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Second-order well-balanced Lagrange-Projection schemes for
Blood Flow Equations

A. Del Grosso∗and C. Chalons†

December 7, 2020

Abstract. We focus on the development of well-balanced Lagrange-projection schemes applied to the one-dimensional
blood �ow system of balance laws. Here we neglect the friction forces and the source term is due to the presence of vary-
ing parameters as the cross-sectional area at the equilibrium and the arterial sti�ness. By well-balanced we mean that the
method preserves the "man at eternal rest" solution. For this purpose we present two di�erent strategies: the former re-
quires a consistent de�nition of the source term based on an approximate Riemann solver, while the second one exploits the
well-established hydrostatic reconstruction. Subsequently we explain how to reach the second-order of accuracy for both
procedures. Numerical simulations are carried out in order to show the right order of accuracy and the good behaviour of
the schemes.

1 Introduction
This paper focuses on the construction of second-order well-balanced Lagrange-projection schemes applied to the 1D

Blood Flow Equations (BFE). This model results to be extremely useful when dealing with the study of the cardiovascular
system and related diseases. Indeed, it proved to be e�ective in the computation of averaged quantities as the cross-sectional
area A of the vessel, the blood �ow q and internal pressure p. Hence, there is a huge amount of works about this system,
and we refer the reader to [17, 33] and the references therein for details about it. Here we study the model as applied to
arteries, in the particular case in which the cross-sectional area at equilibrium and the wall sti�ness could be not constant.
See for instance [15, 20, 36, 31, 32]. Indeed, there exist physiological and pathological situations in which geometrical and
mechanical parameters can vary locally, as in presence of stenoses or aneurysm and tapering of blood vessels. However,
to consider non-constant parameters leads to the presence of a non-null source term and consequently we aim to develop
numerical schemes for hyperbolic system of balance laws.

We are also interested in preserving the so-called "man at eternal rest" stationary solution, namely in the well-balancedness
of the numerical method. As a matter of fact, it reveals itself to be an important property as a non well-balanced scheme
could produce non-physical spurious oscillations in certain cases, especially when the solution is near to a steady state. In
particular, the "man at eternal rest" condition is characterized by zero-velocity; if the numerical scheme preserves also all
the stationary solutions, it is called fully well-balanced. Many studies have been done about well-balanced methods as in
[4, 6, 7, 8], while for application to hyperbolic systems as the shallow water equations see [1, 3, 21, 22]. As far as the blood
�ow equations are concerned, we refer for instance to the works of Delestre and collaborators [15], in which variations in
the values of parameters as the cross-sectional area at equilibrium is considered. In particular they developed a �rst-order
well-balanced scheme basing themselves on the well-known hydrostatic reconstruction procedure, introduced for the �rst
time by Audusse et al. in [1] in the context of the shallow water equations. In [20] Delestre et al. expanded their work
considering varying values for the arterial wall rigidity as well. In [26] Müller et al. followed the generalized hydrostatic re-
construction to build a high-order well-balanced path-conservative numerical method for blood �ow equations with varying
mechanical properties. Then, once again in [27] Müller and Toro presented a high-order well-balanced path-conservative
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numerical scheme for BFE but with also discontinuous values for the cross-sectional area at rest and external pressure and
not only for the wall sti�ness.

Last but not least, we design numerical schemes based on the Lagrange-projection formalism, which allows us to split
up the system into two di�erent ones, and in particular to take separately into account the acoustic (Lagrangian step) and
the transport (remap step) part of the system. This also implies the decoupling of fast and slow waves, which plays an
important role in determining the CFL time step. Indeed, a fast wave leads to a very restrictive time step, contrarily to a
slow wave. However, as far as the human arteries are concerned, the ratio between the velocity and the wave speed, i.e. the
Shapiro number (or equivalently the Froude number for the shallow water equations), is in general of order 10−2 and thus, it
could be interesting to develop a numerical method in which the Lagrangian step is solved implicitly. In this paper we start
describing explicit schemes but we aim to develop implicit-explicit schemes in future works. For the Lagrangian-projection
scheme we refer the reader to [12, 9, 10] and the references therein, while for well-balanced Lagrange-projection methods
see [5, 11, 25].

Concluding, we present two second-order well-balanced Lagrange-projection schemes for the 1D BFE. We start intro-
ducing the numerical method in the case of constant parameters, and thus for a system of conservation laws. Then, when
varying properties are considered, two di�erent ways of preserving the "man at eternal rest" stationary solution are de-
scribed. On the one hand, referring to the work of Suliciu [29], we relax the Lagrangian system introducing a new variable,
which stands for a linearization of the pressure term, and then, following the theory of Gallice [18, 19], we easily solve the
associated Riemann problem. Alternatively, we exploit the hydrostatic reconstruction as well.

Outline of the paper. In the next section we present the 1D mathematical model for the blood �ow equations. We also
introduce the Lagrange-projection decomposition which leads to two di�erent systems, the acoustic and transport one. An
approximate Riemann solver is described for the acoustic system as well. In sections 3 and 4 we respectively present the
�rst and second-order well-balanced schemes. In both sections, we explain two di�erent strategies in order to preserve the
"man at eternal rest" solution. In section 5 numerical simulations are carried out. Finally conclusions and perspectives are
drawn in section 6.

2 The mathematical model
Given the axial coordinate x along the longitudinal axis of the vessel and the time t > 0, the general one-dimensional

blood �ow model consists of two equations, the mass conservation and momentum balance equation, namely∂tA+ ∂xq = 0

∂tq + ∂x

(
α̂
q2

A

)
+
A

ρ
∂xp = f,

(2.1)

where A(x, t) > 0 is the cross-sectional area of the vessel, q = Au the blood �ow, with u(x, t) the averaged velocity of
blood at cross section, and �nally p(x, t) is the averaged internal pressure at cross section. Furthermore, ρ represents the
blood density and it is assumed to be constant , while α̂ is determined by the velocity pro�le and it is considered to be �at
in this work, thus we take α̂ = 1. At last, f accounts for the friction forces but we will neglect it in the rest of the paper. We
assume that the initial area A(x, t = 0) and initial velocity u(x, t = 0) are given at time t = 0. For more details about the
derivation of system (2.1), we refer to [17] and [33].

Since in system (2.1) there are three unknowns but only two equations, we need a closure condition, namely a tube law
or more speci�cally a relation between the internal pressure and the cross-sectional area. In this paper we refer to [20] and
we consider the blood vessels to be purely elastic arteries and, as such, the tube law reads

p(x, t) = pext +K(x)(
√
A(x, t)−

√
A0(x)), (2.2)

where pext is the constant external pressure, A0(x) the cross-sectional area at equilibrium and K(x) a parameter related to
the arterial sti�ness. In particular K is a positive function depending on the vessel thickness h0(x) and the Young modulus
E(x), refer again to [20]. Note also that (2.2) is valid only for blood �ow in arteries and not in veins, for a more general tube
law refer for instance to [17, 33]. Equipped with closure condition (2.2), we can now show the system of balance laws we
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will investigate in the rest of the paper, namely∂tA+ ∂xq = 0

∂tq + ∂x

(q2

A
+ γA

3
2

)
= s,

(2.3)

with γ = K
3ρ and

s = s(A;A0,K) =
A

ρ
∂x(K

√
A0)− 2A

3ρ

√
A∂xK. (2.4)

In compact form this system reads
∂tQ + ∂xF(Q) = S(Q;A0,K) (2.5)

where

Q =

(
A
q

)
, F(Q) =

 q
q2

A
+ γA

3
2

 and S(Q;A0,K) =

(
0
s

)
.

Let us note that if both K(x) and A0(x) are constant, then s = 0 and (2.5) is reduced to a system of conservation laws.
It is not di�cult to see that the two eigenvalues of system (2.5) are λ± = u± c, where c is the wave speed de�ned by

c =

√
3

2
γ
√
A.

Consequently the convective part of (2.5) is strictly hyperbolic as λ± are real and distinct, namely as long as the vector
of unknowns Q belongs to the phase space Ω = {(A,Au)t ∈ R2|A > 0}. Finally, both the two characteristic �elds are
genuinely non-linear and the Riemann invariants associated with λ± are respectively given by I− = u+4c and I+ = u−4c.
For more details refer to [35].

In this paper we are specially interested in developing second-order well-balanced Lagrange-projection methods, thus
hereafter we introduce both the well-balanced property and the Lagrange-projection decomposition.

The well-balanced property. A numerical scheme is well-balanced if it is able to preserve the smooth stationary solutions
of the system, that is to say the steady states which satisfy the ordinary di�erential equations

∂xF(Q) = S(Q;A0,K),

and hence
q = q0 = constant, q2

0

2A2
+
K

ρ
(
√
A−

√
A0) = constant, (2.6)

where the quantity E = q2

2A2 + K
ρ (
√
A−
√
A0) can be referred as the energy discharge. In particular, a scheme able to

preserve the steady states (2.6) is called fully well-balanced, while a method which conserves only the stationary solutions
with zero velocity (u = 0) is de�ned well-balanced. We are interested in a scheme endowed with the latter property, and
thus in the "man at eternal rest" solution,

q = 0, K(
√
A−

√
A0) = constant. (2.7)

For more details about well-balanced schemes for blood �ow equations refer for instance to [15, 20, 27, 36].

The Lagrangian coordinates. Observing that system (2.3) is given in Eulerian coordinates, now we want to express it
using the Lagrangian coordinates, which describe the �ow following the �uid motion. While with the Eulerian coordinates
the viewer has a �xed position and watches the �ow from the exterior, with the Lagrangian coordinates he focus on a single
"�uid particle" ξ, for which we introduce the characteristic curves{

∂x
∂t (ξ, t) = u(x(ξ, t), t)

x(ξ, 0) = ξ.
(2.8)
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Then, given the trajectory : t→ x(ξ, t), any function : (x, t)→ Q(x, t) in Eulerian coordinates can be written in Lagrangian
coordinates,

Q̄(ξ, t) = Q(x(ξ, t), t).

Moreover, de�ning the volume ratio
L(ξ, t) =

∂x

∂ξ
(ξ, t) (2.9)

which satis�es {
∂L
∂t (ξ, t) = ∂ξu(x(ξ, t), t)

L(ξ, 0) = 1
(2.10)

and
∂tL(ξ, t) = ∂ξu(x(ξ, t), t) = ∂ξū(ξ, t),

we easily �nd that

∂ξQ̄(ξ, t) = L(ξ, t)∂xQ(x, t) and ∂tQ̄(ξ, t) = ∂tQ(x, t) + u(x, t)∂xQ(x, t).

