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Numerical approximation and uncertainty quanti cation for arterial blood ow models with viscoelasticity

The importance of the study of the blood ow equations is widely recognized as it is a tool to understand the circulatory system. Arteries and veins result to have both elastic and viscous behaviour. Models for the rst case are much more studied as they result to be simpler and still satisfying if compared to experimental data. In this paper, we consider a model which encompasses both the elastic and viscoelastic response in arterial walls, respectively leading to a conservative and a non-conservative system. We present a second-order scheme based on the rst-order Price-T scheme and the MUSCL-Hancock strategy. This new approach automatically adapts to the above conservative and non-conservative cases.

Then, we perform a Sensitivity Analysis (SA) based on the Continuous Sensitivity Equation Method (CSEM), whose aim is the study of how changes in the inputs of a model can a ect its outputs. In particular, the sensitivity is de ned as the derivative (with respect to an uncertain parameter a) of the solution of the system taken into consideration. Since the CSEM cannot be directly applied to discontinuous solutions, we add a source term to compensate the spikes associated to the Dirac delta functions that can arise in the sensitivity variables.

One of the main applications of SA is uncertainty quanti cation, which is investigated for Riemann problems as well as for a network of 37 arteries. Details on junctions for coupling two or more vessels are also given.

Introduction and governing equations

The simulation of blood ows in human arteries has been a very active topic of research over the last decades. Indeed, recovering experimental data about the cardiovascular system proves to be extremely complicated and this motivates the numerical studies that have been done so far. The numerical outputs can help to expand the knowledge in this eld, for instance on many pathologies such as hypertension or presence of occlusions.

Models in one-dimensional (1D) space dimension are often used as an alternative to the more complex three-dimensional (3D) uid-structure interaction models. Indeed, they are able to provide a good description of the propagation of pressure waves in arteries with a low computational cost compared to 3D models, which is especially interesting when considering global human circulatory systems represented by a network of vessels. We refer for instance the reader to [START_REF] Blanco | A uni ed variational approach for coupling 3D-1D models and its blood ow applications[END_REF], [START_REF] Colciago | Comparisons between reduced order models and full 3D models for uid-structure interaction problems in haemodynamics[END_REF], [START_REF] Grinberg | Modeling Blood Flow Circulation in Intracranial Arterial Networks:A Comparative 3D/1D Simulation StudyL[END_REF], [START_REF] Müller | A global multiscale mathematical model for the human circulation with emphasis on the venous system[END_REF] and [START_REF] Xiao | A systematic comparison between 1-D and 3-D hemodynamics in compliant arterial models[END_REF] for more details.

In this paper, we are interested in the numerical approximation of the solutions of the following 1D system composed of two partial di erential equations,

∂ t A + ∂ x (Au) = 0 ∂ t (Au) + ∂ x (Au 2 ) + A ρ ∂ x p = f, (1) 
consisting of the mass conservation and momentum balance equations. Here x represents the axial coordinate along the longitudinal axis of the vessel and t > 0 is the time. A(x, t) > 0 is the cross-sectional area of the vessel, u(x, t) the averaged velocity of blood at cross section and consequently q = Au is the blood ow, p is the pressure and ρ represents the blood density. At last, f = -Ru accounts for the friction forces where R > 0 is the viscous resistance given by

R = 22π µ ρ ,
where µ is the dynamic viscosity. We assume that the initial area A(x, t = 0) and velocity u(x, t = 0) are given at time t = 0. For more details about the derivation of system (1), we refer to [START_REF] Formaggia | Cardiovascular Mathematics: Modeling and Simulation of the Circulatory System[END_REF] and [START_REF] Toro | Lecture notes on computational haemodynamics[END_REF].

In order to close this system, a relationship between the pressure and the cross-sectional area is needed. This is the so-called tube law. Depending on the underlying mechanical considerations and elastic or viscoelastic assumptions on the response of the artery, the form of the closure relation and consequently the nature of system (1) can signi cantly di er. In this paper, we will more precisely consider the following two relations, for which we refer to [START_REF] Toro | Lecture notes on computational haemodynamics[END_REF] and [START_REF] Montecinos | Hyperbolic reformulation of a 1D visco-elastic blood ow model and ADER nite volume schemes[END_REF].

Elastic tube law. The rst closure relation has been proposed for example in [START_REF] Petrella | Uncertainty Quanti cation for Hyperbolic Systems with application to blood ow in arteries[END_REF] and assumes that the arterial walls are purely elastic, leading to the following relation

p = p ext + ψ (2) 
where p ext is the external pressure acting on the vessel walls and ψ is the transmural pressure, namely the di erence between the internal and external pressures. Since we are interested in blood ow in arteries, the transmural pressure reads

ψ(A, A 0 , K) = Kφ(A, A 0 ) with φ(A, A 0 ) = A A 0 -1 and K(x) = 4 3 π A 0 Eh 0 ,
where h 0 is the wall thickness, E the Young modulus and A 0 is the cross-sectional area of the vessel at equilibrium. Note that for the sake of simplicity, we will assume that h 0 , A 0 and E are constant along a single vessel. Hence, substituting (2) into (1), we obtain the ultimate form of the model,

∂ t A + ∂ x (Au) = 0 ∂ t (Au) + ∂ x (Au 2 + γA 3 2 ) = f, (3) 
with

γ = K 3ρ √ A 0 ,
and where the left-hand side of the momentum balance equation is now in conservation form. Easy calculations show that the two eigenvalues of the system are λ ± e = u ± c, where the wave speed is de ned by

c = 3 2 γ √ A.
Consequently the convective part of (3) is strictly hyperbolic as λ ± e are real and distinct as long as c = 0. Finally, both the two characteristic elds are genuinely non-linear and the Riemann invariants associated with λ ± e are respectively given by I - e = u + 4c and I + e = u -4c. For more details refer to [START_REF] Toro | Brain venous haemodynamics, neurological diseases and mathematical modelling. A review[END_REF].

Viscoelastic tube law. The second closure relation has been proposed for instance in [START_REF] Montecinos | Hyperbolic reformulation of a 1D visco-elastic blood ow model and ADER nite volume schemes[END_REF] and considers that the viscoelastic response in arterial walls cannot be neglected. In this case, a viscoelastic term is added in the tube law, leading to the more general relation p(x, t) = p ext + ψ(A, A 0 , K)

+ ϕ(A, A 0 )∂ t A, (4) 
where we take

ϕ(A, A 0 ) = Γ A 0 √ A .
The coe cient Γ depends on the viscoelastic properties of the vessel's wall and we note in particular that taking Γ = 0 boils down to considering an elastic closure. In practice, we will refer to [START_REF] Alastruey | Pulse wave propagation in a model human arterial network: Assessment of 1-D visco-elastic simulations against in vitro measurements[END_REF] and take

Γ = 2 3 sh 0 √ π,
where s is the viscosity of the (silicone) vessel.

At this stage, it is important to note that using the mass conservation equation of ( 1), ( 4) is equivalent to p = p ext + ψ(A, A 0 , K) -ϕ(A, A 0 )∂ x q, so that ∂ x p = K∂ A φ∂ x A -∂ A ϕ∂ x A∂ x q -ϕ∂ 2 x q. Therefore, it is observed that a second-order spatial derivative now appears in the momentum balance equation of [START_REF] Alastruey | Pulse wave propagation in a model human arterial network: Assessment of 1-D visco-elastic simulations against in vitro measurements[END_REF], making the viscoelastic system of advection-di usion-reaction type unlike the elastic model [START_REF] Blanco | A uni ed variational approach for coupling 3D-1D models and its blood ow applications[END_REF] which is an advection-reaction system. However, one of the two goals of the present contribution is to propose an appropriate second-order accurate numerical method to approximate the elastic and viscoelastic blood ow models in the same formalism. Therefore, we suggest to proceed as in the paper of Montecinos et al. [START_REF] Montecinos | Hyperbolic reformulation of a 1D visco-elastic blood ow model and ADER nite volume schemes[END_REF], and to approximate the original parabolic (advection-di usion-reaction) viscoelastic problem by a hyperbolic (advection-reaction) system with sti source term using a relaxation technique. More precisely, we will relax system (1) by following the constitutive Cattaneo's law [START_REF] Cattaneo | Sulla conduzione del calore[END_REF] 

∂ t Ψ - 1 ε ∂ x q = - 1 ε Ψ,
where ε > 0 is a parameter such that in the asymptotic limit ε → 0, the new variable Ψ converges towards the original gradient ∂ x q. Therefore, with this new variable we can rewrite the pressure gradient as

∂ x p = K∂ A φ∂ x A -∂ A ϕ∂ x AΨ -ϕ∂ x Ψ
and reformulate system [START_REF] Alastruey | Pulse wave propagation in a model human arterial network: Assessment of 1-D visco-elastic simulations against in vitro measurements[END_REF] as

     ∂ t A + ∂ x q = 0 ∂ t q + ∂ x q 2 A + A ρ (K∂ A φ -Ψ∂ A ϕ)∂ x A -A ρ ϕ∂ x Ψ = f ∂ t Ψ -1 ε ∂ x q = -1 ε Ψ. (5) 
It is thus clear that this relaxation approach allows us to reformulate the viscoelastic system while maintaining the physical meaning of the system. However, the striking di erence with the elastic model [START_REF] Blanco | A uni ed variational approach for coupling 3D-1D models and its blood ow applications[END_REF] is that the advection part of ( 5) is not in conservative form. This property will be a key feature of the proposed numerical method.

