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Numerical approximation and uncertainty quanti�cation for
arterial blood �ow models with viscoelasticity

Christophe Chalons∗, Alessia Del Grosso†and Eleuterio F. Toro ‡

December 18, 2019

Abstract. The importance of the study of the blood �ow equations is widely recognized as it is a tool to understand the circulatory
system. Arteries and veins result to have both elastic and viscous behaviour. Models for the �rst case are much more studied as they
result to be simpler and still satisfying if compared to experimental data. In this paper, we consider a model which encompasses both
the elastic and viscoelastic response in arterial walls, respectively leading to a conservative and a non-conservative system. We present a
second-order scheme based on the �rst-order Price-T scheme and the MUSCL-Hancock strategy. This new approach automatically adapts
to the above conservative and non-conservative cases.

Then, we perform a Sensitivity Analysis (SA) based on the Continuous Sensitivity Equation Method (CSEM), whose aim is the study
of how changes in the inputs of a model can a�ect its outputs. In particular, the sensitivity is de�ned as the derivative (with respect to an
uncertain parameter a) of the solution of the system taken into consideration. Since the CSEM cannot be directly applied to discontinuous
solutions, we add a source term to compensate the spikes associated to the Dirac delta functions that can arise in the sensitivity variables.

One of the main applications of SA is uncertainty quanti�cation, which is investigated for Riemann problems as well as for a network
of 37 arteries. Details on junctions for coupling two or more vessels are also given.

1 Introduction and governing equations
The simulation of blood �ows in human arteries has been a very active topic of research over the last decades. Indeed,

recovering experimental data about the cardiovascular system proves to be extremely complicated and this motivates the
numerical studies that have been done so far. The numerical outputs can help to expand the knowledge in this �eld, for
instance on many pathologies such as hypertension or presence of occlusions.

Models in one-dimensional (1D) space dimension are often used as an alternative to the more complex three-dimensional
(3D) �uid-structure interaction models. Indeed, they are able to provide a good description of the propagation of pressure
waves in arteries with a low computational cost compared to 3D models, which is especially interesting when considering
global human circulatory systems represented by a network of vessels. We refer for instance the reader to [3], [12], [19],
[27] and [39] for more details.

In this paper, we are interested in the numerical approximation of the solutions of the following 1D system composed
of two partial di�erential equations, {

∂tA+ ∂x(Au) = 0
∂t(Au) + ∂x(Au2) + A

ρ ∂xp = f,
(1)

consisting of the mass conservation and momentum balance equations. Here x represents the axial coordinate along the
longitudinal axis of the vessel and t > 0 is the time. A(x, t) > 0 is the cross-sectional area of the vessel, u(x, t) the averaged
velocity of blood at cross section and consequently q = Au is the blood �ow, p is the pressure and ρ represents the blood
density. At last, f = −Ru accounts for the friction forces where R > 0 is the viscous resistance given by

R = 22π
µ

ρ
,
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where µ is the dynamic viscosity. We assume that the initial area A(x, t = 0) and velocity u(x, t = 0) are given at time
t = 0. For more details about the derivation of system (1), we refer to [18] and [37].

In order to close this system, a relationship between the pressure and the cross-sectional area is needed. This is the
so-called tube law. Depending on the underlying mechanical considerations and elastic or viscoelastic assumptions on the
response of the artery, the form of the closure relation and consequently the nature of system (1) can signi�cantly di�er. In
this paper, we will more precisely consider the following two relations, for which we refer to [37] and [25].

Elastic tube law. The �rst closure relation has been proposed for example in [29] and assumes that the arterial walls are
purely elastic, leading to the following relation

p = pext + ψ (2)

where pext is the external pressure acting on the vessel walls andψ is the transmural pressure, namely the di�erence between
the internal and external pressures. Since we are interested in blood �ow in arteries, the transmural pressure reads

ψ(A,A0,K) = Kφ(A,A0)

with
φ(A,A0) =

√
A

A0
− 1 and K(x) =

4

3

√
π

A0
Eh0,

where h0 is the wall thickness, E the Young modulus and A0 is the cross-sectional area of the vessel at equilibrium. Note
that for the sake of simplicity, we will assume that h0, A0 and E are constant along a single vessel. Hence, substituting (2)
into (1), we obtain the ultimate form of the model,{

∂tA+ ∂x(Au) = 0

∂t(Au) + ∂x(Au2 + γA
3
2 ) = f,

(3)

with
γ =

K

3ρ
√
A0

,

and where the left-hand side of the momentum balance equation is now in conservation form. Easy calculations show that
the two eigenvalues of the system are λ±e = u± c, where the wave speed is de�ned by

c =

√
3

2
γ
√
A.

Consequently the convective part of (3) is strictly hyperbolic as λ±e are real and distinct as long as c 6= 0. Finally, both the
two characteristic �elds are genuinely non-linear and the Riemann invariants associated with λ±e are respectively given by
I−e = u+ 4c and I+

e = u− 4c. For more details refer to [36].

Viscoelastic tube law. The second closure relation has been proposed for instance in [25] and considers that the viscoelastic
response in arterial walls cannot be neglected. In this case, a viscoelastic term is added in the tube law, leading to the more
general relation

p(x, t) = pext + ψ(A,A0,K) + ϕ(A,A0)∂tA, (4)

where we take
ϕ(A,A0) =

Γ

A0

√
A
.

The coe�cient Γ depends on the viscoelastic properties of the vessel’s wall and we note in particular that taking Γ = 0 boils
down to considering an elastic closure. In practice, we will refer to [1] and take

Γ =
2

3
sh0

√
π,

where s is the viscosity of the (silicone) vessel.
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At this stage, it is important to note that using the mass conservation equation of (1), (4) is equivalent to

p = pext + ψ(A,A0,K)− ϕ(A,A0)∂xq,

so that
∂xp = K∂Aφ∂xA− ∂Aϕ∂xA∂xq − ϕ∂2

xq.

Therefore, it is observed that a second-order spatial derivative now appears in the momentum balance equation of (1), mak-
ing the viscoelastic system of advection-di�usion-reaction type unlike the elastic model (3) which is an advection-reaction
system. However, one of the two goals of the present contribution is to propose an appropriate second-order accurate nu-
merical method to approximate the elastic and viscoelastic blood �ow models in the same formalism. Therefore, we suggest
to proceed as in the paper of Montecinos et al. [25], and to approximate the original parabolic (advection–di�usion–reaction)
viscoelastic problem by a hyperbolic (advection-reaction) system with sti� source term using a relaxation technique. More
precisely, we will relax system (1) by following the constitutive Cattaneo’s law [7]

∂tΨ−
1

ε
∂xq = −1

ε
Ψ,

where ε > 0 is a parameter such that in the asymptotic limit ε → 0, the new variable Ψ converges towards the original
gradient ∂xq. Therefore, with this new variable we can rewrite the pressure gradient as

∂xp = K∂Aφ∂xA− ∂Aϕ∂xAΨ− ϕ∂xΨ

and reformulate system (1) as
∂tA+ ∂xq = 0

∂tq + ∂x

(
q2

A

)
+ A

ρ (K∂Aφ−Ψ∂Aϕ)∂xA− A
ρ ϕ∂xΨ = f

∂tΨ− 1
ε∂xq = − 1

εΨ.

(5)

It is thus clear that this relaxation approach allows us to reformulate the viscoelastic system while maintaining the physical
meaning of the system. However, the striking di�erence with the elastic model (3) is that the advection part of (5) is not in
conservative form. This property will be a key feature of the proposed numerical method.

As for the elastic system, it is not di�cult to check that the convective part of (5) admits three eigenvalues given by
λ±v = u± c̃ and λ0

v = 0 where the wave speed is now de�ned by

c̃ =
√
c2 + ω with ω =

ϕA

ρε
+
aΓ

2
,

with aΓ = Ψϕ
ρ . In particular, the system is strictly hyperbolic if c2 + ω ≥ 0, so if

1

ε
≥ − Ψ

2A
− c2ρ

ϕA
.

For more details about the analysis of the system, we refer to [25]. In addition, we observe that the characteristic �elds
associated to λ±v are genuinely non linear, while the �eld associated to λ0

v is linearly degenerate. Finally, the Riemann
invariants associated with λ−v and λ+

v are respectively

I−,1v =
A

ε
+ Ψ and I−,2v = u+

∫
c̃

A
dA

and
I+,1
v =

A

ε
+ Ψ and I+,2

v = u−
∫

c̃

A
dA

while for λ0
v we obtain the Riemann Invariants

I0,1
v = pext + ψ − ϕΨ +

1

2
ρu2 and I0,1

v = q,
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see for instance [25] for more details.

For the sake of conciseness, elastic and viscoelastic systems (3) and (5) will be given the following compact form

∂tQ + ∂xF(Q) + A(Q)∂xQ = S(Q), (6)

where Q denotes the vector of unknowns, F(Q) the �ux of the conservative part, A(Q) the coe�cient matrix of the non
conservative part and S(Q) the source term. In particular, we have

Q =

(
A
q

)
, F(Q) =

(
q

q2

A + γA
3
2

)
and S =

(
0
f

)
, (7)

for the elastic model, and

Q =

Aq
Ψ

 , F(Q) =

 q
q2

A + γA
3
2

− 1
εq

 , A =

 0 0 0
aΓ

2 0 −ϕAρ
0 0 0

 and S =

 0
f
− 1
εΨ

 (8)

for the viscoelastic one. Note that the non conservative term A(Q) and the third row of F(Q) and S(Q) do not appear in
the elastic system (3). Our �rst objective will be to propose a second-order accurate numerical scheme to approximate the
solution of (6) and with the consistency property that the scheme applied to the viscoelastic system with Γ = 0 should
be equivalent to the scheme applied directly to the elastic system. As it will be seen, this is not trivial considering the
�nite volume framework of �rst-order Price-T schemes for non conservative systems coupled with a second-order MUSCL-
Hancock methodology taken into account in the present paper. We also refer the reader to the following recent contributions
[18, 36, 25, 14, 1] and the references therin for related �nite volume methods applied to the elastic and viscoelastic blood
�ow models separately.

As usual when dealing with mathematical models, the 1D systems used in the present paper to describe the human
circulatory system are based on modelling assumptions and parameters to describe the �ow and geometrical or physical
properties of the vessels, for instance the vessel thickness h0, the cross-sectional area of the vessel at equilibrium A0, the
Young modulus E or the initial values A(x, t = 0) of the area at time t = 0. In practice, these parameters are estimated or
calibrated and it is natural to wonder how the numerical simulations are sensitive to these approximations and uncertainties.
Sensitivity Analysis (SA), that is the study of how changes in the inputs of a model a�ect the outputs, is a powerful tool to
perform Uncertainty Quanti�cation (UQ). It consists in computing numerically the derivatives of the solutions of the system
of equations with respect to one or several chosen input parameters. There exist essentially two main approaches to SA
with own advantages and disadvantages depending on the target applications. A detailed comparison between the two for
optimization problems is done in [20]. The �rst one, known as discrete sensitivity equation method, starts with discretizing
the system of equations and then di�erentiating it to obtain an approximation of the sensitivities. Whereas, the second one
consists in di�erentiating the equations �rst, obtaining in this way the system of sensitivity equations which will be then
discretised and solved, see for instance [4, 10, 15, 16]. The latter is known as the di�erentiate-then-discretise approach or
Continuous Sensitivity Equation Method (CSEM) and it is the one that will be considered here. In this context, our second
objective is to introduce the use of sensitivity analysis to study the uncertainties in the solutions of blood �ow equations.
This will be done both for the elementary solutions of Riemann problems (which, although being the simplest non trivial
initial value problem, are at the basis of many numerical methods), and a complex network of 37 arteries already simulated
in [1, 24].

Outline of the paper. The paper is organized as follows. In the next section we introduce the Price-T scheme and our
version of MUSCL-Hancock method, respectively of �rst and second-order of accuracy. Outputs for Riemann problems are
also shown. In sections 3 and 4 we present respectively the sensitivity equations and the modi�ed numerical methods in order
to take into account the discontinuities in the state variables. Results for Riemann problems and uncertainty quanti�cation
are carried out at the end of section 4. Subsequently, in section 5 we explain how to take care of the presence of junctions
among two or three vessels, a necessary step to obtain the results for the network of 37 vessels, which is presented in section
5 as well. Finally, in section 6 conclusions are drawn.
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Figure 1: Staggered grid for Price-T and MUSCL-Hancock schemes, refer to [34].

