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Abstract. In this article, we investigate the summability of the formal
power series solutions in time of a certain class of inhomogeneous partial
differential equations with a polynomial semilinearity, and with variable
coefficients. In particular, we give necessary and sufficient conditions for
the k-summability of the solutions in a given direction, where k is a
positive rational number entirely determined by the linear part of the
equation. These conditions generalize the ones given by the author for
the linear case (Remy in J Dyn Control Syst 22(4):693–711, 2016; J Dyn
Control Syst 23(4):853–878, 2017) and for the semilinear heat equation
(Remy in J Math Anal Appl 494(2):124619, 2021). In addition, we present
some technical results on the generalized binomial and multinomial coef-
ficients, which are needed for the proof our main theorem.
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1. Introduction

1.1. Setting the Problem

The summation theory is a very powerful tool initially developed within the
framework of the analytic ordinary differential equations with an irregular
singular point (see for instance [14,33]). In particular, it allows the construction
of explicit solutions from formal solutions.

For several years, various works have been done on the divergent solutions
of some classes of linear partial differential equations or integro-differential
equations in two variables or more, allowing thus to formulate many results on
Gevrey properties, summability or multisummability (e.g. [2–6,15,17,18,23–
25,29,30,37,45,47] and references inside).

In the case of the nonlinear partial differential equations, the situation is
much more complicated. The existing results concern mainly Gevrey prop-
erties, especially the convergence (e.g. [7,9–12,19,27,34,39–44,46] and ref-
erences inside), and there are very few results about the summation (see
[8,16,20,28,31,38]).

In this article, we are interested in the summability of the formal power
series solutions in time of the inhomogeneous semilinear partial differential
equation {

∂κ
t u − a(t, x)∂p

xu − P (u) = f̃(t, x)
∂j

t u(t, x)|t=0 = ϕj(x), j = 0, . . . , κ − 1
(1.1)

in two variables (t, x) ∈ C
2, where

– κ, p ≥ 1 are two positive integers;
– the coefficient a(t, x) is analytic on a polydisc Dρ0 × Dρ1 centered at the

origin (0, 0) of C
2 (Dρ denotes the disc with center 0 ∈ C and radius

ρ > 0) and satisfies the condition a(0, x) �≡ 0;

– P (X) =
d∑

m=2

bm(t, x)Xm ∈ O(Dρ0 × Dρ1)[X] is a polynomial in X with

analytic coefficients on Dρ0 × Dρ1 ;
– the inhomogeneity f̃(t, x) is a formal power series in t with analytic coef-

ficients in Dρ1 (we denote by f̃(t, x) ∈ O(Dρ1)[[t]]) which may be smooth,
or not1;

– the initial conditions ϕj(x) are analytic on Dρ1 for all j = 0, . . . , κ − 1.
Equation (1.1) is fundamental in many physical, chemical, biological, and eco-
logical problems. For example: for (κ, p) = (1, 2), Eq. (1.1) arises in problems
involving diffusion and nonlinear growth such as heat and mass transfer, com-
bustion theory, and spread theory of animal or plant populations (nonlinear
heat equation); for (κ, p) = (2, 2), Eq. (1.1) describes the propagation of non-
linear waves in an inhomogeneous medium (nonlinear Klein-Gordon equation);

1We denote f̃ with a tilde to emphasize the possible divergence of the series f̃ .
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and, for (κ, p) = (2, 4), Eq. (1.1) describes the relationship between the beam’s
deflection and an applied lateral nonlinear force (nonlinear Bernoulli-Euler
equation).

The work presented in this article is a natural extension of the work
[38] in which the nonlinearity P (u) is reduced to a term of the form b(x)u2

and (κ, p) = (1, 2) (see Eq. (1.2) just below). Before stating our main result
(see Theorem 1) making explicit a characterization of the summability of the
formal series solutions in time of Eq. (1.1), let us first start by recalling some
known results about these ones.

1.2. Formal Solutions and Known Results

First of all, we have the following.

Proposition 1. Equation (1.1) admits a unique solution ũ(t, x) ∈ O(Dρ1)[[t]].

Proof. Let us write the coefficients a(t, x) and bm(t, x) for m = 2, . . . , d, and
the inhomogeneity f̃(t, x) in the form

a(t, x) =
∑
j≥0

aj,∗(x)
tj

j!
, bm(t, x) =

∑
j≥0

bm;j,∗(x)
tj

j!
, f̃(t, x) =

∑
j≥0

fj,∗(x)
tj

j!

with aj,∗(x), bm;j,∗(x), fj,∗(x) ∈ O(Dρ1) for all j ≥ 0 and all m = 2, . . . , d.
Looking for ũ(t, x) on the same type:

ũ(t, x) =
∑
j≥0

uj,∗(x)
tj

j!
with uj,∗(x) ∈ O(Dρ1) for all j ≥ 0,

one easily checks that its coefficients uj,∗(x) are uniquely determined for all
j ≥ 0 by the recurrence relations

uj+κ,∗(x) = fj,∗(x) +
j∑

j0=0

(
j

j0

)
aj0,∗(x)∂p

xuj−j0,∗(x)

+
d∑

m=2

∑
j0+j1+...+jm=j

(
j

j0, j1, . . . , jm

)
bm;j0,∗(x)uj1,∗(x) . . . ujm,∗(x),

together with the initial conditions uj,∗(x) = ϕj(x) for j = 0, . . . , κ − 1. The

notations
(

j

j0

)
and

(
j

j0, j1, . . . , jm

)
stand respectively for the binomial coef-

ficients and for the multinomial coefficients. �

In a 1999 article [26], M. Miyake proved in the particular case of the
equation

∂κ
t u − ∂p

xu = 0

that the formal solution ũ(t, x) is convergent when κ ≥ p and s-Gevrey with
s = p/κ − 1 otherwise. This result was then generalized by the author, first
of all, to the inhomogeneous linear case P ≡ 0 [35] and, afterwards, to the
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general Eq. (1.1) [34,40]. In particular, he showed that the Gevrey regularity
of ũ(t, x) does not depend on the nonlinear term P (u), but only on κ, p and
f̃(t, x).

Proposition 2. [34,40] Let s be the nonnegative rational number defined by
s = max(0, p/κ − 1). Then, the formal solution ũ(t, x) and the inhomogeneity
f̃(t, x) are together s-Gevrey.

Thereby, in the case κ ≥ p, Proposition 2 provides us a necessary and
sufficient condition for ũ(t, x) to be convergent, and, in the opposite case p > κ,
it naturally leads us to the question of the k-summability (k = 1/s) of ũ(t, x).

In the linear case, M. Miyake [26] and the author [35] gave necessary
and sufficient conditions for ũ(t, x) to be k-summable in a given direction
arg(t) = θ. To do that, they used two different approaches: the first one based
on the definition of the k-summability in terms of the Borel transformation,
and the second one based on the definition of the k-summability in terms of
the successive derivatives.

More recently [38], the author considered Eq. (1.1) with (κ, p, d) =
(1, 2, 2) and with constant coefficients in t, that is the semilinear heat equation{

∂tu − a(x)∂2
xu − b(x)u2 = f̃(t, x)

u(0, x) = ϕ(x)
(1.2)

Using the same approach as the one developed in [35], he gave a necessary
and sufficient condition for ũ(t, x) to be 1-summable, generalizing thus the
condition already proved in the linear case by W. Balser and M. Loday-Richaud
[2]. In particular, he showed, as for the Gevrey regularity (see Proposition 2),
that this condition is not affected by the nonlinear term u2.