Hence, using the chain rule and de�ning p̃ = p̃(A;K) = γA
3
2 , from system (2.3) we write{

∂tA+A∂xu+ u∂xA = 0

∂t(Au) + u∂x(Au) +Au∂xu+ ∂xp̃ = s,
(2.11)

and multiplying by L(ξ, t), we obtain {
L∂tĀ+ Ā∂tL = 0

L∂t(Au) +Au∂tL+ ∂ξp̃ = s̄,

where s̄ = A
ρ ∂ξ(K

√
A0)− 2A

3ρ

√
A∂ξK̄ . We �nally �nd that in Lagrangian coordinates system (2.3) reads,{

∂t(LĀ) = 0

∂t(LAu) + ∂ξ ¯̃p = s̄.
(2.12)

Hence, the Lagrange-projection algorithm consists of two steps:

1. Solve system (2.12) written in Lagrangian coordinates;

2. Project the solution of system (2.12) in Eulerian coordinates.

For more details about the Lagrangian-projection decomposition, once again we refer the reader to [5, 9, 10, 11, 16, 25].

2.1 The Lagrangian-projection splitting and the relaxation formulation
At this stage, we present the Lagrangian-projection decomposition in a di�erent way, which will prove to be extremely

useful for one of the two numerical methods we are going to describe in sections 3.2.1 and 4.2.1. In particular we split system
(2.3) into two di�erent ones, the Lagrangian/acoustic system and the projection/transport system. The former takes into
account the acoustic e�ects and parameters variations, while the latter the transport phenomena, see [5, 11].

In particular, starting from formulation (2.11), we �nd that the acoustic system reads{
∂tA+A∂xu = 0

∂t(Au) +Au∂xu+ ∂xp̃ = s,
(2.13)

while the transport system is given by {
∂tA+ u∂xA = 0

∂tq + u∂xq = 0.
(2.14)
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System (2.14) can also simply be seen as ∂tX + u∂xX = 0, with either X = A or X = q.
Let us rewrite system (2.13) as {

− 1
A2 (∂tA+A∂xu) = 0

A∂tu+ u∂tA+Au∂xu+ ∂xp̃ = s

and de�ning τ = 1
A and the mass variable m such that 1

A∂x = ∂m, the Lagrangian system also reads{
∂tτ − ∂mu = 0

∂tu+ ∂mp̃ = s̃,
(2.15)

with s̃ = A
ρ ∂m(K

√
A0) − 2A

3ρ

√
A∂mK . Observe that (2.15) is equivalent to (2.12). System (2.15) has two eigenvalues

λ± = ±Ac, and it is strictly hyperbolic in the same phase space of system (2.3), namely when A > 0, with the two charac-
teristic �elds genuinely non-linear.

Relaxation formulation. At this stage we are interested in �nding an approximate solution of a Riemann problem for
system (2.15). For this purpose we exploit the Suliciu relaxation approach, which allows us to enlarge (2.15) to a strictly
hyperbolic system with only linearly degenerate characteristic �elds, which is well-known to be easier to solve. For the
Suliciu relaxation approach and related applications refer to [29, 4, 2, 12, 13, 14] and the references therein.

Thus, we introduce the relaxation parameter λ and the new variable Π such that at least formally

lim
λ→∞

Π = p̃,

where Π can be interpreted as a linearization of the pressure p̃. We observe that ∂τ p̃(τ) = − 1
A2 ∂Ap̃(A) and ∂tp̃ = ∂τ p̃(τ)∂tτ

so that, multiplying the �rst equation of system (2.15) by ∂τ p̃(τ), we �nd that ∂tp̃+A2c2∂mu = 0. The latter motivates the
relaxation system 

∂tτ − ∂mu = 0

∂tu+ ∂mΠ = s̃

∂tΠ + a2∂mu = λ(p̃(τ)−Π)

(2.16)

where a2 is a constant which linearizesA2c2 and that should be taken such that a2 ≥ A2c2 according to the sub-characteristic
condition. Indeed, this condition entails that the information in the relaxation model (2.16) propagates faster than in the
original one (2.15). Refer for instance to the works [29, 11, 12].

Considering that the initial data for Π is well-prepared in the sense that Π = p̃, it is natural to introduce a more compact
notation for system (2.16), which reads

∂tU + ∂mG(U) = S̃

with

U =

τu
Π

 , G(U) =

−uΠ
a2u

 and S̃ =

0
s̃
0

 ,

and where we note that the relaxation source term in the evolution equation for Π is not present anymore. Rewriting this
system in quasi-linear form, it gives

∂tU + A(U)∂mU = S̃

where A(U) is the Jacobian matrix of the �ux vector G(U), that is

A(U) =
∂G
∂U

=

0 −1 0
0 0 1
0 a2 0

 .

The eigenvalues of the matrix A(U) are

λ− = −a, λ0 = 0 and λ+ = a;
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note that they can be seen as constant approximations of the eigenvalues of system (2.15). Therefore system (2.16) is strictly
hyperbolic as long as a is real and a 6= 0. The corresponding right eigenvectors are

R− =

 1
a
−a2

 , R0 =

1
0
0

 and R+ =

 1
−a
−a2

 .

All the three associated characteristic �elds are linearly degenerate, therefore the three waves will be contact discontinuities
and, as such, the Riemann problem can be solved using the Riemann invariants. The equations in phase space associated to
λ± are

dτ

1
=
du

∓a
=

dΠ

−a2

and they lead to the Riemann invariants RI±,1 = aτ ± u and RI±,2 = Π∓ au. Finally, the corresponding equations to λ0

in phase space are
du = 0 and dΠ = 0

and the associated Riemann invariants are RI0,1 = u and RI0,2 = Π.
At this stage we can look for an approximate solution of system (2.16) for a Riemann problem. We will use the theory

of Gallice [18, 19] which consists in an extension of the well-known Harten, Lax and van Leer formalism [24] for systems
of conservation laws.

2.2 Approximate solution of a RP for the acoustic system
Let us start giving some general notions about the approximate Riemann solver and consistency with the integral form

as described by Gallice [18, 19]. We will then focus on our speci�c case, namely system (2.16).
We brie�y consider a general system of form

∂tU + ∂mG(U) = S̃ (2.17)

where U is the vector of h unknowns, G(U) the physical �ux and S̃ the source term. We want to solve the Riemann Problem
(RP) with the following initial condition,

U(m, t = 0) =

{
UL if m < 0

UR if m > 0,
(2.18)

for any given UL, UR in the phase space. Supposing to have h discontinuities with velocities λk , k = 1, . . . , h , the solution
of the Riemann problem consists of h+ 1 states separated by the discontinuities, hence

U(
m

t
,UL,UR) =



U1 = UL if m
t < λ1

...
...

Uk if λk <
m
t < λk+1

...
...

Uh+1 = UR if m
t > λh

(2.19)

Given the space and time steps ∆m and ∆t, the approximate solution (2.19) of the RP (2.17)-(2.18) is said to be consistent
with the integral form of (2.17) if in the interval [0,∆m] we have

G(UR)− G(UL)−∆mS̃(∆m,∆t;UL,UR) =

h∑
k=1

λk(Uk+1 − Uk), (2.20)

where also the source term S̃(∆m,∆t;UL,UR) has to satisfy a consistency property, namely

lim
UL,UR→U;∆m,∆t→0

S̃(∆m,∆t;UL,UR) = S̃(U). (2.21)
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2.2.1 Riemann solver for the system of conservation laws

Next, we focus on system (2.16). We start neglecting the source term, hence we want to solve the following Riemann
problem, 

∂tU + ∂mG(U) = 0

U(m, t = 0) =

{
UL if m < 0

UR if m > 0

(2.22)

where in particular

UL =

 τL
uL
ΠL

 and UR =

 τR
uR
ΠR

 .

In this speci�c case, the solution can be computed exactly and takes the following form

U(
m

t
,UL,UR) =


UL if m

t < λ− = −a
U∗,L if λ− <

m
t < 0

U∗,R if 0 < m
t < λ+ = a

UR if m
t > λ+

(2.23)

with

U∗,L =

 τ∗,L
u∗,L
Π∗,L

 and U∗,R =

 τ∗,R
u∗,R
Π∗,R

 . (2.24)

In order to �nd the values U∗,L and U∗,R, we exploit the consistency conditions (2.20) together with the Rankine-Hugoniot
conditions associated to the velocities ±a, namely

a(U∗,L − UL) + G(U∗,L)− G(UL) = 0 and − a(UR − U∗,R) + G(U∗,R)− G(UR) = 0, (2.25)

and to the discontinuity of null velocity, i.e. u∗,L = u∗,R = u∗, Π∗,L = Π∗,R = Π∗. Thus, it is straightforward to �nd the
following algebraic system of 6 relations, 

aτ∗,L − u∗,L = aτL − uL
au∗,L + Π∗,L = auL + ΠL

u∗,L = u∗,R = u∗

Π∗,L = Π∗,R = Π∗

aτ∗,R + u∗,R = aτR + uR

au∗,R −Π∗,R = auR −ΠR,

whose resolution leads us to the values in the star regions,
τ∗,L = τL + 1

a (u∗ − uL) = τL + 1
2a (uR − uL)− 1

2a2 (ΠR −ΠL)

τ∗,R = τR − 1
a (u∗ − uR) = τR + 1

2a (uR − uL) + 1
2a2 (ΠR −ΠL)

u∗ = 1
2 (uL + uR)− 1

2a (ΠR −ΠL)

Π∗ = 1
2 (ΠL + ΠR)− a

2 (uR − uL).

(2.26)

2.2.2 Riemann solver for the system of balance laws

Let us now consider the source term due to the variations of the cross-sectional area at equilibrium A0 and the arterial
sti�ness K as well. Therefore, we look for an approximate solution of the following Riemann Problem,

∂tU + A(U)∂mU = S̃(Q;A0,K)

U(m, t = 0) =

{
UL if m < 0

UR if m > 0.