2 Centred numerical scheme
The aim of this section is to propose a �nite volume method which can be used to resolve non homogeneous hyperbolic

system (6) both in conservative (A(Q) = 0) and non conservative (A(Q) 6= 0) case. We are especially interested in second-
order centred strategies based on MUSCL reconstructions. We focus on the homogeneous system

∂tQ + ∂xF(Q) + A(Q)∂xQ = 0 (9)

as the source term S(Q) will be taken into account thanks to a classical fractional step method at �rst-order accuracy,
and an usual Strang splitting at second-order accuracy. Note that the source term can be solved exactly or using an ODE
solver. As far as the homogeneous system is concerned, observe that the proposed method should automatically reduce
to a conservative one if applied to a conservative system. This is a very important request as a non conservative method
applied to a conservative system could converge to a wrong solution [21]. For this purpose, we will present the �rst-order
Price-T scheme, and a second-order extension based on the MUSCL-Hancock strategy, see [25] for more details about these
schemes.

Let us now introduce some notations. When necessary, we will �rst use Q = (q1, . . . , qm)t to denote the component
of the vector of unknowns. Then, we introduce a constant space step ∆x and constant time step ∆t. The mesh interfaces
are de�ned by xi+1/2 = i∆x for i ∈ Z and the intermediate times by tn = n∆t for n ∈ N. As usual in the �nite
volume framework, we seek at each time tn for an approximation Qn

i of the solution in the interval [xi−1/2, xi+1/2), i ∈ Z.
Therefore, a piecewise constant approximate solution x→ Q∆t,∆x(x, tn) of the solution Q is given by

Q∆t,∆x(x, tn) = Qn
i for all x ∈ Ci = [xi−1/2;xi+1/2), j ∈ Z, n ∈ N.

When n = 0, we set
Q0
i =

1

∆x

∫ xi+1/2

xi−1/2

Q0(x)dx, for all i ∈ Z.

2.1 First-order Price-T scheme
In this subsection, we brie�y recall the �rst-order Price-T scheme, which is a variant of the Force scheme for non-

conservative systems. We refer the reader to [34] and [38] for more details. Force and Price-T methods are centred and
therefore do not utilize wave propagation informations coming from exact or approximate Riemann solvers, which in turn
can be di�cult or even impossible to de�ne. Instead, the idea at the base of these methods is to use integral relations that
can be obtained from (9). Assuming that the sequence (Qni )i∈Z is known, the main steps to de�ne the sequence (Qn+1

i )i∈Z
are as follows. Note that we will not show all the computations but again refer to [34] for more details. Figure 1 is also
proposed to help visualizing the reasoning and the di�erent steps.

Step 1. First of all and for a given i, the idea is to virtually solve the Riemann problems set at interfaces xi−1/2 and xi+1/2

and respectively associated with the left and right states (Qni−1,Q
n
i ) and (Qni ,Q

n
i+1), see �gure 1. Up to a space translation
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of xi−1/2 and xi+1/2 and a time translation of tn, the respective solutions are denoted (x, t) → Q̂
n+ 1

2

i− 1
2

(x, t) and (x, t) →

Q̂
n+ 1

2

i+ 1
2

(x, t). Note that these solutions are self-similar and composed of simple waves (shocks, contact discontinuities and
rarefaction waves) emanating from the interfaces xi−1/2 and xi+1/2, see [34] for more details.

Step 2. The aim of this step is to evaluate the following integral averages of the two Riemann problem solutions at time
∆t/2, namely

Qn+ 1
2

i− 1
2

=
1

∆x

∫ ∆x
2

−∆x
2

Q̂
n+ 1

2

i− 1
2

(x,
∆t

2
)dx and Qn+ 1

2

i+ 1
2

=
1

∆x

∫ ∆x
2

−∆x
2

Q̂
n+ 1

2

i+ 1
2

(x,
∆t

2
)dx.

These intermediate states are simply evaluated by integrating (9) on the control volume (−∆x
2 , ∆x

2 )× (0, ∆t
2 ), and doing a

linearization in which we substitute the matrix A with a constant matrix Âi±1/2. More precisely, we obtain

Qn+ 1
2

i− 1
2

=
1

2
(Qni−1 + Qni )− 1

2

∆t

∆x
(F(Qni )− F(Qni−1))− 1

2

∆t

∆x
Âi− 1

2
(Qni − Qni−1), (10)

Qn+ 1
2

i+ 1
2

=
1

2
(Qni + Qni+1)− 1

2

∆t

∆x
(F(Qni+1)− F(Qni ))− 1

2

∆t

∆x
Âi+ 1

2
(Qni+1 − Qni ), (11)

where we set
Âi− 1

2
= A

(1

2
(Qni−1 + Qni )

)
and Âi+ 1

2
= A

(1

2
(Qni + Qni+1)

)
.

Steps 3 and 4. Equipped with these updated values at intermediate time and on a staggered grid, we now follow the
same steps as before to evaluate the approximate solution at the �nal time tn+1 and on the original grid. Namely, one �rst
virtually solves the Riemann problem set at interface xi and associated with the left and right states (Qn+1/2

i− 1
2

,Qn+1/2

i+ 1
2

), see

again �gure 1. We denote this solution by (x, t)→ Q̂
n+1

i (x, t) up to the same space and time translations. And we evaluate
the integral

Qn+1
i =

1

∆x

∫ ∆x
2

−∆x
2

Q̂
n+1

i (x,
∆t

2
)dx

using another integration of (9) on the control volume (−∆x
2 , ∆x

2 )× (0, ∆t
2 ). In this way we arrive at a new solution at time

level n+ 1

Qn+1
i =

1

2
(Qn+ 1

2

i− 1
2

+ Qn+ 1
2

i+ 1
2

)− 1

2

∆t

∆x
(F(Qn+ 1

2

i+ 1
2

)− F(Qn+ 1
2

i− 1
2

))− 1

2

∆t

∆x
Âi(Q

n+ 1
2

i+ 1
2

− Qn+ 1
2

i− 1
2

) (12)

where we set
Âi = A

(1

2
(Qn+ 1

2

i− 1
2

+ Qn+ 1
2

i+ 1
2

)
)
.

This concludes the description of the Price-T method as proposed in [34]. It is clear that this scheme is a centred non
conservative scheme which is consistent with the non conservative system (9). However, when applied to a conservative
system the coe�cient matrices Â will disappear, leaving only the terms with the numerical �ux. Thus, the Price-T scheme
easily boils down to the conservative Force scheme (see Toro and Billett [31])

Qn+1
i = Qni −

∆t

∆x

(
Fforcei+1/2 − Fforcei−1/2

)
,

where the numerical �ux Fforcei+1/2 = Fforcei+1/2(Qni ,Q
n
i+1) is usually written as the arithmetic average of the Lax-Friedrichs and

Lax-Wendro� �uxes, namely with clear notations

Fforcei+1/2 =
1

2

(
Flfi+1/2 + Flwi+1/2

)
with

Flfi+1/2 =
1

2

(
F(Qni ) + F(Qni+1

)
− 1

2

∆x

∆t

(
Qni+1 − Qni

)
and

Flwi+1/2 = F(Qn+1/2
i+1/2 ).
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2.2 MUSCL-Hancock Price-T scheme
In this subsection, we present a second-order extension of the Price-T method using a MUSCL-Hancock strategy. As

already pointed out before, we will pay a particular attention to the conservation property of the scheme when applied to
a conservative system (A(Q) = 0). Actually, our objective in this case will be to recover the Slope Limiter Centred (SLIC)
method with Force �ux, see for instance [38] for more details. As we will see, a correction term in a "naive" (but natural)
extension of the Price-T method will be necessary.

Before going further, let us �rst brie�y recall that the original MUSCL-Hancock strategy uses reconstruction of data
together with upwind Godunov or Godunov-type methods. Instead, the aim of the SLIC scheme is to avoid the use of
Riemann problems by exploiting di�erent low-order schemes, for instance the centred Price-T �ux (or Force �ux in the
conservative case). For more details, we refer again the reader to [38].

The di�erent steps of the method are as follows.
Step 1: reconstruction and cell-boundary values. As it is customary, this step aims at de�ning boundary extrapolated

values by means of polynomial data reconstructions. More precisely, using for each cell Ii a reconstructed polynomial
vector Pi(x) = (p1,i(x), . . . , pm,i(x))t with components

pk,i(x) = Qnk,i + (x− xi)∆k,i, k = 1, . . . ,m

where ∆k,i are the slopes (recall that m is the number of variables), we de�ne the boundary values by
QLi = Pi(xi− 1

2
) = Qni −∆i

∆x

2

QRi = Pi(xi+ 1
2
) = Qni + ∆i

∆x

2
.

(13)

Regarding the de�nition of the slope, a �rst choice is given by the ENO strategy [38]

∆k,i =

{∆k,i−1/2

∆x =
qk,i−qk,i−1

∆x if |∆k,i−1/2| < |∆k,i+ 1
2
|

∆
k,i+ 1

2

∆x =
qk,i+1−qk,i

∆x otherwise

where k = 1, . . . ,m refers to the unknown variables of Q. Other possibilities are given by the well-known Van Leer or
Super Bee limiters, namely

∆k,i = φ(
qk,i − qk,i−1

qk,i+1 − qk,i
)
qk,i+1 − qk,i

∆x

with
φ(θ) =

θ + |θ|
1 + |θ|

for the Van Leer limiter and
φ(θ) = max(min(2θ, 1),min(θ, 2))+

for the Super Bee limiter. See [34] for more details.
Step 2: time evolution of the states QLi and QRi for a time ∆t/2. In this step, we propose to evolve in time the boundary

values QLi and QRi for a time ∆t/2 according to
Q̄Li = QLi −

1

2

∆t

∆x

(
F(QRi )− F(QLi )

)
− 1

2

∆t

∆x
Âi
(
QRi − QLi

)
,

Q̄Ri = QRi −
1

2

∆t

∆x

(
F(QRi )− F(QLi )

)
− 1

2

∆t

∆x
Âi
(
QRi − QLi

)
.

(14)

where Âi = A
(
Qni
)
. These formulas mimic both the classical MUSCL-Hancock method for the conservative part and the

Price-T scheme recalled in the previous section for the non conservative one.
Step 3: intermediate states at interfaces. In order to compute the intermediate states Qn+ 1

2

i±1/2 at interfaces, we now exploit
the Price-T formulas (10) and (11) with the evoluted values (Q̄Ri−1, Q̄

L
i ) and (Q̄Ri , Q̄

L
i+i). Therefore we obtain

Qn+ 1
2

i− 1
2

=
1

2
(Q̄Ri−1 + Q̄Li )− 1

2

∆t

∆x
(F(Q̄Li )− F(Q̄Ri−1))− 1

2

∆t

∆x
Âi− 1

2
(Q̄Li − Q̄Ri−1) (15)

7



and
Qn+ 1

2

i+ 1
2

=
1

2
(Q̄Ri + Q̄Li+1)− 1

2

∆t

∆x
(F(Q̄Li+1)− F(Q̄Ri ))− 1

2

∆t

∆x
Âi+ 1

2
(Q̄Li+1 − Q̄Ri ), (16)

where we set
Âi− 1

2
= A

(1

2
(Q̄Ri−1 + Q̄Li )

)
and Âi+ 1

2
= A

(1

2
(Q̄Ri + Q̄Li+1)

)
.

Step 4: new solution. At this stage, it would be tempting to update the solution using formula (12) with the new interme-
diate states, leading to

Qn+1
i =

1

2
(Qn+ 1

2

i− 1
2

+ Qn+ 1
2

i+ 1
2

)− 1

2

∆t

∆x
(F(Qn+ 1

2

i+ 1
2

)− F(Qn+ 1
2

i− 1
2

))− 1

2

∆t

∆x
Âi(Q

n+ 1
2

i+ 1
2

− Qn+ 1
2

i− 1
2

), (17)

with
Âi = A

(1

2
(Qn+ 1

2

i− 1
2

+ Qn+ 1
2

i+ 1
2

)
)
.

However, it was observed that in the conservative case A(Q) = 0 such a formula does not provide us with a �nite volume
conservative scheme, and in particular it does not reduce to the expected SLIC scheme associated with the Price-T �ux,
namely to

Qn+1
i = Qni −

∆t

∆x

(
Fslici+1/2 − Fslici−1/2

)
,

with Fslici+1/2 = Fforcei+1/2(Q̄Ri , Q̄
L
i+i) for all i. Refer to [38] for more details. This is of course not satisfactory since it is well-

known that non conservative schemes used to approximate conservative systems generally lead to wrong solutions. This
will be illustrated in the numerical experiments below.