In this article, we propose to extend all these results to the general
Eq. (1.1). In Sect. 2, we recall some basic definitions and properties about
the k-summable formal series. Then, we state our main result (Theorem 1)
which gives, under some various assumptions on the coefficient a(t, x), a nec-
essary and sufficient condition for ũ(t, x) to be k-summable in a given direction
arg(t) = θ with k = 1/s = κ/(p − κ). The proof of this result is developed in
the next two sections. In Sect. 3, it is detailed in the case of the first assump-
tion, namely a(0, 0) �= 0. Our approach is similar to the one presented in [35]
for the linear case. However, because of the variable coefficients and the non-
linear terms um, the calculations are much more complicated and require some
technical results on the generalized binomial and multinomial coefficients, that
is on the binomial and multinomial coefficients with nonnegative real terms.
These technical results are all proved in Sect. 5, which can also be read inde-
pendently of the rest of the article, so as not to burden the main proof. In
Sect. 4, we show how to adapt the calculations of Sect. 3 within the frame-
work of the other assumptions on a(t, x).
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2. k-Summability of ũ(t, x)

All along the article, we consider t as the variable and x as a parame-
ter. Thereby, to define the notion of summability of formal power series in
O(Dρ1)[[t]], one extends the classical notion of summability of elements in
C[[t]] to families parametrized by x in requiring similar conditions, the esti-
mates being however uniform with respect to x. Doing that, any formal power
series ũ(t, x) ∈ O(Dρ1)[[t]] can be seen as a formal power series in t with coef-
ficients in a convenient Banach space defined as the space of functions that are
holomorphic on a disc Dr1 (0 < r1 < ρ1) and continuous up to its boundary,
equipped with the usual supremum norm. For a general study of the series
with coefficients in a Banach space, we refer for instance to [1].

Among the many equivalent definitions of the k-summability in a given
direction arg(t) = θ at t = 0, we choose in this article a generalization of
Ramis’ definition which states that a formal series g̃(t) ∈ C[[t]] is k-summable
in direction θ if there exists a holomorphic function g which is 1/k-Gevrey
asymptotic to g̃ in an open sector Σθ,>πs bisected by θ and with opening larger
than πs with s = 1/k [32, Def. 3.1]. To express the 1/k-Gevrey asymptotic,
there also exist various equivalent ways. We choose here the one which sets
conditions on the successive derivatives of g (see [21, p. 171] or [32, Thm. 2.4]
for instance).

Definition 1. (k-summability) Let k > 0 and s = 1/k. A formal series ũ(t, x) ∈
O(Dρ1)[[t]] is said to be k-summable in the direction arg(t) = θ if there exist
a sector Σθ,>πs, a radius 0 < r1 ≤ ρ1 and a function u(t, x) called k-sum of
ũ(t, x) in direction θ such that

1. u is defined and holomorphic on Σθ,>πs × Dr1 ;

2. For any x ∈ Dr1 , the map t �→ u(t, x) has ũ(t, x) =
∑
j≥0

uj,∗(x)
tj

j!
as

Taylor series at 0 on Σθ,>πs;
3. For any proper2 subsectorΣ � Σθ,>πs, there exist two positive constants

C > 0 and K > 0 such that, for all 	 ≥ 0, all t ∈ Σ and all x ∈ Dr1 ,∣∣∂�
tu(t, x)

∣∣ ≤ CK�Γ (1 + (s + 1)	).

We denote by O(Dρ1){t}k;θ the subset of O(Dρ1)[[t]] made of all the
k-summable formal series in the direction arg(t) = θ.

Note that, for any fixed x ∈ Dr1 , the k-summability of ũ(t, x) coincides
with the classical k-summability. Consequently, Watson’s lemma [14, Theorem
5.1.3] implies the unicity of its k-sum, if any exists.

Note also that the k-sum of a k-summable formal series ũ(t, x) ∈
O(Dρ1){t}k;θ may be analytic with respect to x on a disc Dr1 smaller than
the common disc Dρ1 of analyticity of the coefficients uj,∗(x) of ũ(t, x).

2A subsector Σ of a sector Σ′ is said to be a proper subsector and one denotes Σ � Σ′ if
its closure in C is contained in Σ′ ∪ {0}.
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Denote by ∂−1
t ũ (resp. ∂−1

x ũ) the anti-derivative of ũ with respect to t
(resp. x) which vanishes at t = 0 (resp. x = 0). Proposition 3 below specifies
the algebraic structure of O(Dρ1){t}k;θ.

Proposition 3. Let k > 0 and θ ∈ R/2πZ. Then, (O(Dρ1){t}k;θ, ∂t, ∂x) is a
C-differential algebra stable under the anti-derivations ∂−1

t and ∂−1
x .

We refer for instance to [36, Prop. 2] for a proof of this result.
With respect to t, the k-sum u(t, x) of a k-summable series ũ(t, x) ∈

O(Dρ1){t}k;θ is analytic on an open sector for which there is no control on
the angular opening except that it must be larger than π/k (hence, it contains
a closed sector Σθ,π/k bisected by θ and with opening π/k) and no control
on the radius except that it must be positive. Thereby, the k-sum u(t, x) is
well-defined as a section of the sheaf of analytic functions in (t, x) on a germ
of closed sector of opening π/k (that is, a closed interval Iθ,π/k of length π/k

on the circle S1 of directions issuing from 0; see [22, 1.1] or [13, I.2]) times {0}
(in the plane C of the variable x). We denote by OIθ,π/k×{0} the space of such
sections.

Corollary 1. The operator of k-summation

Sk;θ : O(Dρ1){t}k;θ −→ OIθ,π/k×{0}
ũ(t, x) �−→ u(t, x)

is a homomorphism of C-differential algebras for the derivations ∂t and ∂x.
Moreover, it commutes with the anti-derivations ∂−1

t and ∂−1
x .

We are now able to state the main result in this article.

Theorem 1. Let arg(t) = θ ∈ R/2πZ be a direction issuing from 0.
Let us assume p > κ and let us set k = κ/(p − κ).
Let us also assume that either a(0, 0) �= 0, or there exists q ∈ {1, . . . , p − 1}
such that ∂n

x a(t, x)|x=0 ≡ 0 for all n = 0, . . . , q − 1, and ∂q
xa(0, 0) �= 0. Then,

1. The unique formal series solution ũ(t, x) ∈ O(Dρ1)[[t]] of Eq. (1.1) is
k-summable in the direction θ if and only if the inhomogeneity f̃(t, x)
and the formal series ∂n

x ũ(t, x)|x=0 ∈ C[[t]] for n = 0, . . . , p − 1 are k-
summable in the direction θ.

2. Moreover, the k-sum u(t, x), if any exists, satisfies Eq. (1.1) in which
f̃(t, x) is replaced by its k-sum f(t, x) in the direction θ.

Observe that the necessary condition of the first point is straightforward
from Proposition 3 and that the second point stems obvious from Corollary 1.
Consequently, we are left to prove the sufficient condition of the first point.
This is the subject of the next two sections below. In the first one (Sect. 3),
we focus on the case a(0, 0) �= 0. In the second one (Sect. 4), we show how the
calculations made in Sect. 3 can be adapted within the framework of the other
assumptions on a(t, x).
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From now on, we fix a direction θ and we suppose that the inhomogeneity
f̃(t, x) and the formal power series ∂n

x ũ(t, x)|x=0 ∈ C[[t]] for n = 0, . . . , p −
1 are all k-summable in the direction θ. To prove that the formal solution
ũ(t, x) is also k-summable in this direction, we shall proceed through a fixed
point method similar to the ones already used by W. Balser and M. Loday-
Richaud in [2] and by the author in [35–38]. However, as we shall see below,
the calculations are much more complicated because of the nonlinear terms
um.