(2.27)
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Once again we assume that them− t plane divided in four di�erent zones by the three waves and the solution has the form
given by (2.23) and (2.24). In order to �nd such a solution made of 6 unknowns, we need to impose di�erent conditions.
Starting from the consistency relations (2.20), we have

−uR + uL = −a(τ∗,L − τL) + a(τR − τ∗,R)

ΠR −ΠL −∆ms̃ = −a(u∗,L − uL) + a(uR − u∗,R)

a2(uR − uL) = −a(Π∗,L −ΠL) + a(ΠR −Π∗,R)

(2.28)

then, the Rankine-Hugoniot conditions associated to the mass equation read
−(uR − u∗,R) = a(τR − τ∗,R)

uL − u∗,L = −a(τ∗,L − τL)

u∗,L = u∗,R = u∗

(2.29)

which give us only two additional conditions, as the �rst relation of (2.28) is a linear combination of (2.29). Consequently we
have found only �ve conditions for six unknowns and thus, they are not su�cient to de�ne the approximate RP solution.
Note also that s̃ = s̃(∆m,∆t;UL,UR) in (2.28) has to be speci�ed such that (2.21) holds true. In particular, s̃ should be
determined such that it is equal to zero if both A0 and K are constant. With this request, the solution of (2.27) would
degenerate to the solution of the homogeneous Riemann problem (2.22). Finally, two relations are still missing to de�ne our
solution.

Let us suppose to have two other equations, namely ∂tA0 = 0 and ∂tK = 0. For these two equations the solutions are
A0,L if m < 0, A0,R if m > 0 and KL if m < 0, KR if m > 0. Hence, we ask for the jump condition across the middle
discontinuity associated to the momentum equation, that is to say

Π∗R −Π∗L +M = 0, (2.30)

where the function
M = −∆mL + ∆mR

2
s̃(∆m,∆t;UL,UR)

has to be de�ned such that it satis�esM = 0 if A0,L = A0,R and KL = KR. Thus, after few algebraic computations, we
obtain the following solution for the Riemann problem (2.27),

τ∗,L = τL + 1
a (u∗ − uL)

τ∗,R = τR − 1
a (u∗ − uR)

u∗ = 1
2 (uL + uR)− 1

2a (ΠR −ΠL)− M2a
Π∗L = 1

2 (ΠL + ΠR)− a
2 (uR − uL) + M

2

Π∗R = 1
2 (ΠL + ΠR)− a

2 (uR − uL)− M2
Π∗ = 1

2 (Π∗L + Π∗R) = 1
2 (ΠL + ΠR)− a

2 (uR − uL).

(2.31)

It remains to de�neM in a consistent way and it is clear that

M = −
{A
ρ

}
(KR

√
A0,R −KL

√
A0,L) +

{2A

3ρ

√
A
}

(KR −KL)

is relevant provided that
{A
ρ

}
and

{2A

3ρ

√
A
}

are consistent approximations of A
ρ

and 2A

3ρ

√
A respectively. Let us discuss

this issue. We �rst recall that since UL and UR are taken to be well prepared, we have ΠL =
KL

3ρ
A

3
2

L and ΠR =
KR

3ρ
A

3
2

R.

Since we are interested in preserving the "man at eternal rest" solution, we also ask for the well-balanced condition, U∗,L =
UL and U∗,R = UR if UL and UR verify the "man at eternal rest" solution, namely

uL = uR = 0, KL(
√
AL −

√
A0,L) = KR(

√
AR −

√
A0,R). (2.32)

8



If we have (2.32), then

M = −
{A
ρ

}
(KR

√
A0,R −KL

√
A0,L) +

{2A

3ρ

√
A
}

(KR −KL)

= −
{A
ρ

}
(KR

√
AR −KL

√
AL) +

{2A

3ρ

√
A
}

(KR −KL)

= −
{A
ρ

}KR +KL

2
(
√
AR −

√
AL)−

{A
ρ

}√AR +
√
AL

2
(KR −KL) +

{2A

3ρ

√
A
}

(KR −KL)

and thanks to (2.30), using formulae [XY ]RL =
−→
X [Y ]RL +

←−
Y [X]RL , where [X]RL = XR − XL, −→X = αXL + (1 − α)XR,

←−
X = αXR + (1− α)XL and α = 1

2 ,

M = −(ΠR −ΠL)

= − 1

3ρ
(KRAR

√
AR −KLAL

√
AL)

= − 1

6ρ
(KR +KL)(AR

√
AR −AL

√
AL)− 1

6ρ
(AL

√
AL +AR

√
AR)(KR −KL)

= − 1

3ρ

KR +KL

2
(AL +

√
AR
√
AL +AR)(

√
AR −

√
AL)− 1

6ρ
(AL

√
AL +AR

√
AR)(KR −KL).

Therefore, it is clearly su�cient to set {A
ρ

}
=
AL +AR +

√
AL
√
AR

3ρ

and {2A

3ρ

√
A
}

=

√
AL +

√
AR

2

{A
ρ

}
− 1

6ρ
(AL

√
AL +AR

√
AR)

=

√
AL
√
AR(
√
AL +

√
AR)

3ρ
.

Finally, we get

M =M((AL, A0,L,KL); (AR, A0,R,KR))

= −AL +AR +
√
AL
√
AR

3ρ

(
KR

√
A0,R −KL

√
A0,L −

√
AL
√
AR(
√
AL +

√
AR)

AL +AR +
√
AL
√
AR

(KR −KL)
)
.

(2.33)

Lastly, let us note that the de�nition ofM is consistent, indeed

lim
AL,AR→A

M = −A
ρ

(
KR

√
A0,R −KL

√
A0,L

)
+

2A
√
A

3ρ
(KR −KL).

3 First-order well-balanced scheme
The next step consists in presenting the �rst-order well-balanced scheme. We start giving a �rst-order approximation of

the homogeneous version of system (2.3) and then we modify it in order to satisfy the well-balanced property and include
the source term at the same time. In particular, for the latter step, we show two di�erent ways of preserving the stationary
state (2.7), one of them exploiting the approximate solution of the Riemann problem (2.27) and the other the well-known
hydrostatic reconstruction procedure, for which we respectively refer to [11] and [25].

Let us now introduce some notations. First of all, we de�ne the constant space step ∆x and constant time step ∆t. The
mesh interfaces are given by xj+1/2 = j∆x for j ∈ Z and the intermediate times by tn = n∆t for n ∈ N. As usual in the
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�nite volume framework, we seek at each time tn for an approximation Qn
j of the solution in the interval [xj−1/2, xj+1/2),

j ∈ Z. Therefore, a piecewise constant approximate solution x→ Q∆t,∆x(x, tn) of the solution Q is given by

Q∆t,∆x(x, tn) = Qn
j for all x ∈ Cj = [xj−1/2;xj+1/2), j ∈ Z, n ∈ N.

As far as the variable ξ is concerned, we use the same space discretization of x, hence ∆x = ∆ξ, xj+ 1
2

= ξj+ 1
2

and
xj = ξj∀j.

3.1 First-order approximation with constant parameters
We start describing the �rst-order scheme by assuming A0 and K constant parameters, therefore the source term s

disappears. As we already pointed out, the Lagrange-projection scheme is composed of two steps:

1. Solve system (2.12) written in Lagrangian coordinates, or equivalently updateQn toQn+1− approximating the solution
of system (2.13);

2. Project the solution of system (2.12) in Eulerian coordinates, namely update Qn+1− to Qn+1 by solving system (2.14).

For more details about this procedure in the shallow water context refer to [5, 11, 25].

Lagrangian step. Given a system of form ∂tU+∂mG(U) = 0 as in (2.22), the �rst-order Godunov-type scheme associated
with the Riemann solver of section 2.2.1 reads

Un+1−
j = Unj −

∆t

∆mj
(Gnj+ 1

2
− Gnj− 1

2
), (3.1)

with
Gnj+ 1

2
= G(Unj ,U

n
j+1), (3.2)

and

G(UL,UR) =
1

2

(
G(UL) + G(UR)−

h∑
k=1

|λk|(Uk+1 − Uk)
)
, (3.3)

where λk the speeds of the discontinuities and Uk the intermediate states. In more details, we get that the natural discretiza-
tion of the homogeneous version of the �rst two equations of system (2.16) is given by{

τn+1−
j = τnj + ∆t

∆mj
(u∗
j+ 1

2

− u∗
j− 1

2

)

un+1−
j = unj − ∆t

∆mj
(Π∗

j+ 1
2

−Π∗
j− 1

2

),
(3.4)

with ∆mj = ∆x
τn
j

and an
j+ 1

2

= max((Ac)nj , (Ac)
n
j+1). The numerical �uxes are given by u∗

j+ 1
2

and Π∗
j+ 1

2

at time tn and in
particular, exploiting formulae (2.26),

u∗j+ 1
2

= u∗j+ 1
2
(Unj ,U

n
j+1) =

1

2
(unj+1 + unj )− 1

2an
j+ 1

2

(Πn
j+1 −Πn

j ),

Π∗j+ 1
2

= Π∗j+ 1
2
(Unj ,U

n
j+1) =

1

2
(Πn

j+1 + Πn
j )−

an
j+ 1

2

2
(unj+1 − unj ).

(3.5)

Note that the �rst equation τn+1−
j = τnj + ∆t

∆mj
(u∗
j+ 1

2

− u∗
j− 1

2

) of system (3.4) is equivalent to

Anj = An+1−
j

(
1 +

∆t

∆x
(u∗j+ 1

2
− u∗j− 1

2
)
)
. (3.6)

For more details we refer again to [5, 9, 10, 11, 18, 19, 25].
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Figure 1: Connection between Lagrangian and Eulerian coordinates, see [25].

It is useful to observe that a numerical discretization for the Lagrangian step starting from (2.12) with no source term,
namely {

Ln+1−
j An+1−

j = LnjA
n
j

Ln+1−
j (Au)n+1−

j = Lnj (Au)nj − ∆t
∆x (Π∗

j+ 1
2

−Π∗
j− 1

2

)
(3.7)

with Π∗
j± 1

2

given by (3.5), is equivalent to (3.4).
At last, observe from system (2.10) that a natural discretization for L(ξ, t) is the following,

Ln+1−
j = Lnj +

∆t

∆x
(u∗j+ 1

2
− u∗j− 1

2
) with Lnj = 1, (3.8)

u∗
j± 1

2

given by (3.5) and, from its de�nition (2.9),

Lj(t) =
1

∆x

∫ x
j+1

2

x
j− 1

2

∂x

∂ξ
(ξ, t)dξ =

x∗
j+ 1

2

− x∗
j− 1

2

∆x

with x∗
j± 1

2

= x(ξj± 1
2
, t) ' ξj± 1

2
+ tu∗

j± 1
2

according to (2.8), see also �gure 1 for a better understanding.