In order to overcome this issue, easy calculations show that a correction term Li given by

Li =
F(Q̄Ri )− F(Q̄Li )

∆x
− F(QRi )− F(QLi )

∆x
,

and clearly approximating zero can be added in the update formula to recover the SLIC scheme in the conservative case.
More precisely, we simply suggest to replace (17) with

Qn+1
i =

1

2
(Qn+ 1

2

i− 1
2

+ Qn+ 1
2

i+ 1
2

)− 1

2

∆t

∆x
(F(Qn+ 1

2

i+ 1
2

)− F(Qn+ 1
2

i− 1
2

))− 1

2

∆t

∆x
Âi(Q

n+ 1
2

i+ 1
2

− Qn+ 1
2

i− 1
2

)− ∆t

2
Li, (18)

which concludes the description of our second-order centred scheme.

2.3 Numerical results
This section shows the numerical results given by the proposed numerical schemes in the elastic and viscoelastic cases.

At this stage, we consider academic test cases, namely three di�erent Riemann problems with initial data

Q(x, t = 0) =

{
QL if x < L/2
QR if x > L/2

where we recall that Q = (A,Au)t in the elastic case, Q = (A,Au,Ψ)t in the viscoelastic case and L is the length of the
blood vessel. Note that we will always use ΨL = ΨR = 0. No friction forces are accounted for. A more complex test case
of a network with 37 arteries will be considered in section 5.

The parameters and initial states used for the simulations are given in the following tables 1 and 2. As we will see and
as far as the elastic case is concerned, test 1 presents a left shock and a right rarefaction, test 2 has two rarefactions and test
3 two shocks.

The time step ∆t is de�ned at each time iteration by

∆t = CFL ∆x

max
i

(|ui|+ c̃i)

8



Parameter Value

pext 0 [Pa]
L 0.4 [m]
h0 0.5 × 10−3 [m]
r0 0.01 [m]
E 1.2 × 106

[
N
m2

]
ρ 1050

[
kg
m3

]
Table 1: Parameters for Riemann problems in sections 2.3 and 4.3.

Test AL uL AR uR Timeout

1 A0 0 2A0 0 0.013
2 2A0 −1 2A0 1 0.013
3 2A0 1 2A0 −1 0.013

Table 2: Values for area A, velocity u and �nal time for the proposed Riemann problems.

and we take CFL = 0.9. The sti� source term associated with the relaxation variable Ψ is solved exactly.
Before showing the results, we underline that the proposed relaxation approach to reformulate the viscoelastic equations

as an hyperbolic system with sti� source term introduces an error of order O(ε). Considering that the numerical scheme
approximates the solution with a consistency error O(∆xr) where r = 1 for the Price-T scheme and r = 2 for the MUSCL-
Hancock Price-T scheme, it is natural to choose ∆x in such a way that ε ≈ ∆xr . In practice, we follow the optimal choice
proposed in [25] and given by

ε =
O(1)∆xr

K(r)
with K(r) =

1− 2−
1
2

2r−
1
2 − 1

. (19)

It is important to note that, �xed the relation time and the maximum acceptable value for O(1), if we re�ne excessively the
mesh, namely we choose a small ∆x, then the formulation error overcomes the numerical one and consequently

εK(r)

∆xr
> O(1).

Since the error related to the choice of ε cannot be completely removed, it represents a limit to the accuracy we can obtain
when using a numerical method of order r on a mesh of size ∆x. Referring to [25], in general for the numerical computations
we takeO(1) = 15, and for each test we choose the values for the relaxation time and the mesh size in agreement with (19).

Elastic case. Figure 2 shows the numerical solutions for the reference area A/A0 and the �ux q = Au in the elastic case
(Γ = 0). We compared both �rst and second order method with mesh of M = 100 points, where the mesh size is ∆x = L

M ,
against the exact solution, which was computed using an exact Riemann solver [36]. For the MUSCL-Hancock scheme, the
Van Leer limiter was used. We note that both schemes are satisfying, in particular MUSCL-Hancock scheme approximates
the exact solution very well as expected.

In �gure 3 we exhibit the MUSCL-Hancock solution for test 1 using di�erent values for the mesh size. In particular we
take M = [62, 125, 250, 500, 1000, 2000] cells and illustrate that the numerical output converges to the exact solution.

Finally and for the sake of completeness, we point out in �gure 4 the importance of the correction term Li. As we already
observed, the MUSCL-Hancock Price-T scheme applied to a conservative system does not reduce to a conservative method
when we neglect Li. As a consequence, the numerical outcome could converge to a wrong solution. Indeed, when we do
not add the correction term, we clearly see that the approximate solution departs from the exact one.

Viscoelastic case. Figure 5 shows the results obtained in the viscoelastic case with Γ = 1 Pa s m and M = 200. We used
both �rst and second order scheme, with again Van Leer limiter for MUSCL-Hancock method. We insert also a reference
solution computed with the second-order MUSCL-Hancock scheme and a mesh with M = 2000 cells. Consequently, we

9



(a) Test 1 - Left shock, right rarefaction

(b) Test 2 - Two rarefactions

(c) Test 3 - Two shocks

Figure 2: Comparison among Price-T (blue symbol), MUSCL-Hancock (green symbol) and exact solution (red line). Reference area A/A0 (left) and �ux q
(right) for the Riemann Problems in table 2. Mesh with M = 100 cells, Γ = 0.
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(a) Test 1 - Left shock, right rarefaction

Figure 3: Converged mesh solution for the reference area A/A0 (left) and the �ow q (right) computed with MUSCL-Hancock method (dashed line) against
exact solution (red line). Test 1 of table 2, mesh with M = [62, 125, 250, 500, 1000, 2000] cells, Γ = 0.

(a) Test 1 (b) Test 2

(c) Test 3

Figure 4: Comparison among MUSCL-Hancock (green line), MUSCL-Hancock without correction term Li (black line) and exact solution (red dashed line).
Reference area A/A0 (left) and �ux q (right) for Riemann Problems in table 2. Mesh with M = 500 cells, Γ = 0.
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had to use a relaxation time ε of order O(10−6) according to condition (19). It is important to note that to take a �ner mesh
size implies the use of a smaller relaxation time according to this relation, with the consequence of a decreased time step
∆t and an increased number of iterations. Moreover, for a �xed relaxation time, the higher is the order of accuracy of the
method, the larger is the mesh size we have to take to satisfy condition (19). Thus, we could have used a �ner mesh if we
had only considered the Price-T scheme, as it is �rst-order accurate. Clearly, with a �xed mesh size, Price-T solution results
to be more di�usive than the second-order one.

Moreover, we note that the �rst-order outcome has already reached the boundaries at time t = 0.013s. For this reason,
we exhibit the solution for the �rst test case with an enlarged domain, in order to show that the transmissive boundary
conditions are not interfering with the results. We take the vessel length L = 0.6m and consequently we consider the initial
discontinuity at gate = 0.3m. Thus, in �gure 6 satisfying results are reported.

Finally, also for the viscoelastic case we insert a convergence test using a sequence of mesh with
M = [62, 125, 250, 500, 1000, 2000] cells. As initial conditions, we consider the �rst test case of table 2, using once again
the enlarged domain and relaxation time of order O(10−6).

3 Continuous sensitivity equations
In this section, we consider the continuous sensitivity equation method for computing the �rst-order sensitivities of our

elastic and viscoelastic models (6). We refer for instance the reader to [10] and [16] for more details about this method.
These equations will be exploited for uncertainty quanti�cation in sections 4.3 and 5.

Let us brie�y recall that when speaking of blood �ow in arteries and veins, sensitivity analysis is a crucial topic. Indeed,
acquiring experimental results can be very challenging and the values of the parameters considered in the numerical sim-
ulations can present uncertainties, not to mention the underlying modeling assumptions. It is therefore very important to
understand how the solution (�ow and pressure in particular) could transform when varying the parameters values.

In the following, we will denote by a the uncertain parameter and system (6) will be called the state system. Our main
objective is to derive the so-called sensitivity system associated with the derivative ofQwith respect to a that will be denoted
by Qa. To compute the sensitivity system we �rst take as hypothesis the smoothness of the solution and simply di�erentiate
the state equations with respect to a. It amounts to formally exchange the derivative with respect to a with the ones with
respect to space and time. As we will see, the obtained system is proved to be weakly hyperbolic. Then, we will consider
the possibility of having discontinuous state solutions Q and correct the sensitivity system accordingly by adding a Dirac
source term.

Elastic case. Let us di�erentiate system (3) with respect to a. After some calculations and exchanging the derivatives in
time and space with the ones with respect to a, we easily obtain the sensitivity equations{

∂tAa + ∂xqa = 0

∂tqa + ∂x
(
(c2 − u2)Aa + 2uqa + γaA

3
2

)
= −Rau−Rua.

(20)

Also note that di�erentiating (2) gives

pa(A,Aa) = pext,a + 3ρ
(
γa(
√
A−

√
A0) + γ

( Aa
2
√
A
− A0a

2
√
A0

))
+ 3ρaγ(

√
A−

√
A0).

Considering both the state equations (3) and the sensitivity equations (20) together gives a new system with four equations
and four unknowns. Its Jacobian matrix is

J =

(
Jel 0
R Jel

)
=


0 1 0 0

c2 − u2 2u 0 0
0 0 0 1

1
A

((
c2

2 + 2u2
)
Aa − 2uqa + Ac2γa

γ

)
1
A

(
2qa − 2uAa

)
c2 − u2 2u

 ,

with Jel the Jacobian matrix of the elastic model (3). Hence, the eigenvalues of the global system are still given by λ±e but now
with multiplicity two. Therefore, the strict hyperbolicity is immediately lost. Actually, it is easy to see that hyperbolicity

12



(a) Test 1

(b) Test 2

(c) Test 3

Figure 5: Price-T (blue symbol ’*’) and MUSCL-Hancock (green symbol ’o’) solution computed using a mesh with M = 200 cells, reference solution (red
line) with M = 2000 cells. Reference area A/A0 (left) and �ux q (right) for Riemann Problems in table 2, Γ = 1 Pa s m.
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(a) Test 1

Figure 6: Price-T (blue symbol ’*’) and MUSCL-Hancock (green symbol ’o’) solution computed using a mesh with M = 200 cells, reference solution (red
line) with M = 2000 cells. Reference area A/A0 (left) and �ux q (right) for Riemann Problems in table 2, Γ = 1 Pa s m.

(a) Test 1

Figure 7: Converged mesh solution for the reference areaA/A0 (left) and �ow q (right) for test 1 of table 2. Mesh withM = [62, 125, 250, 500, 1000, 2000]
cells, MUSCL-Hancock method, Γ = 1 Pa s m.

is also lost in general. Indeed, the global system turns out to be only weakly hyperbolic, which means that all eigenvalues
are real but no complete set of linearly independent eigenvectors exists, or equivalently the Jacobian matrix is not R-
diagonalizable. In this case the characteristic polynomial reads

p(x) = (x− λ−e )2(x− λ+
e )2,

hence the minimal polynomial should be at most of degree 2 in order to have distinct roots.
Thus, to prove that J is diagonalizable, we should have

(J− λ−e I4)(J− λ+
e I4) = 0

where I4 is the 4× 4 identity matrix. This is equivalent to write(
Jel − λ−e I2 0

R Jel − λ−e I2

)(
Jel − λ+

e I2 0
R Jel − λ+

e I2

)
=

=

(
(Jel − λ−e I2)(Jel − λ+

e I2) 0
R(Jel − λ+

e I2) + (Jel − λ−e I2)R (Jel − λ−e I2)(Jel − λ+
e I2)

)
= 0
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and in order to have this condition satis�ed, we should impose R(Jel − λ+
e I2) + (Jel − λ−e I2)R = 0. However, computing

its coe�cients shows that in general they are di�erent from zero. More precisely, we have

(R(Jel − λ+
e I2) + (Jel − λ−e I2)R)1,1 =

1

A
((
c2

2
+ 2u2)Aa − 2uqa +

Ac2γa
γ

) (21)

and

(R(Jel − λ+
e I2) + (Jel − λ−e I2)R)1,2 =

1

A
(2qa − 2uAa) = 2ua (22)

so that we would need ua = 0 by (22) and then Aa = 2Aγa/γ by (21). Both conditions are very speci�c and in general are
not true, which proves the weak hyperbolicity.

