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Second-order well-balanced Lagrange-Projection schemes for Blood Flow Equations

We focus on the development of well-balanced Lagrange-projection schemes applied to the one-dimensional blood ow system of balance laws. Here we neglect the friction forces and the source term is due to the presence of varying parameters as the cross-sectional area at the equilibrium and the arterial sti ness. By well-balanced we mean that the method preserves the "man at eternal rest" solution. For this purpose we present two di erent strategies: the former requires a consistent de nition of the source term based on an approximate Riemann solver, while the second one exploits the well-established hydrostatic reconstruction. Subsequently we explain how to reach the second-order of accuracy for both procedures. Numerical simulations are carried out in order to show the right order of accuracy and the good behaviour of the schemes.

Introduction

This paper focuses on the construction of second-order well-balanced Lagrange-projection schemes applied to the 1D Blood Flow Equations (BFE). This model results to be extremely useful when dealing with the study of the cardiovascular system and related diseases. Indeed, it proved to be e ective in the computation of averaged quantities as the cross-sectional area A of the vessel, the blood ow q and internal pressure p. Hence, there is a huge amount of works about this system, and we refer the reader to [START_REF] Formaggia | Cardiovascular Mathematics: Modeling and Simulation of the Circulatory System[END_REF][START_REF] Eleuterio | Lecture notes on computational haemodynamics[END_REF] and the references therein for details about it. Here we study the model as applied to arteries, in the particular case in which the cross-sectional area at equilibrium and the wall sti ness could be not constant. See for instance [START_REF] Delestre | A "well-balanced" nite volume scheme for blood ow simulation[END_REF][START_REF] Ghigo | Low-Shapiro hydrostatic reconstruction technique for blood ow simulation in large arteries with varying geometrical and mechanical properties[END_REF][START_REF] Wang | Well-balanced nite di erence weighted essentially non-oscillatory schemes for the blood ow model[END_REF][START_REF] Eleuterio | Simpli ed blood ow model with discontinuous vessel properties: analysis and exact solutions[END_REF][START_REF] Eleuterio | Flow in collapsible tubes with discontinuous mechanical properties: mathematical model and exact solutions[END_REF]. Indeed, there exist physiological and pathological situations in which geometrical and mechanical parameters can vary locally, as in presence of stenoses or aneurysm and tapering of blood vessels. However, to consider non-constant parameters leads to the presence of a non-null source term and consequently we aim to develop numerical schemes for hyperbolic system of balance laws.

We are also interested in preserving the so-called "man at eternal rest" stationary solution, namely in the well-balancedness of the numerical method. As a matter of fact, it reveals itself to be an important property as a non well-balanced scheme could produce non-physical spurious oscillations in certain cases, especially when the solution is near to a steady state. In particular, the "man at eternal rest" condition is characterized by zero-velocity; if the numerical scheme preserves also all the stationary solutions, it is called fully well-balanced. Many studies have been done about well-balanced methods as in [START_REF] Bouchut | Nonlinear stability of nite volume methods for hyperbolic conservation laws and well-balanced schemes for sources[END_REF][START_REF] Manuel | Well-Balanced Schemes and Path-Conservative Numerical Methods[END_REF][START_REF] Manuel | Well-balanced numerical schemes based on a generalized hydrostatic reconstruction technique[END_REF][START_REF] Manuel | Well-Balanced High-Order Finite Volume Methods for Systems of Balance Laws[END_REF], while for application to hyperbolic systems as the shallow water equations see [START_REF] Audusse | A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water ows[END_REF][START_REF] Berthon | E cient well-balanced hydrostatic upwind schemes for shallow-water equations[END_REF][START_REF] Michel-Dansac | A well-balanced scheme for the shallow-water equations with topography[END_REF][START_REF] Michel-Dansac | A well-balanced scheme for the shallow-water equations with topography or Manning friction[END_REF]. As far as the blood ow equations are concerned, we refer for instance to the works of Delestre and collaborators [START_REF] Delestre | A "well-balanced" nite volume scheme for blood ow simulation[END_REF], in which variations in the values of parameters as the cross-sectional area at equilibrium is considered. In particular they developed a rst-order well-balanced scheme basing themselves on the well-known hydrostatic reconstruction procedure, introduced for the rst time by Audusse et al. in [START_REF] Audusse | A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water ows[END_REF] in the context of the shallow water equations. In [START_REF] Ghigo | Low-Shapiro hydrostatic reconstruction technique for blood ow simulation in large arteries with varying geometrical and mechanical properties[END_REF] Delestre et al. expanded their work considering varying values for the arterial wall rigidity as well. In [START_REF] Müller | Well-balanced high-order numerical schemes for one-dimensional blood ow in vessels with varying mechanical properties[END_REF] Müller et al. followed the generalized hydrostatic reconstruction to build a high-order well-balanced path-conservative numerical method for blood ow equations with varying mechanical properties. Then, once again in [START_REF] Müller | Well-balanced high-order solver for blood ow in networks of vessels with variable properties[END_REF] Müller and Toro presented a high-order well-balanced path-conservative [START_REF] Baudin | A relaxation method for twophase ow models with hydrodynamic closure law[END_REF] The mathematical model Given the axial coordinate x along the longitudinal axis of the vessel and the time t > 0, the general one-dimensional blood ow model consists of two equations, the mass conservation and momentum balance equation, namely

   ∂ t A + ∂ x q = 0 ∂ t q + ∂ x α q 2 A + A ρ ∂ x p = f , (2.1) 
where A(x, t) > 0 is the cross-sectional area of the vessel, q = Au the blood ow, with u(x, t) the averaged velocity of blood at cross section, and nally p(x, t) is the averaged internal pressure at cross section. Furthermore, ρ represents the blood density and it is assumed to be constant , while α is determined by the velocity pro le and it is considered to be at in this work, thus we take α = 1. At last, f accounts for the friction forces but we will neglect it in the rest of the paper. We assume that the initial area A(x, t = 0) and initial velocity u(x, t = 0) are given at time t = 0. For more details about the derivation of system (2.1), we refer to [START_REF] Formaggia | Cardiovascular Mathematics: Modeling and Simulation of the Circulatory System[END_REF] and [START_REF] Eleuterio | Lecture notes on computational haemodynamics[END_REF].

Since in system (2.1) there are three unknowns but only two equations, we need a closure condition, namely a tube law or more speci cally a relation between the internal pressure and the cross-sectional area. In this paper we refer to [START_REF] Ghigo | Low-Shapiro hydrostatic reconstruction technique for blood ow simulation in large arteries with varying geometrical and mechanical properties[END_REF] and we consider the blood vessels to be purely elastic arteries and, as such, the tube law reads p(x, t) = p ext + K(x)( A(x, t) -A 0 (x)), (2.2) where p ext is the constant external pressure, A 0 (x) the cross-sectional area at equilibrium and K(x) a parameter related to the arterial sti ness. In particular K is a positive function depending on the vessel thickness h 0 (x) and the Young modulus E(x), refer again to [START_REF] Ghigo | Low-Shapiro hydrostatic reconstruction technique for blood ow simulation in large arteries with varying geometrical and mechanical properties[END_REF]. Note also that (2.2) is valid only for blood ow in arteries and not in veins, for a more general tube law refer for instance to [START_REF] Formaggia | Cardiovascular Mathematics: Modeling and Simulation of the Circulatory System[END_REF][START_REF] Eleuterio | Lecture notes on computational haemodynamics[END_REF]. Equipped with closure condition (2.2), we can now show the system of balance laws we will investigate in the rest of the paper, namely

   ∂ t A + ∂ x q = 0 ∂ t q + ∂ x q 2 A + γA 3 2 = s, (2.3) 
with γ = K 3ρ and s = s(A; A 0 , K)

= A ρ ∂ x (K A 0 ) - 2A 3ρ √ A∂ x K. (2.4) 
In compact form this system reads

∂ t Q + ∂ x F(Q) = S(Q; A 0 , K) (2.5) 
where

Q = A q , F(Q) =   q q 2 A + γA 3 2   and S(Q; A 0 , K) = 0 s .
Let us note that if both K(x) and A 0 (x) are constant, then s = 0 and (2.5) is reduced to a system of conservation laws.

It is not di cult to see that the two eigenvalues of system (2.5) are λ ± = u ± c, where c is the wave speed de ned by

c = 3 2 γ √ A.
Consequently the convective part of (2.5) is strictly hyperbolic as λ ± are real and distinct, namely as long as the vector of unknowns Q belongs to the phase space

Ω = {(A, Au) t ∈ R 2 |A > 0}.
Finally, both the two characteristic elds are genuinely non-linear and the Riemann invariants associated with λ ± are respectively given by I -= u+4c and I + = u-4c.

For more details refer to [START_REF] Eleuterio | Brain venous haemodynamics, neurological diseases and mathematical modelling. A review[END_REF].

In this paper we are specially interested in developing second-order well-balanced Lagrange-projection methods, thus hereafter we introduce both the well-balanced property and the Lagrange-projection decomposition.

The well-balanced property. A numerical scheme is well-balanced if it is able to preserve the smooth stationary solutions of the system, that is to say the steady states which satisfy the ordinary di erential equations

∂ x F(Q) = S(Q; A 0 , K),
and hence

q = q 0 = constant, q 2 0 2A 2 + K ρ ( √ A -A 0 ) = constant, (2.6) 
where the quantity

E = q 2 2A 2 + K ρ ( √ A - √ A 0
) can be referred as the energy discharge. In particular, a scheme able to preserve the steady states (2.6) is called fully well-balanced, while a method which conserves only the stationary solutions with zero velocity (u = 0) is de ned well-balanced. We are interested in a scheme endowed with the latter property, and thus in the "man at eternal rest" solution,

q = 0, K( √ A -A 0 ) = constant. (2.7)
For more details about well-balanced schemes for blood ow equations refer for instance to [START_REF] Delestre | A "well-balanced" nite volume scheme for blood ow simulation[END_REF][START_REF] Ghigo | Low-Shapiro hydrostatic reconstruction technique for blood ow simulation in large arteries with varying geometrical and mechanical properties[END_REF][START_REF] Müller | Well-balanced high-order solver for blood ow in networks of vessels with variable properties[END_REF][START_REF] Wang | Well-balanced nite di erence weighted essentially non-oscillatory schemes for the blood ow model[END_REF].

The Lagrangian coordinates. Observing that system (2.3) is given in Eulerian coordinates, now we want to express it using the Lagrangian coordinates, which describe the ow following the uid motion. While with the Eulerian coordinates the viewer has a xed position and watches the ow from the exterior, with the Lagrangian coordinates he focus on a single " uid particle" ξ, for which we introduce the characteristic curves ∂x ∂t (ξ, t) = u(x(ξ, t), t) x(ξ, 0) = ξ.