Projection step. As already explained, the subsequent step consists in projecting the solution of system (2.12) (here with
no source term), or equivalently the solution given by (3.7), in Eulerian coordinates. With this in mind, let us �rst note that
by de�nition of L, ∫ x(ξr,t)

x(ξl,t)

Q(x, t)dx =

∫ ξr

ξl

L(ξ, t)Q̄(ξ, t)dξ.

This relation allows to make a simple link between Q in Eulerian and Lagrangian coordinates. In order to use it at the
discrete level, it just remains to de�ne ξ̂j+ 1

2
(t) such that for all j (see again �gure 1)

x(ξ̂j+ 1
2
(T ), T ) = xj+ 1

2
, with T ≥ 0,

and the corresponding trajectories {
∂x
∂t (ξ̂j+ 1

2
(T ), t) = u(x(ξ̂j+ 1

2
(T ), t), t)

x(ξ̂j+ 1
2
(T ), 0) = ξ̂j+ 1

2
(T ),

leading to

Qj(t) =
1

∆x

∫ x
j+1

2

x
j− 1

2

Q(x, t)dx =
1

∆x

∫ x(ξ̂
j+1

2
,t)

x(ξ̂
j− 1

2
,t)

Q(x, t)dx =
1

∆x

∫ ξ̂
j+1

2

ξ̂
j− 1

2

L(ξ, t)Q(ξ, t)dξ. (3.9)

Note that we can approximate xj+ 1
2

at �rst-order:

xj+ 1
2

= x(ξ̂j+ 1
2
(T ), T ) ' x(ξ̂j+ 1

2
(T ), 0) + T∂tx(ξ̂j+ 1

2
(T ), 0) ' ξ̂j+ 1

2
+ Tu∗j+ 1

2
, (3.10)
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for a �xed time T ≥ 0 and observe that xj+ 1
2
− x∗

j+ 1
2

= ξ̂j+ 1
2
− ξj+ 1

2
. In order to de�ne Qn+1

j using the knowledge of
(LQ)n+1−

j , we suggest to split the integral (3.9) to obtain

Qn+1
j =

1

∆x

∫ ξ
j− 1

2

ξ̂
j− 1

2

L(ξ, tn+1−)Q(ξ, tn+1−)dx+

+
1

∆x

∫ ξ
j+1

2

ξ
j− 1

2

L(ξ, tn+1−)Q(ξ, tn+1−)dx+
1

∆x

∫ ξ̂
j+1

2

ξ
j+1

2

L(ξ, tn+1−)Q(ξ, tn+1−)dx.

(3.11)

Then, the middle integral can be clearly replaced by 1

∆x

∫ ξ
j+1

2

ξ
j− 1

2

L(ξ, t)Q(ξ, t)dx = (LQ)n+1−
j , while the others two inte-

grals can be approximated as in the following. Let us state 1

∆x

∫ ξ
j− 1

2

ξ̂
j− 1

2

L(ξ, t)Q(ξ, t)dx =
ξj− 1

2
− ξ̂j− 1

2

∆x
(LQ)n+1−

j− 1
2

, where

we set

(LQ)n+1−
j− 1

2

=

{
(LQ)n+1−

j−1 if ξj− 1
2
> ξ̂j− 1

2

(LQ)n+1−
j if ξj− 1

2
≤ ξ̂j− 1

2

or equivalently

(LQ)n+1−
j− 1

2

=

{
(LQ)n+1−

j−1 if x∗,n+1−
j− 1

2

> xj− 1
2

(LQ)n+1−
j if x∗,n+1−

j− 1
2

≤ xj− 1
2

(3.12)

with
x∗,n+1−
j+ 1

2

= xj+ 1
2

+ ∆tu∗j+ 1
2

and xj+ 1
2

= ξ̂j+ 1
2

+ ∆tu∗j+ 1
2
,

and analogously for the third integral appearing in (3.11). Consequently, the projection step reads

Qn+1
j =

ξj− 1
2
− ξ̂j− 1

2

∆x
(LQ)n+1−

j− 1
2

+ (LQ)n+1−
j +

ξ̂j+ 1
2
− ξj+ 1

2

∆x
(LQ)n+1−

j+ 1
2

= (LQ)n+1−
j − ∆t

∆x

(
u∗j+ 1

2
(LQ)n+1−

j+ 1
2

− u∗j− 1
2
(LQ)n+1−

j− 1
2

)
,

(3.13)

with u∗
j+ 1

2

de�ned as in the Lagrangian step. Let us also remark that (3.13) can be seen as a discretization of system (2.14).

Overall discretization. It can be easily proved that the whole scheme is conservative using formulae (3.7) and (3.13).
Indeed, one can recover the following �nal form:{

An+1
j = Anj − ∆t

∆x

(
u∗
j+ 1

2

An+1−
j+ 1

2

− u∗
j− 1

2

An+1−
j− 1

2

)
qn+1
j = qnj − ∆t

∆x

(
u∗
j+ 1

2

qn+1−
j+ 1

2

+ Π∗
j+ 1

2

− (u∗
j− 1

2

qn+1−
j− 1

2

+ Π∗
j− 1

2

)
)
,

(3.14)

with

Xn+1−
j+ 1

2

=

{
(LX)n+1−

j if x∗,n+1−
j+ 1

2

> xj+ 1
2

(LX)n+1−
j+1 if x∗,n+1−

j+ 1
2

≤ xj+ 1
2
,

and X either A or q.

3.2 First-order approximation with varying parameters
As far as the source term is concerned, it is di�erent from zero only when considering non-constant parameters, as the

derivatives of A0 and K appears in it. Since the source term is taken into consideration at the level of the Lagrangian step,
in order to include it into the numerical scheme we have to modify only the �rst step and not the remap one. Note however
that, in general, the projection step has to be modi�ed in order to obtain a fully well-balanced numerical method, see [5, 25].
We show that this is not required in our particular case as we want to preserve only the "man at eternal rest" solution. In
the rest of this section, we present two di�erent ways to obtain a well-balanced Lagrangian step in which the source term
is included.
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3.2.1 Based on the approximate Riemann solver

The �rst approach we present requires the use of the approximate Riemann solver described in section 2.2.2. In particular
the well-balanced property is achieved approximating the source term in a special way, namely exploiting formula (2.33).

The �rst-order Godunov-type method associated with the Riemann solver proposed in section 2.2.2 now reads

Un+1−
j = Unj −

∆t

∆mj
(Gnj+ 1

2
− Gnj− 1

2
) + ∆tS̃

n

j (3.15)

with the numerical �ux Gnj+ 1
2

as in (3.2)-(3.3) and the source term de�ned as the average of the source at the interfaces,

S̃
n

j =
1

2
(
∆mj+ 1

2

∆mj
S̃
n

j+ 1
2

+
∆mj− 1

2

∆mj
S̃
n

j− 1
2
), S̃

n

j+ 1
2

= S̃(∆mj+ 1
2
,∆t;Unj ,U

n
j+1) (3.16)

with ∆mj+1/2 =
∆mj+∆mj+1

2 . For more details we refer again to Gallice [18, 19]. Hence, we approximate system (2.15) by{
τn+1−
j = τnj + ∆t

∆mj
(u∗
j+ 1

2

− u∗
j− 1

2

)

un+1−
j = unj − ∆t

∆mj
(Π∗

j+ 1
2

−Π∗
j− 1

2

) + ∆ts̃nj
(3.17)

or equivalently the Lagrangian system (2.12) by{
Ln+1−
j An+1−

j = LnjA
n
j

Ln+1−
j (Au)n+1−

j = Lnj (Au)nj − ∆t
∆x (Π∗

j+ 1
2

−Π∗
j− 1

2

) + ∆tsnj ,
(3.18)

with Ln+1−
j de�ned as in (3.8). Similarly, we observe that the numerical �uxes are now given by

u∗
j+ 1

2

= 1
2 (unj+1 + unj )− 1

2an
j+1

2

(Πn
j+1 −Πn

j ) +
∆mj+1/2

2aj+1/2
s̃nj+1/2

Π∗
j+ 1

2

= 1
2 (Πn

j+1 + Πn
j )−

an
j+1

2

2 (unj+1 − unj ).
(3.19)

As far as the source term (2.4) is concerned, we state

s̃nj =
1

2

(∆mj+ 1
2

∆mj
s̃nj+1/2 +

∆mj− 1
2

∆mj
s̃nj−1/2

)
with s̃nj+1/2 = −

Mn
j+1/2

∆mj+1/2
, (3.20)

andMn
j+1/2 = M((Anj ;A0,j ,Kj); (Anj+1;A0,j+1,Kj+1)) given by (2.33). Note that, in (3.18), snj = LnjA

n
j s̃
n
j = Anj s̃

n
j =

∆mn
j

∆x
s̃nj or equivalently

snj =
1

2

(
snj+1/2 + snj−1/2

)
with snj+1/2 = −

Mn
j+1/2

∆x
∀j. (3.21)

Theorem 1. The Lagrangian step (3.18)-(3.21) (or equivalently (3.17)-(3.20)) here described is well-balanced under the "man at
eternal rest" condition (2.7).