Viscoelastic case. Let us now turn to the viscoelastic case and di�erentiate (5) with respect to the uncertain parameter a.
After some computations, we obtain

∂tAa + ∂xqa = 0

∂tqa + ∂x

(
(c2 − u2)Aa + 2uqa + γaA

3
2

)
+
aΓa

2
∂xA+

aΓ

2
∂xAa−

− ζ
( 1

2
√
A
Aa∂xΨ +

√
A∂xΨa

)
− ζa
√
A∂xΨ = −Rau−Rua

∂tΨa − 1
ε∂xqa + 1

ε2 εa∂xq = − 1
εΨa + 1

ε2 εaΨ,

(23)

with ζ = Γ
ρA0

. Moreover, the derivative of the viscoelastic pressure reads

pa(A,Ψ, Aa,Ψa) =pext,a + 3ρ
(
γa(
√
A−

√
A0) + γ

( Aa
2
√
A
− A0a

2
√
A0

))
+ 3ρaγ(

√
A−

√
A0)−

− Γa
Ψ

A0

√
A

+ Γ
ΨA0a

A2
0

√
A

+ Γ
ΨAa

2A0

√
A3
− Γ

Ψa

A0

√
A
.

(24)

In the same way we did for the elastic system, it can be easily shown that the global system (5)-(23) is weakly hyperbolic
with real eigenvalues given by λ±v and λ0

v and multiplicity two.

For the sake of conciseness, we rewrite the global systems (3)-(20) for the elastic case and (5)-(23) for the viscoelastic
case in the compact form {

∂tQ + ∂xF(Q) + A(Q)∂xQ = S(Q)

∂tQa + ∂xFa(Q,Qa) + B(Q,Qa)∂xQ + A(Q)∂xQa = Sa(Q,Qa)
(25)

where in the new equation on Qa, we have B(Q,Qa) = 0 and

Qa =

(
Aa
qa

)
, Fa(Q) =

(
qa

(c2 − u2)Aa + 2uqa + γaA
3
2

)
, Sa(Q,Qa) =

(
0

−Rau−Rua

)
(26)

for the elastic model, and

Qa =

Aaqa
Ψa

 , Fa(Q) =

 qa
(c2 − u2)Aa + 2uqa + γaA

3
2

− 1
εqa + εa

ε2 q

 ,

B = ∂aA(Q) =

 0 0 0
aΓa

2 0 −ζ Aa

2
√
A
− ζa
√
A

0 0 0

 , Sa(Q,Qa) =

 0
−Rau−Rua
− 1
εΨa + 1

ε2 εaΨ

 (27)
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for the viscoelastic one. Note that the global viscoelastic system has two additional terms due to the non-conservative part
of the viscoelastic state system.

The case of discontinuous solutions. So far, it was implicitly assumed that the solutions had su�cient regularity to di�er-
entiate with respect to a and exchange the derivatives. However and at least in the elastic case, Q can be discontinuous in
practice (see for instance the numerical simulations above). In order to avoid the appearance of Dirac delta functions in the
sensitivity solution Qa whenever Q is not continuous, it was proposed in [8] and [10] to add a compensation term Ŝ(Q) of
the form

Ŝ(Q) =

Ns∑
k=1

δkρk (28)

where Ns is the number of discontinuities,
δk = δ(x− xk,s)

is the Dirac delta function centered in the position xs,k of the k-th discontinuity separating the states Q− and Q+, and ρk
is the amplitude of the correction for the k-th discontinuity given by

ρk(t) = σk,a
(
Q+ − Q−

)
. (29)

We refer for instance the reader to [17] and [10] and the references therein for more details. Finally, the compact forms of
the global systems are now given with clear notations by{

∂tQ + ∂xF(Q) + A(Q)∂xQ = S(Q)

∂tQ + ∂xFa(Q,Qa) + B(Q,Qa)∂xQ + A(Q)∂xQa = Sa(Q,Qa) + Ŝ(Q).
(30)

4 Centred numerical scheme for the continuous sensitivity equations
The aim of this section is to brie�y describe the Price-T and MUSCL-Hancock schemes applied to the sensitivity variables

Qa. The main di�erence with the general setting proposed in section 2 lies in the presence of the source term Ŝ(Q) in the
sensitivity equations. Note that the friction forces or the sti� source term associated with the relaxation variable Ψ are
considered using the same operator splitting method as for the state equations on Q. On the contrary, we handle Ŝ in a
di�erent way and take it into account at the same level as for the convective terms.

4.1 First-order Price-T scheme
Since we consider also the source term Ŝ(Q) for the sensitivity variables, we modify the updating formulae (10), (11) and

(12) in the following way:

Qn+ 1
2

a,i− 1
2

=
1

2
(Qna,i−1 + Qna,i)−

1

2

∆t

∆x
(Fa(Qni ,Q

n
a,i)− Fa(Qni−1,Q

n
a,i−1))−

− 1

2

∆t

∆x
B̂i− 1

2
(Qni − Qni−1)− 1

2

∆t

∆x
Âi− 1

2
(Qna,i − Qna,i−1) +

∆t

2
Ŝ
n

i− 1
2
,

Qn+ 1
2

a,i+ 1
2

=
1

2
(Qna,i + Qna,i+1)− 1

2

∆t

∆x
(Fa(Qni+1,Q

n
a,i+1)− Fa(Qni ,Q

n
a,i))−

− 1

2

∆t

∆x
B̂i+ 1

2
(Qni+1 − Qni )− 1

2

∆t

∆x
Âi+ 1

2
(Qna,i+1 − Qna,i) +

∆t

2
Ŝ
n

i+ 1
2
,

Qn+1
a,i =

1

2
(Qn+ 1

2

a,i− 1
2

+ Qn+ 1
2

a,i+ 1
2

)− 1

2

∆t

∆x
(Fa(Qn+ 1

2

i+ 1
2

,Qn+ 1
2

a,i+ 1
2

)− Fa(Qn+ 1
2

i− 1
2

,Qn+ 1
2

a,i− 1
2

))−

− 1

2

∆t

∆x
B̂i(Q

n+ 1
2

i+ 1
2

− Qn+ 1
2

i− 1
2

)− 1

2

∆t

∆x
Âi(Q

n+ 1
2

a,i+ 1
2

− Qn+ 1
2

a,i− 1
2

) +
∆t

2
Ŝ
n+ 1

2

i ,
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where Ŝ
n

i− 1
2

is the source term referred to the cells Ii−1 and Ii, while Ŝ
n+ 1

2

i to Ii. In agreement with formulae (28) and (29),
we suggest the following formulas,

Ŝ
n

i− 1
2

=
1

∆x

(
σ1a,i− 1

2
(Q∗i− 1

2
− Qni−1)δ1,i− 1

2
+ σ2a,i− 1

2
(Qni − Q∗i− 1

2
)δ2,i− 1

2

)
,

Ŝ
n+ 1

2

i =
1

∆x

(
σ1a,i(Q

∗,n+ 1
2

i − Qn+ 1
2

i− 1
2

)δ1,i + σ2a,i(Q
n+ 1

2

i+ 1
2

− Q∗,n+ 1
2

i )δ2,i

)
,

(31)

where for k = 1, 2, δk,i+1/2 = δk,i+1/2(Qni ,Q
n
i+1), δk,i = δk,i(Q

n+1/2
i−1/2 ,Q

n+1/2
i+1/2 ) are shock detectors, while σka,i+1/2 =

σka(Qni ,Q
n
i+1), σka,i = σka(Qn+1/2

i−1/2 ,Q
n+1/2
i+1/2 ) and Q∗i+1/2 = Q∗(Qni ,Q

n
i+1), Q∗i = Q∗(Qn+1/2

i−1/2 ,Q
n+1/2
i+1/2 ) respectively ap-

proximate the derivative with respect to a of the speed of propagation σk of the corresponding shock, and its left or right
state.

In order to evaluate these quantities and since in general the exact solution of a Riemann problem is not explicitly known
(at least for the viscoelastic system), we use the Harten-Lax-van Leer formalism applied to non conservative systems (see
[38] and [2]) to de�ne a HLL approximate Riemann solver. More precisely, if we denote QL and QR the left and right
Riemann initial states, we de�ne σk = σk(QL,QR) and Q∗ = Q∗(QL,QR) using the consistency relation

∆F + Â∆Q = σ1(Q∗ − QL) + σ2(QR − Q∗),

leading to

Q∗ =
∆F + Â∆Q + QLσ1 − QRσ2

σ1 − σ2
,

where we have used the classical notations ∆F = F(QR) − F(QL), ∆Q = QR − QL and Â is such that the consistency
condition

lim
QL,QR→Q

Â(QL,QR) = A(Q)

holds true. We simply suggest
Â = A(

1

2
(QL + QR)).

Before de�ning the speeds of propagation and the shock detectors, observe that using a HLL approximate Riemann solver is
the more natural way for the elastic system since the exact Riemann solution itself contains exactly two waves. Therefore,
we are not excluding any of them and the approach results to be complete (but approximate). On the other hand, for systems
with three or more waves we would neglect the middle ones. To avoid this problem, one could determine the intermediate
values exploiting an HLLC approach, refer for instance to [35, 10].

At last, for the elastic model, we propose to de�ne the speed of propagation as follows,

σ1 = min(uL − cL, uR − cR), σ2 = max(uL + cL, uR + cR),

refer to [13]. Therefore, the derivatives σ1a = ∂aσ1 and σ2a = ∂aσ2 will be

σ1a =

{
uaL − caL if σ1 = uL − cL
uaR − caR if σ1 = uR − cR

, σ2a =

{
uaL + caL if σ2 = uL + cL

uaR + caR if σ2 = uR + cR
,

with
ca =

1

2c

(3

2
γa
√
A+

3γ

4
√
A
Aa
)
.

Regarding the shock detectors, we refer for instance to [11] and we set

δ1,i− 1
2

=

{
1 if A∗

i− 1
2

> Ani−1

0 if A∗
i− 1

2

≤ Ani−1

, δ2,i− 1
2

=

{
1 if A∗

i− 1
2

> Ani

0 if A∗
i− 1

2

≤ Ani
,

δ1,i =

1 if A∗,n+ 1
2

i > A
n+ 1

2

i− 1
2

0 if A∗,n+ 1
2

i ≤ An+ 1
2

i− 1
2

, δ2,i =

1 if A∗,n+ 1
2

i > A
n+ 1

2

i+ 1
2

0 if A∗,n+ 1
2

i ≤ An+ 1
2

i+ 1
2

.
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4.2 MUSCL-Hancock Price-T scheme
Proceeding in a similar way, we revise the MUSCL-Hancock scheme proposed in section 2.2 to include the term Ŝ for

the sensitivity equations. First of all we have to modify the evolved boundary values (14), namely

Q̄La,i = QLa,i −
1

2

∆t

∆x

(
Fa(QRi ,Q

R
a,i)− Fa(QLi ,Q

L
a,i)
)
− 1

2

∆t

∆x
Â
n

i

(
QRa,i − QLa,i

)
− 1

2

∆t

∆x
B̂
n

i

(
QRi − QLi

)
+

∆t

2
Ŝi,

Q̄Ra,i = QRa,i −
1

2

∆t

∆x

(
Fa(QRi ,Q

R
a,i)− Fa(QLi ,Q

L
a,i)
)
− 1

2

∆t

∆x
Â
n

i

(
QRa,i − QLa,i

)
− 1

2

∆t

∆x
B̂
n

i

(
QRi − QLi

)
+

∆t

2
Ŝi,

with Ŝi evaluated as in (31) with left and right states QLi and QRi . Then, as we did for the Price-T scheme, we have to consider
the source term Ŝ for both the intermediate states Qn+ 1

2

a,i± 1
2

and the new solution Qn+1
i , leading to

Qn+ 1
2

a,i− 1
2

=
1

2
(Q̄Ra,i−1 + Q̄La,i)−

1

2

∆t

∆x
(Fa(Q̄Li , Q̄

L
a,i)− Fa(Q̄Ri−1, Q̄

R
a,i−1))−

− 1

2

∆t

∆x
B̂i− 1

2
(Q̄Li − Q̄Ri−1)− 1

2

∆t

∆x
Âi− 1

2
(Q̄La,i − Q̄Ra,i−1) +

∆t

2
Ŝ
n

i− 1
2
,

Qn+ 1
2

a,i+ 1
2

=
1

2
(Q̄Ra,i + Q̄La,i+1)− 1

2

∆t

∆x
(Fa(Q̄Li+1, Q̄

L
a,i+1)− Fa(Q̄Ri , Q̄

R
a,i))−

− 1

2

∆t

∆x
B̂i+ 1

2
(Q̄Li+1 − Q̄Ri )− 1

2

∆t

∆x
Âi+ 1

2
(Q̄La,i+1 − Q̄Ra,i) +

∆t

2
Ŝ
n

i+ 1
2
,

Qn+1
a,i =

1

2
(Qn+ 1

2

a,i− 1
2

+ Qn+ 1
2

a,i+ 1
2

)− 1

2

∆t

∆x
(Fa(Qn+ 1

2

i+ 1
2

,Qn+ 1
2

a,i+ 1
2

)− Fa(Qn+ 1
2

i− 1
2

,Qn+ 1
2

a,i− 1
2

))−

− 1

2

∆t

∆x
B̂i(Q

n+ 1
2

i+ 1
2

− Qn+ 1
2

i− 1
2

)− 1

2

∆t

∆x
Âi(Q

n+ 1
2

a,i+ 1
2

− Qn+ 1
2

a,i− 1
2

)− ∆t

2
Li +

1

2
∆tŜ

n+ 1
2

i ,

with

Li =
Fa(Q̄Ri , Q̄

R
a,i)− Fa(Q̄Li , Q̄

L
a,i)

∆x
−

Fa(QRi ,Q
R
a,i)− Fa(QLi ,Q

L
a,i)

∆x

and Ŝ computed as in (31).