(2.8)

Then, given the trajectory : t → x(ξ, t), any function : (x, t) → Q(x, t) in Eulerian coordinates can be written in Lagrangian coordinates,

Q(ξ, t) = Q(x(ξ, t), t).
Moreover, de ning the volume ratio

L(ξ, t) = ∂x ∂ξ (ξ, t) (2.9) 
which satis es

∂L ∂t (ξ, t) = ∂ ξ u(x(ξ, t), t) L(ξ, 0) = 1 (2.10) and ∂ t L(ξ, t) = ∂ ξ u(x(ξ, t), t) = ∂ ξ ū(ξ, t),
we easily nd that

∂ ξ Q(ξ, t) = L(ξ, t)∂ x Q(x, t) and ∂ t Q(ξ, t) = ∂ t Q(x, t) + u(x, t)∂ x Q(x, t).
Hence, using the chain rule and de ning p = p(A; K) = γA 3 2 , from system (2.3) we write

∂ t A + A∂ x u + u∂ x A = 0 ∂ t (Au) + u∂ x (Au) + Au∂ x u + ∂ x p = s, (2.11) 
and multiplying by L(ξ, t), we obtain

L∂ t Ā + Ā∂ t L = 0 L∂ t (Au) + Au∂ t L + ∂ ξ p = s, where s = A ρ ∂ ξ (K √ A 0 ) -2A 3ρ √ A∂ ξ K.
We nally nd that in Lagrangian coordinates system (2.3) reads,

∂ t (L Ā) = 0 ∂ t (LAu) + ∂ ξ p = s.
(2.12)

Hence, the Lagrange-projection algorithm consists of two steps:

1. Solve system (2.12) written in Lagrangian coordinates;

2. Project the solution of system (2.12) in Eulerian coordinates.

For more details about the Lagrangian-projection decomposition, once again we refer the reader to [START_REF] Manuel | A fully well-balanced Lagrange-Projection type scheme for the Shallow-water equations[END_REF][START_REF] Chalons | An all-regime Lagrange-Projection like scheme for 2D homogeneous models for two-phase ows on unstructured meshes[END_REF][START_REF] Chalons | An All-Regime Lagrange-Projection Like Scheme for the Gas Dynamics Equations on Unstructured Meshes[END_REF][START_REF] Chalons | A large time-step and well-balanced Lagrange-Projection type scheme for the Shallow-water equations[END_REF][START_REF] Duboc | High-order dimensionally split Lagrange-remap schemes for compressible hydrodynamics[END_REF][START_REF] Morales | High order fully well-balanced Lagrange-Projection scheme for Shallow-water[END_REF].

The Lagrangian-projection splitting and the relaxation formulation

At this stage, we present the Lagrangian-projection decomposition in a di erent way, which will prove to be extremely useful for one of the two numerical methods we are going to describe in sections 3.2.1 and 4.2.1. In particular we split system (2.3) into two di erent ones, the Lagrangian/acoustic system and the projection/transport system. The former takes into account the acoustic e ects and parameters variations, while the latter the transport phenomena, see [START_REF] Manuel | A fully well-balanced Lagrange-Projection type scheme for the Shallow-water equations[END_REF][START_REF] Chalons | A large time-step and well-balanced Lagrange-Projection type scheme for the Shallow-water equations[END_REF].

In particular, starting from formulation (2.11), we nd that the acoustic system reads

∂ t A + A∂ x u = 0 ∂ t (Au) + Au∂ x u + ∂ x p = s, (2.13) 
while the transport system is given by

∂ t A + u∂ x A = 0 ∂ t q + u∂ x q = 0. (2.14)
System (2.14) can also simply be seen as ∂ t X + u∂ x X = 0, with either X = A or X = q. Let us rewrite system (2.13) as

-1 A 2 (∂ t A + A∂ x u) = 0 A∂ t u + u∂ t A + Au∂ x u + ∂ x p = s and de ning τ = 1
A and the mass variable m such that 1 A ∂ x = ∂ m , the Lagrangian system also reads

∂ t τ -∂ m u = 0 ∂ t u + ∂ m p = s, (2.15 
)

with s = A ρ ∂ m (K √ A 0 ) -2A 3ρ √ A∂ m K. Observe that (2.15
) is equivalent to (2.12). System (2.15) has two eigenvalues λ ± = ±Ac, and it is strictly hyperbolic in the same phase space of system (2.3), namely when A > 0, with the two characteristic elds genuinely non-linear.

Relaxation formulation. At this stage we are interested in nding an approximate solution of a Riemann problem for system (2.15). For this purpose we exploit the Suliciu relaxation approach, which allows us to enlarge (2.15) to a strictly hyperbolic system with only linearly degenerate characteristic elds, which is well-known to be easier to solve. For the Suliciu relaxation approach and related applications refer to [START_REF] Suliciu | On the thermodynamics of uids with relaxation and phase transitions[END_REF][START_REF] Bouchut | Nonlinear stability of nite volume methods for hyperbolic conservation laws and well-balanced schemes for sources[END_REF][START_REF] Baudin | A relaxation method for twophase ow models with hydrodynamic closure law[END_REF][START_REF] Chalons | Large Time Step and Asymptotic Preserving Numerical Schemes for the Gas Dynamics Equations with Source Terms[END_REF][START_REF] Coquel | Some new Godunov and relaxation methods for two-phase ow problems[END_REF][START_REF] Coquel | Relaxation of energy and approximate Riemann solvers for general pressure laws in uid dynamics[END_REF] and the references therein.

Thus, we introduce the relaxation parameter λ and the new variable Π such that at least formally

lim λ→∞ Π = p,
where Π can be interpreted as a linearization of the pressure p. We observe that ∂ τ p(τ ) = -1 A 2 ∂ A p(A) and ∂ t p = ∂ τ p(τ )∂ t τ so that, multiplying the rst equation of system (2.15) by ∂ τ p(τ ), we nd that ∂ t p + A 2 c 2 ∂ m u = 0. The latter motivates the relaxation system

     ∂ t τ -∂ m u = 0 ∂ t u + ∂ m Π = s ∂ t Π + a 2 ∂ m u = λ(p(τ ) -Π) (2.16)
where a 2 is a constant which linearizes A 2 c 2 and that should be taken such that a 2 ≥ A 2 c 2 according to the sub-characteristic condition. Indeed, this condition entails that the information in the relaxation model (2.16) propagates faster than in the original one (2.15). Refer for instance to the works [START_REF] Suliciu | On the thermodynamics of uids with relaxation and phase transitions[END_REF][START_REF] Chalons | A large time-step and well-balanced Lagrange-Projection type scheme for the Shallow-water equations[END_REF][START_REF] Chalons | Large Time Step and Asymptotic Preserving Numerical Schemes for the Gas Dynamics Equations with Source Terms[END_REF].

Considering that the initial data for Π is well-prepared in the sense that Π = p, it is natural to introduce a more compact notation for system (2.16), which reads

∂ t U + ∂ m G(U) = S with U =   τ u Π   , G(U) =   -u Π a 2 u   and S =   0 s 0   ,
and where we note that the relaxation source term in the evolution equation for Π is not present anymore. Rewriting this system in quasi-linear form, it gives

∂ t U + A(U)∂ m U = S
where A(U) is the Jacobian matrix of the ux vector G(U), that is

A(U) = ∂G ∂U =   0 -1 0 0 0 1 0 a 2 0   .
The eigenvalues of the matrix A(U) are λ -= -a, λ 0 = 0 and λ + = a;

note that they can be seen as constant approximations of the eigenvalues of system (2.15). Therefore system (2.16) is strictly hyperbolic as long as a is real and a = 0. The corresponding right eigenvectors are

R -=   1 a -a 2   , R 0 =   1 0 0   and R + =   1 -a -a 2   .
All the three associated characteristic elds are linearly degenerate, therefore the three waves will be contact discontinuities and, as such, the Riemann problem can be solved using the Riemann invariants. The equations in phase space associated to λ ± are dτ 1 = du ∓a = dΠ -a 2 and they lead to the Riemann invariants RI ±,1 = aτ ± u and RI ±,2 = Π ∓ au. Finally, the corresponding equations to λ 0 in phase space are du = 0 and dΠ = 0 and the associated Riemann invariants are RI 0,1 = u and RI 0,2 = Π.

At this stage we can look for an approximate solution of system (2.16) for a Riemann problem. We will use the theory of Gallice [START_REF] Gallice | Solveurs simples positifs et entropiques pour les systèmes hyperboliques avec terme source[END_REF][START_REF] Gallice | Positive and entropy stable Godunov-type schemes for gas dynamics and MHD equations in Lagrangian or Eulerian coordinates[END_REF] which consists in an extension of the well-known Harten, Lax and van Leer formalism [START_REF] Harten | On upstream di erencing and Godunov-type schemes for hyperbolic conservation laws[END_REF] for systems of conservation laws.

Approximate solution of a RP for the acoustic system

Let us start giving some general notions about the approximate Riemann solver and consistency with the integral form as described by Gallice [START_REF] Gallice | Solveurs simples positifs et entropiques pour les systèmes hyperboliques avec terme source[END_REF][START_REF] Gallice | Positive and entropy stable Godunov-type schemes for gas dynamics and MHD equations in Lagrangian or Eulerian coordinates[END_REF]. We will then focus on our speci c case, namely system (2.16).