As for the elastic system, it is not di cult to check that the convective part of (5) admits three eigenvalues given by λ ± v = u ± c and λ 0 v = 0 where the wave speed is now de ned by

c = c 2 + ω with ω = ϕA ρε + a Γ 2 ,
with a Γ = Ψϕ ρ . In particular, the system is strictly hyperbolic if c 2 + ω ≥ 0, so if

1 ε ≥ - Ψ 2A - c 2 ρ ϕA .
For more details about the analysis of the system, we refer to [START_REF] Montecinos | Hyperbolic reformulation of a 1D visco-elastic blood ow model and ADER nite volume schemes[END_REF]. In addition, we observe that the characteristic elds associated to λ ± v are genuinely non linear, while the eld associated to λ 0 v is linearly degenerate. Finally, the Riemann invariants associated with λ - v and λ + v are respectively

I -,1 v = A ε + Ψ and I -,2 v = u + c A dA and I +,1 v = A ε + Ψ and I +,2 v = u - c A dA
while for λ 0 v we obtain the Riemann Invariants

I 0,1 v = p ext + ψ -ϕΨ + 1 2
ρu 2 and I 0,1 v = q, see for instance [START_REF] Montecinos | Hyperbolic reformulation of a 1D visco-elastic blood ow model and ADER nite volume schemes[END_REF] for more details.

For the sake of conciseness, elastic and viscoelastic systems (3) and ( 5) will be given the following compact form

∂ t Q + ∂ x F(Q) + A(Q)∂ x Q = S(Q), (6) 
where Q denotes the vector of unknowns, F(Q) the ux of the conservative part, A(Q) the coe cient matrix of the non conservative part and S(Q) the source term. In particular, we have

Q = A q , F(Q) = q q 2
A + γA

3 2
and S = 0 f ,

for the elastic model, and

Q =   A q Ψ   , F(Q) =   q q 2 A + γA 3 2 -1 ε q   , A =   0 0 0 aΓ 2 0 -ϕA ρ 0 0 0   and S =   0 f -1 ε Ψ   (8) 
for the viscoelastic one. Note that the non conservative term A(Q) and the third row of F(Q) and S(Q) do not appear in the elastic system (3). Our rst objective will be to propose a second-order accurate numerical scheme to approximate the solution of ( 6) and with the consistency property that the scheme applied to the viscoelastic system with Γ = 0 should be equivalent to the scheme applied directly to the elastic system. As it will be seen, this is not trivial considering the nite volume framework of rst-order Price-T schemes for non conservative systems coupled with a second-order MUSCL-Hancock methodology taken into account in the present paper. We also refer the reader to the following recent contributions [START_REF] Formaggia | Cardiovascular Mathematics: Modeling and Simulation of the Circulatory System[END_REF][START_REF] Toro | Brain venous haemodynamics, neurological diseases and mathematical modelling. A review[END_REF][START_REF] Montecinos | Hyperbolic reformulation of a 1D visco-elastic blood ow model and ADER nite volume schemes[END_REF][START_REF] Dumas | A robust and subject-speci c hemodynamic model of the lower limb based on non-invasive arterial measurement[END_REF][START_REF] Alastruey | Pulse wave propagation in a model human arterial network: Assessment of 1-D visco-elastic simulations against in vitro measurements[END_REF] and the references therin for related nite volume methods applied to the elastic and viscoelastic blood ow models separately.

As usual when dealing with mathematical models, the 1D systems used in the present paper to describe the human circulatory system are based on modelling assumptions and parameters to describe the ow and geometrical or physical properties of the vessels, for instance the vessel thickness h 0 , the cross-sectional area of the vessel at equilibrium A 0 , the Young modulus E or the initial values A(x, t = 0) of the area at time t = 0. In practice, these parameters are estimated or calibrated and it is natural to wonder how the numerical simulations are sensitive to these approximations and uncertainties. Sensitivity Analysis (SA), that is the study of how changes in the inputs of a model a ect the outputs, is a powerful tool to perform Uncertainty Quanti cation (UQ). It consists in computing numerically the derivatives of the solutions of the system of equations with respect to one or several chosen input parameters. There exist essentially two main approaches to SA with own advantages and disadvantages depending on the target applications. A detailed comparison between the two for optimization problems is done in [START_REF] Gunzburger | Perspectives in ow control and optimization[END_REF]. The rst one, known as discrete sensitivity equation method, starts with discretizing the system of equations and then di erentiating it to obtain an approximation of the sensitivities. Whereas, the second one consists in di erentiating the equations rst, obtaining in this way the system of sensitivity equations which will be then discretised and solved, see for instance [START_REF] Borggaard | A PDE sensitivity equation method for optimal aerodynamic design[END_REF][START_REF] Chalons | Sensitivity equation method for Euler equations in presence of shocks applied to uncertainty quanti cation[END_REF][START_REF] Duvigneau | A sensitivity equation method for fast evaluation of nearby ows and uncertainty analysis for shape parameters[END_REF][START_REF] Duvigneau | An improved continuous sensitivity equation method for optimal shape design in mixed convection[END_REF]. The latter is known as the di erentiate-then-discretise approach or Continuous Sensitivity Equation Method (CSEM) and it is the one that will be considered here. In this context, our second objective is to introduce the use of sensitivity analysis to study the uncertainties in the solutions of blood ow equations. This will be done both for the elementary solutions of Riemann problems (which, although being the simplest non trivial initial value problem, are at the basis of many numerical methods), and a complex network of 37 arteries already simulated in [START_REF] Alastruey | Pulse wave propagation in a model human arterial network: Assessment of 1-D visco-elastic simulations against in vitro measurements[END_REF][START_REF] Matthys | Pulse wave propagation in a model human arterial network: Assessment of 1-D numerical simulations against in vitro measurements[END_REF].

Outline of the paper. The paper is organized as follows. In the next section we introduce the Price-T scheme and our version of MUSCL-Hancock method, respectively of rst and second-order of accuracy. Outputs for Riemann problems are also shown. In sections 3 and 4 we present respectively the sensitivity equations and the modi ed numerical methods in order to take into account the discontinuities in the state variables. Results for Riemann problems and uncertainty quanti cation are carried out at the end of section 4. Subsequently, in section 5 we explain how to take care of the presence of junctions among two or three vessels, a necessary step to obtain the results for the network of 37 vessels, which is presented in section 5 as well. Finally, in section 6 conclusions are drawn. 

Centred numerical scheme

The aim of this section is to propose a nite volume method which can be used to resolve non homogeneous hyperbolic system (6) both in conservative (A(Q) = 0) and non conservative (A(Q) = 0) case. We are especially interested in secondorder centred strategies based on MUSCL reconstructions. We focus on the homogeneous system

∂ t Q + ∂ x F(Q) + A(Q)∂ x Q = 0 (9) 
as the source term S(Q) will be taken into account thanks to a classical fractional step method at rst-order accuracy, and an usual Strang splitting at second-order accuracy. Note that the source term can be solved exactly or using an ODE solver. As far as the homogeneous system is concerned, observe that the proposed method should automatically reduce to a conservative one if applied to a conservative system. This is a very important request as a non conservative method applied to a conservative system could converge to a wrong solution [START_REF] Hou | Why Nonconservative Schemes Converge to Wrong Solutions: Error Analysis[END_REF]. For this purpose, we will present the rst-order Price-T scheme, and a second-order extension based on the MUSCL-Hancock strategy, see [START_REF] Montecinos | Hyperbolic reformulation of a 1D visco-elastic blood ow model and ADER nite volume schemes[END_REF] for more details about these schemes.

Let us now introduce some notations. When necessary, we will rst use Q = (q 1 , . . . , q m ) t to denote the component of the vector of unknowns. Then, we introduce a constant space step ∆x and constant time step ∆t. The mesh interfaces are de ned by x i+1/2 = i∆x for i ∈ Z and the intermediate times by t n = n∆t for n ∈ N. As usual in the nite volume framework, we seek at each time t n for an approximation Q n i of the solution in the interval

[x i-1/2 , x i+1/2 ), i ∈ Z. Therefore, a piecewise constant approximate solution x → Q ∆t,∆x (x, t n ) of the solution Q is given by Q ∆t,∆x (x, t n ) = Q n i for all x ∈ C i = [x i-1/2 ; x i+1/2 ), j ∈ Z, n ∈ N.
When n = 0, we set

Q 0 i = 1 ∆x x i+1/2 x i-1/2 Q 0 (x)dx, for all i ∈ Z.

First-order Price-T scheme

In this subsection, we brie y recall the rst-order Price-T scheme, which is a variant of the Force scheme for nonconservative systems. We refer the reader to [START_REF] Toro | PRICE: Primitive Centred Schemes for Hyperbolic Systems[END_REF] and [START_REF] Toro | Riemann Solvers and Numerical Methods for Fluid Dynamics[END_REF] for more details. Force and Price-T methods are centred and therefore do not utilize wave propagation informations coming from exact or approximate Riemann solvers, which in turn can be di cult or even impossible to de ne. Instead, the idea at the base of these methods is to use integral relations that can be obtained from [START_REF] Chalons | Relaxation approximation of the Euler equations[END_REF]. Assuming that the sequence (Q n i ) i∈Z is known, the main steps to de ne the sequence (Q n+1 i ) i∈Z are as follows. Note that we will not show all the computations but again refer to [START_REF] Toro | PRICE: Primitive Centred Schemes for Hyperbolic Systems[END_REF] for more details. Figure 1 is also proposed to help visualizing the reasoning and the di erent steps.

Step 1. First of all and for a given i, the idea is to virtually solve the Riemann problems set at interfaces x i-1/2 and x i+1/2 and respectively associated with the left and right states (

Q n i-1 , Q n i ) and (Q n i , Q n i+1
), see gure 1. Up to a space translation of x i-1/2 and x i+1/2 and a time translation of t n , the respective solutions are denoted (x, t) →

Qn+ 1 2 i-1 2 (x, t) and (x, t) → Qn+ 1 2 i+ 1 2 (x, t).
Note that these solutions are self-similar and composed of simple waves (shocks, contact discontinuities and rarefaction waves) emanating from the interfaces x i-1/2 and x i+1/2 , see [START_REF] Toro | PRICE: Primitive Centred Schemes for Hyperbolic Systems[END_REF] for more details.