4.3 Numerical results and uncertainty quanti�cation
This section shows the outcomes of the proposed numerical schemes applied to the sensitivity equations. In particular,

our aim is to illustrate the behavior of the solutions with respect to the emergence or disappearance of Dirac peaks when
the source term Ŝ is active or not. Despite the test cases considered here are academic, we believe that they provide a better
understanding of the in�uence of the source term Ŝ and its numerical approximation. As already said, a more realistic test
case of a complex network will be considered in section 5.

As far as the state variables are concerned, we consider the same Riemann problems as in section 2.3, with values listed
in table 2. Regarding the sensitivity variables and choosing the uncertain parameter a, we will simply have

QaL = ∂aQL, QaR = ∂aQR.

In particular, we study the sensitivity of the solution with respect to the initial values of the cross-sectional area, namely
we take a = AL and a = AR. Furthermore, as we mentioned in the introduction, an important parameter in this �eld is
the arterial sti�ness, as it associated to many cardiovascular illnesses. Thus, we consider as uncertain parameters also the
vessel thickness h0, the radius r0 of the cross-sectional area at equilibrium and the Young modulus E, as they are all related
to the arterial sti�ness.

Therefore, using for instance a = AR, we obtain

QaL =

0
0
0

 and QaR =

1
0
0

 .
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(a) Without Ŝ (b) With Ŝ

Figure 8: Comparison among Price-T (blue symbol ’*’), MUSCL-Hancock (green symbol ’o’) and exact solution (red line). Derivative of the area Aa and
�ux qa with a = AL for test 1 of table 2. Mesh with M = 200 cells, Γ = 0.

(a) Without Ŝ (b) With Ŝ

Figure 9: Comparison among Price-T (blue symbol ’*’), MUSCL-Hancock (green symbol ’o’) and exact solution (red line). Derivative of the area Aa and
�ux qa with a = AR for test 1 of table 2. Mesh with M = 200 cells, Γ = 0.

Observe that if we take a 6= AR and a 6= AL, QaL and QaR will be zero vectors.
If not speci�ed, we underline that we used a CFL condition of CFL = 0.9.
Elastic Case. In all the graphics we insert the exact solution, which was computed using an exact Riemann solver, refer

to Chifari’s thesis [11]. Figures 8 - 12 correspond to test 1 of table 2 and show the outputs with and without the numerical
source term Ŝ for the di�erent choices of a. As expected, we �rst observe that neglecting the correction term Ŝ implies the
presence of spikes at the position of the discontinuities of the state variables. For a = AL and a = AR, the presence of
Ŝ removes completely the spikes and gives the sought solution. Instead, for a = h0, a = r0 and a = E, we note very
little spikes on the sensitivity variable Aa in correspondence of the discontinuity on A. In that case, our discretization of Ŝ
appears to over-compensate the initial spikes, in the sense that it is now in the opposite direction with respect to the �gures
in which we neglected Ŝ.

Next, we aim to illustrate empirically that the MUSCL-Hancock solution converges to the exact one when we consider
the correction term Ŝ and we re�ne the mesh at the same time. Therefore, we use a mesh with M = 2000 cells to compare
the two di�erent outcomes. Indeed, in �gure 13 we can see that the MUSCL-Hancock approximation is very satisfying,
only in graphics 13.(c), 13.(d) and 13.(e) small spikes remain in correspondence of the shock of the cross-sectional area A.
Moreover, there is a minor clipping of extreme values which is expected to further reduce re�ning the mesh.

Figure 14 shows the results for test 2 of table 2. Since in this Riemann problem there are two rarefactions, there is no
need to insert the source term Ŝ in the sensitivity equations, as it would give the same solution. Let us also observe that in
�gures 14.c, 14.d and 14.e, there is a clipping of extreme values.
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(a) Without Ŝ (b) With Ŝ

Figure 10: Comparison among Price-T (blue symbol ’*’), MUSCL-Hancock (green symbol ’o’) and exact solution (red line). Derivative of the area Aa and
�ux qa with a = h0 for test 1 of table 2. Mesh with M = 200 cells, Γ = 0.

(a) Without Ŝ (b) With Ŝ

Figure 11: Comparison among Price-T (blue symbol ’*’), MUSCL-Hancock (green symbol ’o’) and exact solution (red line). Derivative of the area Aa and
�ux qa with a = r0 for test 1 of table 2. Mesh with M = 200 cells, Γ = 0.

(a) Without Ŝ (b) With Ŝ

Figure 12: Comparison among Price-T (blue symbol ’*’), MUSCL-Hancock (green symbol ’o’) and exact solution (red line). Derivative of the area Aa and
�ux qa with a = E for test 1 of table 2. Mesh with M = 200 cells, Γ = 0.
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(a) a = AL (b) a = AR

(c) a = h0 (d) a = r0

(e) a = E

Figure 13: Comparison between MUSCL-Hancock coupled with correction term Ŝ (green symbol ’o’) and exact solution (red line). Derivative of the area
Aa and �ux qa for test 1 of table 2. Mesh with M = 2000 cells, Γ = 0.
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(a) a = aL (b) a = aR

(c) a = h0 (d) a = r0

(e) a = E

Figure 14: Comparison between MUSCL-Hancock (green symbol) and exact solution (red line). Derivative of area Aa and �ux qa for test 2 of table 2. Mesh
with M = 200 cells, Γ = 0.
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(a) Without Ŝ (b) With Ŝ

Figure 15: Comparison between MUSCL-Hancock (green symbol ’o’) and exact solution (red line). Derivative of the area Aa and �ux qa with a = AL for
test 3 of table 2. Mesh with M = 200 cells, Γ = 0, CFL = 0.5.

(a) Without Ŝ (b) With Ŝ

Figure 16: Comparison between MUSCL-Hancock (green symbol ’o’) and exact solution (red line). Derivative of the area Aa and �ux qa with a = AR for
test 3 of table 2. Mesh with M = 200 cells, Γ = 0, CFL = 0.5.

Finally, �gures 15 - 19 show the outcomes for test 3 of table 2. For this case we used CFL = 0.5 in order to be sure that
the numerical solution would reach the exact plateau in the star region. Regarding the cases with a = AL and a = AR,
we observe that there are no more spikes with the source term Ŝ. In 17.(b), 18.(b) and 19.(b), spikes are much smaller and
compared to test 1, they go in the same direction as without Ŝ.

Viscoelastic Case. Let us �rst recall that in this case there is no need to add the source term Ŝ to the sensitivity equations
as the state variables do not present discontinuities. In all the graphics we insert a reference solution obtained with the
MUSCL-Hancock method and a mesh of M = 2000 cells.

Outcomes of test 1 of table 2 for the derivative of the cross-sectional area A and the �ow q are given in �gure 20. For
this Riemann problem we compare the Price-T and MUSCL-Hancock solution using a mesh with M = 200 cells. Clearly,
being �rst and second-order accurate respectively, the Price-T outcomes are more di�usive than the MUSCL-Hancock ones.
Taking a = AL and a = AR and comparing the elastic and viscoelastic outcomes (�gures 8 - 9 and 20.(a) - 20.(b)), we observe
that the sensitivity variables present analogous behaviours, even if in the latter case they are more di�usive. Whereas, to
take into consideration a = h0, a = r0 and a = E leads to more obvious dissimilarities, see �gures 10 - 12 for the
elastic case, 20.(c) - 20.(e) for the viscoelastic one. Indeed, in the viscoelastic sensitivity solutions we note low and wide
"spikes" in correspondence of the shocks of the elastic state variables. They go in the same direction of the spikes of the
elastic sensitivities, which are present when we neglect the source term Ŝ. Whereas, concerning rarefactions, elastic and
viscoelastic sensitivity variables exhibit similar behaviours.

Analogous considerations apply to the Riemann problems 2 and 3 of table 2. For these two cases we consider only
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(a) Without Ŝ (b) With Ŝ

Figure 17: Comparison between MUSCL-Hancock (green symbol ’o’) and exact solution (red line). Derivative of the area Aa and �ux qa with a = h0 for
test 3 of table 2. Mesh with M = 200 cells, Γ = 0, CFL = 0.5.

(a) Without Ŝ (b) With Ŝ

Figure 18: Comparison between MUSCL-Hancock (green symbol ’o’) and exact solution (red line). Derivative of the area Aa and �ux qa with a = r0 for
test 3 of table 2. Mesh with M = 200 cells, Γ = 0, CFL = 0.5.

(a) Without Ŝ (b) With Ŝ

Figure 19: Comparison between MUSCL-Hancock (green symbol ’o’) and exact solution (red line). Derivative of the area Aa and �ux qa with a = E for
test 3 of table 2. Mesh with M = 200 cells, Γ = 0, CFL = 0.5.
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MUSCL-Hancock solution with M = 200 cells, as Price-T outcome converges to it decreasing the mesh size. In particular,
we insert the outputs for test 2 in �gure 21. The viscoelastic sensitivity outcome shows a similar behaviour to the one of the
elastic sensitivities, even if much more di�used. This was expected as the elastic state variables present only rarefactions in
this test case, and thus the solution is regular enough.

Finally, in �gure 22 the results for test 3 are reported. Being this test a two-shocks Riemann Problem, once again we
note that for a = h0, a = r0 and a = E the elastic and viscoelastic sensitivity outcomes are quite di�erent. Indeed, when
we do not consider Ŝ, the big spikes present in the elastic sensitivities are in correspondence to the low and wide "spikes"
we note in the viscoelastic outcomes. Whereas, for a = AL and a = AR, the solutions of the two sensitivity systems are
similar, even if the viscoelastic output is more di�used.

Uncertainty quanti�cation. Now we want to start exploiting our work setting based on sensitivity analysis for uncertainty
quanti�cation. Recall that the main aim of uncertainty quanti�cation is to compute con�dence intervals. This could be done
of course using probabilistic methods like Monte-Carlo, but at the price of a much higher computational cost compared to
deterministic approach proposed here. For more details about this kind of methods, see for instance [17] and the references
therein.

Given a random variable X , its con�dence interval CIX is de�ned by

CIX = [µX − kσX , µX + kσX ],

where µX and σX respectively denote the mean and standard deviation of X . The value of k regulates the amplitude of
the interval. For instance for Gaussian random variables, k = 1.96 means a 95% con�dence interval. Sensitivity variables
comes into play to easily compute an estimate of µX and σ2

X , as we show now. Note that in practice, the random variable
X will be either the area A, or the �ow q, or the pressure p, while the randomness of X comes from the uncertain feature
of one or several parameters ai. We will denote by M the number of uncertain parameters and they will be represented by
the vector a = (a1, ..., aM )t.

Let µa and σa respectively be the average and the covariance matrix of the uncertain vector a,

µa =

µa1

...
µaM

 and σa =


σ2
a1

cov(a1, a2) . . . cov(a1, aM )
cov(a1, a2) σ2

a2
. . . cov(a2, aM )

...
...