We brie y consider a general system of form

∂ t U + ∂ m G(U) = S (2.17)
where U is the vector of h unknowns, G(U) the physical ux and S the source term. We want to solve the Riemann Problem (RP) with the following initial condition,

U(m, t = 0) = U L if m < 0 U R if m > 0, (2.18) 
for any given U L , U R in the phase space. Supposing to have h discontinuities with velocities λ k , k = 1, . . . , h , the solution of the Riemann problem consists of h + 1 states separated by the discontinuities, hence

U( m t , U L , U R ) =                  U 1 = U L if m t < λ 1 . . . . . . U k if λ k < m t < λ k+1 . . . . . . U h+1 = U R if m t > λ h (2.19)
Given the space and time steps ∆m and ∆t, the approximate solution (2.19) of the RP (2.17)-(2.18) is said to be consistent with the integral form of (2.17) if in the interval [0, ∆m] we have

G(U R ) -G(U L ) -∆m S(∆m, ∆t; U L , U R ) = h k=1 λ k (U k+1 -U k ), (2.20) 
where also the source term S(∆m, ∆t; U L , U R ) has to satisfy a consistency property, namely

lim U L ,U R →U;∆m,∆t→0 S(∆m, ∆t; U L , U R ) = S(U).
(2.21)

Riemann solver for the system of conservation laws

Next, we focus on system (2.16). We start neglecting the source term, hence we want to solve the following Riemann problem,

     ∂ t U + ∂ m G(U) = 0 U(m, t = 0) = U L if m < 0 U R if m > 0 (2.22)
where in particular

U L =   τ L u L Π L   and U R =   τ R u R Π R   .
In this speci c case, the solution can be computed exactly and takes the following form

U( m t , U L , U R ) =          U L if m t < λ -= -a U * ,L if λ -< m t < 0 U * ,R if 0 < m t < λ + = a U R if m t > λ + (2.23) with U * ,L =   τ * ,L u * ,L Π * ,L   and U * ,R =   τ * ,R u * ,R Π * ,R   . (2.24) 
In order to nd the values U * ,L and U * ,R , we exploit the consistency conditions (2.20) together with the Rankine-Hugoniot conditions associated to the velocities ±a, namely

a(U * ,L -U L ) + G(U * ,L ) -G(U L ) = 0 and -a(U R -U * ,R ) + G(U * ,R ) -G(U R ) = 0, (2.25) 
and to the discontinuity of null velocity, i.e. u * ,L = u * ,R = u * , Π * ,L = Π * ,R = Π * . Thus, it is straightforward to nd the following algebraic system of 6 relations,

                   aτ * ,L -u * ,L = aτ L -u L au * ,L + Π * ,L = au L + Π L u * ,L = u * ,R = u * Π * ,L = Π * ,R = Π * aτ * ,R + u * ,R = aτ R + u R au * ,R -Π * ,R = au R -Π R ,
whose resolution leads us to the values in the star regions,

         τ * ,L = τ L + 1 a (u * -u L ) = τ L + 1 2a (u R -u L ) -1 2a 2 (Π R -Π L ) τ * ,R = τ R -1 a (u * -u R ) = τ R + 1 2a (u R -u L ) + 1 2a 2 (Π R -Π L ) u * = 1 2 (u L + u R ) -1 2a (Π R -Π L ) Π * = 1 2 (Π L + Π R ) -a 2 (u R -u L ).
(2.26)

Riemann solver for the system of balance laws

Let us now consider the source term due to the variations of the cross-sectional area at equilibrium A 0 and the arterial sti ness K as well. Therefore, we look for an approximate solution of the following Riemann Problem,

     ∂ t U + A(U)∂ m U = S(Q; A 0 , K) U(m, t = 0) = U L if m < 0 U R if m > 0.
(2.27)

Once again we assume that the m -t plane divided in four di erent zones by the three waves and the solution has the form given by (2.23) and (2.24). In order to nd such a solution made of 6 unknowns, we need to impose di erent conditions. Starting from the consistency relations (2.20), we have

     -u R + u L = -a(τ * ,L -τ L ) + a(τ R -τ * ,R ) Π R -Π L -∆ms = -a(u * ,L -u L ) + a(u R -u * ,R ) a 2 (u R -u L ) = -a(Π * ,L -Π L ) + a(Π R -Π * ,R ) (2.28)
then, the Rankine-Hugoniot conditions associated to the mass equation read

     -(u R -u * ,R ) = a(τ R -τ * ,R ) u L -u * ,L = -a(τ * ,L -τ L ) u * ,L = u * ,R = u * (2.29)
which give us only two additional conditions, as the rst relation of (2.28) is a linear combination of (2.29). Consequently we have found only ve conditions for six unknowns and thus, they are not su cient to de ne the approximate RP solution. Note also that s = s(∆m, ∆t; U L , U R ) in (2.28) has to be speci ed such that (2.21) holds true. In particular, s should be determined such that it is equal to zero if both A 0 and K are constant. With this request, the solution of (2.27) would degenerate to the solution of the homogeneous Riemann problem (2.22). Finally, two relations are still missing to de ne our solution.

Let us suppose to have two other equations, namely ∂ t A 0 = 0 and ∂ t K = 0. For these two equations the solutions are

A 0,L if m < 0, A 0,R if m > 0 and K L if m < 0, K R if m > 0.
Hence, we ask for the jump condition across the middle discontinuity associated to the momentum equation, that is to say

Π * R -Π * L + M = 0, (2.30) 
where the function

M = - ∆m L + ∆m R 2 s(∆m, ∆t; U L , U R )
has to be de ned such that it satis es M = 0 if A 0,L = A 0,R and K L = K R . Thus, after few algebraic computations, we obtain the following solution for the Riemann problem (2.27),

                   τ * ,L = τ L + 1 a (u * -u L ) τ * ,R = τ R -1 a (u * -u R ) u * = 1 2 (u L + u R ) -1 2a (Π R -Π L ) -M 2a Π * L = 1 2 (Π L + Π R ) -a 2 (u R -u L ) + M 2 Π * R = 1 2 (Π L + Π R ) -a 2 (u R -u L ) -M 2 Π * = 1 2 (Π * L + Π * R ) = 1 2 (Π L + Π R ) -a 2 (u R -u L ). (2.31) 
It remains to de ne M in a consistent way and it is clear that

M = - A ρ (K R A 0,R -K L A 0,L ) + 2A 3ρ √ A (K R -K L ) is relevant provided that A ρ and 2A 3ρ √ A are consistent approximations of A ρ and 2A 3ρ
√ A respectively. Let us discuss this issue. We rst recall that since U L and U R are taken to be well prepared, we have

Π L = K L 3ρ A 3 2 L and Π R = K R 3ρ A 3 2
R . Since we are interested in preserving the "man at eternal rest" solution, we also ask for the well-balanced condition, U * ,L = U L and U * ,R = U R if U L and U R verify the "man at eternal rest" solution, namely

u L = u R = 0, K L ( A L -A 0,L ) = K R ( A R -A 0,R ).
(2.32)

If we have (2.32), then

M = - A ρ (K R A 0,R -K L A 0,L ) + 2A 3ρ √ A (K R -K L ) = - A ρ (K R A R -K L A L ) + 2A 3ρ √ A (K R -K L ) = - A ρ K R + K L 2 ( A R -A L ) - A ρ √ A R + √ A L 2 (K R -K L ) + 2A 3ρ √ A (K R -K L )
and thanks to (2.30), using formulae

[XY ] R L = - → X [Y ] R L + ← - Y [X] R L , where [X] R L = X R -X L , - → X = αX L + (1 -α)X R , ← - X = αX R + (1 -α)X L and α = 1 2 , M = -(Π R -Π L ) = - 1 3ρ (K R A R A R -K L A L A L ) = - 1 6ρ (K R + K L )(A R A R -A L A L ) - 1 6ρ (A L A L + A R A R )(K R -K L ) = - 1 3ρ K R + K L 2 (A L + A R A L + A R )( A R -A L ) - 1 6ρ (A L A L + A R A R )(K R -K L ).
Therefore, it is clearly su cient to set

A ρ = A L + A R + √ A L √ A R 3ρ and 2A 3ρ √ A = √ A L + √ A R 2 A ρ - 1 6ρ (A L A L + A R A R ) = √ A L √ A R ( √ A L + √ A R ) 3ρ
.

Finally, we get

M = M((A L , A 0,L , K L ); (A R , A 0,R , K R )) = - A L + A R + √ A L √ A R 3ρ K R A 0,R -K L A 0,L - √ A L √ A R ( √ A L + √ A R ) A L + A R + √ A L √ A R (K R -K L ) . (2.33) 
Lastly, let us note that the de nition of M is consistent, indeed

lim A L ,A R →A M = - A ρ K R A 0,R -K L A 0,L + 2A √ A 3ρ (K R -K L ).
3 First-order well-balanced scheme

The next step consists in presenting the rst-order well-balanced scheme. We start giving a rst-order approximation of the homogeneous version of system (2.3) and then we modify it in order to satisfy the well-balanced property and include the source term at the same time. In particular, for the latter step, we show two di erent ways of preserving the stationary state (2.7), one of them exploiting the approximate solution of the Riemann problem (2.27) and the other the well-known hydrostatic reconstruction procedure, for which we respectively refer to [START_REF] Chalons | A large time-step and well-balanced Lagrange-Projection type scheme for the Shallow-water equations[END_REF] and [START_REF] Morales | High order fully well-balanced Lagrange-Projection scheme for Shallow-water[END_REF].

Let us now introduce some notations. First of all, we de ne the constant space step ∆x and constant time step ∆t. The mesh interfaces are given by x j+1/2 = j∆x for j ∈ Z and the intermediate times by t n = n∆t for n ∈ N. As usual in the nite volume framework, we seek at each time t n for an approximation Q n j of the solution in the interval [x j-1/2 , x j+1/2 ), j ∈ Z. Therefore, a piecewise constant approximate solution x → Q ∆t,∆x (x, t n ) of the solution Q is given by

Q ∆t,∆x (x, t n ) = Q n j for all x ∈ C j = [x j-1/2 ; x j+1/2 ), j ∈ Z, n ∈ N.
As far as the variable ξ is concerned, we use the same space discretization of x, hence ∆x = ∆ξ, x j+ 1 2 = ξ j+ 1 2 and x j = ξ j ∀j.

First-order approximation with constant parameters

We start describing the rst-order scheme by assuming A 0 and K constant parameters, therefore the source term s disappears. As we already pointed out, the Lagrange-projection scheme is composed of two steps: 1. Solve system (2.12) written in Lagrangian coordinates, or equivalently update Q n to Q n+1-approximating the solution of system (2.13);

2. Project the solution of system (2.12) in Eulerian coordinates, namely update Q n+1-to Q n+1 by solving system (2.14).

For more details about this procedure in the shallow water context refer to [START_REF] Manuel | A fully well-balanced Lagrange-Projection type scheme for the Shallow-water equations[END_REF][START_REF] Chalons | A large time-step and well-balanced Lagrange-Projection type scheme for the Shallow-water equations[END_REF][START_REF] Morales | High order fully well-balanced Lagrange-Projection scheme for Shallow-water[END_REF].