Step 2. The aim of this step is to evaluate the following integral averages of the two Riemann problem solutions at time ∆t/2, namely

Q n+ 1 2 i-1 2 = 1 ∆x ∆x 2 -∆x 2 Qn+ 1 2 i-1 2 (x, ∆t 2 
)dx and Q

n+ 1 2 i+ 1 2 = 1 ∆x ∆x 2 -∆x 2 Qn+ 1 2 i+ 1 2 (x, ∆t 2 )dx.
These intermediate states are simply evaluated by integrating (9) on the control volume (-∆x 2 , ∆x 2 ) × (0, ∆t 2 ), and doing a linearization in which we substitute the matrix A with a constant matrix Âi±1/2 . More precisely, we obtain

Q n+ 1 2 i-1 2 = 1 2 (Q n i-1 + Q n i ) - 1 2 ∆t ∆x (F(Q n i ) -F(Q n i-1 )) - 1 2 ∆t ∆x Âi-1 2 (Q n i -Q n i-1 ), (10) 
Q n+ 1 2 i+ 1 2 = 1 2 (Q n i + Q n i+1 ) - 1 2 ∆t ∆x (F(Q n i+1 ) -F(Q n i )) - 1 2 ∆t ∆x Âi+ 1 2 (Q n i+1 -Q n i ), (11) 
where we set Âi-

1 2 = A 1 2 (Q n i-1 + Q n i ) and Âi+ 1 2 = A 1 2 (Q n i + Q n i+1 ) .
Steps 3 and 4. Equipped with these updated values at intermediate time and on a staggered grid, we now follow the same steps as before to evaluate the approximate solution at the nal time t n+1 and on the original grid. Namely, one rst virtually solves the Riemann problem set at interface x i and associated with the left and right states (Q

n+1/2 i-1 2 , Q n+1/2 i+ 1 2
), see again gure 1. We denote this solution by (x, t) → Qn+1 i (x, t) up to the same space and time translations. And we evaluate the integral

Q n+1 i = 1 ∆x ∆x 2 -∆x 2 Qn+1 i (x, ∆t 2 
)dx using another integration of (9) on the control volume (-∆x 2 , ∆x 2 ) × (0, ∆t 2 ). In this way we arrive at a new solution at time level n + 1

Q n+1 i = 1 2 (Q n+ 1 2 i-1 2 + Q n+ 1 2 i+ 1 2 ) - 1 2 ∆t ∆x (F(Q n+ 1 2 i+ 1 2 ) -F(Q n+ 1 2 i-1 2 )) - 1 2 ∆t ∆x Âi (Q n+ 1 2 i+ 1 2 -Q n+ 1 2 i-1 2 ) (12) 
where we set

Âi = A 1 2 (Q n+ 1 2 i-1 2 + Q n+ 1 2 i+ 1 2 
) .

This concludes the description of the Price-T method as proposed in [START_REF] Toro | PRICE: Primitive Centred Schemes for Hyperbolic Systems[END_REF]. It is clear that this scheme is a centred non conservative scheme which is consistent with the non conservative system [START_REF] Chalons | Relaxation approximation of the Euler equations[END_REF]. However, when applied to a conservative system the coe cient matrices  will disappear, leaving only the terms with the numerical ux. Thus, the Price-T scheme easily boils down to the conservative Force scheme (see Toro and Billett [START_REF] Toro | Centered TVD schemes for hyperbolic conservation laws[END_REF])

Q n+1 i = Q n i - ∆t ∆x F f orce i+1/2 -F f orce i-1/2 ,
where the numerical ux

F f orce i+1/2 = F f orce i+1/2 (Q n i , Q n i+1
) is usually written as the arithmetic average of the Lax-Friedrichs and Lax-Wendro uxes, namely with clear notations

F f orce i+1/2 = 1 2 F lf i+1/2 + F lw i+1/2
with

F lf i+1/2 = 1 2 F(Q n i ) + F(Q n i+1 - 1 2 ∆x ∆t Q n i+1 -Q n i and F lw i+1/2 = F(Q n+1/2 i+1/2 ).

MUSCL-Hancock Price-T scheme

In this subsection, we present a second-order extension of the Price-T method using a MUSCL-Hancock strategy. As already pointed out before, we will pay a particular attention to the conservation property of the scheme when applied to a conservative system (A(Q) = 0). Actually, our objective in this case will be to recover the Slope Limiter Centred (SLIC) method with Force ux, see for instance [START_REF] Toro | Riemann Solvers and Numerical Methods for Fluid Dynamics[END_REF] for more details. As we will see, a correction term in a "naive" (but natural) extension of the Price-T method will be necessary.

Before going further, let us rst brie y recall that the original MUSCL-Hancock strategy uses reconstruction of data together with upwind Godunov or Godunov-type methods. Instead, the aim of the SLIC scheme is to avoid the use of Riemann problems by exploiting di erent low-order schemes, for instance the centred Price-T ux (or Force ux in the conservative case). For more details, we refer again the reader to [START_REF] Toro | Riemann Solvers and Numerical Methods for Fluid Dynamics[END_REF].

The di erent steps of the method are as follows.

Step 1: reconstruction and cell-boundary values. As it is customary, this step aims at de ning boundary extrapolated values by means of polynomial data reconstructions. More precisely, using for each cell I i a reconstructed polynomial vector P i (x) = (p 1,i (x), . . . , p m,i (x)) t with components

p k,i (x) = Q n k,i + (x -x i )∆ k,i , k = 1, .
. . , m where ∆ k,i are the slopes (recall that m is the number of variables), we de ne the boundary values by

     Q L i = P i (x i-1 2 ) = Q n i -∆ i ∆x 2 Q R i = P i (x i+ 1 2 ) = Q n i + ∆ i ∆x 2 . (13) 
Regarding the de nition of the slope, a rst choice is given by the ENO strategy [START_REF] Toro | Riemann Solvers and Numerical Methods for Fluid Dynamics[END_REF] ∆

k,i = ∆ k,i-1/2 ∆x = q k,i -q k,i-1 ∆x if |∆ k,i-1/2 | < |∆ k,i+ 1 2 | ∆ k,i+ 1 2 ∆x = q k,i+1 -q k,i ∆x otherwise
where k = 1, . . . , m refers to the unknown variables of Q. Other possibilities are given by the well-known Van Leer or Super Bee limiters, namely for the Super Bee limiter. See [START_REF] Toro | PRICE: Primitive Centred Schemes for Hyperbolic Systems[END_REF] for more details.

∆ k,i = φ( q k,i -q k,i-1 q k,i+1 -q k,i ) q k,i+1 -q k,i ∆x with φ(θ) = θ + |θ| 1 +
Step 2: time evolution of the states Q L i and Q R i for a time ∆t/2. In this step, we propose to evolve in time the boundary values

Q L i and Q R i for a time ∆t/2 according to      QL i = Q L i - 1 2 ∆t ∆x F(Q R i ) -F(Q L i ) - 1 2 ∆t ∆x Âi Q R i -Q L i , QR i = Q R i - 1 2 ∆t ∆x F(Q R i ) -F(Q L i ) - 1 2 ∆t ∆x Âi Q R i -Q L i . (14) 
where Âi = A Q n i . These formulas mimic both the classical MUSCL-Hancock method for the conservative part and the Price-T scheme recalled in the previous section for the non conservative one.

Step 3: intermediate states at interfaces. In order to compute the intermediate states Q

n+ 1 2
i±1/2 at interfaces, we now exploit the Price-T formulas [START_REF] Chalons | Sensitivity equation method for Euler equations in presence of shocks applied to uncertainty quanti cation[END_REF] and [START_REF] Chifari | Sensitivity analysis for hyperbolic equations with application to blood ow in elastic arteries[END_REF] with the evoluted values ( QR i-1 , QL i ) and ( QR i , QL i+i ). Therefore we obtain

Q n+ 1 2 i-1 2 = 1 2 ( QR i-1 + QL i ) - 1 2 ∆t ∆x (F( QL i ) -F( QR i-1 )) - 1 2 ∆t ∆x Âi-1 2 ( QL i - QR i-1 ) (15) 
and

Q n+ 1 2 i+ 1 2 = 1 2 ( QR i + QL i+1 ) - 1 2 ∆t ∆x (F( QL i+1 ) -F( QR i )) - 1 2 ∆t ∆x Âi+ 1 2 ( QL i+1 - QR i ), (16) 
where we set Âi-

1 2 = A 1 2 ( QR i-1 + QL i ) and Âi+ 1 2 = A 1 2 ( QR i + QL i+1 ) .
Step 4: new solution. At this stage, it would be tempting to update the solution using formula [START_REF] Colciago | Comparisons between reduced order models and full 3D models for uid-structure interaction problems in haemodynamics[END_REF] with the new intermediate states, leading to

Q n+1 i = 1 2 (Q n+ 1 2 i-1 2 + Q n+ 1 2 i+ 1 2 ) - 1 2 ∆t ∆x (F(Q n+ 1 2 i+ 1 2 ) -F(Q n+ 1 2 i-1 2 )) - 1 2 ∆t ∆x Âi (Q n+ 1 2 i+ 1 2 -Q n+ 1 2 i-1 2 ), (17) 
with

Âi = A 1 2 (Q n+ 1 2 i-1 2 + Q n+ 1 2 i+ 1 2 
) .

However, it was observed that in the conservative case A(Q) = 0 such a formula does not provide us with a nite volume conservative scheme, and in particular it does not reduce to the expected SLIC scheme associated with the Price-T ux, namely to

Q n+1 i = Q n i - ∆t ∆x F slic i+1/2 -F slic i-1/2 , with F slic i+1/2 = F f orce i+1/2 ( QR i , QL i+i ) for all i.
Refer to [START_REF] Toro | Riemann Solvers and Numerical Methods for Fluid Dynamics[END_REF] for more details. This is of course not satisfactory since it is wellknown that non conservative schemes used to approximate conservative systems generally lead to wrong solutions. This will be illustrated in the numerical experiments below.

