Higher Fano manifolds
Résumé
We address in this paper Fano manifolds with positive higher Chern characters, which are expected to enjoy stronger versions of several of the nice properties of Fano manifolds. For instance, they should be covered by higher dimensional rational varieties, and families of higher Fano manifolds over higher dimensional bases should admit meromorphic sections (modulo the Brauer obstruction). Aiming at finding new examples of higher Fano manifolds, we investigate positivity of higher Chern characters of rational homogeneous spaces. We determine which rational homogeneous spaces of Picard rank 1 have positive second Chern character, and show that the only rational homogeneous spaces of Picard rank 1 having positive second and third Chern characters are projective spaces and quadric hypersurfaces. We also classify Fano manifolds of large index having positive second and third Chern characters. We conclude by discussing conjectural characterizations of projective spaces and complete intersections in terms of these higher Fano conditions.
Domaines
Mathématiques [math]Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|---|
Licence |