Lagrangian step. Given a system of form ∂ t U+∂ m G(U) = 0 as in (2.22), the rst-order Godunov-type scheme associated with the Riemann solver of section 2.2.1 reads

U n+1- j = U n j - ∆t ∆m j (G n j+ 1 2 -G n j-1 2 ), (3.1) 
with

G n j+ 1 2 = G(U n j , U n j+1 ), (3.2) 
and

G(U L , U R ) = 1 2 G(U L ) + G(U R ) - h k=1 |λ k |(U k+1 -U k ) , (3.3) 
where λ k the speeds of the discontinuities and U k the intermediate states. In more details, we get that the natural discretization of the homogeneous version of the rst two equations of system (2.16) is given by

τ n+1- j = τ n j + ∆t ∆mj (u * j+ 1 2 -u * j-1 2 ) u n+1- j = u n j -∆t ∆mj (Π * j+ 1 2 -Π * j-1 2 ), (3.4) 
with ∆m j = ∆x at time t n and in particular, exploiting formulae (2.26),

u * j+ 1 2 = u * j+ 1 2 (U n j , U n j+1 ) = 1 2 (u n j+1 + u n j ) - 1 2a n j+ 1 2 (Π n j+1 -Π n j ), Π * j+ 1 2 = Π * j+ 1 2 (U n j , U n j+1 ) = 1 2 (Π n j+1 + Π n j ) - a n j+ 1 2 (u n j+1 -u n j ).
(3.5)

Note that the rst equation

τ n+1- j = τ n j + ∆t ∆mj (u * j+ 1 2 -u * j-1 2
) of system (3.4) is equivalent to

A n j = A n+1- j 1 + ∆t ∆x (u * j+ 1 2 -u * j-1 2 ) . (3.6) 
For more details we refer again to [START_REF] Manuel | A fully well-balanced Lagrange-Projection type scheme for the Shallow-water equations[END_REF][START_REF] Chalons | An all-regime Lagrange-Projection like scheme for 2D homogeneous models for two-phase ows on unstructured meshes[END_REF][START_REF] Chalons | An All-Regime Lagrange-Projection Like Scheme for the Gas Dynamics Equations on Unstructured Meshes[END_REF][START_REF] Chalons | A large time-step and well-balanced Lagrange-Projection type scheme for the Shallow-water equations[END_REF][START_REF] Gallice | Solveurs simples positifs et entropiques pour les systèmes hyperboliques avec terme source[END_REF][START_REF] Gallice | Positive and entropy stable Godunov-type schemes for gas dynamics and MHD equations in Lagrangian or Eulerian coordinates[END_REF][START_REF] Morales | High order fully well-balanced Lagrange-Projection scheme for Shallow-water[END_REF]. It is useful to observe that a numerical discretization for the Lagrangian step starting from (2.12) with no source term, namely

L n+1- j A n+1- j = L n j A n j L n+1- j (Au) n+1- j = L n j (Au) n j -∆t ∆x (Π * j+ 1 2 -Π * j-1 2 ) (3.7) with Π * j± 1 2
given by (3.5), is equivalent to (3.4). At last, observe from system (2.10) that a natural discretization for L(ξ, t) is the following,

L n+1- j = L n j + ∆t ∆x (u * j+ 1 2 -u * j-1 2 ) with L n j = 1, (3.8) 
u * j± 1 2
given by (3.5) and, from its de nition (2.9),

L j (t) = 1 ∆x x j+ 1 2 x j-1 2 ∂x ∂ξ (ξ, t)dξ = x * j+ 1 2 -x * j-1 2 ∆x with x * j± 1 2 = x(ξ j± 1 2 , t) ξ j± 1 2 + tu * j± 1 2
according to (2.8), see also gure 1 for a better understanding.

Projection step. As already explained, the subsequent step consists in projecting the solution of system (2.12) (here with no source term), or equivalently the solution given by (3.7), in Eulerian coordinates. With this in mind, let us rst note that by de nition of L,

x(ξr,t) x(ξ l ,t) Q(x, t)dx = ξr ξ l L(ξ, t) Q(ξ, t)dξ.
This relation allows to make a simple link between Q in Eulerian and Lagrangian coordinates. In order to use it at the discrete level, it just remains to de ne ξj+ 1 2 (t) such that for all j (see again gure 1)

x( ξj+ 1 2 (T ), T ) = x j+ 1 2 , with T ≥ 0, and the corresponding trajectories

∂x ∂t ( ξj+ 1 2 (T ), t) = u(x( ξj+ 1 2 (T ), t), t) x( ξj+ 1 2 (T ), 0) = ξj+ 1 2 (T ), leading to Q j (t) = 1 ∆x x j+ 1 2 x j-1 2 Q(x, t)dx = 1 ∆x x( ξj+ 1 2 ,t) x( ξj-1 2 ,t) Q(x, t)dx = 1 ∆x ξj+ 1 2 ξj-1 2 L(ξ, t)Q(ξ, t)dξ. (3.9) 
Note that we can approximate x j+ 1 2 at rst-order:

x j+ 1 2 = x( ξj+ 1 2 (T ), T ) x( ξj+ 1 2 (T ), 0) + T ∂ t x( ξj+ 1 2 (T ), 0) ξj+ 1 2 + T u * j+ 1 2 , (3.10) 
for a xed time T ≥ 0 and observe that x j+ 1 2 -x *

j+ 1 2 = ξj+ 1 2 -ξ j+ 1 2 .
In order to de ne Q n+1 j using the knowledge of (LQ) n+1- j , we suggest to split the integral (3.9) to obtain

Q n+1 j = 1 ∆x ξ j-1 2 ξj-1 2 L(ξ, t n+1-)Q(ξ, t n+1-)dx+ + 1 ∆x ξ j+ 1 2 ξ j-1 2 L(ξ, t n+1-)Q(ξ, t n+1-)dx + 1 ∆x ξj+ 1 2 ξ j+ 1 2 L(ξ, t n+1-)Q(ξ, t n+1-)dx.
(3.11)

Then, the middle integral can be clearly replaced by 1 ∆x

ξ j+ 1 2 ξ j-1 2 L(ξ, t)Q(ξ, t)dx = (LQ) n+1- j
, while the others two integrals can be approximated as in the following. Let us state 1 ∆x

ξ j-1 2 ξj-1 2 L(ξ, t)Q(ξ, t)dx = ξ j-1 2 -ξj-1 2 ∆x (LQ) n+1- j-1 2
, where we set

(LQ) n+1- j-1 2 = (LQ) n+1- j-1 if ξ j-1 2 > ξj-1 2 (LQ) n+1- j if ξ j-1 2 ≤ ξj-1 2
or equivalently

(LQ) n+1- j-1 2 = (LQ) n+1- j-1 if x * ,n+1- j-1 2 > x j-1 2 (LQ) n+1- j if x * ,n+1- j-1 2 ≤ x j-1 2 (3.12) with x * ,n+1- j+ 1 2 = x j+ 1 2 + ∆tu * j+ 1 2 and x j+ 1 2 = ξj+ 1 2 + ∆tu * j+ 1 2 ,
and analogously for the third integral appearing in (3.11). Consequently, the projection step reads

Q n+1 j = ξ j-1 2 -ξj-1 2 ∆x (LQ) n+1- j-1 2 + (LQ) n+1- j + ξj+ 1 2 -ξ j+ 1 2 ∆x (LQ) n+1- j+ 1 2 = (LQ) n+1- j - ∆t ∆x u * j+ 1 2 (LQ) n+1- j+ 1 2 -u * j-1 2 (LQ) n+1- j-1 2 , (3.13) 
with u * j+ 1 2 de ned as in the Lagrangian step. Let us also remark that (3.13) can be seen as a discretization of system (2.14).

Overall discretization. It can be easily proved that the whole scheme is conservative using formulae (3.7) and (3.13). Indeed, one can recover the following nal form:

A n+1 j = A n j -∆t ∆x u * j+ 1 2 A n+1- j+ 1 2 -u * j-1 2 A n+1- j-1 2 q n+1 j = q n j -∆t ∆x u * j+ 1 2 q n+1- j+ 1 2 + Π * j+ 1 2 -(u * j-1 2 q n+1- j-1 2 + Π * j-1 2 ) , (3.14) 
with

X n+1- j+ 1 2 = (LX) n+1- j if x * ,n+1- j+ 1 2 > x j+ 1 2 (LX) n+1- j+1 if x * ,n+1- j+ 1 2 ≤ x j+ 1 2
, and X either A or q.

First-order approximation with varying parameters

As far as the source term is concerned, it is di erent from zero only when considering non-constant parameters, as the derivatives of A 0 and K appears in it. Since the source term is taken into consideration at the level of the Lagrangian step, in order to include it into the numerical scheme we have to modify only the rst step and not the remap one. Note however that, in general, the projection step has to be modi ed in order to obtain a fully well-balanced numerical method, see [START_REF] Manuel | A fully well-balanced Lagrange-Projection type scheme for the Shallow-water equations[END_REF][START_REF] Morales | High order fully well-balanced Lagrange-Projection scheme for Shallow-water[END_REF]. We show that this is not required in our particular case as we want to preserve only the "man at eternal rest" solution. In the rest of this section, we present two di erent ways to obtain a well-balanced Lagrangian step in which the source term is included.

Based on the approximate Riemann solver

The rst approach we present requires the use of the approximate Riemann solver described in section 2.2.2. In particular the well-balanced property is achieved approximating the source term in a special way, namely exploiting formula (2.33).

The rst-order Godunov-type method associated with the Riemann solver proposed in section 2.2.2 now reads

U n+1- j = U n j - ∆t ∆m j (G n j+ 1 2 -G n j- 1 2 
) + ∆t Sn 3) and the source term de ned as the average of the source at the interfaces,

Sn j = 1 2 ( ∆m j+ 1 2 ∆m j Sn j+ 1 2 + ∆m j-1 2 ∆m j Sn j- 1 
2 ), Sn

j+ 1 2 = S(∆m j+ 1 2 , ∆t; U n j , U n j+1 ) (3.16)
with ∆m j+1/2 = ∆mj +∆mj+1 2

. For more details we refer again to Gallice [START_REF] Gallice | Solveurs simples positifs et entropiques pour les systèmes hyperboliques avec terme source[END_REF][START_REF] Gallice | Positive and entropy stable Godunov-type schemes for gas dynamics and MHD equations in Lagrangian or Eulerian coordinates[END_REF]. Hence, we approximate system (2.15) by

τ n+1- j = τ n j + ∆t ∆mj (u * j+ 1 2 -u * j-1 2 ) u n+1- j = u n j -∆t ∆mj (Π * j+ 1 2 -Π * j-1 2 ) + ∆ts n j (3.17)
or equivalently the Lagrangian system (2.12) by

L n+1- j A n+1- j = L n j A n j L n+1- j (Au) n+1- j = L n j (Au) n j -∆t ∆x (Π * j+ 1 2 -Π * j-1 2 ) + ∆ts n j , (3.18) 
with L n+1- j de ned as in (3.8). Similarly, we observe that the numerical uxes are now given by

     u * j+ 1 2 = 1 2 (u n j+1 + u n j ) -1 2a n j+ 1 2 (Π n j+1 -Π n j ) + ∆m j+1/2 2a j+1/2 sn j+1/2 Π * j+ 1 2 = 1 2 (Π n j+1 + Π n j ) - a n j+ 1 2 2 (u n j+1 -u n j ). (3.19) 
As far as the source term (2.4) is concerned, we state

sn j = 1 2 ∆m j+ 1 2 ∆m j sn j+1/2 + ∆m j-1 2 ∆m j sn j-1/2 with sn j+1/2 = - M n j+1/2 ∆m j+1/2 , (3.20) 
and M n j+1/2 = M((A n j ; A 0,j , K j ); (A n j+1 ; A 0,j+1 , K j+1 )) given by (2.33). Note that, in (3.18), s n j = L n j A n j sn j = A n j sn j = ∆m n j ∆x sn j or equivalently Proof. Let us suppose that Q n j satis es the "man at eternal rest" condition (2.7). Thus, u n j = 0 ∀j and, thanks to condition (2.30), we also have that Π n j+1 -Π n j + M j+1/2 = 0 and, consequently,

s n j = 1 2 s n j+1/2 + s n j-1/2 with s n j+1/2 = - M n j+1/2 ∆x ∀j. ( 3 
-(Π n j+1 -Π n j ) + ∆m j+1/2 sn j+1/2 = 0. Hence, u * j+ 1 2 = 0 ∀j and Π * j+ 1 2 = 1 2 (Π n j+1 + Π n j ). Similarly s n j compensates -1 ∆x (Π * j+ 1 2 -Π * j- 1 
2

) and we nd that A n+1- j = A n j and q n+1- j = q n j .