In order to overcome this issue, easy calculations show that a correction term L i given by

L i = F( QR i ) -F( QL i ) ∆x - F(Q R i ) -F(Q L i ) ∆x ,
and clearly approximating zero can be added in the update formula to recover the SLIC scheme in the conservative case. More precisely, we simply suggest to replace [START_REF] Fiorini | Sensitivity analysis for nonlinear hyperbolic equations of conservation laws[END_REF] with

Q n+1 i = 1 2 (Q n+ 1 2 i-1 2 + Q n+ 1 2 i+ 1 2 ) - 1 2 ∆t ∆x (F(Q n+ 1 2 i+ 1 2 ) -F(Q n+ 1 2 i-1 2 )) - 1 2 ∆t ∆x Âi (Q n+ 1 2 i+ 1 2 -Q n+ 1 2 i-1 2 ) - ∆t 2 L i , (18) 
which concludes the description of our second-order centred scheme.

Numerical results

This section shows the numerical results given by the proposed numerical schemes in the elastic and viscoelastic cases. At this stage, we consider academic test cases, namely three di erent Riemann problems with initial data

Q(x, t = 0) = Q L if x < L/2 Q R if x > L/2
where we recall that Q = (A, Au) t in the elastic case, Q = (A, Au, Ψ) t in the viscoelastic case and L is the length of the blood vessel. Note that we will always use Ψ L = Ψ R = 0. No friction forces are accounted for. A more complex test case of a network with 37 arteries will be considered in section 5.

The parameters and initial states used for the simulations are given in the following tables 1 and 2. As we will see and as far as the elastic case is concerned, test 1 presents a left shock and a right rarefaction, test 2 has two rarefactions and test 3 two shocks.

The time step ∆t is de ned at each time iteration by and we take CFL = 0.9. The sti source term associated with the relaxation variable Ψ is solved exactly.

∆t = CFL ∆x max i (|u i | + ci ) Parameter Value pext 0 [P a] L 0.4 [m] h0 0.5 × 10 -3 [m] r0 0.01 [m] E 1.2 × 10 6 N m 2 ρ 1050 kg m 3
Test AL uL AR uR Timeout 1 A0 0 2A0 0 0.013 2 2A0 -1 2A0 1 0.013 3 2A0 1 2A0 -1 0.013
Before showing the results, we underline that the proposed relaxation approach to reformulate the viscoelastic equations as an hyperbolic system with sti source term introduces an error of order O(ε). Considering that the numerical scheme approximates the solution with a consistency error O(∆x r ) where r = 1 for the Price-T scheme and r = 2 for the MUSCL-Hancock Price-T scheme, it is natural to choose ∆x in such a way that ε ≈ ∆x r . In practice, we follow the optimal choice proposed in [START_REF] Montecinos | Hyperbolic reformulation of a 1D visco-elastic blood ow model and ADER nite volume schemes[END_REF] and given by

ε = O(1)∆x r K(r) with K(r) = 1 -2 -1 2 2 r-1 2 -1 . ( 19 
)
It is important to note that, xed the relation time and the maximum acceptable value for O(1), if we re ne excessively the mesh, namely we choose a small ∆x, then the formulation error overcomes the numerical one and consequently

εK(r) ∆x r > O(1).
Since the error related to the choice of ε cannot be completely removed, it represents a limit to the accuracy we can obtain when using a numerical method of order r on a mesh of size ∆x. Referring to [START_REF] Montecinos | Hyperbolic reformulation of a 1D visco-elastic blood ow model and ADER nite volume schemes[END_REF], in general for the numerical computations we take O(1) = 15, and for each test we choose the values for the relaxation time and the mesh size in agreement with [START_REF] Grinberg | Modeling Blood Flow Circulation in Intracranial Arterial Networks:A Comparative 3D/1D Simulation StudyL[END_REF].

Elastic case. Figure 2 shows the numerical solutions for the reference area A/A 0 and the ux q = Au in the elastic case (Γ = 0). We compared both rst and second order method with mesh of M = 100 points, where the mesh size is ∆x = L M , against the exact solution, which was computed using an exact Riemann solver [START_REF] Toro | Brain venous haemodynamics, neurological diseases and mathematical modelling. A review[END_REF]. For the MUSCL-Hancock scheme, the Van Leer limiter was used. We note that both schemes are satisfying, in particular MUSCL-Hancock scheme approximates the exact solution very well as expected.

In gure 3 we exhibit the MUSCL-Hancock solution for test 1 using di erent values for the mesh size. In particular we take M = [62, 125, 250, 500, 1000, 2000] cells and illustrate that the numerical output converges to the exact solution.

Finally and for the sake of completeness, we point out in gure 4 the importance of the correction term L i . As we already observed, the MUSCL-Hancock Price-T scheme applied to a conservative system does not reduce to a conservative method when we neglect L i . As a consequence, the numerical outcome could converge to a wrong solution. Indeed, when we do not add the correction term, we clearly see that the approximate solution departs from the exact one. Viscoelastic case. Figure 5 shows the results obtained in the viscoelastic case with Γ = 1 Pa s m and M = 200. We used both rst and second order scheme, with again Van Leer limiter for MUSCL-Hancock method. We insert also a reference solution computed with the second-order MUSCL-Hancock scheme and a mesh with M = 2000 cells. Consequently, we Reference area A/A 0 (left) and ux q (right) for Riemann Problems in table 2. Mesh with M = 500 cells, Γ = 0.

had to use a relaxation time ε of order O(10 -6 ) according to condition [START_REF] Grinberg | Modeling Blood Flow Circulation in Intracranial Arterial Networks:A Comparative 3D/1D Simulation StudyL[END_REF]. It is important to note that to take a ner mesh size implies the use of a smaller relaxation time according to this relation, with the consequence of a decreased time step ∆t and an increased number of iterations. Moreover, for a xed relaxation time, the higher is the order of accuracy of the method, the larger is the mesh size we have to take to satisfy condition [START_REF] Grinberg | Modeling Blood Flow Circulation in Intracranial Arterial Networks:A Comparative 3D/1D Simulation StudyL[END_REF]. Thus, we could have used a ner mesh if we had only considered the Price-T scheme, as it is rst-order accurate. Clearly, with a xed mesh size, Price-T solution results to be more di usive than the second-order one. Moreover, we note that the rst-order outcome has already reached the boundaries at time t = 0.013s. For this reason, we exhibit the solution for the rst test case with an enlarged domain, in order to show that the transmissive boundary conditions are not interfering with the results. We take the vessel length L = 0.6m and consequently we consider the initial discontinuity at gate = 0.3m. Thus, in gure 6 satisfying results are reported.

Finally, also for the viscoelastic case we insert a convergence test using a sequence of mesh with M = [62, 125, 250, 500, 1000, 2000] cells. As initial conditions, we consider the rst test case of table 2, using once again the enlarged domain and relaxation time of order O(10 -6 ).

Continuous sensitivity equations

In this section, we consider the continuous sensitivity equation method for computing the rst-order sensitivities of our elastic and viscoelastic models [START_REF] Canestrelli | Well-Balanced High-Order Centred Schemes for Non-Conservative Hyperbolic Systems. Application to Shallow Water with Fixed and Mobile Bed[END_REF]. We refer for instance the reader to [START_REF] Chalons | Sensitivity equation method for Euler equations in presence of shocks applied to uncertainty quanti cation[END_REF] and [START_REF] Duvigneau | An improved continuous sensitivity equation method for optimal shape design in mixed convection[END_REF] for more details about this method. These equations will be exploited for uncertainty quanti cation in sections 4.3 and 5.

Let us brie y recall that when speaking of blood ow in arteries and veins, sensitivity analysis is a crucial topic. Indeed, acquiring experimental results can be very challenging and the values of the parameters considered in the numerical simulations can present uncertainties, not to mention the underlying modeling assumptions. It is therefore very important to understand how the solution ( ow and pressure in particular) could transform when varying the parameters values.

In the following, we will denote by a the uncertain parameter and system (6) will be called the state system. Our main objective is to derive the so-called sensitivity system associated with the derivative of Q with respect to a that will be denoted by Q a . To compute the sensitivity system we rst take as hypothesis the smoothness of the solution and simply di erentiate the state equations with respect to a. It amounts to formally exchange the derivative with respect to a with the ones with respect to space and time. As we will see, the obtained system is proved to be weakly hyperbolic. Then, we will consider the possibility of having discontinuous state solutions Q and correct the sensitivity system accordingly by adding a Dirac source term.

Elastic case. Let us di erentiate system (3) with respect to a. After some calculations and exchanging the derivatives in time and space with the ones with respect to a, we easily obtain the sensitivity equations

∂ t A a + ∂ x q a = 0 ∂ t q a + ∂ x (c 2 -u 2 )A a + 2uq a + γ a A 3 2 = -R a u -Ru a . (20) 
Also note that di erentiating (2) gives

p a (A, A a ) = p ext,a + 3ρ γ a ( √ A -A 0 ) + γ A a 2 √ A - A 0a 2 √ A 0 + 3ρ a γ( √ A -A 0 ).
Considering both the state equations (3) and the sensitivity equations [START_REF] Gunzburger | Perspectives in ow control and optimization[END_REF] together gives a new system with four equations and four unknowns. Its Jacobian matrix is

J = J el 0 R J el =      0 1 0 0 c 2 -u 2 2u 0 0 0 0 0 1 1 A c 2 2 + 2u 2 A a -2uq a + Ac 2 γa γ 1 A 2q a -2uA a c 2 -u 2 2u     
, with J el the Jacobian matrix of the elastic model (3). Hence, the eigenvalues of the global system are still given by λ ± e but now with multiplicity two. Therefore, the strict hyperbolicity is immediately lost. Actually, it is easy to see that hyperbolicity is also lost in general. Indeed, the global system turns out to be only weakly hyperbolic, which means that all eigenvalues are real but no complete set of linearly independent eigenvectors exists, or equivalently the Jacobian matrix is not Rdiagonalizable. In this case the characteristic polynomial reads

p(x) = (x -λ - e ) 2 (x -λ + e ) 2 ,
hence the minimal polynomial should be at most of degree 2 in order to have distinct roots. Thus, to prove that J is diagonalizable, we should have

(J -λ - e I 4 )(J -λ + e I 4 ) = 0
where I 4 is the 4 × 4 identity matrix. This is equivalent to write

J el -λ - e I 2 0 R J el -λ - e I 2 J el -λ + e I 2 0 R J el -λ + e I 2 = = (J el -λ - e I 2 )(J el -λ + e I 2 ) 0 R(J el -λ + e I 2 ) + (J el -λ - e I 2 )R (J el -λ - e I 2 )(J el -λ + e I 2 )
= 0

and in order to have this condition satis ed, we should impose R(J el -λ + e I 2 ) + (J el -λ - e I 2 )R = 0. However, computing its coe cients shows that in general they are di erent from zero. More precisely, we have

(R(J el -λ + e I 2 ) + (J el -λ - e I 2 )R) 1,1 = 1 A (( c 2 2 + 2u 2 )A a -2uq a + Ac 2 γ a γ ) (21) 
and

(R(J el -λ + e I 2 ) + (J el -λ - e I 2 )R) 1,2 = 1 A (2q a -2uA a ) = 2u a (22) 
so that we would need u a = 0 by ( 22) and then A a = 2Aγ a /γ by [START_REF] Hou | Why Nonconservative Schemes Converge to Wrong Solutions: Error Analysis[END_REF]. Both conditions are very speci c and in general are not true, which proves the weak hyperbolicity.