Proof. Let us suppose that Qnj satis�es the "man at eternal rest" condition (2.7). Thus, unj = 0 ∀j and, thanks to condition
(2.30), we also have that Πn

j+1 − Πn
j +Mj+1/2 = 0 and, consequently, −(Πn

j+1 − Πn
j ) + ∆mj+1/2s̃

n
j+1/2 = 0. Hence,

u∗
j+ 1

2

= 0 ∀j and Π∗
j+ 1

2

= 1
2 (Πn

j+1 + Πn
j ). Similarly snj compensates − 1

∆x (Π∗
j+ 1

2

− Π∗
j− 1

2

) and we �nd that An+1−
j = Anj

and qn+1−
j = qnj .
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3.2.2 Based on the hydrostatic reconstruction

Let us consider once again a discretization of the form (3.18) for the Lagrangian system (2.12). Now we want to exploit
the well-known hydrostatic reconstruction approach [1, 5], thus we are going to modify the numerical �ux and source to
be employed in either system (3.17) or (3.18). Hence, we perform a reconstruction of the variables values Q at the cells
interfaces. Considering locally relations (2.7), we �rst write for all j,{

q(x) = 0,

(K(
√
A−
√
A0))(x) = Kj(

√
Anj −

√
A0,j)

which can be understood as a reconstruction procedure of a space dependent stationary solution inside the j−th cell. Then,
following [20], we de�ne cross-sectional areas at the cell interfaces (x = xj± 1

2
) by{

(K
√
A)n

j+ 1
2 ,L

= max
(
Kj(

√
Anj −

√
A0,j) + (K

√
A0)j+ 1

2
, 0
)

(K
√
A)n

j+ 1
2 ,R

= max
(
Kj+1(

√
Anj+1 −

√
A0,j+1) + (K

√
A0)j+ 1

2
, 0
)
,

(3.22)

where the maximum has been added in order to preserve the non-negativity, and
√
An
j+ 1

2 ,L
= max

(
1

K∗
j+1

2

(
Kj(

√
Anj −

√
A0,j) + (K

√
A0)j+ 1

2

)
, 0
)

√
An
j+ 1

2 ,R
= max

(
1

K∗
j+1

2

(
Kj+1(

√
Anj+1 −

√
A0,j+1) + (K

√
A0)j+ 1

2

)
, 0
)

where we have imposed
(K
√
A0)j+ 1

2
= min

(
Kj

√
A0,j ,Kj+1

√
A0,j+1

)
and

K∗j+ 1
2

= max
(
Kj ,Kj+1

)
. (3.23)

Hence, the reconstructed values at cell interfaces are de�ned by

Qnj+ 1
2 ,L

=

(
An
j+ 1

2 ,L

An
j+ 1

2 ,L
uni

)
and Qnj+ 1

2 ,R
=

(
An
j+ 1

2 ,R

An
j+ 1

2 ,R
uni+1

)
. (3.24)

At this stage we can de�ne the star values for the velocity u and linearized pressure Π as in (3.5) exploiting the values at
interfaces (3.24), therefore

u∗j+ 1
2

= u∗(Qnj+ 1
2 ,L
,Qnj+ 1

2 ,R
) and Π∗j+ 1

2
= Π∗(Qnj+ 1

2 ,L
,Qnj+ 1

2 ,R
)

with 
u∗
j+ 1

2

= 1
2 (unj+1 + unj )− 1

2an
j+1

2

(Πn
j+ 1

2 ,R
−Πn

j+ 1
2 ,L

)

Π∗
j+ 1

2

= 1
2 (Πn

j+ 1
2 ,R

+ Πn
j+ 1

2 ,L
)−

an
j+1

2

2 (unj+1 − unj )
(3.25)

and
aj+ 1

2
= max

(
Anj+ 1

2 ,L
cnj+ 1

2 ,L
, Anj+ 1

2 ,R
cnj+ 1

2 ,R

)
.

In particular, (3.25) has to be used in (3.17)-(3.18) instead of (3.19). Finally, since we want to preserve the steady states with
zero velocity, namely the ones satisfying u = 0 and ∂xp̃ = s, for the source term snj we suggest the following,

snj =
1

∆x

∫ x
j+1

2

x
j− 1

2

s(Q;A0,K)(x, t)dx =
1

∆x

∫ x
j+1

2

x
j− 1

2

∂xp̃(x, t)dx =
1

∆x

(
p̃(xj+ 1

2
)− p̃(xj− 1

2
)
)

=
p̃j+ 1

2 ,L
− p̃j− 1

2 ,R

∆x
.

(3.26)
Note that the �rst equality comes from space dependent reconstruction of a solution inside the cell, while the second equality
holds as we are exploiting the reconstructed values (3.24) to de�ne the pressures p̃ at the interfaces. More precisely, let us
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remark that to de�ne p̃nj+ 1
2 ,L

= p̃(Anj+ 1
2 ,L
,K), p̃nj+ 1

2 ,R
= p̃(Anj+ 1

2 ,R
,K) in (3.26), and Πn

j+ 1
2 ,L

, Πn
j+ 1

2 ,R
at equilibrium in

(3.25), namely Πn
j+ 1

2 ,L
= p̃(Anj+ 1

2 ,L
,K), Πn

j+ 1
2 ,R

= p̃(Anj+ 1
2 ,R

,K), we can use either the values K = K(xj+ 1
2
) or K =

K∗
j+ 1

2

as in (3.23) with the only request to de�ne the source term (3.26) accordingly.

Theorem 2. The Lagrangian step (3.18), (3.25)-(3.26) is well-balanced under the "man at eternal rest" condition (2.7).

Proof. Let us suppose that Qnj satis�es the "man at eternal rest" condition (2.7). Thus, unj = 0 ∀j, An
j+ 1

2 ,L
= An

j+ 1
2 ,R

,
and consequently, Qnj+ 1

2 ,L
= Qnj+ 1

2 ,R
. Hence, u∗

j+ 1
2

= 0 ∀j and − 1
∆x (Π∗

j+ 1
2

− Π∗
j− 1

2

) + {s}nj = 0. Therefore, we obtain
An+1−
j = Anj and qn+1−

j = qnj .

Remark. As it has been shown in the proofs of theorems 1 and 2, u∗
j+ 1

2

= 0 under the "man at eternal rest" condition.
Hence, the projection step (3.13) preserves the stationary solution (2.7) and the whole numerical scheme (Lagrangian plus
projection step) has not to be further modi�ed.

4 Second-order well-balanced scheme
At this stage we are interested in second (or higher) order extension of the Lagrangian-projection schemes. We proceed

as for the �rst-order scheme: we explain how to reach the second-order of accuracy in the case of constant parameters,
which is already non-trivial due to the presence of two steps in the Lagrange-Projection procedure, and then we extend it
to the case of varying parameters A0 and K . Once again, in the latter case we pay attention to the well-balanced property.

Here we focus on a second-order simpli�ed version of the scheme applied to (2.3) but it can be easily extended to higher
order of accuracy following [25, 6]. In particular, we make use of polynomial reconstruction and Runge-Kutta TVD scheme
[23] in order to reach second-order of accuracy respectively in space and time.

4.1 Second-order approximation with constant parameters
First of all we explain how to reach the second-order of accuracy in space in both the Lagrangian and projection step,

and then we comment on the Runge-Kutta TVD scheme for the second-order approximation in time. Hereafter the time is
assumed to be left continuous for the sake of clarity.

Space discretization of the Lagrangian step. Given a time t, a j-th cell and the cell value Qj(t), this step aims at de�ning
evolved values Qj+ 1

2L,R
(t) at the cell interface xj+ 1

2
by means of polynomial data reconstructions. More precisely, using

for each cell Ij a reconstructed polynomial vector Ptj(x) such as

Ptj(x) = Qj(t) + ∆t
j(x− xj), (4.1)

where ∆t
j = ∆t

j(Qj−1(t),Qj(t),Qj+1(t)) is the slope, either the ENO [34] or the MINMOD [30] one, we de�ne

Qj+ 1
2L

(t) = Ptj(xj+ 1
2
) and Qj+ 1

2R
(t) = Ptj+1(xj+ 1

2
). (4.2)

Therefore, once again we use formulae (3.5) computed in (Qj+ 1
2L

(t),Qj+ 1
2R

(t)), namely

u∗j+ 1
2
(t) = u∗j+ 1

2
(Qj+ 1

2L
(t),Qj+ 1

2R
(t)) and Π∗j+ 1

2
(t) = Π∗j+ 1

2
(Qj+ 1

2L
(t),Qj+ 1

2R
(t)),

with
aj+ 1

2
= max

(
Anj+ 1

2 ,L
cnj+ 1

2 ,L
, Anj+ 1

2 ,R
cnj+ 1

2 ,R

)
.

Note that the polynomial Ptj(x) should satisfy the conservation property, which reads

1

∆x

∫ x
j+1

2

x
j− 1

2

Ptj(x) = Qj(t).
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Space discretization of the remap step. In order to obtain the second-order of accuracy in space we exploit relations (3.11)-
(3.13) seen in section 3.1. Once again the middle integral in (3.11) can be substituted by (LQ)j(t) thanks to the conservation
property. Then, for the other two integrals, instead of considering the values (LQ)j(t), we reconstruct them using the
polynomial Ptj(x). Thus, we introduce

(LP)tj(ξ) = (LQ)j(t) + ∆t
j(ξ − ξj), (4.3)

with ∆t
j = ∆t

j((LQ)j−1(t), (LQ)j(t), (LQ)j+1(t)) and

(LP)tj− 1
2
(ξ) =

{
(LP)tj−1(ξ) if ξj− 1

2
> ξ̂j− 1

2

(LP)tj(ξ) if ξj− 1
2
≤ ξ̂j− 1

2

in place of (LQ)j− 1
2
(t), where we recall that xj+ 1

2
= ξ̂j+ 1

2
+ ∆tu∗

j+ 1
2

. Finally, since (LP)t(ξ) is not constant, in order to

be able to evaluate its integral 1
∆x

∫ ξj− 1
2

ξ̂
j− 1

2

(LP)t
j− 1

2

(ξ)dx, one can exploit either the mid-point rule (only for second-order of

accuracy) or a Gauss quadrature formula with nodes ξj− 1
2 ,k

and weights ωk for k = 1, . . . ,m. In the former case we �nd

Qj(t) = (LQ)j(t) +
ξj− 1

2
− ξ̂j− 1

2

∆x
(LP)tj− 1

2

(ξj− 1
2

+ ξ̂j− 1
2

2

)
+
ξ̂j+ 1

2
− ξj+ 1

2

∆x
(LP)tj+ 1

2

(ξj+ 1
2

+ ξ̂j+ 1
2

2

)
= (LQ)j(t)−

∆t

∆x

(
u∗j+ 1

2
(LP)tj+ 1

2

(ξj+ 1
2

+ ξ̂j+ 1
2

2

)
− u∗j− 1

2
(LP)tj− 1

2

(ξj− 1
2

+ ξ̂j− 1
2

2

))
,

(4.4)

while in the second one,

Qj(t) = (LQ)j(t) +
ξj− 1

2
− ξ̂j− 1

2

∆x

m∑
k=1

ωk(LP)tj− 1
2
(ξj− 1

2 ,k
) +

ξ̂j+ 1
2
− ξj+ 1

2

∆x

m∑
k=1

ωk(LP)tj+ 1
2
(ξj+ 1

2 ,k
)

= (LQ)j(t)−
∆t

∆x

(
u∗j+ 1

2

m∑
k=1

ωk(LP)tj+ 1
2
(ξj+ 1

2 ,k
)− u∗j− 1

2

m∑
k=1

ωk(LP)tj− 1
2
(ξj− 1

2 ,k
)
)
,

where the other integral 1
∆x

∫ ξj+1
2

ξ̂
j+1

2

(LP)t
j+ 1

2

(ξ)dx has been evaluated in a similar way.