. . .
...

cov(a1, aM ) . . . . . . σ2
aM

 ,

with µai the average of the i-th uncertain parameter and σ2
ai its variance. In order to estimate the mean and standard

deviation of X , we use a Taylor expansion for X around the mean of a, namely

X(a) = X(µa) +

M∑
i=1

(ai − µai)Xai(µai) + o(||a||2),

where Xai is the derivative of X with respect to the i-th uncertain parameter, that is to say what we have called the
sensitivity variable with respect to ai. To �rst-order and taking the average, we get

µX = E[X(a)] = X(µa) +

M∑
i=1

Xai(µa)E[ai − µai ] = X(µa).

Indeed, recall that E[ai − µai] = 0 and observe that X(µai) and Xai(µai) are not random variables. As far as the variance
is concerned, we �nd to �rst-order

σ2
X = E[(X(a)− µX)2] = E

[( M∑
i=1

Xai(µa)(ai − µai)
)2]

=

=

M∑
i=1

X2
ai(µa)E[(ai − µai)2] +

M∑
i,j=1
i 6=j

Xai(µa)Xaj (µa)E[(ai − µai)(aj − µaj )].
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(a) a = aL (b) a = aR

(c) a = h0 (d) a = r0

(e) a = E

Figure 20: Price-T (blue symbol ’*’) and MUSCL-Hancock (green symbol ’o’) solution computed using a mesh with M = 200 cells, reference solution (red
line) with M = 2000 cells. Derivative of the area Aa and �ux qa for test 1 of table 2. Γ = 1 Pa s m.
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(a) a = aL (b) a = aR

(c) a = h0 (d) a = r0

(e) a = E

Figure 21: MUSCL-Hancock solution computed using a mesh with M = 200 cells (green symbol ’o’) and with M = 2000 cells (red line). Derivative of
the area Aa and �ux qa for test 2 of table 2. Γ = 1 Pa s m.
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(a) a = aL (b) a = aR

(c) a = h0 (d) a = r0

(e) a = E

Figure 22: MUSCL-Hancock solution computed using a mesh with M = 200 cells (green symbol ’o’) and with M = 2000 cells (red line). Derivative of
the area Aa and �ux qa for test 3 of table 2. Γ = 1 Pa s m.
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Finally, we have obtained the following �rst-order estimates for µX and σ2
X ,

µX = X(µa), σ2
X =

M∑
i=1

σ2
aiX

2
ai +

M∑
i,j=1
i 6=j

XaiXaj cov(ai, aj). (32)

Note that these formulas require to evaluate only once the state and sensitivity variables at the mean values of the uncertain
parameters, which is really inexpensive compared to Monte-Carlo methods. We refer for instance to [10, 17] for more details.

Let us now present the numerical results. As uncertain parameters, we consider the ones that characterize the mechanical
and geometrical properties of the vessels, i.e. the vessel thickness h0, the radius at equilibrium r0 and the Young modulus
E, but also the the Riemann initial values for the area AL and AR. We suppose all the parameters to be uncorrelated and,
following the works of Petrella et al. [29] and Alastruey et al. [1], for each vessel we assume h0, r0 and E to be respectively
a�ected by an error of 2.5%, 3.5% and 5%. Finally, for AL and AR we take an error of 0.1%. Namely, we considered
σa = diag((0.1%AL)2, (0.1%AR)2, (2.5%h0)2, (3.5%r0)2, (5%E)2).

In the following pictures, we show graphics for the average and the average plus/minus twice the standard deviation of
the area A and the �ow q, as well as four samples. For the elastic model, outcomes with and without the correction term Ŝ
are exhibited. Price-T and MUSCL-Hancock schemes are considered.

Elastic Case. Starting with test 1, in �gures 23 and 24 we note that our con�dence intervals are very satisfying in smooth
regions. As expected, we observe large spikes near discontinuities when we do not take Ŝ into account. They disappear if we
consider the correction term, however the con�dence intervals are very narrow and the samples may fall outside. Note also
the dependency of the shock speed with respect to the uncertain parameters has not been taken into account, which may
cause errors, see for instance [10] for more details. Regarding the di�erences between the two numerical methods, we notice
that the spikes of the Price-T are much smaller, which is in agreement with the sensitivities showed previously. Moreover, in
correspondence of the head of the rarefaction, the Price-T solution exhibits little spikes which are emphasized by MUSCL-
Hancock method. This could be related to the clipping of extreme values of the Price-T sensitivities. Observe also that the
con�dence intervals obtained with the Price-T scheme are more di�usive than MUSCL-Hancock, which is expected due to
the numerical di�usion. However, let us also keep in mind that our approximations of the mean and variance for computing
the con�dence intervals are �rst-order, which may question the use of MUSCL-Hancock for the sensitivity equations.

Next in �gure 25 we �nd the results of test 2 with 2-rarefaction waves. We see that the samples fall inside the predicted
con�dence intervals. On the other hand, we observe small spikes in correspondence of the heads of the rarefactions that
re�ect the behavior of the sensitivity variables.

Finally �gure 26 show the outputs of Test 3. If not considering Ŝ entails the presence of large spikes in presence of shock,
adding the correction term completely remove them. However, as we observed for test 1, the samples could fall outside of
the con�dence intervals when there are discontinuous solutions.

Finally, we can conclude this �rst batch of results saying that in general the sensitivity variables provide good con�dence
intervals, especially when the solutions are smooth. Moreover, recall that the computational cost is very low with respect to
probabilistic method as Monte-Carlo. Again, while this scheme can require thousands of solutions of the state equations, our
method needs only one solution of the state and as many solutions of the sensitivity equations as the number of uncertain
parameters.

Viscoelastic case. In �gures 27 and 28 we insert the results for test 1, for which we used respectively the Price-T and
MUSCL-Hancock scheme. Let us recall that in this case there is no need to consider the correction term Ŝ, as the viscoelastic
state variables do not present shocks. Contrarily to the elastic system, now we do not have excessively large spikes. Solutions
are smooth and the samples fall inside the predicted con�dence intervals. Comparing the results obtained with the �rst and
second-order scheme, we can do analogous observations to the ones for the elastic system. The con�dence interval produced
by the MUSCL-Hancock can be considered better as the ones of the Price-T scheme are more di�usive.

Similar considerations apply to tests 2 and 3, in graphics 29 and 30. In general for the viscoelastic system we do not have
the problem of samples falling outside the con�dence intervals, with the exception of the 2-shock case. Indeed, only one
of the samples is not contained by the con�dence interval for the cross-sectional area A. However, this happens only in a
minor zone of the solution and with an error of order O(10−8).
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(a) without Ŝ (b) with Ŝ

(c) without Ŝ (d) with Ŝ

Figure 23: Test 1 with Price-T scheme. Average and Average plus and minus twice the standard deviation in black. Four samples in magenta dashed line.
Graphics for A in (a) and (b), for q in (c) and (d). M = 500 and Γ = 0.
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(a) without Ŝ (b) with Ŝ

(c) without Ŝ (d) with Ŝ

Figure 24: Test 1 with MUSCL-Hancock scheme. Average and Average plus and minus twice the standard deviation in black. Four samples in magenta
dashed line. Graphics for A in (a) and (b), for q in (c) and (d). M = 500 and Γ = 0.

Figure 25: Test 2 MUSCL-Hancock schemes. Average and Average plus and minus twice the standard deviation in black. Four samples in magenta dashed
line. Graphics for A in (a) and (c), for q in (b) and (d). M = 500 and Γ = 0.
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(a) without Ŝ (b) with Ŝ

(c) without Ŝ (d) with Ŝ

Figure 26: Test 3 with MUSCL-Hancock scheme. Average and Average plus and minus twice the standard deviation in black. Four samples in magenta
dashed line. Graphics for A in (a) and (b), for q in (c) and (d). M = 500 and Γ = 0.

Figure 27: Test 1 with Price-T scheme. Average and average plus and minus twice the standard deviation in black line for cross-sectional area A (left) and
�ow q (right). Four samples in magenta dashed line. M = 500 cells and Γ = 1 Pa m s.
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Figure 28: Test 1 with MUSCL-Hancock scheme. Average and average plus and minus twice the standard deviation in black line for cross-sectional area A
(left) and �ow q (right). Four samples in magenta dashed line. M = 500 cells and Γ = 1 Pa m s.

Figure 29: Test 2 with MUSCL-Hancock scheme. Average and average plus and minus twice the standard deviation (black line) for cross-sectional area A
(left) and �ow q (right). Four samples in magenta dashed line. M = 500 cells and Γ = 1 Pa m s.

Figure 30: Test 3 with MUSCL-Hancock scheme. Average and average plus and minus twice the standard deviation (black line) for cross-sectional area A
(left) and �ow q (right). Four samples in magenta dashed line. M = 500 cells and Γ = 1 Pa m s.
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Figure 31: Idealised model for vessel junction (N = 3).

5 Numerical simulation of a human arterial network
The main objective of this section is to model and simulate a complex network made of 37 arteries. As a �rst step, it is

necessary to propose a numerical treatment of the junctions between two or several arteries, considering both the state and
the sensitivity equations.

5.1 Treatment of the junctions
As just motivated, we want to explain how to treat the presence of junctions points among vessels. For the sake of

simplicity, we will illustrate in more details the cases of two and three vessels but the strategy can be extended to an
arbitrary number, for more details we refer for instance to [24] and [26].

In the following, we will assume that our network of vessels is represented by a �nite collection of incoming and outgoing
directed arcs in one space dimension, which are connected by nodes and aligned in the same direction.

Considering N vessels sharing a node as represented in �gure 31 for N = 3,{
∂tQk + ∂xF(Qk) + A(Qk)∂xQk = S(Qk)

Qk(x, 0) = Q1D
k

(33)

with k = 1, . . . , N , where Q1D
k represents the constant initial value in the k-th vessel. Waves with negative speed in

incoming vessels and positive speed in outgoing vessels are expected to develop at the node, leading to the occurrence of N
intermediate states denoted by Q∗k . These states represent the traces of the solution at the node in each vessel, and should
be connected to the initial states Q1D

k by (approximate) nonlinear waves. In the following and for the sake of simplicity, we
will always consider that

Q1D
k =

A1D
k

q1D
k

Ψ1D
k

 and Q∗k =

A∗kq∗k
Ψ∗k

 ,

being implied that, unless otherwise stated, the last component Ψ should not be considered when dealing with the elastic
system.

In order to de�ne the N unknown states Q∗k , we suggest to impose

• the continuity of the mass �ux q = Au through the junction,

• the continuity of the total pressure p+ 1
2ρu

2 through the junction,

• the constancy of the generalized Riemann invariants seen in section 1 in each vessel.
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Note that the continuity of the total pressure is nothing but the Bernoulli relation which is easily recovered from the state
equations assuming that the �ow is incompressible (A is constant) and stationary at the junction. As far as the constancy of
the generalized Riemann invariants is concerned, it means implicitly that the nonlinear waves created at the junctions and
propagating in the vessels are rarefaction waves. Then, for N = 2 we obtain the following system

A∗1u
∗
1 = A∗2u

∗
2,

p(A∗1,Ψ
∗
1) + 1

2ρu
∗2
1 = p(A∗2,Ψ

∗
2) + 1

2ρu
∗2
2

A∗
k

ε + Ψ∗k =
A1D

k

ε + Ψ1D
k , k = 1, 2,

u∗1 +
∫ A∗

1 c̃(A)
A dA = u1D

1 +
∫ A1D

1 c̃(A)
A dA, (left rarefaction),

u∗2 −
∫ A∗

2 c̃(A)
A dA = u1D

2 −
∫ A1D

2 c̃(A)
A dA, (right rarefaction),

(34)

whereas, if we have a single incoming vessel that divides into two di�erent outgoing ones (N = 3), we will have three more
equations, namely 

A∗1u
∗
1 =

3∑
k=2

A∗ku
∗
k,

p(A∗1,Ψ
∗
1) + 1

2ρu
∗2
1 = p(A∗k,Ψ

∗
k) + 1

2ρu
∗2
k , k = 2, 3,

A∗
k

ε + Ψ∗k =
A1D

k

ε + Ψ1D
k , k = 1, 2, 3,

u∗1 +
∫ A∗

1 c̃(A)
A dA = u1D

1 +
∫ A1D

1 c̃(A)
A dA, (left rarefaction),

u∗k −
∫ A∗

k c̃(A)
A dA = u1D

k −
∫ A1D

k c̃(A)
A dA, k = 2, 3 (right rarefaction).