Viscoelastic case. Let us now turn to the viscoelastic case and di erentiate [START_REF] Brault | Uncertainty quanti cation of in ow boundary condition and proximal arterial stiness coupled e ect on pulse wave propagation in a vascular network[END_REF] with respect to the uncertain parameter a. After some computations, we obtain

             ∂ t A a + ∂ x q a = 0 ∂ t q a + ∂ x (c 2 -u 2 )A a + 2uq a + γ a A 3 2 + a Γa 2 ∂ x A + a Γ 2 ∂ x A a - -ζ 1 2 √ A A a ∂ x Ψ + √ A∂ x Ψ a -ζ a √ A∂ x Ψ = -R a u -Ru a ∂ t Ψ a -1 ε ∂ x q a + 1 ε 2 ε a ∂ x q = -1 ε Ψ a + 1 ε 2 ε a Ψ, (23) 
with ζ = Γ ρA0 . Moreover, the derivative of the viscoelastic pressure reads

p a (A, Ψ, A a , Ψ a ) =p ext,a + 3ρ γ a ( √ A -A 0 ) + γ A a 2 √ A - A 0a 2 √ A 0 + 3ρ a γ( √ A -A 0 )- -Γ a Ψ A 0 √ A + Γ ΨA 0a A 2 0 √ A + Γ ΨA a 2A 0 √ A 3 -Γ Ψ a A 0 √ A . (24) 
In the same way we did for the elastic system, it can be easily shown that the global system (5)-( 23) is weakly hyperbolic with real eigenvalues given by λ ± v and λ 0 v and multiplicity two.

For the sake of conciseness, we rewrite the global systems (3)-( 20) for the elastic case and ( 5)-( 23) for the viscoelastic case in the compact form

∂ t Q + ∂ x F(Q) + A(Q)∂ x Q = S(Q) ∂ t Q a + ∂ x F a (Q, Q a ) + B(Q, Q a )∂ x Q + A(Q)∂ x Q a = S a (Q, Q a ) (25) 
where in the new equation on Q a , we have B(Q, Q a ) = 0 and

Q a = A a q a , F a (Q) = q a (c 2 -u 2 )A a + 2uq a + γ a A 3 2 , S a (Q, Q a ) = 0 -R a u -Ru a ( 26 
)
for the elastic model, and

Q a =   A a q a Ψ a   , F a (Q) =   q a (c 2 -u 2 )A a + 2uq a + γ a A 3 2 -1 ε q a + εa ε 2 q   , B = ∂ a A(Q) =   0 0 0 aΓ a 2 0 -ζ Aa 2 √ A -ζ a √ A 0 0 0   , S a (Q, Q a ) =   0 -R a u -Ru a -1 ε Ψ a + 1 ε 2 ε a Ψ   (27) 
for the viscoelastic one. Note that the global viscoelastic system has two additional terms due to the non-conservative part of the viscoelastic state system.

The case of discontinuous solutions. So far, it was implicitly assumed that the solutions had su cient regularity to di erentiate with respect to a and exchange the derivatives. However and at least in the elastic case, Q can be discontinuous in practice (see for instance the numerical simulations above). In order to avoid the appearance of Dirac delta functions in the sensitivity solution Q a whenever Q is not continuous, it was proposed in [START_REF] Chalons | Sensitivity analysis and numerical di usion e ects for hyperbolic PDE systems with discontinuous solutions. The case of barotropic Euler equations in Lagrangian coordinates[END_REF] and [START_REF] Chalons | Sensitivity equation method for Euler equations in presence of shocks applied to uncertainty quanti cation[END_REF] to add a compensation term Ŝ(Q) of the form

Ŝ(Q) = Ns k=1 δ k ρ k ( 28 
)
where N s is the number of discontinuities,

δ k = δ(x -x k,s )
is the Dirac delta function centered in the position x s,k of the k-th discontinuity separating the states Q -and Q + , and ρ k is the amplitude of the correction for the k-th discontinuity given by

ρ k (t) = σ k,a Q + -Q -. (29) 
We refer for instance the reader to [START_REF] Fiorini | Sensitivity analysis for nonlinear hyperbolic equations of conservation laws[END_REF] and [START_REF] Chalons | Sensitivity equation method for Euler equations in presence of shocks applied to uncertainty quanti cation[END_REF] and the references therein for more details. Finally, the compact forms of the global systems are now given with clear notations by

∂ t Q + ∂ x F(Q) + A(Q)∂ x Q = S(Q) ∂ t Q + ∂ x F a (Q, Q a ) + B(Q, Q a )∂ x Q + A(Q)∂ x Q a = S a (Q, Q a ) + Ŝ(Q). (30) 
4 Centred numerical scheme for the continuous sensitivity equations

The aim of this section is to brie y describe the Price-T and MUSCL-Hancock schemes applied to the sensitivity variables Q a . The main di erence with the general setting proposed in section 2 lies in the presence of the source term Ŝ(Q) in the sensitivity equations. Note that the friction forces or the sti source term associated with the relaxation variable Ψ are considered using the same operator splitting method as for the state equations on Q. On the contrary, we handle Ŝ in a di erent way and take it into account at the same level as for the convective terms.

First-order Price-T scheme

Since we consider also the source term Ŝ(Q) for the sensitivity variables, we modify the updating formulae [START_REF] Chalons | Sensitivity equation method for Euler equations in presence of shocks applied to uncertainty quanti cation[END_REF], [START_REF] Chifari | Sensitivity analysis for hyperbolic equations with application to blood ow in elastic arteries[END_REF] and [START_REF] Colciago | Comparisons between reduced order models and full 3D models for uid-structure interaction problems in haemodynamics[END_REF] in the following way:

Q n+ 1 2 a,i-1 2 = 1 2 (Q n a,i-1 + Q n a,i ) - 1 2 ∆t ∆x (F a (Q n i , Q n a,i ) -F a (Q n i-1 , Q n a,i-1 ))- - 1 2 ∆t ∆x Bi-1 2 (Q n i -Q n i-1 ) - 1 2 ∆t ∆x Âi-1 2 (Q n a,i -Q n a,i-1 ) + ∆t 2 Ŝn i-1 2 , Q n+ 1 2 a,i+ 1 2 = 1 2 (Q n a,i + Q n a,i+1 ) - 1 2 ∆t ∆x (F a (Q n i+1 , Q n a,i+1 ) -F a (Q n i , Q n a,i ))- - 1 2 ∆t ∆x Bi+ 1 2 (Q n i+1 -Q n i ) - 1 2 ∆t ∆x Âi+ 1 2 (Q n a,i+1 -Q n a,i ) + ∆t 2 Ŝn i+ 1 2 , Q n+1 a,i = 1 2 (Q n+ 1 2 a,i-1 2 + Q n+ 1 2 a,i+ 1 2 ) - 1 2 ∆t ∆x (F a (Q n+ 1 2 i+ 1 2 , Q n+ 1 2 a,i+ 1 
2

) -F a (Q n+ 1 2 i-1 2 , Q n+ 1 2 a,i-1 2 
))-

- 1 2 ∆t ∆x Bi (Q n+ 1 2 i+ 1 2 -Q n+ 1 2 i-1 2 ) - 1 2 ∆t ∆x Âi (Q n+ 1 2 a,i+ 1 2 -Q n+ 1 2 a,i-1 2 ) + ∆t 2 Ŝn+ 1 2 i ,
where Ŝn i-1 2 is the source term referred to the cells I i-1 and I i , while

Ŝn+ 1 2 i
to I i . In agreement with formulae ( 28) and ( 29), we suggest the following formulas,

Ŝn i-1 2 = 1 ∆x σ 1a,i-1 2 (Q * i-1 2 -Q n i-1 )δ 1,i-1 2 + σ 2a,i-1 2 (Q n i -Q * i-1 2 )δ 2,i-1 2 , Ŝn+ 1 2 i = 1 ∆x σ 1a,i (Q * ,n+ 1 2 i -Q n+ 1 2 i-1 2 )δ 1,i + σ 2a,i (Q n+ 1 2 i+ 1 2 -Q * ,n+ 1 2 i )δ 2,i , (31) 
where

for k = 1, 2, δ k,i+1/2 = δ k,i+1/2 (Q n i , Q n i+1 ), δ k,i = δ k,i (Q n+1/2 i-1/2 , Q n+1/2 i+1/2 ) are shock detectors, while σ ka,i+1/2 = σ ka (Q n i , Q n i+1 ), σ ka,i = σ ka (Q n+1/2 i-1/2 , Q n+1/2 i+1/2 ) and Q * i+1/2 = Q * (Q n i , Q n i+1 ), Q * i = Q * (Q n+1/2 i-1/2 , Q n+1/2 i+1/2
) respectively approximate the derivative with respect to a of the speed of propagation σ k of the corresponding shock, and its left or right state.