Based on the hydrostatic reconstruction

Let us consider once again a discretization of the form (3.18) for the Lagrangian system (2.12). Now we want to exploit the well-known hydrostatic reconstruction approach [START_REF] Audusse | A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water ows[END_REF][START_REF] Manuel | A fully well-balanced Lagrange-Projection type scheme for the Shallow-water equations[END_REF], thus we are going to modify the numerical ux and source to be employed in either system (3.17) or (3.18). Hence, we perform a reconstruction of the variables values Q at the cells interfaces. Considering locally relations (2.7), we rst write for all j, q(x) = 0, (K(

√ A - √ A 0 ))(x) = K j ( A n j -A 0,j )
which can be understood as a reconstruction procedure of a space dependent stationary solution inside the j-th cell. Then, following [START_REF] Ghigo | Low-Shapiro hydrostatic reconstruction technique for blood ow simulation in large arteries with varying geometrical and mechanical properties[END_REF], we de ne cross-sectional areas at the cell interfaces (x = x j± 1 2 ) by

(K √ A) n j+ 1 2 ,L = max K j ( A n j -A 0,j ) + (K √ A 0 ) j+ 1 2 , 0 (K √ A) n j+ 1 2 ,R = max K j+1 ( A n j+1 -A 0,j+1 ) + (K √ A 0 ) j+ 1 2 , 0 , (3.22) 
where the maximum has been added in order to preserve the non-negativity, and

     A n j+ 1 2 ,L = max 1 K * j+ 1 2 K j ( A n j -A 0,j ) + (K √ A 0 ) j+ 1 2 , 0 A n j+ 1 2 ,R = max 1 K * j+ 1 2 K j+1 ( A n j+1 -A 0,j+1 ) + (K √ A 0 ) j+ 1 2 , 0
where we have imposed

(K A 0 ) j+ 1 2 = min K j A 0,j , K j+1 A 0,j+1 and K * j+ 1 2 = max K j , K j+1 . (3.23)
Hence, the reconstructed values at cell interfaces are de ned by

Q n j+ 1 2 ,L = A n j+ 1 2 ,L A n j+ 1 2 ,L u n i and Q n j+ 1 2 ,R = A n j+ 1 2 ,R A n j+ 1 2 ,R u n i+1 . (3.24) 
At this stage we can de ne the star values for the velocity u and linearized pressure Π as in (3.5) exploiting the values at interfaces (3.24), therefore

u * j+ 1 2 = u * (Q n j+ 1 2 ,L , Q n j+ 1 2 ,R ) and Π * j+ 1 2 = Π * (Q n j+ 1 2 ,L , Q n j+ 1 2 ,R ) with      u * j+ 1 2 = 1 2 (u n j+1 + u n j ) -1 2a n j+ 1 2 (Π n j+ 1 2 ,R -Π n j+ 1 2 ,L ) Π * j+ 1 2 = 1 2 (Π n j+ 1 2 ,R + Π n j+ 1 2 ,L ) - a n j+ 1 2 2 (u n j+1 -u n j ) (3.25) and a j+ 1 2 = max A n j+ 1 2 ,L c n j+ 1 2 ,L , A n j+ 1 2 ,R c n j+ 1
2 ,R . In particular, (3.25) has to be used in (3.17)-(3.18) instead of (3.19). Finally, since we want to preserve the steady states with zero velocity, namely the ones satisfying u = 0 and ∂ x p = s, for the source term s n j we suggest the following,

s n j = 1 ∆x x j+ 1 2 x j-1 2 s(Q; A 0 , K)(x, t)dx = 1 ∆x x j+ 1 2 x j-1 2 ∂ x p(x, t)dx = 1 ∆x p(x j+ 1 2 ) -p(x j-1 2 ) = pj+ 1 2 ,L -pj-1 2 ,R
∆x .

(3.26) Note that the rst equality comes from space dependent reconstruction of a solution inside the cell, while the second equality holds as we are exploiting the reconstructed values (3.24) to de ne the pressures p at the interfaces. More precisely, let us remark that to de ne pn Proof. Let us suppose that Q n j satis es the "man at eternal rest" condition (2.7). Thus,

j+ 1 2 ,L = p(A n j+ 1 2 ,L , K), pn j+ 1 2 ,R = p(A n j+ 1 2 ,R , K) in (3.26), and Π n j+ 1 2 ,L , Π n j+ 1 2 ,R at equilibrium in (3.25), namely Π n j+ 1 2 ,L = p(A n j+ 1 2 ,L , K), Π n j+ 1 2 ,R = p(A n j+ 1 2 ,R , K), we can use either the values K = K(x j+ 1 2 ) or K = K *
u n j = 0 ∀j, A n j+ 1 2 ,L = A n j+ 1 2 ,R , and consequently, Q n j+ 1 2 ,L = Q n j+ 1 2 ,R . Hence, u * j+ 1 2 = 0 ∀j and -1 ∆x (Π * j+ 1 2 -Π * j-1 2
) + {s} n j = 0. Therefore, we obtain A n+1- j = A n j and q n+1- j = q n j .

Remark. As it has been shown in the proofs of theorems 1 and 2, u * j+ 1 2 = 0 under the "man at eternal rest" condition. Hence, the projection step (3.13) preserves the stationary solution (2.7) and the whole numerical scheme (Lagrangian plus projection step) has not to be further modi ed.

4 Second-order well-balanced scheme At this stage we are interested in second (or higher) order extension of the Lagrangian-projection schemes. We proceed as for the rst-order scheme: we explain how to reach the second-order of accuracy in the case of constant parameters, which is already non-trivial due to the presence of two steps in the Lagrange-Projection procedure, and then we extend it to the case of varying parameters A 0 and K. Once again, in the latter case we pay attention to the well-balanced property.

Here we focus on a second-order simpli ed version of the scheme applied to (2.3) but it can be easily extended to higher order of accuracy following [START_REF] Morales | High order fully well-balanced Lagrange-Projection scheme for Shallow-water[END_REF][START_REF] Manuel | Well-Balanced Schemes and Path-Conservative Numerical Methods[END_REF]. In particular, we make use of polynomial reconstruction and Runge-Kutta TVD scheme [START_REF] Gottlieb | Total variation diminishing RUNGE-KUTTA schemes[END_REF] in order to reach second-order of accuracy respectively in space and time.

Second-order approximation with constant parameters

First of all we explain how to reach the second-order of accuracy in space in both the Lagrangian and projection step, and then we comment on the Runge-Kutta TVD scheme for the second-order approximation in time. Hereafter the time is assumed to be left continuous for the sake of clarity.

Space discretization of the Lagrangian step. Given a time t, a j-th cell and the cell value Q j (t), this step aims at de ning evolved values Q j+ 1 2 L,R (t) at the cell interface x j+ 1 2 by means of polynomial data reconstructions. More precisely, using for each cell I j a reconstructed polynomial vector P t j (x) such as

P t j (x) = Q j (t) + ∆ t j (x -x j ), (4.1) 
where

∆ t j = ∆ t j (Q j-1 (t), Q j (t), Q j+1 (t))
is the slope, either the ENO [START_REF] Eleuterio | Riemann Solvers and Numerical Methods for Fluid Dynamics[END_REF] or the MINMOD [START_REF] Eleuterio | PRICE: Primitive Centred Schemes for Hyperbolic Systems[END_REF] one, we de ne

Q j+ 1 2 L (t) = P t j (x j+ 1 2 ) and Q j+ 1 2 R (t) = P t j+1 (x j+ 1 2 ). (4.2)
Therefore, once again we use formulae (3.5) computed in

(Q j+ 1 2 L (t), Q j+ 1 2 R (t)), namely u * j+ 1 2 (t) = u * j+ 1 2 (Q j+ 1 2 L (t), Q j+ 1 2 R (t)) and Π * j+ 1 2 (t) = Π * j+ 1 2 (Q j+ 1 2 L (t), Q j+ 1 2 R (t)), with a j+ 1 2 = max A n j+ 1 2 ,L c n j+ 1 2 ,L , A n j+ 1 2 ,R c n j+ 1
2 ,R . Note that the polynomial P t j (x) should satisfy the conservation property, which reads

1 ∆x x j+ 1 2 x j-1 2 P t j (x) = Q j (t).
Space discretization of the remap step. In order to obtain the second-order of accuracy in space we exploit relations (3.11)-(3.13) seen in section 3.1. Once again the middle integral in (3.11) can be substituted by (LQ) j (t) thanks to the conservation property. Then, for the other two integrals, instead of considering the values (LQ) j (t), we reconstruct them using the polynomial P t j (x). Thus, we introduce

(LP) t j (ξ) = (LQ) j (t) + ∆ t j (ξ -ξ j ), (4.3) 
with ∆ t j = ∆ t j ((LQ) j-1 (t), (LQ) j (t), (LQ) j+1 (t)) and

(LP) t j-1 2 (ξ) = (LP) t j-1 (ξ) if ξ j-1 2 > ξj-1 2 (LP) t j (ξ) if ξ j-1 2 ≤ ξj-1 2
in place of (LQ) j-1 2 (t), where we recall that

x j+ 1 2 = ξj+ 1 2 + ∆tu * j+ 1 2
. Finally, since (LP) t (ξ) is not constant, in order to be able to evaluate its integral

1 ∆x ξ j-1 2 ξj-1 2 (LP) t j-1 2
(ξ)dx, one can exploit either the mid-point rule (only for second-order of accuracy) or a Gauss quadrature formula with nodes ξ j-1 2 ,k and weights ω k for k = 1, . . . , m. In the former case we nd

Q j (t) = (LQ) j (t) + ξ j-1 2 -ξj-1 2 ∆x (LP) t j-1 2 ξ j-1 2 + ξj-1 2 2 + ξj+ 1 2 -ξ j+ 1 2 ∆x (LP) t j+ 1 2 ξ j+ 1 2 + ξj+ 1 2 2 = (LQ) j (t) - ∆t ∆x u * j+ 1 2 (LP) t j+ 1 2 ξ j+ 1 2 + ξj+ 1 2 2 -u * j-1 2 (LP) t j-1 2 ξ j-1 2 + ξj-1 2 2 , (4.4) 
while in the second one,

Q j (t) = (LQ) j (t) + ξ j-1 2 -ξj-1 2 ∆x m k=1 ω k (LP) t j-1 2 (ξ j-1 2 ,k ) + ξj+ 1 2 -ξ j+ 1 2 ∆x m k=1 ω k (LP) t j+ 1 2 (ξ j+ 1 2 ,k ) = (LQ) j (t) - ∆t ∆x u * j+ 1 2 m k=1 ω k (LP) t j+ 1 2 (ξ j+ 1 2 ,k ) -u * j-1 2 m k=1 ω k (LP) t j-1 2 (ξ j-1 2 ,k ) ,
where the other integral 1 ∆x

ξ j+ 1 2 ξj+ 1 2 (LP) t j+ 1 2
(ξ)dx has been evaluated in a similar way.