(35)

Note that in the �rst equation of system (35) the �ux in the incoming vessel has to be equal to the sum of the �uxes in the
two outgoing vessels. Instead the pressure is assumed to be the same in all three vessels, as we can see from the second
equation.

Linearization and sensitivity variables. It is observed that the proposed coupling conditions are highly nonlinear due
to the integral terms, which poses di�culties to compute explicitly the intermediate states, but also to de�ne the coupling
conditions for the sensitivity variables. With this in mind, we suggest to linearize (34) and (35). In the spirit of pressure
relaxation methods, see for instance the pioneering work [22, 30], or more recently [9], we suggest to replace the real wave
speed c̃(A) by

c̃(A) =
ā

A
,

where ā is a constant de�ned by the so-called sub-characteristic condition

ā = max
k

(A1D
k c̃(Q1D

k )).

Therefore, relations (34) become

A∗1u
∗
1 = A∗2u

∗
2,

p(A∗1,Ψ
∗
1) + 1

2ρu
∗2
1 = p(A∗2,Ψ

∗
2) + 1

2ρu
∗2
2

A∗
k

ε + Ψ∗k =
A1D

k

ε + Ψ1D
k , k = 1, 2,

u∗1 − ā
A∗

1
= u1D

1 − ā
A1D

1
, (left rarefaction),

u∗2 + ā
A∗

2
= u1D

2 + ā
A1D

2
, (right rarefaction),

(36)

and analogously for system (35). Therefore and compared to [26], our procedure to couple two or more vessels is simpler.
We highlight that it is important to reduce the computational cost for the junctions as they would be the most expensive part
when computing the outputs of a network. In addition and as we will see in the numerical experiments, the simpli�cation
gives good results.
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At last, it also allows to easily obtain the coupling conditions also for the sensitivity variables by di�erentiating the
linearized conditions (36) with respect to the parameter a. Therefore for N = 2 we write
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∗
a1 +A∗a1u

∗
1 = A∗2u

∗
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∗
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∗
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∗
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∗
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∗
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∗
2, A

∗
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∗
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∗
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ak
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k
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A1D
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k

ε2 εa + Ψ1D
ak k = 1, 2,

u∗a1 + ā
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1
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1
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A∗2
2
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A1D

2
2A1D

2a , (right rarefaction)

(37)

while, for N = 3:
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k
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A1D

k
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(38)

Note that we have done a further simpli�cation by assuming that a is independent from the uncertain parameter a.
Remark. For the numerical computations, the above-mentioned linearization procedure to simplify the coupling conditions
was used for the elastic state and sensitivity variables as well. However, we highlight that, in this case, relations (36) are not
reduced to the classical ones we would have if we had used the elastic Riemann invariants I−e = u+ 4c and I+

e = u− 4c.
See [29] for further details.

Numerical illustrations. Here we illustrate the numerical outcomes obtained with our implementation of the junctions.
We want to compare the results given by a numerical simulation considering two identical vessels linked by a junction and
the one considering a unique equivalent vessel. This academic test case is useful to judge the e�ciency of the strategy
proposed to couple the vessels is e�cient or not. We will also consider a test case with three vessels.

Let us brie�y describe the boundary conditions. Regarding the left boundary condition, we impose an inlet �ow given
by

qbc = q̂e−10000(t−0.025)2

where q̂ = 100 ml s−1, and we de�ne the missing area and relaxation variable by exploiting the continuity of Riemann
invariants, which leads to the following system,{

F1(A∗,Ψ∗) = u1 + ā
A1
− u∗ − ā

A∗ = 0

F2(A∗,Ψ∗) = A1

ε + Ψ1 − A∗

ε −Ψ∗ = 0.
(39)

Here the subscript 1 refers to the value of the �rst cell. This system can be solved with the Newton-Rhapson Method.
Regarding the sensitivity variables, we di�erentiate (39) to obtain:{

Fa1(A∗,Ψ∗, A∗a,Ψ
∗
a) = ua1 − ā

A1
2Aa1 − u∗a1 + ā

A∗2A
∗
a = 0

Fa2(A∗,Ψ∗, A∗a,Ψ
∗
a) = Aa1

ε −
A1

ε2 εa + Ψa1 − A∗
a1

ε + A∗

ε2 εa −Ψ∗a = 0

The right boundary conditions are classical transmissive conditions.
The parameters of the vessels under consideration are given in the table below. More precisely, for the parameters of the

two connected vessels we used the ones of vessels v2 and v3, and for the equivalent vessel we do refer to v1. The missing
parameters are taken from table 1. Here we are also adding the friction forces with µ = 2.5mPa S.

As initial condition for the state variables we used a Gaussian, namely

Q =

Aq
Ψ

 =

A0(1 + αe−β(x−gate))
0
0

 . (40)

36



Vessel name L [m] r0 [m] h0 [m] Γ [Pa s m]

v1 0.04 0.01 5.0 × 10−4 1.0
v2 0.02 0.01 5.0 × 10−4 1.0
v3 0.02 0.01 5.0 × 10−4 1.0
v4 0.02 0.001 5.0 × 10−5 3.0

Table 3: Parameters for di�erent vessels in subsection (5.1).

with α = 0, β = 10000. Therefore for the sensitivity variables we imposed

Qa =

Aaqa
Ψa

 =

A0a(1 + αe−β(x−gate))
0
0

 . (41)

We show the results obtained with the MUSCL-Hancock scheme in the viscoelastic case. We inserted the results for the
�ow and pressure in �gure 32. In 33, 34 and 35 we show the outputs for the sensitivity variables obtained with respectively
a = h, a = r0 and a = E. Note that when we di�erentiate the sensitivity equations with respect to the the radius r0, we are
also considering uncertainty on the initial condition as it depends on r0. We plotted the results for three di�erent times with
MUSCL-Hancock scheme. Even if linearized coupling conditions are used, one can be satis�ed with the results in spite of
using a coarse mesh. Regarding the sensitivities, the outputs seem to be slightly worse than the ones for �ow and pressure,
especially at time t = 0.068. Since the sensitivity equations are derived from the state ones, an imprecision in the latter will
be re�ected from the sensitivity. Thus, the error will be ampli�ed as we are adding two of them: one from the state and one
from our modeling of the junctions.

To be thorough, in 36, 37, 38 and 39 we also included the graphics obtained considering one mother vessel (v2) which
splits up into two daughter vessels (v3 and v4). Note that v3 has the same characteristic of v2, while the viscoelastic parameter
Γ of v4 is three times v3’s Γ. Also the radius r0 and the vessel thickness h are much smaller. This will entail that the blood
�ow in v4 will be minor than the one of v3 as we can see in (36). We remark that when considering three vessels, at the
junction we are imposing the �ow (or its derivative) of the mother vessel to be equal to the sum of the �ows (or the sum of
the derivatives of the �uxes) of the two daughter vessels. We can observe that these two facts seem to be ful�lled both from
the state and the sensitivity variables.

5.2 A human arterial network
Following the works of Matthys et al. [24] and Alastruey et al. [1], in this subsection we aim to model an arterial

network for both the state and the sensitivity equations. They constructed a 1 : 1 in-vitro model using silicone tubes for the
37 largest arteries of the systemic circulation, a pump to simulate the heart �ow and terminal resistance tubes to represent
the peripheral circulation. In particular they created a closed loop hydraulic system connecting these tubes to an over�ow
reservoir that represents a constant venous pressure. For the values of the parameters we refer the reader to [24]. We
underline that they were measured directly from the in-vitro model, thus no data �tting is involved. Note that compared
to [1], we will use the same parameters values with the exception of the radius which we kept constant, taking it as the
average between the initial and �nal values for each vessel. Regarding the spatial discretization, in general we used ∆x = 2
cm with the exception of the vessels shorter than 1.5 cm, for which we used only one cell. In this way we were legitimized
to use ε = 10−3. Moreover we took CFL = 0.9 and consequently we had a time step around ∆t = 700µs in the elastic case,
7 times larger than the one used in [1]. Instead in the viscoelastic case we had ∆t = 400µs, 20 times larger. For the initial
conditions, once again we used (40) and (41). Finally, since we want to obtain periodic solutions, we show graphics from the
14th cardiac cycle, with period T = 0.827s (refer to [29] for more details).

Boundary conditions. In order to simulate the heart, the heart �ow showed in �gure (40) is imposed at the beginning
of the ascending aorta. Then to �nd also the boundary values for the area and the relaxation variable, we exploit the right
Riemann invariants as before. Regarding the right boundary conditions for terminal vessels, we follow [1] and we consider
the �ow

q∗ =
p(A∗,Ψ∗)− pout

Rp
(42)
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Figure 32: Flow and pressure obtained with MUSCL-Hancock method. Red symbol ’o’ for the unique vessel, green and magenta symbol ’x’ for the two
coupled vessels. Mesh with M = 120 cells for the unique vessel.

Figure 33: Derivative of �ow and pressure with respect to a = h0 obtained MUSCL-Hancock method. Red symbol ’o’ for the unique vessel, green and
magenta symbol ’x’ for the two coupled vessels. Mesh with M = 120 cells for the unique vessel.
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Figure 34: Derivative of �ow and pressure with respect to a = r0 obtained with MUSCL-Hancock method. Red symbol ’o’ for the unique vessel, green and
magenta symbol ’x’ for two coupled vessels. Mesh with M = 120 cells for the unique vessel.

Figure 35: Derivative of �ow and pressure with respect to a = E obtained with MUSCL-Hancock method. Red symbol ’o’ for the unique vessel, green and
magenta symbol ’x’ for two coupled vessels. Mesh with M = 120 cells for the unique vessel.
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Figure 36: Flow and pressure obtained with MUSCL-Hancock method. Green, blue and magenta symbols represent v2, v3 and v4 respectively. Mesh with
M = 60 cells for each vessel.

Figure 37: Derivative of �ow and pressure with respect to a = h0 obtained MUSCL-Hancock method. Green, blue and magenta symbols represent v2, v3
and v4 respectively. Mesh with M = 60 cells for each vessel.
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Figure 38: Derivative of �ow and pressure with respect to a = r0 obtained with MUSCL-Hancock method. Green, blue and magenta symbols represent
v2, v3 and v4 respectively. Mesh with M = 60 cells for each vessel.

Figure 39: Derivative of �ow and pressure with respect to a = E obtained with MUSCL-Hancock method. Green, blue and magenta symbols represent
v2, v3 and v4 respectively. Mesh with M = 60 cells for each vessel.
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Figure 40: Heart �ow imposed at the beginning of the ascending aorta.

with pout = 3.2 mmHg induced by the over�ow reservoir. Using left Riemann invariants and asking for their constancy, we
�nd {

F1(A∗,Ψ∗) = RIMA∗Rp + āRp − p(A∗,Ψ∗) + pout = 0

F2(A∗,Ψ∗) = AM

ε + ΨM − A∗

ε −Ψ∗ = 0,
(43)

with RIM = uM − ā
AM

, where the subscript M indicates the last cell of the vector. Deriving (42) and (43), for the sensitivity
variables we obtain

q∗a =
pa(A∗,Ψ∗, A∗a,Ψ

∗
a)

Rp
=
p∗a
Rp

and {
Fa1(A∗,Ψ∗, A∗a,Ψ

∗
a) = RIaMA∗Rp + RIMA∗aRp − p∗a = 0

Fa2(A∗,Ψ∗, A∗a,Ψ
∗
a) = AaM

ε − AM

ε2 εa + ΨaM − A∗
a

ε + A∗

ε2 εa −Ψ∗a

with RIaM = uaM + āAaM

A2
M

.

Numerical illustrations. First of all we show the numerical results for the pressure and �ow computed in four locations,
namely in the midpoint of the thoracic aorta I, left renal, right iliac femoral III and right carotid. We compared the outputs
obtained with the �rst and second order scheme, in both elastic (�gure 41) and viscoelastic (�gure 42) case. Then, using Price-
T and MUSCL-Hancock method respectively, in graphics 43 and 44 we observe the dissimilarities between the conservative
and non-conservative system. We use the ENO slope for the second-order method.

Both elastic and viscoelastic outcomes appear to have a similar pro�le with respect to the ones given by the experimental
measurements. Indeed, this is an important achievement as it validates our numerical results. Then, we highlight that the
use of the simple resistive boundary conditions produces non-physiological oscillations, as observed for instance in [1, 29].
As a consequence, high order methods overestimate the actual oscillations present in the experimental solution, leading to
the contradictory situation in which the �rst-order schemes seem to approximate better the experimental measurements.
Indeed, the numerical viscosity entails a damping of the oscillations when using a �rst-order method as the Price-T. This
kind of problem is eluded by exploiting the viscoelastic formulation, which reduces the oscillations. Note that both the left
renal and right carotid are terminal vessels and exhibit large oscillations if compared to the experimental ones.