3. Proof of the Sufficient Condition: The Case a(0, 0) �= 0

All along this section, we assume that the coefficient a(t, x) satisfies a(0, 0) �= 0.
Before starting the calculations, let us first begin this proof with a preliminary
remark on the coefficients ũ∗,n(t) = ∂n

x ũ(t, x)|x=0 of ũ(t, x).

3.1. First Step: A Preliminary Remark

Let us write the coefficients a(t, x) and bm(t, x) for m = 2, . . . , d in the form

a(t, x) =
∑
n≥0

a∗,n(t)
xn

n!
, bm(t, x) =

∑
n≥0

bm;∗,n(t)
xn

n!

with a∗,n(t), bm;∗,n(t) ∈ O(Dρ0) for all n ≥ 0 and all m = 2, . . . , d. Let us also
write the formal solution ũ(t, x) and the inhomogeneity f̃(t, x) in the same
way:

ũ(t, x) =
∑
n≥0

ũ∗,n(t)
xn

n!
, f̃(t, x) =

∑
n≥0

f̃∗,n(t)
xn

n!
.

Observe that the coefficients ũ∗,n(t) and f̃∗,n(t) are divergent in general (hence,
the notation with the tilde). By identifying the terms in xn in Eq. (1.1), we
get the identities

a∗,0(t)ũ∗,n+p(t) +
n∑

n0=1

(
n

n0

)
a∗,n0(t)ũ∗,n+p−n0(t) = ∂κ

t ũ∗,n(t) − f̃∗,n(t)

−
d∑

m=2

∑
n0+n1+...+nm=n

(
n

n0, n1, . . . , nm

)
bm;∗,n0(t)ũ∗,n1(t) . . . ũ∗,nm

(t)

(3.1)

for all n ≥ 0. By assumption, a∗,0(0) �= 0; hence, 1/a∗,0(t) is well-defined
in C[[t]] and, consequently, each coefficient ũ∗,n(t) is uniquely determined
from the inhomogeneity f̃(t, x) and from the formal series ũ∗,n′(t) with
n′ = 0, . . . , p − 1. In particular, the same applies to ũ(t, x).
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3.2. Second Step: The Associated Equation

Let us set

ṽ(t, x) =
p−1∑
n=0

ũ∗,n(t)
xn

n!

and ũ(t, x) = ṽ(t, x) + ∂−p
x w̃(t, x). With these notations, Eq. (1.1) becomes

w̃ − A(t, x)∂κ
t ∂−p

x w̃ +
d∑

m=2

m∑
j=1

(
m

j

)
Bm(t, x)ṽm−j(t, x)(∂−p

x w̃)j = g̃(t, x)

(3.2)

with

g̃(t, x) = A(t, x)

(
∂κ

t ṽ(t, x) −
d∑

m=2

bm(t, x)ṽm(t, x) − f̃(t, x)

)
,

where A(t, x) and Bm(t, x) stand respectively for the functions

A(t, x) =
1

a(t, x)
and Bm(t, x) =

bm(t, x)
a(t, x)

.

Observe that, thanks to the assumption a(0, 0) �= 0, these functions are all
well-defined and holomorphic on a common convenient polydisc Dρ′

0
× Dρ′

1

with 0 < ρ′
0 ≤ ρ0 and 0 < ρ′

1 ≤ ρ1.
According to our assumption on the k-summability of the inhomogeneity

f̃(t, x) and of the formal power series ũ∗,n(t) for n = 0, . . . , p − 1, the formal
series ṽ(t, x) and g̃(t, x) are both k-summable in the direction θ (see Proposi-
tion 3). Thereby, the identity (3.2) above tells us that it is sufficient to prove
that it is the same for the formal series w̃(t, x) ∈ O(Dρ1)[[t]]. To do that, we
shall proceed as in [2,35–38] by using a fixed point method. Of course, as we
shall see below, our calculations will be much more complicated due to the
presence of the nonlinear terms Bm(t, x)ṽm−j(t, x)(∂−p

x w̃)j .

3.3. Third Step: The Fixed Point Procedure

Let us set w̃(t, x) =
∑
μ≥0

w̃μ(t, x) and let us choose the solution of Eq. (3.2)

recursively determined for all μ ≥ 0 by the relations

w̃μ+1(t, x) = A(t, x)∂κ
t ∂−p

x w̃μ(t, x)

−
d∑

m=2

m∑
j=1

∑
μ1+...+μj=μ[(

m

j

)
Bm(t, x)ṽm−j(t, x)

(
j∏

i′=1

∂−p
x w̃μi′ (t, x)

)]
(3.3)
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together with the initial condition w̃0 = g̃. Observe that w̃μ(t, x) ∈ O(Dρ′
1
)[[t]]

for all μ ≥ 0. Observe also that the w̃μ(t, x)’s are of order O(xpμ) in x for all
μ ≥ 0, and, consequently, the series w̃(t, x) itself makes sense as a formal series
in t and x.

Let us now respectively denote by w0(t, x) and v(t, x) the k-sums of w̃0

and ṽ in the direction θ and, for all μ > 0, let wμ(t, x) be determined by the
relations (3.3) in which ṽ is replaced by v and all the w̃μ are replaced by wμ.
By construction, all the functions wμ(t, x) are defined and holomorphic on a
common domain Σθ,>πs × Dρ′′

1
, where s = 1/k = p/κ − 1, and where the

radius ρ′′
0 of Σθ,>πs and the radius ρ′′

1 of Dρ′′
1

can always be chosen so that
0 < ρ′′

0 < ρ′
0 and 0 < ρ′′

1 < ρ′
1.

To end the proof, it remains to prove that the series
∑
μ≥0

wμ(t, x) is con-

vergent and that its sum w(t, x) is the k-sum of w̃(t, x) in the direction θ.

3.4. Fourth Step: Some Estimates on the wµ(t, x)’s

According to Definition 1, the k-summability of w̃0 and ṽ implies that there
exists 0 < r′

1 < min(1, ρ′′
1) such that, for any proper subsector Σ � Σθ,>πs,

there exist two positive constants C,K > 0 such that, for all 	 ≥ 0 and all
(t, x) ∈ Σ × Dr′

1
, the functions w0 and v satisfy the inequalities∣∣∂�

tw0(t, x)
∣∣ ≤ CK�Γ (1 + (s + 1)	) and

∣∣∂�
tv(t, x)

∣∣ ≤ CK�Γ (1 + (s + 1)	).
(3.4)

Let us now fix a proper subsector Σ � Σθ,>πs. Let r′
0 denote the radius

of Σ and let us choose for the constant K of the property above a constant

≥ max
(

1,
1

ρ′′
0 − r′

0

)
. Observe that such a choice is already possible since the

inequalities (3.4) still hold for any constant K ′ ≥ K. Observe also that the
quotient 1/(ρ′′

0 −r′
0) makes sense since the definition of a proper subsector (see

Footnote 2) implies 0 < r′
0 < ρ′′

0 .
Proposition 4 below provides us some estimates on the derivatives ∂�

twμ.