Second-order approximation in time. The last step of the second-order method consists in obtaining the right accuracy
in time. In order to do this we simply use the Runge-Kutta TVD scheme at second order [23]. However, we have to specify
that it has to be applied to the overall scheme (Lagrangian and remap step together) in order to avoid di�usion due to the
splitting.

4.2 Second-order approximation with varying parameters
As we have done before for the well-balanced �rst-order scheme, here we present two di�erent well-balanced second-

order methods, the �rst exploits the approximate Riemann solver of section 2.2 and the other one the hydrostatic recon-
struction approach.

Again, it is su�cient to focus on the Lagrangian step and nothing has to be changed for the second-order projection
step as described above and the Runge-Kutta TVD procedure as it will be easily seen that they preserve the "man at eternal
rest" solution. However, regarding the projection step, we specify that, if we would like to preserve a di�erent stationary
solution, we would have to modify it. For more details refer to [11].

4.2.1 Based on the approximate Riemann solver

Here we describe the second-order extension of the Lagrangian step explained in section 3.2.1 which makes use of the
approximate Riemann solver of section 2.2.2 in order to maintain the well-balancedness of the method.
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Thus, in order to obtain a second-order approximation in space, the idea is to exploit the reconstructed values at cell
interfaces and then apply the usual updating formulae. However, we cannot simply use the reconstructed polynomial (4.1)
as it would prevent the scheme to preserve the stationary solutions. Thus, the idea is to compute the slopes in such a way
that they become equal to zero when the "man at eternal rest" condition (2.7) is satis�ed. With this in mind we suggest
to make use of the so-called �uctuations D, refer to [25, 6]. Let us enter the details. Given a time t and the j-th cell, to
determine the slope at second-order of accuracy we need the values Qj−1(t),Qj(t),Qj+1(t); thus for k = j − 1, j, j + 1,
we de�ne the so-called �uctuations

Dk,j(t) = Qk(t)− 1

∆x

∫ x
k+1

2

x
k− 1

2

Qt,ej (x)dx, (4.5)

where Qt,ej (x) denotes a reconstructed stationary solution we want to preserve and which satis�es

1

∆x

∫ x
j+1

2

x
j− 1

2

Qt,ej (x)dx = Qj(t). (4.6)

Note that, since we are interested in a second-order accurate scheme, we solve the integral in (4.5) using the mid-point rule
in space. Usually it is not straightforward to compute Qt,ej (x) with the constraint (4.6), however, since we only want to
preserve the "man at eternal rest" solution, we can automatically de�ne it such that(

K
√
At,ej

)
(x) = Kj(

√
Aj −

√
A0,j) + (K

√
A0)(x)) and ut,ej (x) = utj . (4.7)

Consequently we denote the reconstruction operator as

Ptj(x) = Ptj(x;Qj(t),Dj−1,j(t),Dj,j(t),Dj+1,j(t)) = Qj(t) + ∆t
j(x− xj) (4.8)

where, for the sake of clarity, we specify that ∆t
j = ∆t

j(Dj−1,j(t),Dj,j(t),Dj+1,j(t)), for whose de�nition we will use
either the ENO or the MINMOD slope. Let us observe that in our speci�c case Dj,j(t) = 0 always and that Dj±1,j(t) = 0
when Qj(t) satis�es a stationary solution. Therefore it is clear that the slopes equal zero when the "man at eternal rest"
condition is satis�ed.

Equipped with the de�nition for the slope and the same de�nition (4.2) for the left and right traces, we can now compute
u∗
j+ 1

2

and Π∗
j+ 1

2

as in (3.19), namely

u∗j+ 1
2
(t) = u∗(Qj+ 1

2 ,L
(t),Qj+ 1

2 ,R
(t)) and Π∗j+ 1

2
(t) = Π∗(Qj+ 1

2 ,L
(t),Qj+ 1

2 ,R
(t)) (4.9)

with
Qj+ 1

2L
(t) = Ptj(xj+ 1

2
) and Qj+ 1

2R
(t) = Ptj+1(xj+ 1

2
).

More speci�cally, we state
u∗
j+ 1

2

(t) = 1
2 (ut

j+ 1
2R

+ ut
j+ 1

2L
)− 1

2at
j+1

2

(Πt
j+ 1

2R
−Πt

j+ 1
2L

) +
∆mj+1/2

2aj+1/2
stj+1/2

Π∗
j+ 1

2

(t) = 1
2 (Πt

j+ 1
2R

+ Πt
j+ 1

2L
)−

at
j+1

2

2 (ut
j+ 1

2R
− ut

j+ 1
2L

).

At last, one needs to specify the value of K used in the de�nition Πt
j+ 1

2R,L
. It turns out that using the natural value of

K in xj+ 1
2

leads to the loss of the well-balanced property. Therefore we propose to reconstruct K exploiting the usual
reconstruction polynomial and corresponding slope ∆t

j . However, since the equilibrium part of K reads Kt,e
j (x) = K(x)

as K is known and does not depend on time, its �uctuations are null and, thus, we can simply state that

Kj+ 1
2L

= Kj and Kj+ 1
2R

= Kj+1,

which is very convenient as with this choice of K we do not have to do further modi�cations to preserve the well-
balancedness of the scheme. At last, to second-order of accuracy, for the source term we simply consider (3.20)-(3.21) with
Mt

j+1/2 =M
(
(Aj+ 1

2 ,L
(t);A0,j ,Kj); (Aj+ 1

2 ,R
(t);A0,j+1,Kj+1)

)
de�ned as in (2.33), and the updating formulae (3.18).
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Theorem 3. The Lagrangian step (4.5)-(4.9) with updating formulae (3.18) here described is well-balanced under the "man at
eternal rest" condition (2.7).

Proof. Once again, let us suppose that Qnj satis�es the "man at eternal rest" condition (2.7) and, as such, unj = 0 ∀j. Due to
de�nitions (4.5)-(4.7) for the �uctuations, we have that the slope satis�es ∆t

j = 0 and, thus, as for the �rst-order scheme, we
have u∗

j+ 1
2

= 0 and An+1−
j = Anj . As for the proof of the corresponding �rst-order scheme, simple algebraic computations

show that qn+1−
j = qnj .

Lastly, for the bene�t of the reader, in the following we insert a summary of this second order scheme.

Algorithm 1. Second order scheme based on the approximate Riemann solver.

Step 1. Start with the Lagrangian step; look for the reconstructed stationary solution Qt,ej (x) that satis�es (4.6).
Step 2. Exploit it to compute the �uctuations Dk,j(t) as in (4.5).
Step 3. De�ne the reconstruction operator Ptj(x) as in (4.8).
Step 4. Find the reconstructed values Qj+ 1

2
L(t) = Ptj(xj+ 1

2
), Qj+ 1

2
R(t) = Ptj+1(xj+ 1

2
).

Step 5. Compute u∗
j+ 1

2
, Π∗

j+ 1
2

as in (3.19)-(4.9) and the source term as in (3.20)-(3.21) exploiting the reconstructed values.
Step 6. Solve system (3.18) written in Lagrangian coordinates obtaining (LQ)(t).
Step 7. Continue with the remap step; de�ne the polynomial Ptj(x) as in (4.3).
Step 8. Update Q(t) using formula (4.4).
Step 9. Apply the Runge-Kutta scheme in order to reach the second order of accuracy in time.

4.2.2 Based on the hydrostatic reconstruction

Let us now see how to modify the second-order accurate scheme exploiting the hydrostatic reconstruction, already
introduced in section 3.2.2. Once again, in order to have a well-balanced scheme, we only have to modify the Lagrangian
step.

Hence, in this case, we would like to combine two di�erent kinds of reconstruction, one for the well-balancedness and
one for the high-order accuracy. Thus, at the end we will have a unique reconstruction function for Qtj(x) which will consist
of two parts: the �uctuation Ptj(x) and the equilibrium Qt,ej (x) one,

Qtj(x) = Qt,ej (x) + Ptj(x), (4.10)

as suggested in [25]. Subsequently, we will use the values Qtj+ 1
2L

= Qtj(xj+ 1
2
) and Qtj+ 1

2R
= Qtj+1(xj+ 1

2
) to compute

u∗
j+ 1

2

and Π∗
j+ 1

2

in (3.5) and to �nd (LQ)j(t) according to (3.18).
At this stage we have to de�ne Ptj(x) and Qt,ej (x). For the latter, since we are interested in preserving only the "man at

eternal rest solution", we simply use the well-balanced reconstructed values (3.24), in particular

Qt,ej (xj+ 1
2
) = Qt,e

j+ 1
2 ,L

=

(
At,e
j+ 1

2 ,L

At,e
j+ 1

2 ,L
uti

)
and Qt,ej+1(xj+ 1

2
) = Qt,e

j+ 1
2 ,R

=

(
At,e
j+ 1

2 ,R

At,e
j+ 1

2 ,R
uti+1

)
,

with At,e
j+ 1

2 ,L
, At,e

j+ 1
2 ,R

computed as in (3.22)-(3.23). See either section 3.2.2 or [20] for more details. As far as the reconstruc-
tion polynomial Ptj(x) is concerned, we use a similar but not equal strategy to the one explained in the previous section.
Indeed, here we write Ptj(x) only depending on the �uctuations Dj,j(t), namely

Ptj(x) = Ptj(x;Dj−1,j(t),Dj,j(t),Dj+1,j(t)) = Dj,j(t) + ∆t
j(x− xj), (4.11)

with ∆t
j = ∆t

j(Dj−1,j(t),Dj,j(t),Dj+1,j(t)) and Dk,j(t), with k = j − 1, j, j + 1, de�ned as in (4.5). Let us remark that
here Dj,j(t) = 0 always and, thus, Qtj(x) reads

Qtj(x) = Qt,ej (x) + ∆t
j(x− xj) = Qt,ej (x) + Qt,fj (x), (4.12)
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where we have renamed Qt,fj (x) = ∆t
j(x − xj) for the �uctuations part. Then, let us compare (4.8) and (4.12). Indeed the

term Qj(t) that appears in the right hand side of (4.8) can be understood as Qt,ej (x) in (4.12) but replaced by Qj(t) using
(4.6) and the mid-point rule.