Second-order approximation in time. The last step of the second-order method consists in obtaining the right accuracy in time. In order to do this we simply use the Runge-Kutta TVD scheme at second order [START_REF] Gottlieb | Total variation diminishing RUNGE-KUTTA schemes[END_REF]. However, we have to specify that it has to be applied to the overall scheme (Lagrangian and remap step together) in order to avoid di usion due to the splitting.

Second-order approximation with varying parameters

As we have done before for the well-balanced rst-order scheme, here we present two di erent well-balanced secondorder methods, the rst exploits the approximate Riemann solver of section 2.2 and the other one the hydrostatic reconstruction approach.

Again, it is su cient to focus on the Lagrangian step and nothing has to be changed for the second-order projection step as described above and the Runge-Kutta TVD procedure as it will be easily seen that they preserve the "man at eternal rest" solution. However, regarding the projection step, we specify that, if we would like to preserve a di erent stationary solution, we would have to modify it. For more details refer to [START_REF] Chalons | A large time-step and well-balanced Lagrange-Projection type scheme for the Shallow-water equations[END_REF].

Based on the approximate Riemann solver

Here we describe the second-order extension of the Lagrangian step explained in section 3.2.1 which makes use of the approximate Riemann solver of section 2.2.2 in order to maintain the well-balancedness of the method. Thus, in order to obtain a second-order approximation in space, the idea is to exploit the reconstructed values at cell interfaces and then apply the usual updating formulae. However, we cannot simply use the reconstructed polynomial (4.1) as it would prevent the scheme to preserve the stationary solutions. Thus, the idea is to compute the slopes in such a way that they become equal to zero when the "man at eternal rest" condition (2.7) is satis ed. With this in mind we suggest to make use of the so-called uctuations D, refer to [START_REF] Morales | High order fully well-balanced Lagrange-Projection scheme for Shallow-water[END_REF][START_REF] Manuel | Well-Balanced Schemes and Path-Conservative Numerical Methods[END_REF]. Let us enter the details. Given a time t and the j-th cell, to determine the slope at second-order of accuracy we need the values Q j-1 (t), Q j (t), Q j+1 (t); thus for k = j -1, j, j + 1, we de ne the so-called uctuations

D k,j (t) = Q k (t) - 1 ∆x x k+ 1 2 x k-1 2 Q t,e j (x)dx, (4.5) 
where Q t,e j (x) denotes a reconstructed stationary solution we want to preserve and which satis es

1 ∆x x j+ 1 2 x j-1 2 Q t,e j (x)dx = Q j (t). (4.6) 
Note that, since we are interested in a second-order accurate scheme, we solve the integral in (4.5) using the mid-point rule in space. Usually it is not straightforward to compute Q t,e j (x) with the constraint (4.6), however, since we only want to preserve the "man at eternal rest" solution, we can automatically de ne it such that

K A t,e j (x) = K j ( A j -A 0,j ) + (K A 0 )(x)) and u t,e j (x) = u t j . (4.7) 
Consequently we denote the reconstruction operator as

P t j (x) = P t j (x; Q j (t), D j-1,j (t), D j,j (t), D j+1,j (t)) = Q j (t) + ∆ t j (x -x j ) (4.8) 
where, for the sake of clarity, we specify that ∆ t j = ∆ t j (D j-1,j (t), D j,j (t), D j+1,j (t)), for whose de nition we will use either the ENO or the MINMOD slope. Let us observe that in our speci c case D j,j (t) = 0 always and that D j±1,j (t) = 0 when Q j (t) satis es a stationary solution. Therefore it is clear that the slopes equal zero when the "man at eternal rest" condition is satis ed.

Equipped with the de nition for the slope and the same de nition (4.2) for the left and right traces, we can now compute u *

j+ 1 2 and Π * j+ 1 2 as in (3.19), namely u * j+ 1 2 (t) = u * (Q j+ 1 2 ,L (t), Q j+ 1 2 ,R (t)) and Π * j+ 1 2 (t) = Π * (Q j+ 1 2 ,L (t), Q j+ 1 2 ,R (t)) (4.9) 
with

Q j+ 1 2 L (t) = P t j (x j+ 1 2 ) and Q j+ 1 2 R (t) = P t j+1 (x j+ 1 2 ). More speci cally, we state      u * j+ 1 2 (t) = 1 2 (u t j+ 1 2 R + u t j+ 1 2 L ) -1 2a t j+ 1 2 (Π t j+ 1 2 R -Π t j+ 1 2 L ) + ∆m j+1/2 2a j+1/2 s t j+1/2 Π * j+ 1 2 (t) = 1 2 (Π t j+ 1 2 R + Π t j+ 1 2 L ) - a t j+ 1 2 2 (u t j+ 1 2 R -u t j+ 1 2 L
). At last, one needs to specify the value of K used in the de nition Π t j+ 1 2 R,L . It turns out that using the natural value of K in x j+ 1 2 leads to the loss of the well-balanced property. Therefore we propose to reconstruct K exploiting the usual reconstruction polynomial and corresponding slope ∆ t j . However, since the equilibrium part of K reads K t,e j (x) = K(x) as K is known and does not depend on time, its uctuations are null and, thus, we can simply state that K j+ 1 2 L = K j and K j+ 1 2 R = K j+1 , which is very convenient as with this choice of K we do not have to do further modi cations to preserve the wellbalancedness of the scheme. At last, to second-order of accuracy, for the source term we simply consider (3.20)-(3.21) with M t j+1/2 = M (A j+ 1 2 ,L (t); A 0,j , K j ); (A j+ 1 2 ,R (t); A 0,j+1 , K j+1 ) de ned as in (2.33), and the updating formulae (3.18).

Theorem 3. The Lagrangian step (4.5)-(4.9) with updating formulae (3.18) here described is well-balanced under the "man at eternal rest" condition (2.7).

Proof. Once again, let us suppose that Q n j satis es the "man at eternal rest" condition (2.7) and, as such, u n j = 0 ∀j. Due to de nitions (4.5)-(4.7) for the uctuations, we have that the slope satis es ∆ t j = 0 and, thus, as for the rst-order scheme, we have u *

j+ 1 2 = 0 and A n+1- j = A n j .
As for the proof of the corresponding rst-order scheme, simple algebraic computations show that q n+1- j = q n j .

Lastly, for the bene t of the reader, in the following we insert a summary of this second order scheme.

Algorithm 1. Second order scheme based on the approximate Riemann solver.

Step 1.

Start with the Lagrangian step; look for the reconstructed stationary solution Q t,e j (x) that satis es (4.6).

Step 2.

Exploit it to compute the uctuations D k,j (t) as in (4.5).

Step 3.

De ne the reconstruction operator P t j (x) as in (4.8).

Step 4.

Find the reconstructed values

Q j+ 1 2 L (t) = P t j (x j+ 1 2 ), Q j+ 1 2 R (t) = P t j+1 (x j+ 1 2
).

Step 5.

Compute u * Step 6.

Solve system (3.18) written in Lagrangian coordinates obtaining (LQ)(t).

Step 7.

Continue with the remap step; de ne the polynomial P t j (x) as in (4.3).

Step 8.

Update Q(t) using formula (4.4).

Step 9.

Apply the Runge-Kutta scheme in order to reach the second order of accuracy in time.

Based on the hydrostatic reconstruction

Let us now see how to modify the second-order accurate scheme exploiting the hydrostatic reconstruction, already introduced in section 3.2.2. Once again, in order to have a well-balanced scheme, we only have to modify the Lagrangian step.

Hence, in this case, we would like to combine two di erent kinds of reconstruction, one for the well-balancedness and one for the high-order accuracy. Thus, at the end we will have a unique reconstruction function for Q t j (x) which will consist of two parts: the uctuation P t j (x) and the equilibrium Q t,e j (x) one,

Q t j (x) = Q t,e j (x) + P t j (x), (4.10) 
as suggested in [START_REF] Morales | High order fully well-balanced Lagrange-Projection scheme for Shallow-water[END_REF]. Subsequently, we will use the values

Q t j+ 1 2 L = Q t j (x j+ 1 2 ) and Q t j+ 1 2 R = Q t j+1 (x j+ 1 2 ) to compute u * j+ 1 2
and Π * j+ 1 2 in (3.5) and to nd (LQ) j (t) according to (3.18).

At this stage we have to de ne P t j (x) and Q t,e j (x). For the latter, since we are interested in preserving only the "man at eternal rest solution", we simply use the well-balanced reconstructed values (3.24), in particular [START_REF] Ghigo | Low-Shapiro hydrostatic reconstruction technique for blood ow simulation in large arteries with varying geometrical and mechanical properties[END_REF] for more details. As far as the reconstruction polynomial P t j (x) is concerned, we use a similar but not equal strategy to the one explained in the previous section. Indeed, here we write P t j (x) only depending on the uctuations D j,j (t), namely P t j (x) = P t j (x; D j-1,j (t), D j,j (t), D j+1,j (t)) = D j,j (t) + ∆ t j (x -x j ),

Q t,e j (x j+ 1 2 ) = Q t,e j+ 1 2 ,L = A t,e j+ 1 2 ,L A t,e j+ 1 2 ,L u t i and Q t,e j+1 (x j+ 1 2 ) = Q t,e j+ 1 2 ,R = A t,e j+ 1 2 ,R A t,
with ∆ t j = ∆ t j (D j-1,j (t), D j,j (t), D j+1,j (t)) and D k,j (t), with k = j -1, j, j + 1, de ned as in (4.5). Let us remark that here D j,j (t) = 0 always and, thus, Q t j (x) reads

Q t j (x) = Q t,e j (x) + ∆ t j (x -x j ) = Q t,e j (x) + Q t,f j (x), (4.12) 
where we have renamed Q t,f j (x) = ∆ t j (x -x j ) for the uctuations part. Then, let us compare (4.8) and (4.12). Indeed the term Q j (t) that appears in the right hand side of (4.8) can be understood as Q t,e j (x) in (4.12) but replaced by Q j (t) using (4.6) and the mid-point rule.