Proposition 4. Let us denote by

– α (resp. βm for m = 2, . . . , d) the maximum of |A(t, x)| (resp. |Bm(t, x)|)
on the closed polydisc Dρ′′

0
×Dρ′′

1
(Dρ denotes the closed disc with center

0 ∈ C and radius ρ > 0);
– Cs = s′(2 + Γ (ss′)), where s′ is the positive integer ≥ 1 defined by

s′ =

⎧⎨
⎩

1 if s ≥ 1⌊
1
s

⌋
+ 1 if s < 1

(	x
 stands for the floor of x ∈ R);
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– C ′ =

⎛
⎝αCs +

d∑
m=2

m∑
j=1

(
m

j

)
βmCm−1Cm

s ζ(p)j−1

⎞
⎠, where ζ is the Rie-

mann Zeta function:

ζ(z) =
∑
n≥1

1
nz

for all z ∈ C,Re(z) > 1.

Then, the following inequalities∣∣∂�
twμ(t, x)

∣∣ ≤ CC ′μKκμ+�Γ (1 + (s + 1)(κμ + 	))
|x|pμ

(pμ)!
(3.5)

hold for all 	, μ ≥ 0 and all (t, x) ∈ Σ × Dr′
1
.

Observe that the constant ζ(p) is well-defined since p ≥ 2.

Proof. The proof proceeds by recursion on μ. The case μ = 0 is straightforward
from the first inequality of (3.4). Let us now suppose that the inequalities (3.5)
hold for all the functions wj(t, x) with j = 0, . . . , μ for a certain μ ≥ 0.

According to the relations (3.3), we first derive from the generalized Leib-
niz Formula the identities

∂�
t wμ+1(t, x) =

�∑
�0=0

( �

�0

)
∂�−�0

t A(t, x)∂κ+�0
t ∂−p

x wμ(t, x)

−
d∑

m=2

m∑
j=1

(m

j

)⎡
⎣ ∑

μ1+...+μj=μ

∑
�0+�1+...+�m=�

( �

�0, �1, . . . , �m

)
∂�0

t Bm(t, x)

×
(

m−j∏
i=1

∂�i
t v(t, x)

)(
j∏

i′=1

∂
�m−j+i′
t ∂−p

x wμi′ (t, x)

)]

for all (t, x) ∈ Σ × Dr′
1
, with the classical convention that the first product is

1 when j = m.
Let us now apply the Cauchy Integral Formula to the function ∂j

t A with
j ≥ 0. Thanks to the definition of the radii r′

0 and r′
1, we have

∂j
t A(t, x) =

j!
(2iπ)2

∫
|t′−t|=ρ′′

0 −r′
0

|x′−x|=ρ′′
1 −r′

1

A(t′, x′)
(t′ − t)j+1(x′ − x)

dt′dx′,

for all (t, x) ∈ Σ × Dr′
1
, and so the estimates∣∣∣∂j

t A(t, x)
∣∣∣ ≤ j!α

(
1

ρ′′
0 − r′

0

)j

≤ j!αKj

by definition of the constant K. In the same way, we have∣∣∣∂j
t Bm(t, x)

∣∣∣ ≤ j!βmKj

for all j ≥ 0, all m = 2, . . . , d and all (t, x) ∈ Σ × Dr′
1
.
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Thereby, using the second inequality of (3.4), the inequalities (3.5) applied
to the functions wj for j = 0, . . . , μ, and the fact that r′

1 < 1 and K ≥ 1, we
finally get the inequalities

∣∣∂�
twμ+1(t, x)

∣∣ ≤ CC ′μKκ(μ+1)+�Γ (1 + (s + 1)(κ(μ + 1) + 	))
|x|p(μ+1)

(p(μ + 1))!

×
⎛
⎝αSμ,� +

d∑
m=2

m∑
j=1

(
m

j

)
βmCm−1S′

μ,�,m,j

⎞
⎠ (3.6)

for all 	 ≥ 0 and all (t, x) ∈ Σ × Dr′
1
, with, as the constants Sμ,� and S′

μ,�,m,j ,
the constants respectively defined by

Sμ,� =
�∑

�0=0

(
	

	0

)
(	 − 	0)!Γ (1 + (s + 1)(κμ + κ + 	0))

Γ (1 + (s + 1)(κμ + κ + 	))

and

S′
μ,�,m,j =

∑
μ1+...+μj=μ

∑
�0+�1+...+�m=�

⎛
⎜⎜⎜⎜⎝
( �

�0, �1, . . . , �m

) (pμ + p)!
j∏

i′=1

(pμi′ + p)!

×
�0!

(
m−j∏
i=1

Γ (1 + (s + 1)�i)

)(
j∏

i′=1

Γ (1 + (s + 1)(κμi′ + �m−j+i′ ))

)

Γ (1 + (s + 1)(κμ + κ + �))

⎞
⎟⎟⎟⎟⎠ ,

where, as previously, the product on i is 1 when j = m.
The inequality (3.5) for wμ+1 stems then from Lemmas 1 and 2 below

which allow to bound Sμ,� and S′
μ,�,m,j . This completes the proof of Proposi-

tion 4. �
Lemma 1. Let μ, 	 ≥ 0 be. Then, Sμ,� ≤ Cs.

Proof. First of all, let us observe that (	 − 	0)! ≤ Γ (1 + (s + 1)(	 − 	0)) for all
	0 ∈ {0, . . . , 	}. This is obvious when 	0 = 	 and stems from the increasing of
the Gamma function on [2,+∞[ otherwise. Thereby, using the notation of the
generalized binomial coefficients (see Sect. 5) and the fact that (s + 1)κ = p,
we get

Sμ,� ≤
�∑

�0=0

(
	

	0

)
(

(s + 1)	 + p(μ + 1)
(s + 1)	0 + p(μ + 1)

) .

Applying then the Vandermonde’s inequality (see Proposition 9, 1)(
(s + 1)	 + p(μ + 1)
(s + 1)	0 + p(μ + 1)

)
≥

(
s	

s	0

)(
	

	0

)(
p(μ + 1)
p(μ + 1)

)
=

(
s	

s	0

)(
	

	0

)
,
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we derive the following

Sμ,� ≤
�∑

�0=0

1(
s	

s	0

)

and we conclude by Proposition 11, 1. �

Lemma 2. Let μ, 	 ≥ 0 be, m ∈ {2, . . . , d} and j ∈ {1, . . . ,m}.
Then, S′

μ,�,m,j ≤ Cm
s ζ(p)j−1.

Proof. � Let us start with the case j = 1. We must prove the inequality
S′

μ,�,m,1 ≤ Cm
s , where

S′
μ,�,m,1 =

∑
�0+�1+...+�m=�

(
	

	0, 	1, . . . , 	m

)

×
	0!

(
m−1∏
i=1

Γ (1 + (s + 1)	i)

)
Γ (1 + (s + 1)(κμ + 	m))

Γ (1 + (s + 1)(κμ + κ + 	))
.

Using the inequalities 	0! ≤ Γ (1 + (s + 1)	0) and Γ (1 + (s + 1)(κμ + 	m)) ≤
Γ (1 + (s + 1)(κ(μ + 1) + 	m)), and the fact that (s + 1)κ = p, the sum S′

μ,�,m,1

can be first majorized in a similar way as the proof of Lemma 1 by means of
generalized multinomial coefficients (see Sect. 5):

S′
μ,�,m,1 ≤

∑
�0+�1+...+�m=�

(
	

	0, 	1, . . . , 	m

)
Mμ,�,m,1

,

with

Mμ,�,m,1 =
(

(s + 1)	 + p(μ + 1)
(s + 1)	0, (s + 1)	1, . . . , (s + 1)	m−1, (s + 1)	m + p(μ + 1)

)
.