Finally, we only need to specify the de�nition of the source term, which in general is de�ned by

stj =
1

∆x

∫ ξ
j+1

2

ξ
j− 1

2

s(ξ, t)dξ

with s(A;A0,K) given by (2.4). Since we aim to reach the second order of accuracy, in this case the mid-point rule in space
su�ces. Thus, using the equilibrium and �uctuation decomposition (4.12) for the cross-sectional area A, we can write

stj =
1

∆x

∫ ξ
j+1

2

ξ
j− 1

2

s(A;A0,K)(ξ, t)dξ =
1

∆x

∫ ξ
j+1

2

ξ
j− 1

2

s(Ae +Af ;A0,K)(ξ, t)dξ

=
1

∆x

∫ ξ
j+1

2

ξ
j− 1

2

(s(Ae +Af ;A0,K)(ξ, t)− s(Ae;A0,K)(ξ, t))dξ +
1

∆x

∫ ξ
j+1

2

ξ
j− 1

2

s(Ae;A0,K)(ξ, t)dξ

=
1

∆x

∫ ξ
j+1

2

ξ
j− 1

2

s(Ae;A0,K)(ξ, t)dξ,

where the last quality holds as, when applying the mid-point rule, the �uctuations partAf disappears leaving only
ξ
j+1

2
−ξ

j− 1
2

∆x (s(Ae+

Af ;A0,K)(xj , t)− s(Ae;A0,K)(xj , t)) =
ξ
j+1

2
−ξ

j− 1
2

∆x (s(Ae + 0;A0,K)(xj , t)− s(Ae;A0,K)(xj , t)) = 0. Hence, simi-
larly to the �rst-order scheme, the source term �nally reads

stj =
1

∆x

∫ ξ
j+1

2

ξ
j− 1

2

s(Ae;A0,K)(ξ, t)dξ =
p̃e
j+ 1

2 ,L
(t)− p̃e

j− 1
2 ,R

(t)

∆x
. (4.13)

Theorem 4. The Lagrangian step (4.10)-(4.13) is well-balanced under the "man at eternal rest" condition (2.7).

Proof. It is straightforward to see that, under the "man at eternal rest" condition (2.7), the �uctuations part in (4.12) satis�es
Qt,fj (x) = 0. Consequently, the Lagrangian step is reduced to the �rst-order one, which we already proved to be well-
balanced.

As we have done in the previous section, for the sake of clarity we insert an algorithm to summarize this second order
method. Let us note that the projection and Runge-Kutta steps are the same of the previous scheme.

Algorithm 2. Second order scheme based on the hydrostatic reconstruction.

Step 1. Start with the Lagrangian step; compute the well-balanced reconstructed values Qt,ej (x) as in (3.24).
Step 2. Find the �uctuations Dk,j(t) by (4.5).
Step 3. De�ne the reconstruction polynomial Ptj(x) only depending on the �uctuations as in (4.11).
Step 4. Use Qt,ej (x) and Ptj(x) to determine the reconstruction function Qtj(x) by (4.10).
Step 5. Find the reconstructed values Qt

j+ 1
2
L

= Qtj(xj+ 1
2
) and Qt

j+ 1
2
R

= Qtj+1(xj+ 1
2
).

Step 6. Compute u∗
j+ 1

2
and Π∗

j+ 1
2

as in (3.5) exploiting the reconstructed values.
Step 7. De�ne the source term stj according to (4.13).
Step 8. Solve system (3.18) written in Lagrangian coordinates obtaining (LQ)(t).
Step 9. Continue with the remap step; de�ne the polynomial Ptj(x) as in (4.3).
Step 10. Update Q(t) using formula (4.4).
Step 11. Apply the Runge-Kutta scheme in order to reach the second order of accuracy in time.
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5 Numerical simulations
In this section we carry out di�erent numerical simulations that aim to show the good behaviour of the proposed nu-

merical schemes. First of all, we numerically prove that, both in the case of system of conservation and balance laws, the
numerical schemes reach the required order of convergence. A Riemann problem is also presented in the case of constant
parameters. Then, di�erent test cases are introduced in order to assess the well-balancedness and the wave-capturing prop-
erties of the numerical methods when applied to the non-conservative system.

Time step and CFL condition. Since the Lagrange-projection approach leads to a splitting of the original system (2.3)
into the acoustic (2.13) and the transport (2.14) one, the time step is computed as the minimum between the two time steps
obtained from (2.13) and (2.14). As far as the Lagrangian system is concerned, the Courant-Friedrichs-Lewy (CFL) condition
reads

∆t ≤ CFLl
∆x

max
j
{max(τnj , τ

n
j+1)aj+ 1

2
}
, (5.1)

while, for the transport system
∆t ≤ CFLt

∆x

max
j
{u+

j− 1
2

− u−
j+ 1

2

}
, (5.2)

where CFLl and CFLt are respectively the CFL number for the Lagrangian and the transport system, and �nally

u+
j− 1

2

= max(u∗j− 1
2
, 0) and u−

j+ 1
2

= min(u∗j+ 1
2
, 0).

When considering a �rst-order scheme, we can take CFLl ≤ 0.5 and CFLt < 1. For more details refer to [10, 11, 12].

Remark. It is not di�cult to prove that the �rst-order approximation (3.14) we presented preserves the strict positivity of
the cross-sectional area A under the CFL conditions (5.1)-(5.2) with CFLl ≤ 1

2 and CFLt < 1, see also [5]. This statement
remains true even if the parameters K and A0 are not constant in space.

5.1 System of conservation laws
Convergence study.
In this section we start assessing that the second-order scheme of section 4.1 reaches the right order of accuracy. For

this purpose, we need to compare the numerical solution with the exact one, specifying that, in order to obtain the correct
order of accuracy, the smoothness of the exact solution is required. Since in general it is not known for system (2.5), we
have to exploit the method of the manufactured solution, for which we refer to [28]. In a nutshell, given an acceptable
smooth function Q̂, we have to modify the sought system in such a way that Q̂ is actually one of its solutions. This is
achieved by adding a source term to the starting system, namely passing from the homogeneous version of system (2.5),
∂tQ + ∂xF(Q) = 0, to

∂tQ + ∂xF(Q) = Ŝ(Q).

Ŝ(Q) is usually found through an algebraic manipulator, and thus we will not report here the modi�ed source term.
In particular, referring to [27], we have considered the following solution,

Q̂ =

(
Â
q̂

)
=

(
Ã+ ã sin( 2π

L x) cos( 2π
T0
t)

q̃ − ã LT0
cos( 2π

L x) sin(2π
T0
t)

)
(5.3)

with the cross-sectional area at equilibrium and the wall sti�ness given by

â0 = Ã0 + ã0 sin
(2π

L
x
)

and K̂ =
(

1 + 0.01 sin
(2π

L
x
))
K̃.

In particular we take Ã = Ã0 = 4.0× 10−4m2, ã = ã0 = 4.0× 10−5m2, q̃ = 0m3s−1, K̃ = 2500kPa, T0 = 1.0s, the length
of the vessel L = 1.0m and ρ = 1050.0kg m−3. We take CFL = 0.25 and exploit the MINMOD slope. Being (5.3) a periodic
solution, as boundary conditions we use periodic ones. As initial condition we take Q̂ at initial time t = 0.
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At this stage, let us give the de�nition of the p-norm of the global error En,

||E(tn,∆x)||p =
(
∆x

∞∑
i=−∞

|vni − v(xi, t
n)|p

) 1
p ,

where vni is the numerical solution and v(xi, t
n) is the exact solution computed in (xi, t

n). Note that we will use p = 1,
p = 2 and p = +∞. In our case we take either v = A or v = Au. Given an increasing sequence of mesh Mk , with
k = 1, . . . , N , and respective dimension ∆xk , we can now de�ne the empirical order of accuracy pk+1 as:

pk+1 =
ln
(Ek+1(Tout,∆xk+1)

Ek(Tout,∆xk)

)
ln
(∆xk+1

∆xk

) ,

with ending time t = Tout. pk should tend to the theoretical order of accuracy p, for su�ciently large k.
At last, in table 1, we show the errors and order of convergence of the variables A and q = Au at the ending time

Tout = 0.08s. Indeed, we observe that the non-well-balanced numerical scheme described in section 4.1 reaches the second
order of accuracy.

Variable Mesh M err L1 err L2 err L∞ O(L1) O(L2) O(L∞)

Area A 16 0.1553 × 10−5 0.1722 × 10−5 0.2233 × 10−5 − − −
32 0.0392 × 10−5 0.0463 × 10−5 0.0761 × 10−5 1.9872 1.8948 1.5535
64 0.0094 × 10−5 0.0122 × 10−5 0.0222 × 10−5 2.0663 1.9205 1.7761
128 0.0024 × 10−5 0.0032 × 10−5 0.0057 × 10−5 1.9819 1.9284 1.9585
256 0.0006 × 10−5 0.0008 × 10−5 0.0014 × 10−5 1.9606 1.9728 2.0130

Flow q 16 0.6980 × 10−5 0.6994 × 10−5 0.7699 × 10−5 − − −
32 0.1581 × 10−5 0.1610 × 10−5 0.1958 × 10−5 2.1420 2.1186 1.9755
64 0.0332 × 10−5 0.0340 × 10−5 0.0422 × 10−5 2.2513 2.2431 2.2156
128 0.0075 × 10−5 0.0079 × 10−5 0.0112 × 10−5 2.1383 2.1023 1.9169
256 0.0018 × 10−5 0.0019 × 10−5 0.0030 × 10−5 2.1066 2.0739 1.9024

Table 1: Errors and empirical convergence rates for norms L1, L2 and L∞. Mesh of size M = (16, 32, 64, 128, 256). Second-order scheme of section 4.1.

Riemann problem: the ideal tourniquet.
Since Riemann problems are simple and idealized test cases but still useful to give a better understanding of the numerical

schemes, here we present the following problem, the ideal tourniquet, for which we refer to [15, 36]. A tourniquet is placed
and then immediately removed. As such, as initial data we consider

Q(x, t = 0) =

{
QL if x < L/2
QR if x > L/2

with initial velocity uL = uR = 0m/s, initial radius RL = 5 × 10−3m, RR = 4 × 10−3m and initial area computed
as A = πR2. Regarding the other parameters we take K = 1√

π
× 107Pa/m, the length of the vessel L = 0.08m and

ρ = 1060.0kg m−3. For the �rst and second-order schemes we respectively use CFLl = 0.45 and CFLl = 0.25. Finally the
ending time is given by Tout = 0.005s and once again we exploit the MINMODE slope. In �gure 2 we compare the result
for the �rst and second-order schemes against the exact solution. Respectively on the left and the right we used M = 100
and M = 500 cells, where ∆x = L

M . Both the schemes approximate the exact solution well; obviously the second-order
scheme results to be less di�usive than the �rst-order one. On the right, we can see that the numerical solution converges
to the exact one.