We are now interested in plotting the average and variance of the �ow and pressure, and then their con�dence intervals.
Regarding the uncertain parameters, we take the ones linked to the arterial sti�ness, hence the radius at equilibrium r0, the
vessel thickness h0 and the Young modulus E. We assume them to be a�ected by the same errors considered in subsection
4.3. Note that assuming a = r0 means modifying the initial conditions for the SE as well, reminding that for each vessel we
use conditions (40) and (41).

First of all in graphic 45 we insert the outputs for the sensitivity variables, that is to say the derivative of the �ow
and pressure with respect to a = h0, a = r0 and a = E. We computed them in the midpoint of the left renal with the
MUSCL-Hancock scheme for both the elastic and viscoelastic system. As we said before, neglecting viscoelasticity produces
overestimation of the oscillations of the experimental solution and this consequently a�ects the behavior of the elastic
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Figure 41: Comparison among experimental (exp, red line), Price-T (black line) and MUSCL-Hancock (MH, blue line) results for pressure (left) and �ow
(right) computed in the midpoint of the thoracic aorta I, left renal, r. iliac femoral III and right carotid. Elastic case (Γ = 0).
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Figure 42: Comparison among experimental (exp, red line), Price-T (black line) and MUSCL-Hancock (MH, blue line) results for pressure (left) and �ow
(right) computed in the midpoint of the thoracic aorta I, left renal, r. iliac femoral III and right carotid. Viscoelastic case (Γ 6= 0).
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Figure 43: Comparison among experimental (exp, red line), numerical elastic (elas, black line) and viscoelastic (visc, dashed black line) pressure (left) and
�ow (right) computed in the midpoint of the thoracic aorta I, left renal, r. iliac femoral III and right carotid. Results obtained with Price-T method.
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Figure 44: Comparison among experimental (exp, red line), numerical elastic (elas, black line) and viscoelastic (visc, dashed black line) pressure (left) and
�ow (right) computed in the midpoint of the thoracic aorta I, left renal, r. iliac femoral III and right carotid. Results obtained with MUSCL-Hancock method.
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sensitivity variables. Indeed, especially for the derivative of the �ow, we note large oscillations that are damped when using
the viscoelastic formulation. Clearly, this leads to the same problem for the average and in particular for the variance of the
�ow, both of them shown in picture 46. In the same �gure we insert the results for the average and variance of the pressure
as well. We note that for them the dissimilarities between the two systems are less outstanding. However, we observe that
the viscoelastic pressure variance results to be slightly bigger than the elastic one, a fact that could be due to the di�erence
in values between the derivatives with respect to a = r0 of the elastic and viscoelastic pressure, see �gure 45.(c).

Next, we insert the maximum in absolute value of the standard deviation for the pressure and �ow for all the 37 vessels
in graphic 47, in the elastic and viscoelastic case respectively. In these graphics we used di�erent colors to discriminate
the vessels with and without the resistive boundary conditions, in magenta and blue respectively. As we said, we note that
in general the standard deviation of the viscoelastic pressure is slightly greater than the one of the elastic pressure. Then,
for the elastic model, we observe that the maximum values of the standard deviation of the �ow are much bigger than the
viscoelastic �ow ones. Once again, this could be due to the large oscillations we noted when using the elastic formulation.
However, we highlight that in both cases the maximum values for the standard deviation of the �ow are greater for non-
terminal vessels. This could be related to the fact that these vessels compose the aortic path and therefore are larger and
less resistive. Instead terminal vessels are usually smaller, and thus their �ow is less pulsatile, where pulse wave speed is
proportional to the sti�ness, and as such to the uncertain parameters we have considered. This could explain why their
�ow is less sensitive to changes in the values of the parameters. Di�erences in values for the standard deviation of pressure
between non-terminal and peripheral vessels are less outstanding.

Then, in order to understand which parameter the pressure and �ow are most sensitive to, we show the maximum values
of standard deviation considering only one value for a each time, see graphic 48. For both variables we observe larger values
when exploiting a = r0, in particular when considering non-terminal vessel. We obtained similar results in both viscoelastic
and elastic case, therefore we do report the outputs only in the �rst case.

Finally, we plot the average for the �ow and pressure plus and minus twice the standard deviation. Indeed, �gures 49
and 50 show the outputs for the elastic and viscoelastic case respectively. MUSCL-Hancock method was used. In general the
pressure seems to be more sensitive than the �ow to changes in the values of the parameters. We observe that the predicted
interval of the �ow computed with MUSCL-Hancock in elastic case is larger than the one in the viscoelastic case. As we
already said, this could be due to the large oscillations we noted for both the state and sensitivity elastic variables.

6 Conclusion and perspectives
In this work we studied the blood �ow equations with both elastic [37] and viscoelastic [25] formulations. In the latter

case, an additional term is needed in order to express the viscoelastic behaviour of the arteries walls. This term includes a
second-order spatial derivative of the �ow, yielding to a parabolic advection-di�usion-reaction system. In order to transform
it into a hyperbolic advection-reaction system as the elastic one, we followed the work of Montecinos et al. [25]. Thus, we
used a relaxation approach which entails the introduction of a new variable Ψ and relaxation time ε. This step was necessary
in order to write these systems with the same formalism and to �nd a second-order method which could be applied to both
of them.

Subsequently we introduced the centred �rst-order Price-T scheme, which is a variant of FORCE method for non-
conservative systems [34]. In particular, we have reformulated the scheme so that it automatically reduces to the FORCE
method when considering a conservative system; a crucial request as primitive schemes applied to a conservative sys-
tem could give a solution which converges to the wrong one. Hence, we needed a second-order scheme written in non-
conservative form with this property. We turned to the MUSCL-Hancock Price-T scheme presented in [34], which however
does not reduce to a conservative method. Therefore we modi�ed it, adding a correction term, in order to achieve the SLIC
scheme [31] when considering a conservative system as the elastic one. Indeed, for this case we showed that the numerical
output of the original MUSCL-Hancock Price-T scheme did not converge to the exact one, contrary to the solution of our
version of the method. Considering the ADER approach [32, 34] could allow the construction of higher order numerical
schemes with this property.

The second goal of this work was to apply the continuous sensitivity equations method [10] to the blood �ow equations,
with the aim to exploit it for uncertainty quanti�cation. One of the reasons for choosing this method could be its low
computational cost, especially if we compare it to probabilistic methods as Monte Carlo. Thus, di�erentiating the state
equations with respect to an arbitrary uncertain parameter a, we found the so-called sensitivity system. However, an
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(a) Derivative of pressure with a = h0 (b) Derivative of �ow with a = h0

(c) Derivative of pressure with a = r0 (d) Derivative of �ow with a = r0

(e) Derivative of pressure with a = E (f) Derivative of �ow with a = E

Figure 45: Derivative of pressure and �ow in the midpoint of left renal in elastic (magenta line) and viscoelastic case (blue line). Results obtained with
MUSCL-Hancock method.
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(a) Average of �ow (b) Variance of �ow

(c) Average of pressure (d) Variance of pressure

Figure 46: Average and variance of �ow and pressure in the midpoint of left renal in elastic (magenta line) and viscoelastic case (blue line). Results obtained
with MUSCL-Hancock method.

(a) Elastic case (b) Viscoelastic case

Figure 47: Maximum absolute value of standard deviation of pressure (top) and �ow (bottom) in the midpoint of each vessels of the network (identi�ed
with numbers from 1 to 37). Magenta color for terminal vessels. Elastic (left) and viscoelastic (right) case, MUSCL-Hancock method.
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(a) Pressure (b) Flow

Figure 48: Maximum absolute value of standard deviation of pressure (left) and �ow (right) using a = h0 (top), a = r0 (middle) and a = E (bottom) in the
midpoint of each vessels of the network (identi�ed with numbers from 1 to 37). Magenta color for terminal vessels. Viscoelastic case, MUSCL-Hancock
method.

assumption of the CSE method is the regularity of the solution, which could not hold in some cases (e.g. Riemann problems).
The consequence is the appearance of Dirac delta functions, which can be compensated introducing the source term Ŝ in
the sensitivity system, refer to [8, 10, 17]. However special treatment is required to handle this term when applying the
numerical schemes. Numerical results for the elastic system show that the addition of Ŝ reduces considerably or completely
the large spikes that otherwise would be present in correspondence of the shocks of the state variables. Whereas, regarding
the viscoelastic system, there is no need to consider the source term Ŝ for the sensitivities. Indeed, in this case the state
solution does not present discontinuities due to the di�usive term present in the viscoelastic closure condition (4).

We specify that to de�ne the term Ŝ we exploited an HLL approach as the elastic system has a two-waves structure
and the viscoelastic equations do not require it. However, for systems with three or more equations this strategy would be
incomplete and thus, the use of the HLLC approach could lead to an improvement of the results, refer for instance to [35, 10].

Finally we computed the con�dence intervals for the cross-sectional area and the �ow for three di�erent Riemann
problems. Regarding the uncertain parameters, we considered the initial values AL and AR for the cross-sectional area and
then the parameters linked to the arterial sti�ness, thus the radius at equilibrium r0, the vessel thickness h0 and the Young
modulus E. In general, the numerical outputs were satisfying as the con�dence intervals included the samples, with the
exception of shock zones. This could be related to the fact that we neglected the dependency of the shock speed on the
uncertain parameters. Moreover, in correspondence of the discontinuities of the state variables, we note large spikes that
are removed when the source term Ŝ is active. On the other hand, in the majority of the results for the viscoelastic system
the samples fall inside the con�dence intervals, as in this case the variables do not present shocks and thus the predicted
intervals are su�ciently wide. Ulterior enhancement on the computation of con�dence intervals could be achieved using
higher order sensitivities.

The last step of this work was to apply the proposed numerical models and schemes to an arterial network of 37 silicone
vessels, for which we refer to [1]. This was an important request, as we would be able to validate our results. The �rst
problem was to de�ne the coupling conditions for the sensitivity unknowns. In order to be able to obtain them, we had to
simplify the conditions for the state variables, namely doing a relevant linearization. Nevertheless the numerical outputs are
satisfying, even if the results for the sensitivity variables are slightly worse as they sum the state and the modeling errors.
It could be interesting to attempt to use more complex coupling conditions, with the remarks of paying attention to the
computational cost, as the junctions are one of the most expensive part when considering a blood vessels network.
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Figure 49: Comparison among experimental results (exp, red line), average (black line) plus and minus twice the standard deviation (magenta line) of
pressure (left) and �ow (right) computed in the midpoint of the thoracic aorta I, left renal, r. iliac femoral III and right carotid. MUSCL-Hancock method,
elastic case.
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Figure 50: Comparison among experimental results (exp, red line), average (black line) plus and minus twice the standard deviation (magenta line) of
pressure (left) and �ow (right) computed in the midpoint of the thoracic aorta I, left renal, r. iliac femoral III and right carotid. MUSCL-Hancock method,
viscoelastic case.
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Afterwards, we exhibited our results for the state variables in the network case, and showed that the outputs had sim-
ilar pro�les to the experimental ones. An interesting remark is that, when using the elastic formulation, we observe the
contradictory result that low-order methods approximate the experimental outcomes better than the high-order ones. This
is due to the fact that, to simulate the peripheral resistances, we used simple terminal resistive models which produce non-
physiological oscillations in the numerical results. While in the low-order solutions the numerical viscosity reduces these
oscillations, high order methods overestimate the ones present in the experimental results. This problem is overcome using
the viscoelastic formulation as it introduces a di�usive term which dumps the oscillations.

Finally, we computed the con�dence intervals using the uncertain parameters linked to the arterial sti�ness, as it is
associated to many human illnesses. Then, we observed that the maximum standard deviation for terminal vessels’ �ow
reaches lower values than that of the vessels which compose the aortic path. This could be due to the fact that their �ow is
less pulsatile, where pulse wave speed is linked to the arterial sti�ness. An ulterior step could be the study of the sensitivity
of the blood �ow and pressure not only in relation to the arterial sti�ness, but also with respect to the inlet and outlet �ow,
as they can depend on many parameters which are di�cult to estimate as well.
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