In order to evaluate these quantities and since in general the exact solution of a Riemann problem is not explicitly known (at least for the viscoelastic system), we use the Harten-Lax-van Leer formalism applied to non conservative systems (see [START_REF] Toro | Riemann Solvers and Numerical Methods for Fluid Dynamics[END_REF] and [START_REF] Ambroso | A Godunov-type method for the seven-equation model of compressible two-phase ow[END_REF]) to de ne a HLL approximate Riemann solver. More precisely, if we denote Q L and Q R the left and right Riemann initial states, we de ne

σ k = σ k (Q L , Q R ) and Q * = Q * (Q L , Q R ) using the consistency relation ∆F + Â∆Q = σ 1 (Q * -Q L ) + σ 2 (Q R -Q * ), leading to Q * = ∆F + Â∆Q + Q L σ 1 -Q R σ 2 σ 1 -σ 2 ,
where we have used the classical notations

∆F = F(Q R ) -F(Q L ), ∆Q = Q R -Q L and  is such that the consistency condition lim Q L ,Q R →Q Â(Q L , Q R ) = A(Q)
holds true. We simply suggest

 = A( 1 2 (Q L + Q R )).
Before de ning the speeds of propagation and the shock detectors, observe that using a HLL approximate Riemann solver is the more natural way for the elastic system since the exact Riemann solution itself contains exactly two waves. Therefore, we are not excluding any of them and the approach results to be complete (but approximate). On the other hand, for systems with three or more waves we would neglect the middle ones. To avoid this problem, one could determine the intermediate values exploiting an HLLC approach, refer for instance to [START_REF] Toro | Restoration of the Contact Surface in the HLL-Riemann Solver[END_REF][START_REF] Chalons | Sensitivity equation method for Euler equations in presence of shocks applied to uncertainty quanti cation[END_REF]. At last, for the elastic model, we propose to de ne the speed of propagation as follows,

σ 1 = min(u L -c L , u R -c R ), σ 2 = max(u L + c L , u R + c R ),
refer to [START_REF] Davis | Simpli ed Second-Order Godunov-Type Methods[END_REF]. Therefore, the derivatives σ 1a = ∂ a σ 1 and σ 2a = ∂ a σ 2 will be

σ 1a = u aL -c aL if σ 1 = u L -c L u aR -c aR if σ 1 = u R -c R , σ 2a = u aL + c aL if σ 2 = u L + c L u aR + c aR if σ 2 = u R + c R , with c a = 1 2c 3 2 γ a √ A + 3γ 4 √ A A a .
Regarding the shock detectors, we refer for instance to [START_REF] Chifari | Sensitivity analysis for hyperbolic equations with application to blood ow in elastic arteries[END_REF] and we set

δ 1,i-1 2 = 1 if A * i-1 2 > A n i-1 0 if A * i-1 2 ≤ A n i-1 , δ 2,i-1 2 = 1 if A * i-1 2 > A n i 0 if A * i-1 2 ≤ A n i , δ 1,i =    1 if A * ,n+ 1 2 i > A n+ 1 2 i-1 2 0 if A * ,n+ 1 2 i ≤ A n+ 1 2 i-1 2 , δ 2,i =    1 if A * ,n+ 1 2 i > A n+ 1 2 i+ 1 2 0 if A * ,n+ 1 2 i ≤ A n+ 1 2 i+ 1 2 .

MUSCL-Hancock Price-T scheme

Proceeding in a similar way, we revise the MUSCL-Hancock scheme proposed in section 2.2 to include the term Ŝ for the sensitivity equations. First of all we have to modify the evolved boundary values ( 14), namely

QL a,i = Q L a,i - 1 2 ∆t ∆x F a (Q R i , Q R a,i ) -F a (Q L i , Q L a,i ) - 1 2 ∆t ∆x Ân i Q R a,i -Q L a,i - 1 2 ∆t ∆x Bn i Q R i -Q L i + ∆t 2 Ŝi , QR a,i = Q R a,i - 1 2 ∆t ∆x F a (Q R i , Q R a,i ) -F a (Q L i , Q L a,i ) - 1 2 ∆t ∆x Ân i Q R a,i -Q L a,i - 1 2 ∆t ∆x Bn i Q R i -Q L i + ∆t 2 Ŝi ,
with Ŝi evaluated as in [START_REF] Toro | Centered TVD schemes for hyperbolic conservation laws[END_REF] with left and right states Q L i and Q R i . Then, as we did for the Price-T scheme, we have to consider the source term Ŝ for both the intermediate states Q

n+ 1 2 a,i± 1 2
and the new solution

Q n+1 i , leading to Q n+ 1 2 a,i-1 2 = 1 2 ( QR a,i-1 + QL a,i ) - 1 2 ∆t ∆x (F a ( QL i , QL a,i ) -F a ( QR i-1 , QR a,i-1 ))- - 1 2 ∆t ∆x Bi-1 2 ( QL i - QR i-1 ) - 1 2 ∆t ∆x Âi-1 2 ( QL a,i - QR a,i-1 ) + ∆t 2 Ŝn i-1 2 , Q n+ 1 2 a,i+ 1 2 = 1 2 ( QR a,i + QL a,i+1 ) - 1 2 ∆t ∆x (F a ( QL i+1 , QL a,i+1 ) -F a ( QR i , QR a,i ))- - 1 2 ∆t ∆x Bi+ 1 2 ( QL i+1 - QR i ) - 1 2 ∆t ∆x Âi+ 1 2 ( QL a,i+1 - QR a,i ) + ∆t 2 Ŝn i+ 1 2 , Q n+1 a,i = 1 2 (Q n+ 1 2 a,i-1 2 + Q n+ 1 2 a,i+ 1 2 ) - 1 2 ∆t ∆x (F a (Q n+ 1 2 i+ 1 2 , Q n+ 1 2 a,i+ 1 2 
) -F a (Q

n+ 1 2 i-1 2 , Q n+ 1 2 a,i-1 2 
))-

- 1 2 ∆t ∆x Bi (Q n+ 1 2 i+ 1 2 -Q n+ 1 2 i-1 2 ) - 1 2 ∆t ∆x Âi (Q n+ 1 2 a,i+ 1 2 -Q n+ 1 2 a,i-1 2 ) - ∆t 2 L i + 1 2 ∆t Ŝn+ 1 2 i , with 
L i = F a ( QR i , QR a,i ) -F a ( QL i , QL a,i ) ∆x - F a (Q R i , Q R a,i ) -F a (Q L i , Q L a,i ) ∆x
and Ŝ computed as in [START_REF] Toro | Centered TVD schemes for hyperbolic conservation laws[END_REF].

Numerical results and uncertainty quanti cation

This section shows the outcomes of the proposed numerical schemes applied to the sensitivity equations. In particular, our aim is to illustrate the behavior of the solutions with respect to the emergence or disappearance of Dirac peaks when the source term Ŝ is active or not. Despite the test cases considered here are academic, we believe that they provide a better understanding of the in uence of the source term Ŝ and its numerical approximation. As already said, a more realistic test case of a complex network will be considered in section 5.

As far as the state variables are concerned, we consider the same Riemann problems as in section 2.3, with values listed in table 2. Regarding the sensitivity variables and choosing the uncertain parameter a, we will simply have

Q aL = ∂ a Q L , Q aR = ∂ a Q R .
In particular, we study the sensitivity of the solution with respect to the initial values of the cross-sectional area, namely we take a = A L and a = A R . Furthermore, as we mentioned in the introduction, an important parameter in this eld is the arterial sti ness, as it associated to many cardiovascular illnesses. Thus, we consider as uncertain parameters also the vessel thickness h 0 , the radius r 0 of the cross-sectional area at equilibrium and the Young modulus E, as they are all related to the arterial sti ness.

Therefore, using for instance a = A R , we obtain Observe that if we take a = A R and a = A L , Q aL and Q aR will be zero vectors.

Q aL =   0 0 0   and Q aR =   1 0 0   .
If not speci ed, we underline that we used a CFL condition of CFL = 0.9. Elastic Case. In all the graphics we insert the exact solution, which was computed using an exact Riemann solver, refer to Chifari's thesis [START_REF] Chifari | Sensitivity analysis for hyperbolic equations with application to blood ow in elastic arteries[END_REF]. Figures 8 -12 correspond to test 1 of table 2 and show the outputs with and without the numerical source term Ŝ for the di erent choices of a. As expected, we rst observe that neglecting the correction term Ŝ implies the presence of spikes at the position of the discontinuities of the state variables. For a = A L and a = A R , the presence of Ŝ removes completely the spikes and gives the sought solution. Instead, for a = h 0 , a = r 0 and a = E, we note very little spikes on the sensitivity variable A a in correspondence of the discontinuity on A. In that case, our discretization of Ŝ appears to over-compensate the initial spikes, in the sense that it is now in the opposite direction with respect to the gures in which we neglected Ŝ.

Next, we aim to illustrate empirically that the MUSCL-Hancock solution converges to the exact one when we consider the correction term Ŝ and we re ne the mesh at the same time. Therefore, we use a mesh with M = 2000 cells to compare the two di erent outcomes. Indeed, in gure 13 we can see that the MUSCL-Hancock approximation is very satisfying, only in graphics 13.(c), 13.(d) and 13.(e) small spikes remain in correspondence of the shock of the cross-sectional area A. Moreover, there is a minor clipping of extreme values which is expected to further reduce re ning the mesh.