5.2 System of balance laws
For the numerical simulations in this section we refer to [20, 36]. We distinguish the well-balanced schemes based on

the approximate Riemann solver and the hydrostatic reconstruction respectively as WB-ARS and WB-HR. If second-order
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(a) M = 100 cells (b) M = 500 cells

Figure 2: Ideal tourniquet problem, radius (left) and �ow (right). First-order (-o symbol), second-order (-* symbol) and exact (red line) solution.

Parameter Value

L 10 [cm]
Rin 0.5 [cm]
Kin 1 × 105 [gcm−2s−2]
ρ 1

[
gcm−3

]
Table 2: Parameters values for test cases in section 5.2.

accurate, we call them WB-ARS2 and WB-HR2. Let us give some numerical details we use for the subsequent test problems,
unless it is speci�ed otherwise. In general as initial condition we take{

A(x, t = 0) = A0(x)

q(x, t = 0) = 0.

As far as the cross-sectional radius at equilibrium R0 and the wall rigidity K are concerned, we use the following relations

R0(x) =

{
Rin if x < xs or x > xf

Rin(1− ∆G
2 (1 + cos(π + 2π x−xs

xf−xs
))) if xs ≤ x ≤ xf ,

K(x) =

{
Kin if x < xs or x > xf

Kin(1 + ∆G
2 (1 + cos(π + 2π x−xs

xf−xs
))) if xs ≤ x ≤ xf ,

(5.4)

where A0 = πR2
0, xs = 3L

10 , xf = 7L
10 and ∆G ∈ {1%, 10%, 30%, 60%}. The other parameters values can be found in table

2. Regarding the boundary conditions, we impose the following �ow at the inlet of the domain,

qin = ShapAincin

where a value for Ain consistent with the Shapiro number (Shap) has been estimated in [20] to be

Ain = A0(x = 0)(1 + Shap)2.
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Numerical method Variable Mesh M err L1 err L2 err L∞ O(L1) O(L2) O(L∞)

WB-ARS2 Energy 16 45.9648 20.2167 15.2702 − − −
32 12.1161 5.3498 4.5128 1.9236 1.9180 1.7586
64 2.9137 1.3085 1.1747 2.0560 2.0315 1.9418
128 0.7133 0.3244 0.2970 2.0302 2.0121 1.9835

Flow 16 0.0978 0.0525 0.0403 − − −
32 0.0280 0.0147 0.0112 1.8034 1.8334 1.8475
64 0.0070 0.0037 0.0029 2.0016 1.9787 1.9542
128 0.0018 0.0010 0.0007 1.9621 1.9439 1.9875

WB-HR2 Energy 16 44.4265 18.8607 13.4593 − − −
32 11.4229 5.0448 4.3839 1.9595 1.9025 1.6183
64 2.7538 1.2443 1.1764 2.05254 2.0194 1.8978
128 0.7072 0.3185 0.3001 1.9613 1.9660 1.9711

Flow 16 0.0973 0.0523 0.0377 − − −
32 0.0281 0.0148 0.0111 1.7910 1.8237 1.7686
64 0.0070 0.0037 0.0029 2.0057 1.9883 1.9403
128 0.0018 0.0010 0.0007 1.9634 1.9448 1.9854

Table 3: Errors and empirical convergence rates for norms L1, L2 and L∞ for the energy discharge E and �ow q. Mesh of size M = (16, 32, 64, 128).
WB-ARS2 (top) and WB-HR2 (bottom) methods.

The Shapiro number is the analogous to the Mach number for the compressible Euler equations and it is de�ned asShap =
u

c
.

In particular we take Shap = 0, 10−2, 10−3. Let us note that with Shap = 10−2 we are already in the subsonic regime,
thus it could be interesting to use an implicit scheme in this case. Moreover, usually in the arteries the average value for
the Shapiro number is indeed of order Shap = 10−2. We refer again to [20] for more details. Then, we can �nd the
boundary value’s for the cross-sectional area Ain exploiting the right Riemann invariant, i.e. I+ = u − 4c, and imposing
I+(Q1) = I+(Qin), where the subscript 1 indicates the values in the �rst cell of the computational domain. Whereas,
regarding the right boundary condition, we impose

Aout = A0(x = L)(1 + Shap)2,

and then the �ow value qout is found exploiting the left Riemann invariant, namely I−(Qend) = I−(Qout), where with
Qend we mean the value in the last cell. For more details about this test cases we refer again to [20].

Stationary solution.
First of all, to assess the well-balanced property, we take Shap = 0, and check that the numerical schemes preserve the

stationary solution A = A0, q = 0. Indeed, we observe that they maintain it up to an error of order 10−12.

Convergence study.
Then, in order to check that also the well-balanced schemes reach the right order of accuracy, we take Shap = 10−2,

∆G = 10% and �nal time tEnd = 100.0s. Note that here the exact solution is a steady state with non-zero velocity, namely
it is given by {

qex = qin

Eex =
q2in

2A2
out

+ K(end)
ρ (

√
Aout −

√
A0(end))

(5.5)

with E the energy and qex 6= 0. Indeed our schemes are able to preserve stationary solutions with only zero-velocity, thus
the numerical solutions should converge to (5.5) when re�ning the mesh.

In table 3 the numerical errors and orders of convergence are exhibited in norms L1, L2 and L∞ for both WB-ARS2 and
WB-HR2; the results seem to be satisfying.

Wave propagation test case.
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Parameter Value

L 0.16 [m]
Rin 4.0 × 10−3 [m]
∆R 1.0 × 10−3 [m]
K 1√

π
× 108 [Pam]

ρ 1060
[
Kgm−3

]
Table 4: Parameters values for test cases in section 5.2.

In this test we assess the wave-capturing properties of the well-balanced schemes. We suppose that a single wave
propagates in the vessel, with parameters de�ned by (5.4) and table 2. Namely, we impose the following unsteady inlet �ow

qin(t) =

{
qpulsesin

(
2π t

tpulse

)
if t ≤ tpulse

2

0 otherwise

where once again we de�ne qpulse as qpulse = ShapAincin. For the right boundary condition we simply use the transmissive
one. Finally tpulse = 0.04s and as ending time we take tOut = 0.045s. We compute a reference solution with the WB-HR2
andM = 2048 cells. In �gure 3 we insert the results only for WB-ARS and WB-ARS2 as the ones obtained with WB-HR/2 are
similar. Of course, solutions obtained with �rst-order schemes are more di�usive than the ones found exploiting higher or-
der methods, but both outputs tend to the reference one. We also observe that there are no spurious oscillations in the results.

Propagation of a pulse to/from an expansion.
Here we want to consider two di�erent cases, a pulse which propagates to and from an expansion. In the former case as

initial radius we take

R(x, t = 0) =

{
R0(x)(1 + ε sin( 100

20Lπ(x− 65L
100 ))) if 65L

100 ≤ x ≤
85L
100

R0 if else,
(5.6)

while in the second one

R(x, t = 0) =

{
R0(x)(1 + ε sin( 100

20Lπ(x− 15L
100 ))) if 15L

100 ≤ x ≤
35L
100

R0 if else
(5.7)

where ε = 5.0 × 10−3. In this last numerical problem we assume the wall rigidity K to be constant, while the radius at
equilibrium is given by

R0(x) =


Rin + ∆R if x < xs

Rin + ∆R
2 (1 + cos(π x−xs

xf−xs
)) if xs ≤ x ≤ xf

Rin if else

where A0 = πR2
0, xs = 19L

40 and xf = L
2 . Note that A1 > Aend. The other parameters values can be found in table 4. We

use transmissive boundary conditions.
In �gure 4 we present the outputs for this two problems; for the results on the left and right we respectively use initial

conditions (5.6) and (5.7). We compare the outputs of WB-HR2 for M = 200 cells against a reference solution attained with
WB-HR2 and M = 2048 cells. Once again we show the results of only one of the numerical schemes as their outputs are
very similar. Indeed, the numerical solutions are satisfying and comparable with the ones of [15, 36].

6 Concluding remarks
In this paper we presented two di�erent second-order well-balanced numerical schemes for the 1D blood �ow equations,

where the source term is due to varying mechanical and geometrical properties. By well-balanced we mean that the numer-
ical method is able to preserve the zero-velocity "man at eternal rest" stationary solution. The �rst scheme is based on an
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(a) ∆G = 10%, Shap = 10−2 (b) ∆G = 10%, Shap = 10−3

(c) ∆G = 30%, Shap = 10−2 (d) ∆G = 30%, Shap = 10−3

(e) ∆G = 60%, Shap = 10−2 (f) ∆G = 60%, Shap = 10−3

Figure 3: Wave propagation problem. We used ∆G = 10% (top), ∆G = 30% (middle), ∆G = 60% (bottom) and Shap = 10−2 (left), Shap =
10−3(right). Comparison among WB-ARS (-o blue symbol), WB-ARS2 (-* green symbol) and reference (red line) solution. M = 100 cells.
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(a) IC (5.6) (b) IC (5.7)

Figure 4: Propagation of a pulse to (left) and from (right) an expansion. Radius minus radius at equilibrium at time t = 0.0s (green), t = 0.002s (blue),
t = 0.006s(red). Comparison between WB-HR2 (-* symbol) and reference (line) solution. M = 200 cells.

approximate Riemann solver and the numerical source is de�ned in such a way that it is consistent in the integral sense with
the source term, while the second method exploits the hydrostatic reconstruction approach. Only the Lagrangian step has
to be modi�ed in order to satisfy the well-balanced property. Both the numerical schemes proved to be satisfying and their
results are almost identical. On one hand, future works are expected to deal with an implicit formulation of the Lagrangian
step as it would speed up the numerical methods. Indeed, the arteries are known to have an average Shapiro number of
order 10−2 and this could imply a restriction on the time step value. On the other hand, e�orts could be done to obtain
fully well-balanced schemes able to preserve also stationary solutions for non-zero velocity. In this regard, we refer to the
works [5]-[25] for fully well-balanced Lagrange-projection schemes applied to the shallow water system at �rst and high
order of accuracy respectively. Another interesting reference in this framework is [20], in which the authors considered
the low-Shapiro number steady states, which could be more easily preserved than the classical steady states with non-zero
velocity.
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