Thereby, applying the Vandermonde’s inequality (see Proposition 9, 2)

Mμ,�,m,1 ≥
( s�

s�0, s�1, . . . , s�m−1, s�m

)( �

�0, �1, . . . , �m−1, �m

)( p(μ + 1)

0, 0, . . . , 0, p(μ + 1)

)

=
( s�

s�0, s�1, . . . , s�m−1, s�m

)( �

�0, �1, . . . , �m−1, �m

)
we get

S′
μ,�,m,1 ≤

∑
�0+�1+...+�m=�

1(
s	

s	0, s	1, . . . , s	m−1, s	m

)

and we conclude by Proposition 11, 2.
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� Let us now assume j ∈ {2, . . . ,m} and let us first observe that

(pμ + p)!
j∏

i′=1

(pμi′ + p)!

=
1

j−1∏
i′=1

(pμi′ + 1) . . . (pμi′ + p)

× (p(μ + 1))!
(pμ1)! . . . (pμj−1)!(p(μj + 1))!

≤ 1
j−1∏
i′=1

(μi′ + 1)p

(
p(μ + 1)

pμ1, . . . , pμj−1, p(μj + 1)

)

=
1

j−1∏
i′=1

(μi′ + 1)p

(
p(μ + 1)

0, . . . , 0, pμ1, . . . , pμj−1, p(μj + 1)

)
,

where 0 occurs m − j times. Thereby, reasoning as in the case j = 1, we get

S′
μ,�,m,j ≤

∑
μ1+...+μj=μ

⎛
⎜⎜⎜⎜⎜⎝

1
j−1∏
i′=1

(μi′ + 1)p

×
∑

�0+�1+...+�m=�

( �

�0, �1, . . . , �m

)( p(μ + 1)

0, . . . , 0, pμ1, . . . , pμj−1, p(μj + 1)

)
Mμ,�,m,j

⎞
⎟⎟⎠ ,

where Mμ,�,m,j stands for the generalized multinomial coefficient⎛
⎝ (s + 1)	 + p(μ + 1)

(s + 1)	0, (s + 1)	1, . . . , (s + 1)	m−j , (s + 1)	m−j+1 + pμ1,
. . . , (s + 1)	m−1 + pμj−1, (s + 1)	m + p(μj + 1)

⎞
⎠ ,

and so

S′
μ,�,m,j ≤

∑
μ1+...+μj=μ

⎛
⎜⎜⎜⎜⎜⎝

1
j−1∏
i′=1

(μi′ + 1)p

∑
�0+�1+...+�m=�

1(
s	

s	0, s	1, . . . , s	m

)
⎞
⎟⎟⎟⎟⎟⎠

≤ Cm
s

∑
μ1+...+μj=μ

⎛
⎜⎜⎜⎜⎜⎝

1
j−1∏
i′=1

(μi′ + 1)p

⎞
⎟⎟⎟⎟⎟⎠ .
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Lemma 2 follows then from the inequalities

∑
μ1+...+μj=μ

1
j−1∏
i′=1

(μi′ + 1)p

≤
μ∑

μ1=0

. . .

μ∑
μj−1=0

1
j−1∏
i′=1

(μi′ + 1)p

=

⎛
⎝ μ∑

μ′=0

1
(μ′ + 1)p

⎞
⎠

j−1

≤
⎛
⎝+∞∑

μ′=1

1
μ′p

⎞
⎠

j−1

= ζ(p)j−1.

This completes the proof. �

The following result, which provides the estimates on the wμ’s in view in
this section, is a direct consequence of Proposition 4.

Proposition 5. Let us set K1 = 2pK and c = 2pC ′Kκ. Then, the inequalities∣∣∂�
twμ(t, x)

∣∣ ≤ CK�
1Γ (1 + (s + 1)	) (c |x|p)μ

hold for all 	, μ ≥ 0 and all (t, x) ∈ Σ × Dr′
1
.

Proof. Using the relation (s + 1)κ = p, we first derive from the recurrence
relation Γ (1 + z) = zΓ (z) applied pμ times the identity

Γ (1 + (s + 1)(κμ + 	)) = Γ (1 + (s + 1)	)
pμ∏
i=1

((s + 1)	 + i).

Next, applying the inequality s + 1 ≤ p, we get the following relations:

Γ (1 + (s + 1)(κμ + 	)) ≤ Γ (1 + (s + 1)	)
pμ∏
i=1

(p	 + i)

= Γ (1 + (s + 1)	)
(

p	 + pμ

pμ

)
(pμ)!

≤ 2p�+pμ(pμ)!Γ (1 + (s + 1)	).

Proposition 5 stems then from the inequality (3.5). �

We are now able to complete the proof of Theorem 1.

3.5. Fifth Step: Conclusion

Let us now choose for Σ a sector containing a proper subsector Σ′′ bisected
by the direction θ and opening larger than πs = π/k (such a choice is already
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possible by definition of a proper subsector, see Footnote 2). Let us also choose
a radius 0 < r1 < min(r′

1, c
−1/p) and let us set C1 := C

∑
μ≥0

(crp
1)

μ ∈ R
∗
+.

Thanks to Proposition 5, the series
∑
μ≥0

∂�
twμ(t, x) are normally conver-

gent on Σ × Dr1 for all 	 ≥ 0 and satisfy the inequalities∑
μ≥0

∣∣∂�
twμ(t, x)

∣∣ ≤ C1K
�
1Γ (1 + (s + 1)	)

for all (t, x) ∈ Σ ×Dr1 . In particular, the sum w(t, x) of the series
∑
μ≥0

wμ(t, x)

is well-defined, holomorphic on Σ × Dr1 and satisfies the inequalities∣∣∂�
tw(t, x)

∣∣ ≤ C1K
�
1Γ (1 + (s + 1)	)

for all 	 ≥ 0 and all (t, x) ∈ Σ ×Dr1 . Hence, Conditions 1 and 3 of Definition 1
hold, since Σ′ � Σ.

To prove the second condition of Definition 1, we proceed as follows. The
removable singularities theorem implies the existence of lim

t → 0
t ∈ Σ′

∂�
tw(t, x) and,

thereby, the existence of the Taylor series of w at 0 on Σ′ for all x ∈ Dr1 (see
for instance [21, Cor. 1.1.3.3]; see also [14, Prop. 1.1.11]). On the other hand,
considering recurrence relations (3.3) with wμ(t, x) and the k-sums v(t, x) and
g(t, x) instead of w̃μ(t, x), ṽ(t, x) and g̃(t, x), it is clear that w(t, x) satisfies
equation (3.2) with v(t, x) in place of ṽ(t, x) and right-hand side g(t, x) in place
of g̃(t, x) and, consequently, so does its Taylor series. Then, since Eq. (3.2)
has a unique formal series solution w̃(t, x), we then conclude that the Taylor
expansion of w(t, x) is w̃(t, x). Hence, Condition 2 of Definition 1 holds.

This achieves the proof of the k-summability of w̃(t, x) and, thereby, the
fact that the condition is sufficient when a(0, 0) �= 0.

4. Proof of the Sufficient Condition: The Other Cases

In this section, we assume that there exists q ∈ {1, . . . , p − 1} such that
∂n

x a(t, x)|x=0 ≡ 0 for all n = 0, . . . , q − 1, and ∂q
xa(0, 0) �= 0.