Figure 14 shows the results for test 2 of table 2. Since in this Riemann problem there are two rarefactions, there is no need to insert the source term Ŝ in the sensitivity equations, as it would give the same solution. Let us also observe that in gures 14.c, 14.d and 14.e, there is a clipping of extreme values. Finally, gures 15 -19 show the outcomes for test 3 of table 2. For this case we used CFL = 0.5 in order to be sure that the numerical solution would reach the exact plateau in the star region. Regarding the cases with a = A L and a = A R , we observe that there are no more spikes with the source term Ŝ. In Viscoelastic Case. Let us rst recall that in this case there is no need to add the source term Ŝ to the sensitivity equations as the state variables do not present discontinuities. In all the graphics we insert a reference solution obtained with the MUSCL-Hancock method and a mesh of M = 2000 cells.

Outcomes of test 1 of table 2 for the derivative of the cross-sectional area A and the ow q are given in gure 20. For this Riemann problem we compare the Price-T and MUSCL-Hancock solution using a mesh with M = 200 cells. Clearly, being rst and second-order accurate respectively, the Price-T outcomes are more di usive than the MUSCL-Hancock ones. Taking a = A L and a = A R and comparing the elastic and viscoelastic outcomes ( gures 8 -9 and 20.(a) -20.(b)), we observe that the sensitivity variables present analogous behaviours, even if in the latter case they are more di usive. Whereas, to take into consideration a = h 0 , a = r 0 and a = E leads to more obvious dissimilarities, see gures 10 -12 for the elastic case, 20.(c) -20.(e) for the viscoelastic one. Indeed, in the viscoelastic sensitivity solutions we note low and wide "spikes" in correspondence of the shocks of the elastic state variables. They go in the same direction of the spikes of the elastic sensitivities, which are present when we neglect the source term Ŝ. Whereas, concerning rarefactions, elastic and viscoelastic sensitivity variables exhibit similar behaviours.

Analogous considerations apply to the Riemann problems 2 and 3 of table 2. For these two cases we consider only MUSCL-Hancock solution with M = 200 cells, as Price-T outcome converges to it decreasing the mesh size. In particular, we insert the outputs for test 2 in gure 21. The viscoelastic sensitivity outcome shows a similar behaviour to the one of the elastic sensitivities, even if much more di used. This was expected as the elastic state variables present only rarefactions in this test case, and thus the solution is regular enough. Finally, in gure 22 the results for test 3 are reported. Being this test a two-shocks Riemann Problem, once again we note that for a = h 0 , a = r 0 and a = E the elastic and viscoelastic sensitivity outcomes are quite di erent. Indeed, when we do not consider Ŝ, the big spikes present in the elastic sensitivities are in correspondence to the low and wide "spikes" we note in the viscoelastic outcomes. Whereas, for a = A L and a = A R , the solutions of the two sensitivity systems are similar, even if the viscoelastic output is more di used.

Uncertainty quanti cation. Now we want to start exploiting our work setting based on sensitivity analysis for uncertainty quanti cation. Recall that the main aim of uncertainty quanti cation is to compute con dence intervals. This could be done of course using probabilistic methods like Monte-Carlo, but at the price of a much higher computational cost compared to deterministic approach proposed here. For more details about this kind of methods, see for instance [START_REF] Fiorini | Sensitivity analysis for nonlinear hyperbolic equations of conservation laws[END_REF] and the references therein.

Given a random variable X, its con dence interval CI X is de ned by

CI X = [µ X -kσ X , µ X + kσ X ],
where µ X and σ X respectively denote the mean and standard deviation of X. The value of k regulates the amplitude of the interval. For instance for Gaussian random variables, k = 1.96 means a 95% con dence interval. Sensitivity variables comes into play to easily compute an estimate of µ X and σ 2 X , as we show now. Note that in practice, the random variable X will be either the area A, or the ow q, or the pressure p, while the randomness of X comes from the uncertain feature of one or several parameters a i . We will denote by M the number of uncertain parameters and they will be represented by the vector a = (a 1 , ..., a M ) t .

Let µ a and σ a respectively be the average and the covariance matrix of the uncertain vector a,

µ a =    µ a1 . . . µ a M    and σ a =      σ 2 a1 cov(a 1 , a 2 ) . . . cov(a 1 , a M ) cov(a 1 , a 2 ) σ 2 a2 . . . cov(a 2 , a M ) . . . . . . . . . . . . cov(a 1 , a M ) . . . . . . σ 2 a M     
, with µ ai the average of the i-th uncertain parameter and σ 2 ai its variance. In order to estimate the mean and standard deviation of X, we use a Taylor expansion for X around the mean of a, namely

X(a) = X(µ a ) + M i=1 (a i -µ ai )X ai (µ ai ) + o(||a|| 2 ),
where X ai is the derivative of X with respect to the i-th uncertain parameter, that is to say what we have called the sensitivity variable with respect to a i . To rst-order and taking the average, we get

µ X = E[X(a)] = X(µ a ) + M i=1 X ai (µ a )E[a i -µ ai ] = X(µ a ).
Indeed, recall that E[a i -µ ai ] = 0 and observe that X(µ ai ) and X ai (µ ai ) are not random variables. As far as the variance is concerned, we nd to rst-order Finally, we have obtained the following rst-order estimates for µ X and σ 2 X ,

σ 2 X = E[(X(a) -µ X ) 2 ] = E M i=1 X ai (µ a )(a i -µ ai ) 2 = = M i=1 X 2 ai (µ a )E[(a i -µ ai ) 2 ] + M i,j=1 i =j X ai (µ a )X aj (µ a )E[(a i -µ ai )(a j -µ aj )].
µ X = X(µ a ), σ 2 X = M i=1 σ 2 ai X 2 ai + M i,j=1 i =j X ai X aj cov(a i , a j ). ( 32 
)
Note that these formulas require to evaluate only once the state and sensitivity variables at the mean values of the uncertain parameters, which is really inexpensive compared to Monte-Carlo methods. We refer for instance to [START_REF] Chalons | Sensitivity equation method for Euler equations in presence of shocks applied to uncertainty quanti cation[END_REF][START_REF] Fiorini | Sensitivity analysis for nonlinear hyperbolic equations of conservation laws[END_REF] for more details.

Let us now present the numerical results. As uncertain parameters, we consider the ones that characterize the mechanical and geometrical properties of the vessels, i.e. the vessel thickness h 0 , the radius at equilibrium r 0 and the Young modulus E, but also the the Riemann initial values for the area A L and A R . We suppose all the parameters to be uncorrelated and, following the works of Petrella et al. [START_REF] Petrella | Uncertainty Quanti cation for Hyperbolic Systems with application to blood ow in arteries[END_REF] and Alastruey et al. [START_REF] Alastruey | Pulse wave propagation in a model human arterial network: Assessment of 1-D visco-elastic simulations against in vitro measurements[END_REF], for each vessel we assume h 0 , r 0 and E to be respectively a ected by an error of 2.5%, 3.5% and 5%. Finally, for A L and A R we take an error of 0.1%. Namely, we considered

σ a = diag((0.1%A L ) 2 , (0.1%A R ) 2 , (2.5%h 0 ) 2 , (3.5%r 0 ) 2 , (5%E) 2 ).
In the following pictures, we show graphics for the average and the average plus/minus twice the standard deviation of the area A and the ow q, as well as four samples. For the elastic model, outcomes with and without the correction term Ŝ are exhibited. Price-T and MUSCL-Hancock schemes are considered.

Elastic Case. Starting with test 1, in gures 23 and 24 we note that our con dence intervals are very satisfying in smooth regions. As expected, we observe large spikes near discontinuities when we do not take Ŝ into account. They disappear if we consider the correction term, however the con dence intervals are very narrow and the samples may fall outside. Note also the dependency of the shock speed with respect to the uncertain parameters has not been taken into account, which may cause errors, see for instance [START_REF] Chalons | Sensitivity equation method for Euler equations in presence of shocks applied to uncertainty quanti cation[END_REF] for more details. Regarding the di erences between the two numerical methods, we notice that the spikes of the Price-T are much smaller, which is in agreement with the sensitivities showed previously. Moreover, in correspondence of the head of the rarefaction, the Price-T solution exhibits little spikes which are emphasized by MUSCL-Hancock method. This could be related to the clipping of extreme values of the Price-T sensitivities. Observe also that the con dence intervals obtained with the Price-T scheme are more di usive than MUSCL-Hancock, which is expected due to the numerical di usion. However, let us also keep in mind that our approximations of the mean and variance for computing the con dence intervals are rst-order, which may question the use of MUSCL-Hancock for the sensitivity equations.

Next in gure 25 we nd the results of test 2 with 2-rarefaction waves. We see that the samples fall inside the predicted con dence intervals. On the other hand, we observe small spikes in correspondence of the heads of the rarefactions that re ect the behavior of the sensitivity variables.

Finally gure 26 show the outputs of Test 3. If not considering Ŝ entails the presence of large spikes in presence of shock, adding the correction term completely remove them. However, as we observed for test 1, the samples could fall outside of the con dence intervals when there are discontinuous solutions.

Finally, we can conclude this rst batch of results saying that in general the sensitivity variables provide good con dence intervals, especially when the solutions are smooth. Moreover, recall that the computational cost is very low with respect to probabilistic method as Monte-Carlo. Again, while this scheme can require thousands of solutions of the state equations, our method needs only one solution of the state and as many solutions of the sensitivity equations as the number of uncertain parameters.

Viscoelastic case. In gures 27 and 28 we insert the results for test 1, for which we used respectively the Price-T and MUSCL-Hancock scheme. Let us recall that in this case there is no need to consider the correction term Ŝ, as the viscoelastic state variables do not present shocks. Contrarily to the elastic system, now we do not have excessively large spikes. Solutions are smooth and the samples fall inside the predicted con dence intervals. Comparing the results obtained with the rst and second-order scheme, we can do analogous observations to the ones for the elastic system. The con dence interval produced by the MUSCL-Hancock can be considered better as the ones of the Price-T scheme are more di usive.

Similar considerations apply to tests 2 and 3, in graphics 29 and 30. In general for the viscoelastic system we do not have the problem of samples falling outside the con dence intervals, with the exception of the 2-shock case. Indeed, only one of the samples is not contained by the con dence interval for the cross-sectional area A. However, this happens only in a minor zone of the solution and with an error of order O(10 -8 ). 