Finally, we only need to specify the de nition of the source term, which in general is de ned by

s t j = 1 ∆x ξ j+ 1 2 ξ j-1 2
s(ξ, t)dξ with s(A; A 0 , K) given by (2.4). Since we aim to reach the second order of accuracy, in this case the mid-point rule in space su ces. Thus, using the equilibrium and uctuation decomposition (4.12) for the cross-sectional area A, we can write

s t j = 1 ∆x ξ j+ 1 2 ξ j-1 2 s(A; A 0 , K)(ξ, t)dξ = 1 ∆x ξ j+ 1 2 ξ j-1 2 s(A e + A f ; A 0 , K)(ξ, t)dξ = 1 ∆x ξ j+ 1 2 ξ j-1 2 (s(A e + A f ; A 0 , K)(ξ, t) -s(A e ; A 0 , K)(ξ, t))dξ + 1 ∆x ξ j+ 1 2 ξ j-1 2 s(A e ; A 0 , K)(ξ, t)dξ = 1 ∆x ξ j+ 1 2 ξ j-1 2 s(A e ; A 0 , K)(ξ, t)dξ,
where the last quality holds as, when applying the mid-point rule, the uctuations part A f disappears leaving only

ξ j+ 1 2 -ξ j-1 2 ∆x (s(A e + A f ; A 0 , K)(x j , t) -s(A e ; A 0 , K)(x j , t)) = ξ j+ 1 2 -ξ j-1 2 ∆x
(s(A e + 0; A 0 , K)(x j , t) -s(A e ; A 0 , K)(x j , t)) = 0. Hence, similarly to the rst-order scheme, the source term nally reads Proof. It is straightforward to see that, under the "man at eternal rest" condition (2.7), the uctuations part in (4.12) satis es Q t,f j (x) = 0. Consequently, the Lagrangian step is reduced to the rst-order one, which we already proved to be wellbalanced.

As we have done in the previous section, for the sake of clarity we insert an algorithm to summarize this second order method. Let us note that the projection and Runge-Kutta steps are the same of the previous scheme. Algorithm 2. Second order scheme based on the hydrostatic reconstruction.

Step 1.

Start with the Lagrangian step; compute the well-balanced reconstructed values Q t,e j (x) as in (3.24).

Step 2.

Find the uctuations D k,j (t) by (4.5).

Step 3.

De ne the reconstruction polynomial P t j (x) only depending on the uctuations as in (4.11).

Step 4.

Use Q t,e j (x) and P t j (x) to determine the reconstruction function Q t j (x) by (4.10).

Step 5.

Find the reconstructed values

Q t j+ 1 2 L = Q t j (x j+ 1 2 ) and Q t j+ 1 2 R = Q t j+1 (x j+ 1 2 
).

Step 6.

Compute u * Step 7.

De ne the source term s t j according to (4.13).

Step 8.

Solve system (3.18) written in Lagrangian coordinates obtaining (LQ)(t).

Step 9.

Continue with the remap step; de ne the polynomial P t j (x) as in (4.3).

Step 10.

Update Q(t) using formula (4.4).

Step 11.

Apply the Runge-Kutta scheme in order to reach the second order of accuracy in time.

At this stage, let us give the de nition of the p-norm of the global error E n ,

||E(t n , ∆x)|| p = ∆x ∞ i=-∞ |v n i -v(x i , t n )| p 1 p ,
where v n i is the numerical solution and v(x i , t n ) is the exact solution computed in (x i , t n ). Note that we will use p = 1, p = 2 and p = +∞. In our case we take either v = A or v = Au. Given an increasing sequence of mesh M k , with k = 1, . . . , N , and respective dimension ∆x k , we can now de ne the empirical order of accuracy p k+1 as:

p k+1 = ln E k+1 (Tout,∆x k+1 ) E k (Tout,∆x k ) ln ∆x k+1 ∆x k ,
with ending time t = T out . p k should tend to the theoretical order of accuracy p, for su ciently large k.

At last, in table 1, we show the errors and order of convergence of the variables A and q = Au at the ending time T out = 0.08s. Indeed, we observe that the non-well-balanced numerical scheme described in section 4.1 reaches the second order of accuracy. Riemann problem: the ideal tourniquet. Since Riemann problems are simple and idealized test cases but still useful to give a better understanding of the numerical schemes, here we present the following problem, the ideal tourniquet, for which we refer to [START_REF] Delestre | A "well-balanced" nite volume scheme for blood ow simulation[END_REF][START_REF] Wang | Well-balanced nite di erence weighted essentially non-oscillatory schemes for the blood ow model[END_REF]. A tourniquet is placed and then immediately removed. As such, as initial data we consider

Variable Mesh

M err L 1 err L 2 err L ∞ O(L 1 ) O(L 2 ) O(L ∞ ) Area A 16 
Q(x, t = 0) = Q L if x < L/2 Q R if x > L/2 with initial velocity u L = u R = 0m/s, initial radius R L = 5 × 10 -3 m, R R = 4 × 10 -3 m and initial area computed as A = πR 2 .
Regarding the other parameters we take K = 1 √ π × 10 7 Pa/m, the length of the vessel L = 0.08m and ρ = 1060.0kg m -3 . For the rst and second-order schemes we respectively use CFL l = 0.45 and CFL l = 0.25. Finally the ending time is given by T out = 0.005s and once again we exploit the MINMODE slope. In gure 2 we compare the result for the rst and second-order schemes against the exact solution. Respectively on the left and the right we used M = 100 and M = 500 cells, where ∆x = L M . Both the schemes approximate the exact solution well; obviously the second-order scheme results to be less di usive than the rst-order one. On the right, we can see that the numerical solution converges to the exact one.

System of balance laws

For the numerical simulations in this section we refer to [START_REF] Ghigo | Low-Shapiro hydrostatic reconstruction technique for blood ow simulation in large arteries with varying geometrical and mechanical properties[END_REF][START_REF] Wang | Well-balanced nite di erence weighted essentially non-oscillatory schemes for the blood ow model[END_REF]. We distinguish the well-balanced schemes based on the approximate Riemann solver and the hydrostatic reconstruction respectively as WB-ARS and WB-HR. If second-order accurate, we call them WB-ARS2 and WB-HR2. Let us give some numerical details we use for the subsequent test problems, unless it is speci ed otherwise. In general as initial condition we take A(x, t = 0) = A 0 (x) q(x, t = 0) = 0.

As far as the cross-sectional radius at equilibrium R 0 and the wall rigidity K are concerned, we use the following relations

R 0 (x) = R in if x < x s or x > x f R in (1 -∆G 2 (1 + cos(π + 2π x-xs x f -xs ))) if x s ≤ x ≤ x f , K(x) = K in if x < x s or x > x f K in (1 + ∆G 2 (1 + cos(π + 2π x-xs x f -xs ))) if x s ≤ x ≤ x f , (5.4) 
where A 0 = πR 2 0 , x s = 3L 10 , x f = 7L 10 and ∆G ∈ {1%, 10%, 30%, 60%}. The other parameters values can be found in table 2. Regarding the boundary conditions, we impose the following ow at the inlet of the domain, q in = ShapA in c in where a value for A in consistent with the Shapiro number (Shap) has been estimated in [START_REF] Ghigo | Low-Shapiro hydrostatic reconstruction technique for blood ow simulation in large arteries with varying geometrical and mechanical properties[END_REF] to be A in = A 0 (x = 0)(1 + Shap) The Shapiro number is the analogous to the Mach number for the compressible Euler equations and it is de ned as Shap = u c .

In particular we take Shap = 0, 10 -2 , 10 -3 . Let us note that with Shap = 10 -2 we are already in the subsonic regime, thus it could be interesting to use an implicit scheme in this case. Moreover, usually in the arteries the average value for the Shapiro number is indeed of order Shap = 10 -2 . We refer again to [START_REF] Ghigo | Low-Shapiro hydrostatic reconstruction technique for blood ow simulation in large arteries with varying geometrical and mechanical properties[END_REF] for more details. Then, we can nd the boundary value's for the cross-sectional area A in exploiting the right Riemann invariant, i.e. I + = u -4c, and imposing I + (Q 1 ) = I + (Q in ), where the subscript 1 indicates the values in the rst cell of the computational domain. Whereas, regarding the right boundary condition, we impose

A out = A 0 (x = L)(1 + Shap) 2 ,
and then the ow value q out is found exploiting the left Riemann invariant, namely I -(Q end ) = I -(Q out ), where with Q end we mean the value in the last cell. For more details about this test cases we refer again to [START_REF] Ghigo | Low-Shapiro hydrostatic reconstruction technique for blood ow simulation in large arteries with varying geometrical and mechanical properties[END_REF].

Stationary solution.

First of all, to assess the well-balanced property, we take Shap = 0, and check that the numerical schemes preserve the stationary solution A = A 0 , q = 0. Indeed, we observe that they maintain it up to an error of order 10 -12 .

Convergence study. Then, in order to check that also the well-balanced schemes reach the right order of accuracy, we take Shap = 10 -2 , ∆G = 10% and nal time tEnd = 100.0s. Note that here the exact solution is a steady state with non-zero velocity, namely it is given by q ex = q in

E ex = q 2 in 2A 2 out + K(end) ρ ( √ A out -A 0 (end)) (5.5)
with E the energy and q ex = 0. Indeed our schemes are able to preserve stationary solutions with only zero-velocity, thus the numerical solutions should converge to (5.5) when re ning the mesh. In table 3 the numerical errors and orders of convergence are exhibited in norms L 1 , L 2 and L ∞ for both WB-ARS2 and WB-HR2; the results seem to be satisfying.

Wave propagation test case. approximate Riemann solver and the numerical source is de ned in such a way that it is consistent in the integral sense with the source term, while the second method exploits the hydrostatic reconstruction approach. Only the Lagrangian step has to be modi ed in order to satisfy the well-balanced property. Both the numerical schemes proved to be satisfying and their results are almost identical. On one hand, future works are expected to deal with an implicit formulation of the Lagrangian step as it would speed up the numerical methods. Indeed, the arteries are known to have an average Shapiro number of order 10 -2 and this could imply a restriction on the time step value. On the other hand, e orts could be done to obtain fully well-balanced schemes able to preserve also stationary solutions for non-zero velocity. In this regard, we refer to the works [START_REF] Manuel | A fully well-balanced Lagrange-Projection type scheme for the Shallow-water equations[END_REF]- [START_REF] Morales | High order fully well-balanced Lagrange-Projection scheme for Shallow-water[END_REF] for fully well-balanced Lagrange-projection schemes applied to the shallow water system at rst and high order of accuracy respectively. Another interesting reference in this framework is [START_REF] Ghigo | Low-Shapiro hydrostatic reconstruction technique for blood ow simulation in large arteries with varying geometrical and mechanical properties[END_REF], in which the authors considered the low-Shapiro number steady states, which could be more easily preserved than the classical steady states with non-zero velocity.