Let us first observe that, under this assumption, the identities (3.1)
become

∂κ
t ũ∗,n(t) − f̃∗,n(t)

−
d∑

m=2

∑
n0+n1+...+nm=n

(
n

n0, n1, . . . , nm

)
bm;∗,n0(t)ũ∗,n1(t) . . . ũ∗,nm

(t) = 0

(4.1)
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for all n ≤ q − 1, and(n

q

)
a∗,q(t)ũ∗,n+p−q(t) +

n∑
n0=q+1

( n

n0

)
a∗,n0(t)ũ∗,n+p−n0 (t) = ∂κ

t ũ∗,n(t)

−f̃∗,n(t) −
d∑

m=2

∑
n0+n1+...+nm=n

( n

n0, n1, . . . , nm

)
bm;∗,n0(t)ũ∗,n1(t) . . . ũ∗,nm

(t)

(4.2)

for all n ≥ q, with a∗,q(0) �= 0. In particular, the identities (4.2) tell us, as in
the case a(0, 0) �= 0, that each coefficient ũ∗,n(t) (hence, the formal solution
ũ(t, x) too) is uniquely determined from the inhomogeneity f̃(t, x) and from
the formal series ũ∗,n′(t) with n′ = 0, . . . , p − 1.

Observe also that our assumption allows us to write the function a(t, x)
in the form a(t, x) = xqaq(t, x) with aq(0, 0) �= 0. Thereby, the functions

Aq(t, x) =
1

aq(t, x)
and Bm;q(t, x) =

bm(t, x)
aq(t, x)

with m = 2, . . . , d, are all well-defined and holomorphic on a convenient com-
mon polydisc centered at the origin (0, 0) ∈ C

2, say Dρ′
0
×Dρ′

1
with 0 < ρ′

0 ≤ ρ0
and 0 < ρ′

1 ≤ ρ1 to use the same notations as the case a(0, 0) �= 0.
Setting as before ũ(t, x) = ṽ(t, x) + ∂−p

x w̃(t, x) with

ṽ(t, x) =
p−1∑
n=0

ũ∗,n(t)
xn

n!
,

Eq. (1.1) becomes now

w̃ − Aq(t, x)
xq

∂κ
t ∂−p

x w̃ +
d∑

m=2

m∑
j=1

(
m

j

)
Bm;q(t, x)

xq
ṽm−j(t, x)(∂−p

x w̃)j = g̃(t, x)

(4.3)

where

g̃(t, x) = Aq(t, x)

∂κ
t ṽ(t, x) −

d∑
m=2

bm(t, x)ṽm(t, x) − f̃(t, x)

xq

is again a formal power series in t and x. Indeed, due to the identities (4.1),
the term

∂κ
t ṽ(t, x) −

d∑
m=2

bm(t, x)ṽm(t, x) − f̃(t, x)

is of order O(xq) in x. Assuming then ṽ(t, x) and g̃(t, x) to be k-summable
in the direction θ, we can prove as in the case a(0, 0) �= 0 that w̃(t, x) is also
k-summable in the direction θ. The proof being similar to the one developed
in Sect. 3, we give below only the key points to modify. In particular, we keep
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all the notations on the choices of the sectors Σ and Σ′, and on the choices of
the various radii.

First of all, let us start by observing that the w̃μ(t, x)’s are now recursively
determined for all μ ≥ 0 by the relations

w̃μ+1(t, x) =
Aq(t, x)

xq
∂κ

t ∂−p
x w̃μ(t, x)

−
d∑

m=2

m∑
j=1

∑
μ1+...+μj=μ

[(
m

j

)
Bm;q(t, x)

xq
ṽm−j(t, x)

(
j∏

i′=1

∂−p
x w̃μi′ (t, x)

)]
(4.4)

together with the initial condition w̃0 = g̃. In particular, the operator
1
xq

∂−p
x

in place of ∂−p
x implies that the w̃μ(t, x)’s are of order O(x(p−q)μ) in x for all

μ ≥ 0, instead of O(xpμ) as in the case a(0, 0) �= 0. Still, w̃(t, x) is again a
formal power series in t and in x since p − q ≥ 1

In doing so, the estimates on the derivatives ∂�
twμ given in Proposition 4

are modified as follows.

Proposition 6. For all 	, μ ≥ 0 and all (t, x) ∈ Σ × Dr′
1
,

∣∣∂�
twμ(t, x)

∣∣ ≤ CC ′μKκμ+�Γ (1 + (s + 1)(κμ + 	))
|x|(p−q)μ

(μ!)q((p − q)μ)!

with

C ′ =

⎛
⎝αqCs +

d∑
m=2

m∑
j=1

(
m

j

)
βm;qC

m−1Cm
s ζ(p)j−1

⎞
⎠ ,

where αq (resp. βm;q for m = 2, . . . , d) stands for the maximum of |Aq(t, x)|
(resp. |Bm;q(t, x)|) on the closed polydisc Dρ′′

0
× Dρ′′

1
.

Proof. We proceed as in the proof of Proposition 4 by replacing the inequality
(3.6) by the inequality

∣∣∂�
twμ+1(t, x)

∣∣ ≤ CC ′μKκ(μ+1)+�Γ (1 + (s + 1)(κ(μ + 1) + 	)) |x|(p−q)(μ+1)

((μ + 1)!)q((p − q)(μ + 1))!

×
⎛
⎝αqSμ,�,q +

d∑
m=2

m∑
j=1

(
m

j

)
βm;qC

m−1S′
μ,�,m,j,q

⎞
⎠ , (4.5)

where the constants Sμ,�,q and S′
μ,�,m,j,q are respectively defined by

Sμ,�,q =
�∑

�0=0

(
	

	0

)
(	 − 	0)!Γ (1 + (s + 1)(κμ + κ + 	0))

Γ (1 + (s + 1)(κμ + κ + 	))
Fμ,�,q
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and

S′
μ,�,m,j,q =

∑
μ1+...+μj=μ

∑
�0+�1+...+�m=�

(( �

�0, �1, . . . , �m

)
F ′

μ,�,j,q

×
�0!

(
m−j∏
i=1

Γ (1 + (s + 1)�i)

)(
j∏

i′=1

Γ (1 + (s + 1)(κμi′ + �m−j+i′ ))

)

Γ (1 + (s + 1)(κμ + κ + �))

⎞
⎟⎟⎟⎟⎠ ,

with

Fμ,�,q =
((μ + 1)!)q((p − q)(μ + 1))!

(μ!)q((p − q)μ)!((p − q)μ + 1) . . . ((p − q)μ + p)
and

F ′
μ,�,j,q =

((μ + 1)!)q((p − q)(μ + 1))!
j∏

i′=1

(μi′ !)q((p − q)μi′)!((p − q)μi′ + 1) . . . ((p − q)μi′ + p)

.

As previously, the product on i in S′
μ,�,m,j,q is 1 when j = m.

Observe that F ′
μ,�,1,q = Fμ,�,q. Observe also that the term Fμ,�,q is obvious

≤ 1. Indeed, the inequalities p > p − q ≥ 1 imply

Fμ,�,q =
((μ + 1)!)q

(μ!)q((p − q)μ + p − q + 1) . . . ((p − q)μ + p)
≤ ((μ + 1)!)q

(μ!)q(μ + 1)q
= 1.

Thereby, Lemmas 1 and 2 provide us the inequalities

Sμ,�,q ≤ Sμ,� ≤ Cs and S′
μ,�,m,1,q ≤ S′

μ,�,m,1 ≤ Cm
s = Cm

s ζ(p)0.

By reasoning in the same way for F ′
μ,�,j,q when j ≥ 2, we first have

F ′
μ,�,j,q ≤ ((μ + 1)!)q((p − q)(μ + 1))!

j∏
i′=1

((μi′ + 1)!)q((p − q)(μi′ + 1))!

