

where txu stands for the floor of x P R.

1. (Binomial case) The following inequality holds for all integers n ě 0:

(6.7)
n

ÿ

m“0

1
ˆ

sn

sm

˙ ď Cs.

2. (Multinomial case) The following inequality holds for all integers q ě 2
and n ě 0:

(6.8)
ÿ

n1`...`nq“n

1
ˆ

sn

sn1, ..., snq

˙ ď Cq´1
s .
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‹ First point. The inequality (6.7) is straightforward from Proposition 6
when n ă 2s1 since we have the relations

n
ÿ

m“0

1
ˆ

sn

sm

˙ ď n ` 1 ď 2s1 ď Cs.

Let us now assume n ě 2s1 and let us write the left hand-side of (6.7) in the
form

n
ÿ

m“0

1
ˆ

sn

sm

˙ “

s1
´1

ÿ

m“0

1
ˆ

sn

sm

˙ `

n´s1
ÿ

m“s1

1
ˆ

sn

sm

˙ `

n
ÿ

m“n´s1`1

1
ˆ

sn

sm

˙ .

Applying Proposition 6, the first and the third sums of the right hand-side are

both ď s1. Moreover, all the terms of the second sum are ě

ˆ

sn

ss1

˙

. This brings

us to the following relations:

n
ÿ

m“0

1
ˆ

sn

sm

˙ ď 2s1 `
n ´ 2s1 ` 1

ˆ

sn

ss1

˙ “ 2s1 `
pn ´ 2s1 ` 1qΓp1 ` ss1qΓp1 ` sn ´ ss1qq

Γp1 ` snq

“ 2s1 ` s1Γpss1q
n ´ 2s1 ` 1

n

Γp1 ` sn ´ ss1q

Γp1 ` sn ´ 1q

ď 2s1 ` s1Γpss1q
Γp1 ` sn ´ ss1q

Γp1 ` sn ´ 1q
.

The inequality (6.7) follows then from the increasing of the Gamma function on
r2,`8r. Indeed, the inequality ss1 ě 1 implies 2 ď 1 ` sn ´ ss1 ď 1 ` sn ´ 1,

and thereby
Γp1 ` sn ´ ss1q

Γp1 ` sn ´ 1q
ď 1.

‹ Second point. Applying the relation (6.3) and setting n1
k “ n1 ` ... ` nk

for all k “ 1, ..., q ´ 1, we first get the identities

ÿ

n1`...`nq“n

1
ˆ

sn

sn1, ..., snq

˙ “
ÿ

n1`...`nq´1ďn

1
ˆ

sn

spn1 ` ... ` nq´1q

˙

...

ˆ

spn1 ` n2q

sn1

˙

“

n
ÿ

n1
q´1“0

n1
q´1
ÿ

n1
q´2“0

...

n1
2

ÿ

n1
1“0

1
ˆ

sn

sn1
q´1

˙ˆ

sn1
q´1

sn1
q´2

˙

...

ˆ

sn1
2

sn1
1

˙ .

The inequality (6.8) stems then from the inequality (6.7) which we apply q ´ 1
times. This completes the proof.
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