τ n j and a n j+ 1 2 =

 2 max((Ac) n j , (Ac) n j+1 ). The numerical uxes are given by u *
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 1 Figure 1: Connection between Lagrangian and Eulerian coordinates, see [25].
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 211 Theorem The Lagrangian step (3.18)-(3.21) (or equivalently (3.17)-(3.20)) here described is well-balanced under the "man at eternal rest" condition (2.7).
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 12 as in(3.23) with the only request to de ne the source term (3.26) accordingly. The Lagrangian step (3.18), (3.25)-(3.26) is well-balanced under the "man at eternal rest" condition (2.7).
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 4 The Lagrangian step (4.10)-(4.13) is well-balanced under the "man at eternal rest" condition (2.7).
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 21 Figure 2: Ideal tourniquet problem, radius (left) and ow (right). First-order (-o symbol), second-order (-* symbol) and exact (red line) solution.

  (a) ∆G = 10%, Shap = 10 -2 (b) ∆G = 10%, Shap = 10 -3 (c) ∆G = 30%, Shap = 10 -2 (d) ∆G = 30%, Shap = 10 -3 (e) ∆G = 60%, Shap = 10 -2 (f) ∆G = 60%, Shap = 10 -3

Figure 3 :

 3 Figure 3: Wave propagation problem. We used ∆G = 10% (top), ∆G = 30% (middle), ∆G = 60% (bottom) and Shap = 10 -2 (left), Shap = 10 -3 (right). Comparison among WB-ARS (-o blue symbol), WB-ARS2 (-* green symbol) and reference (red line) solution. M = 100 cells.
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 4 Figure 4: Propagation of a pulse to (left) and from (right) an expansion. Radius minus radius at equilibrium at time t = 0.0s (green), t = 0.002s (blue), t = 0.006s(red). Comparison between WB-HR2 (-* symbol) and reference (line) solution. M = 200 cells.

Table 1 :

 1 Errors and empirical convergence rates for norms L 1 , L 2 and L

			0.1553 × 10 -5	0.1722 × 10 -5	0.2233 × 10 -5	-	-	-
		32	0.0392 × 10 -5	0.0463 × 10 -5	0.0761 × 10 -5	1.9872 1.8948	1.5535
		64	0.0094 × 10 -5	0.0122 × 10 -5	0.0222 × 10 -5	2.0663 1.9205	1.7761
		128	0.0024 × 10 -5	0.0032 × 10 -5	0.0057 × 10 -5	1.9819 1.9284	1.9585
		256	0.0006 × 10 -5	0.0008 × 10 -5	0.0014 × 10 -5	1.9606 1.9728	2.0130
	Flow q	16	0.6980 × 10 -5	0.6994 × 10 -5	0.7699 × 10 -5	-	-	-
		32	0.1581 × 10 -5	0.1610 × 10 -5	0.1958 × 10 -5	2.1420 2.1186	1.9755
		64	0.0332 × 10 -5	0.0340 × 10 -5	0.0422 × 10 -5	2.2513 2.2431	2.2156
		128	0.0075 × 10 -5	0.0079 × 10 -5	0.0112 × 10 -5	2.1383 2.1023	1.9169
		256	0.0018 × 10 -5	0.0019 × 10 -5	0.0030 × 10 -5	2.1066 2.0739	1.9024

∞ 

. Mesh of size M = (16, 32, 64, 128, 256). Second-order scheme of section 4.1.

Table 2 :

 2 Parameters values for test cases in section 5.2.

Table 3 :

 3 2 . Errors and empirical convergence rates for norms L 1 , L 2 and L ∞ for the energy discharge E and ow q. Mesh of size M =[START_REF] Duboc | High-order dimensionally split Lagrange-remap schemes for compressible hydrodynamics[END_REF][START_REF] Eleuterio | Flow in collapsible tubes with discontinuous mechanical properties: mathematical model and exact solutions[END_REF] 64, 128). WB-ARS2 (top) and WB-HR2 (bottom) methods.

	Numerical method Variable Mesh M	err L 1	err L 2	err L ∞	O(L 1 )	O(L 2 )	O(L ∞ )
	WB-ARS2	Energy	16	45.9648 20.2167 15.2702	-	-	-
			32	12.1161	5.3498	4.5128	1.9236	1.9180	1.7586
			64	2.9137	1.3085	1.1747	2.0560	2.0315	1.9418
			128	0.7133	0.3244	0.2970	2.0302	2.0121	1.9835
		Flow	16	0.0978	0.0525	0.0403	-	-	-
			32	0.0280	0.0147	0.0112	1.8034	1.8334	1.8475
			64	0.0070	0.0037	0.0029	2.0016	1.9787	1.9542
			128	0.0018	0.0010	0.0007	1.9621	1.9439	1.9875
	WB-HR2	Energy	16	44.4265 18.8607 13.4593	-	-	-
			32	11.4229	5.0448	4.3839	1.9595	1.9025	1.6183
			64	2.7538	1.2443	1.1764	2.05254 2.0194	1.8978
			128	0.7072	0.3185	0.3001	1.9613	1.9660	1.9711
		Flow	16	0.0973	0.0523	0.0377	-	-	-
			32	0.0281	0.0148	0.0111	1.7910	1.8237	1.7686
			64	0.0070	0.0037	0.0029	2.0057	1.9883	1.9403
			128	0.0018	0.0010	0.0007	1.9634	1.9448	1.9854
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Numerical simulations

In this section we carry out di erent numerical simulations that aim to show the good behaviour of the proposed numerical schemes. First of all, we numerically prove that, both in the case of system of conservation and balance laws, the numerical schemes reach the required order of convergence. A Riemann problem is also presented in the case of constant parameters. Then, di erent test cases are introduced in order to assess the well-balancedness and the wave-capturing properties of the numerical methods when applied to the non-conservative system. Time step and CFL condition. Since the Lagrange-projection approach leads to a splitting of the original system (2.3) into the acoustic (2.13) and the transport (2.14) one, the time step is computed as the minimum between the two time steps obtained from (2.13) and (2.14). As far as the Lagrangian system is concerned, the Courant-Friedrichs-Lewy (CFL) condition reads

while, for the transport system

where CFL l and CFL t are respectively the CFL number for the Lagrangian and the transport system, and nally

, 0) and u -

When considering a rst-order scheme, we can take CFL l ≤ 0.5 and CFL t < 1. For more details refer to [START_REF] Chalons | An All-Regime Lagrange-Projection Like Scheme for the Gas Dynamics Equations on Unstructured Meshes[END_REF][START_REF] Chalons | A large time-step and well-balanced Lagrange-Projection type scheme for the Shallow-water equations[END_REF][START_REF] Chalons | Large Time Step and Asymptotic Preserving Numerical Schemes for the Gas Dynamics Equations with Source Terms[END_REF].

Remark. It is not di cult to prove that the rst-order approximation (3.14) we presented preserves the strict positivity of the cross-sectional area A under the CFL conditions (5.1)-(5.2) with CFL l ≤ 1 2 and CFL t < 1, see also [START_REF] Manuel | A fully well-balanced Lagrange-Projection type scheme for the Shallow-water equations[END_REF]. This statement remains true even if the parameters K and A 0 are not constant in space.

System of conservation laws

Convergence study. In this section we start assessing that the second-order scheme of section 4.1 reaches the right order of accuracy. For this purpose, we need to compare the numerical solution with the exact one, specifying that, in order to obtain the correct order of accuracy, the smoothness of the exact solution is required. Since in general it is not known for system (2.5), we have to exploit the method of the manufactured solution, for which we refer to [START_REF] Salari | Code Veri cation by the Method of Manufactured Solutions[END_REF]. In a nutshell, given an acceptable smooth function Q, we have to modify the sought system in such a way that Q is actually one of its solutions. This is achieved by adding a source term to the starting system, namely passing from the homogeneous version of system (2.5),

Q) is usually found through an algebraic manipulator, and thus we will not report here the modi ed source term.

In particular, referring to [START_REF] Müller | Well-balanced high-order solver for blood ow in networks of vessels with variable properties[END_REF], we have considered the following solution,

with the cross-sectional area at equilibrium and the wall sti ness given by â0 = Ã0 + ã0 sin 2π L x and K = 1 + 0.01 sin 2π L x K.

In particular we take à = Ã0 = 4.0 × 10 -4 m 2 , ã = ã0 = 4.0 × 10 -5 m 2 , q = 0m 3 s -1 , K = 2500kPa, T 0 = 1.0s, the length of the vessel L = 1.0m and ρ = 1050.0kg m -3 . We take CFL = 0.25 and exploit the MINMOD slope. Being (5.3) a periodic solution, as boundary conditions we use periodic ones. As initial condition we take Q at initial time t = 0. In this test we assess the wave-capturing properties of the well-balanced schemes. We suppose that a single wave propagates in the vessel, with parameters de ned by (5.4) and table 2. Namely, we impose the following unsteady inlet ow

where once again we de ne q pulse as q pulse = ShapA in c in . For the right boundary condition we simply use the transmissive one. Finally t pulse = 0.04s and as ending time we take t Out = 0.045s. We compute a reference solution with the WB-HR2 and M = 2048 cells. In gure 3 we insert the results only for WB-ARS and WB-ARS2 as the ones obtained with WB-HR/2 are similar. Of course, solutions obtained with rst-order schemes are more di usive than the ones found exploiting higher order methods, but both outputs tend to the reference one. We also observe that there are no spurious oscillations in the results.

Propagation of a pulse to/from an expansion.

Here we want to consider two di erent cases, a pulse which propagates to and from an expansion. In the former case as initial radius we take

while in the second one

where ε = 5.0 × 10 -3 . In this last numerical problem we assume the wall rigidity K to be constant, while the radius at equilibrium is given by

The other parameters values can be found in table 4. We use transmissive boundary conditions.

In gure 4 we present the outputs for this two problems; for the results on the left and right we respectively use initial conditions (5.6) and (5.7). We compare the outputs of WB-HR2 for M = 200 cells against a reference solution attained with WB-HR2 and M = 2048 cells. Once again we show the results of only one of the numerical schemes as their outputs are very similar. Indeed, the numerical solutions are satisfying and comparable with the ones of [START_REF] Delestre | A "well-balanced" nite volume scheme for blood ow simulation[END_REF][START_REF] Wang | Well-balanced nite di erence weighted essentially non-oscillatory schemes for the blood ow model[END_REF].

Concluding remarks

In this paper we presented two di erent second-order well-balanced numerical schemes for the 1D blood ow equations, where the source term is due to varying mechanical and geometrical properties. By well-balanced we mean that the numerical method is able to preserve the zero-velocity "man at eternal rest" stationary solution. The rst scheme is based on an