=

(
μ + 1

μ1, . . . , μj−1, μj + 1

)(
(p − q)(μ + 1)

(p − q)μ1, . . . , (p − q)μj−1, (p − q)(μj + 1)

)
j−1∏
i′=1

(μi′ + 1)q((p − q)μi′ + 1) . . . ((p − q)μi′ + p − q)

≤

(
μ + 1

μ1, . . . , μj−1, μj + 1

)(
(p − q)(μ + 1)

(p − q)μ1, . . . , (p − q)μj−1, (p − q)(μj + 1)

)
j−1∏
i′=1

(μi′ + 1)p

.
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Applying then the calculations made in the proof of Lemma 2, we finally get

S′
μ,�,m,j,q ≤

∑
μ1+...+μj=μ

⎛
⎜⎜⎜⎜⎜⎝

1
j−1∏
i′=1

(μi′ + 1)p

∑
�0+�1+...+�m=�

1(
s	

s	0, s	1, . . . , s	m

)
⎞
⎟⎟⎟⎟⎟⎠

≤ Cm
s ζ(p)j−1,

which ends the proof of Proposition 6. �

Using now the inequality

Γ (1 + (s + 1)(κμ + 	)) ≤ 2p�+pμ(pμ)!Γ (1 + (s + 1)	)

proved in the proof of Proposition 5, Proposition 6 leads us to the inequality∣∣∂�
t wμ(t, x)

∣∣ ≤ C(2pK)�
(
2pC′Kκ |x|p−q)μ

Γ (1 + (s + 1)�) ×
( pμ

μ, . . . , μ, (p − q)μ

)
,

where μ occurs q times in the multinomial coefficient. Hence, the following

Proposition 7. Let us set K1 = 2pK and c = (2q + 2)pC ′Kκ.
Then, the inequalities∣∣∂�

twμ(t, x)
∣∣ ≤ CK�

1Γ (1 + (s + 1)	)
(
c |x|p−q

)μ

hold for all 	, μ ≥ 0 and all (t, x) ∈ Σ × Dr′
1
.

The end of the proof is similar to the one of the case a(0, 0) �= 0 and is
left to the reader. This completes the proof of Theorem 1.

5. Some Technical Results on the Generalized Binomial and
Multinomial Coefficients

In combinatorial analysis, the binomial coefficients
(

n

m

)
and the multinomial

coefficients
(

n

n1, . . . , nq

)
are defined for any nonnegative integers 0 ≤ m ≤ n

and any tuples (n, n1, . . . , nq) of nonnegative integers satisfying q ≥ 2 and
n1 + . . . + nq = n by the relations(

n

m

)
=

n!
k!(n − k)!

and
(

n

n1, . . . , nq

)
=

n!
n1! . . . nq!

.

They respectively denote the number of ways of choosing m objects from a
collection of n distinct objects without regard to order, and the number of
ways of putting n = n1 + . . . + nq different objects into q different boxes with
ni in the ith box for all i = 1, . . . , q.
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Using the fact that n! = Γ (1 + n) for any integer n ≥ 0, one can easily
extend the definitions of these coefficients to the case where their terms are no
longer necessarily integers by setting(

a

b

)
=

Γ (1 + a)
Γ (1 + b)Γ (1 + a − b)

(5.1)

for any nonnegative real numbers 0 ≤ b ≤ a and(
a

a1, . . . , aq

)
=

Γ (1 + a)
Γ (1 + a1) . . . Γ (1 + aq)

=
Γ (1 + a)

q∏
i=1

Γ (1 + ai)

(5.2)

for any tuples (a, a1, . . . , aq) of nonnegative real numbers satisfying q ≥ 2 and
a1 + · · · + aq = a. Observe that all these coefficients are positive. Observe also
that one has the following decomposition(

a

a1, . . . , aq

)
=

q∏
i=2

(
a1 + . . . + ai

a1 + . . . + ai−1

)
. (5.3)

The four propositions below extend to the generalized binomial coeffi-
cients (5.1) and the generalized multinomial coefficients (5.2) some well-known
results in combinatorial analysis.

In the proof of Theorem 1 (see Sects. 3 and 4), we essentially used the
inequalities stated in Propositions 9 and 11 . The result of Proposition 8 is
useful for the proof of Proposition 9 and the one of Proposition 10 is used in
the proof of Proposition 11.

Proposition 8. (Pascal’s formula) Let 0 ≤ b ≤ a be two nonnegative real num-
bers and 1 ≤ m ≤ n two nonnegative integers. Then,(

a + n + 1
b + m

)
=

(
a + n

b + m

)
+

(
a + n

b + m − 1

)
. (5.4)

Proof. We compute:(
a + n

b + m

)
+

(
a + n

b + m − 1

)
=

Γ (1 + a + n)
Γ (1 + b + m)Γ (1 + a − b + n − m)

+
Γ (1 + a + n)

Γ (1 + b + m − 1)Γ (1 + a − b + n − m + 1)

=
(a − b + n − m + 1)Γ (1 + a + n)

Γ (1 + b + m)Γ (1 + a − b + n − m + 1)

+
(b + m)Γ (1 + a + n)

Γ (1 + b + m)Γ (1 + a − b + n − m + 1)

=
(a + n + 1)Γ (1 + a + n)

Γ (1 + b + m)Γ (1 + a − b + n − m + 1)
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=
Γ (1 + a + n + 1)

Γ (1 + b + m)Γ (1 + a − b + n − m + 1)

=
(

a + n + 1
b + m

)
;

hence, the identity (5.4). �

Proposition 9. (Vandermonde’s inequality)
1. (Binomial case) Let 0 ≤ b ≤ a be two nonnegative real numbers and

0 ≤ m ≤ n two nonnegative integers. Then,(
a + n

b + m

)
≥

(
a

b

)(
n

m

)
. (5.5)

2. (Multinomial case) Let q ≥ 2 be an integer, (a, a1, . . . , aq) a tuple of non-
negative real numbers and (n, n1, . . . , nq) a tuple of nonnegative integers
such that a1 + . . . + aq = a and n1 + . . . + nq = n. Then,(

a + n

a1 + n1, . . . , aq + nq

)
≥

(
a

a1, . . . , aq

)(
n

n1, . . . , nq

)
. (5.6)

Proof. � First point. The inequality (5.5) is clear for n = m = 0. Let us now
fix 0 ≤ b ≤ a and let us prove by induction on n ≥ 1 the property

(Pn) : ∀m ∈ {0, . . . , n},

(
a + n

b + m

)
≥

(
a

b

)(
n

m

)
.

A direct calculation gives us the property (P1):(
a + 1

b

)
(

a

b

) =
Γ (1 + a + 1)Γ (1 + b)Γ (1 + a − b)
Γ (1 + a)Γ (1 + b)Γ (1 + a + 1 − b)

=
a + 1

a + 1 − b
≥ 1 =

(
1
0

)
,

(
a + 1
b + 1

)
(

a

b

) =
Γ (1 + a + 1)Γ (1 + b)Γ (1 + a − b)
Γ (1 + a)Γ (1 + b + 1)Γ (1 + a − b)

=
a + 1
b + 1

≥ 1 =
(

1
1

)
.

Assuming now the property (Pn) for a certain n ≥ 1, let us prove the
property (Pn+1). As for the property (P1), the sought inequality stems from
a direct calculation when m = 0 and m = n + 1:(

a + n + 1
b

)
(

a

b

) =
Γ (1 + a + n + 1)Γ (1 + b)Γ (1 + a − b)
Γ (1 + a)Γ (1 + b)Γ (1 + a + n + 1 − b)

=

n+1∏
k=1

(a + k)

n+1∏
k=1

(a + k − b)

≥ 1 =
(

n + 1
0

)
,
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(
a + n + 1
b + n + 1

)
(

a

b

) =
Γ (1 + a + n + 1)Γ (1 + b)Γ (1 + a − b)
Γ (1 + a)Γ (1 + b + n + 1)Γ (1 + a − b)

=

n+1∏
k=1

(a + k)

n+1∏
k=1

(b + k)

≥ 1 =
(

n + 1
n + 1

)
.

When m ∈ {1, . . . , n}, it stems from Proposition 8 and the property (Pn) as
follows:(

a + n + 1
b + m

)
=

(
a + n

b + m

)
+

(
a + n

b + m − 1

)
≥

(
a

b

)(
n

m

)
+

(
a

b

)(
n

m − 1

)

=
(

a

b

)((
n

m

)
+

(
n

m − 1

))

=
(

a

b

)(
n + 1

m

)
.

This ends the induction and proves the first point of Proposition 9.
� Second point. Let us apply the relation (5.3) and the inequality (5.5) to each
factor of the product. We get(

a + n

a1 + n1, . . . , aq + nq

)
=

q∏
i=2

(
a1 + . . . + ai + n1 + . . . + ni

a1 + . . . + ai−1 + n1 + . . . + ni−1

)

≥
q∏

i=2

(
a1 + . . . + ai

a1 + . . . + ai−1

)(
n1 + . . . + ni

n1 + . . . + ni−1

)

=

(
q∏

i=2

(
a1 + . . . + ai

a1 + . . . + ai−1

))(
q∏

i=2

(
n1 + . . . + ni

n1 + . . . + ni−1

))
.

The inequality (5.6) follows then by applying again the relation (5.3), which
ends the proof of the second point of Proposition 9. �

Proposition 10. Let s, a > 0 be. Then, the function

Ba : b ∈ [0, a] �−→
(

sa

sb

)

is increasing on
[
0,

a

2

]
and decreasing on

[a

2
, a

]
.

In particular, Ba(b) ≥ 1 for all b ∈ [0, a].

Proof. The derivative of Ba is defined for all b ∈ [0, a] by

B′
a(b) = sBa(b)(Ψ(1 + s(a − b)) − Ψ(1 + sb)),

where Ψ = Γ ′/Γ is the Psi (or Digamma) function. The latter being increasing
on [0, a] (the function lnΓ is indeed convex on ]0,+∞[), Proposition 10 follows
from Lagrange Theorem. �
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Proposition 11. (Sum of the inverses of binomial and multinomial coefficients)
Let s > 0 be and let us set Cs = s′(2 + Γ (ss′)), where s′ is the positive integer
≥ 1 defined by

s′ =

⎧⎨
⎩

1 if s ≥ 1⌊
1
s

⌋
+ 1 if s < 1

,

where 	x
 stands for the floor of x ∈ R.

1. (Binomial case) The following inequality holds for all integers n ≥ 0:
n∑

m=0

1(
sn

sm

) ≤ Cs. (5.7)

2. (Multinomial case) The following inequality holds for all integers q ≥ 2
and n ≥ 0: ∑

n1+...+nq=n

1(
sn

sn1, . . . , snq

) ≤ Cq−1
s . (5.8)

Proof. � First point. The inequality (5.7) is straightforward from Proposi-
tion 10 when n < 2s′ since we have the relations

n∑
m=0

1(
sn

sm

) ≤ n + 1 ≤ 2s′ ≤ Cs.

Let us now assume n ≥ 2s′ and let us write the left hand-side of (5.7) in the
form

n∑
m=0

1(
sn

sm

) =
s′−1∑
m=0

1(
sn

sm

) +
n−s′∑
m=s′

1(
sn

sm

) +
n∑

m=n−s′+1

1(
sn

sm

) .

Applying Proposition 10, the first and the third sums of the right hand-side

are both ≤ s′. Moreover, all the terms of the second sum are ≥
(

sn

ss′

)
. This

brings us to the following relations:
n∑

m=0

1(sn

sm

) ≤ 2s′ +
n − 2s′ + 1(sn

ss′

) = 2s′ +
(n − 2s′ + 1)Γ (1 + ss′)Γ (1 + sn − ss′))

Γ (1 + sn)

= 2s′ + s′Γ (ss′)
n − 2s′ + 1

n

Γ (1 + sn − ss′)
Γ (1 + sn − 1)

≤ 2s′ + s′Γ (ss′)
Γ (1 + sn − ss′)
Γ (1 + sn − 1)

.
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The inequality (5.7) follows then from the increasing of the Gamma function
on [2,+∞[. Indeed, the inequality ss′ ≥ 1 implies 2 ≤ 1+sn−ss′ ≤ 1+sn−1,

and thereby
Γ (1 + sn − ss′)
Γ (1 + sn − 1)

≤ 1.

� Second point. Applying the relation (5.3) and setting n′
k = n1 + . . . + nk for

all k = 1, . . . , q − 1, we first get the identities∑
n1+...+nq=n

1( sn

sn1, . . . , snq

) =
∑

n1+...+nq−1≤n

1( sn

s(n1 + . . . + nq−1)

)
. . .

(s(n1 + n2)

sn1

)

=

n∑
n′

q−1=0

n′
q−1∑

n′
q−2=0

. . .

n′
2∑

n′
1=0

1( sn

sn′
q−1

)(sn′
q−1

sn′
q−2

)
. . .

(sn′
2

sn′
1

) .

The inequality (5.8) stems then from the inequality (5.7) which we apply q −1
times. This completes the proof. �
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[21] Malgrange, B.: Sommation des séries divergentes. Expo. Math. 13, 163–222
(1995)

[22] Malgrange, B., Ramis, J.P.: Fonctions multisommables. Ann. Inst. Fourier
(Grenoble) 42, 353–368 (1992)

[23] Michalik, S.: On the multisummability of divergent solutions of linear partial
differential equations with constant coefficients. J. Differ. Equ. 249, 551–570
(2010)

[24] Michalik, S.: Summability and fractional linear partial differential equations. J.
Dyn. Control Syst. 16(4), 557–584 (2010)

[25] Michalik, S., Tkacz, B.: The Stokes phenomenon for some moment partial dif-
ferential equations. J. Dyn. Control Syst. 25, 573–598 (2019)

[26] Miyake, M.: Borel summability of divergent solutions of the Cauchy problem to
non-Kovaleskian equations. In: Partial Differential Equations and Their Appli-
cations (Wuhan, 1999), pp. 225–239. World Scientific Publishing, River Edge
(1999)

[27] Miyake, M., Shirai, A.: Two proofs for the convergence of formal solutions of
singular first order nonlinear partial differential equations in complex domain.
Surikaiseki Kenkyujo Kokyuroku Bessatsu, Kyoto Unviversity B37, 137–151
(2013)



118 Page 26 of 27 P. Remy Results Math

[28] Ouchi, S.: Genuine solutions and formal solutions with Gevrey type estimates
of nonlinear partial differential equations. J. Math. Sci. Univ. Tokyo 2, 375–417
(1995)

[29] Ouchi, S.: Multisummability of formal solutions of some linear partial differential
equations. J. Differ. Equ. 185(2), 513–549 (2002)

[30] Ouchi, S.: Borel summability of formal solutions of some first order singular
partial differential equations and normal forms of vector fields. J. Math. Soc.
Jpn. 57(2), 415–460 (2005)

[31] Plís, M.E., Ziemian, B.: Borel resummation of formal solutions to nonlinear
Laplace equations in 2 variables. Ann. Polon. Math. 67(1), 31–41 (1997)
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