Numerical simulation of a human arterial network

The main objective of this section is to model and simulate a complex network made of 37 arteries. As a rst step, it is necessary to propose a numerical treatment of the junctions between two or several arteries, considering both the state and the sensitivity equations.

Treatment of the junctions

As just motivated, we want to explain how to treat the presence of junctions points among vessels. For the sake of simplicity, we will illustrate in more details the cases of two and three vessels but the strategy can be extended to an arbitrary number, for more details we refer for instance to [START_REF] Matthys | Pulse wave propagation in a model human arterial network: Assessment of 1-D numerical simulations against in vitro measurements[END_REF] and [START_REF] Müller | Consistent treatment of visco-elastic e ects at junctions in one-dimensional blood ow models[END_REF].

In the following, we will assume that our network of vessels is represented by a nite collection of incoming and outgoing directed arcs in one space dimension, which are connected by nodes and aligned in the same direction.

Considering N vessels sharing a node as represented in gure 31 for N = 3,

∂ t Q k + ∂ x F(Q k ) + A(Q k )∂ x Q k = S(Q k ) Q k (x, 0) = Q 1D k (33) 
with k = 1, . . . , N , where Q 1D k represents the constant initial value in the k-th vessel. Waves with negative speed in incoming vessels and positive speed in outgoing vessels are expected to develop at the node, leading to the occurrence of N intermediate states denoted by Q * k . These states represent the traces of the solution at the node in each vessel, and should be connected to the initial states Q 1D k by (approximate) nonlinear waves. In the following and for the sake of simplicity, we will always consider that

Q 1D k =   A 1D k q 1D k Ψ 1D k   and Q * k =   A * k q * k Ψ * k   ,
being implied that, unless otherwise stated, the last component Ψ should not be considered when dealing with the elastic system.

In order to de ne the N unknown states Q * k , we suggest to impose

• the continuity of the mass ux q = Au through the junction,

• the continuity of the total pressure p + 1 2 ρu 2 through the junction, • the constancy of the generalized Riemann invariants seen in section 1 in each vessel.

At last, it also allows to easily obtain the coupling conditions also for the sensitivity variables by di erentiating the linearized conditions [START_REF] Toro | Brain venous haemodynamics, neurological diseases and mathematical modelling. A review[END_REF] with respect to the parameter a. Therefore for N = 2 we write

                 A * 1 u * a1 + A * a1 u * 1 = A * 2 u * a2 + A * a2 u * 2 , p a (A * 1 , Ψ * 1 , A * a1 , Ψ * a1 ) + ρu * 1 u * a1 = p a (A * 2 , Ψ * 2 , A * a2 , Ψ * a2 ) + ρu * 2 u * a2 A * ak ε - A * k ε 2 ε a + Ψ * ak = A 1D ak ε - A 1D k ε 2 ε a + Ψ 1D ak k = 1, 2, u * a1 + ā A * 2 1 A * 1a = u 1D a1 + ā A 1D 1 2 A 1D 1a , (left rarefaction), u * a2 -ā A * 2 2 A * 2a = u 1D a2 -ā A 1D 2 2 A 1D 2a , ( right rarefaction) (37) 
while, for N = 3:

                 A * 1 u * a1 + A * a1 u * 1 = A * 2 u * a2 + A * a2 u * 2 + A * 3 u * a3 + A * a3 u * 3 , p a (A * 1 , Ψ * 1 , A * a1 , Ψ * a1 ) + ρu * 1 u * a1 = p a (A * k , Ψ * k , A * ak , Ψ * ak ) + ρu * k u * ak k = 2, 3 A * ak ε - A * k ε 2 ε a + Ψ * ak = A 1D ak ε - A 1D k ε 2 ε a + Ψ 1D ak , k = 1, 2, 3, u * a1 + ā A * 2 1 A * 1a = u 1D a1 + ā A 1D 1 2 A 1D 1a , (left rarefaction), u * ak -ā A * 2 k A * ka = u 1D ak -ā A 1D k 2 A 1D ka , k = 2, 3, (right rarefaction). (38) 
Note that we have done a further simpli cation by assuming that a is independent from the uncertain parameter a.

Remark. For the numerical computations, the above-mentioned linearization procedure to simplify the coupling conditions was used for the elastic state and sensitivity variables as well. However, we highlight that, in this case, relations [START_REF] Toro | Brain venous haemodynamics, neurological diseases and mathematical modelling. A review[END_REF] are not reduced to the classical ones we would have if we had used the elastic Riemann invariants I - e = u + 4c and I + e = u -4c. See [START_REF] Petrella | Uncertainty Quanti cation for Hyperbolic Systems with application to blood ow in arteries[END_REF] for further details.

Numerical illustrations. Here we illustrate the numerical outcomes obtained with our implementation of the junctions. We want to compare the results given by a numerical simulation considering two identical vessels linked by a junction and the one considering a unique equivalent vessel. This academic test case is useful to judge the e ciency of the strategy proposed to couple the vessels is e cient or not. We will also consider a test case with three vessels.

Let us brie y describe the boundary conditions. Regarding the left boundary condition, we impose an inlet ow given by q bc = qe -10000(t-0.025) 2

where q = 100 ml s -1 , and we de ne the missing area and relaxation variable by exploiting the continuity of Riemann invariants, which leads to the following system,

F 1 (A * , Ψ * ) = u 1 + ā A1 -u * -ā A * = 0 F 2 (A * , Ψ * ) = A1 ε + Ψ 1 -A * ε -Ψ * = 0. (39) 
Here the subscript 1 refers to the value of the rst cell. This system can be solved with the Newton-Rhapson Method.

Regarding the sensitivity variables, we di erentiate [START_REF] Xiao | A systematic comparison between 1-D and 3-D hemodynamics in compliant arterial models[END_REF] to obtain:

F a1 (A * , Ψ * , A * a , Ψ * a ) = u a1 -ā A1 2 A a1 -u * a1 + ā A * 2 A * a = 0 F a2 (A * , Ψ * , A * a , Ψ * a ) = Aa1 ε -A1 ε 2 ε a + Ψ a1 - A * a1 ε + A * ε 2 ε a -Ψ * a = 0
The right boundary conditions are classical transmissive conditions. The parameters of the vessels under consideration are given in the table below. More precisely, for the parameters of the two connected vessels we used the ones of vessels v 2 and v 3 , and for the equivalent vessel we do refer to v 1 . The missing parameters are taken from table 1. Here we are also adding the friction forces with µ = 2.5mPa S.

As initial condition for the state variables we used a Gaussian, namely with α = 0, β = 10000. Therefore for the sensitivity variables we imposed

Q =   A q Ψ   =   A 0 (1 + αe -β(x-gate) ) 0 0   . (40) 
Q a =   A a q a Ψ a   =   A 0a (1 + αe -β(x-gate) ) 0 0   . (41) 
We show the results obtained with the MUSCL-Hancock scheme in the viscoelastic case. We inserted the results for the ow and pressure in gure 32. In 33, 34 and 35 we show the outputs for the sensitivity variables obtained with respectively a = h, a = r 0 and a = E. Note that when we di erentiate the sensitivity equations with respect to the the radius r 0 , we are also considering uncertainty on the initial condition as it depends on r 0 . We plotted the results for three di erent times with MUSCL-Hancock scheme. Even if linearized coupling conditions are used, one can be satis ed with the results in spite of using a coarse mesh. Regarding the sensitivities, the outputs seem to be slightly worse than the ones for ow and pressure, especially at time t = 0.068. Since the sensitivity equations are derived from the state ones, an imprecision in the latter will be re ected from the sensitivity. Thus, the error will be ampli ed as we are adding two of them: one from the state and one from our modeling of the junctions.

To be thorough, in 36, 37, 38 and 39 we also included the graphics obtained considering one mother vessel (v 2 ) which splits up into two daughter vessels (v 3 and v 4 ). Note that v 3 has the same characteristic of v 2 , while the viscoelastic parameter Γ of v 4 is three times v 3 's Γ. Also the radius r 0 and the vessel thickness h are much smaller. This will entail that the blood ow in v 4 will be minor than the one of v 3 as we can see in [START_REF] Toro | Brain venous haemodynamics, neurological diseases and mathematical modelling. A review[END_REF]. We remark that when considering three vessels, at the junction we are imposing the ow (or its derivative) of the mother vessel to be equal to the sum of the ows (or the sum of the derivatives of the uxes) of the two daughter vessels. We can observe that these two facts seem to be ful lled both from the state and the sensitivity variables.

A human arterial network

Following the works of Matthys et al. [START_REF] Matthys | Pulse wave propagation in a model human arterial network: Assessment of 1-D numerical simulations against in vitro measurements[END_REF] and Alastruey et al. [START_REF] Alastruey | Pulse wave propagation in a model human arterial network: Assessment of 1-D visco-elastic simulations against in vitro measurements[END_REF], in this subsection we aim to model an arterial network for both the state and the sensitivity equations. They constructed a 1 : 1 in-vitro model using silicone tubes for the 37 largest arteries of the systemic circulation, a pump to simulate the heart ow and terminal resistance tubes to represent the peripheral circulation. In particular they created a closed loop hydraulic system connecting these tubes to an over ow reservoir that represents a constant venous pressure. For the values of the parameters we refer the reader to [START_REF] Matthys | Pulse wave propagation in a model human arterial network: Assessment of 1-D numerical simulations against in vitro measurements[END_REF]. We underline that they were measured directly from the in-vitro model, thus no data tting is involved. Note that compared to [START_REF] Alastruey | Pulse wave propagation in a model human arterial network: Assessment of 1-D visco-elastic simulations against in vitro measurements[END_REF], we will use the same parameters values with the exception of the radius which we kept constant, taking it as the average between the initial and nal values for each vessel. Regarding the spatial discretization, in general we used ∆x = 2 cm with the exception of the vessels shorter than 1.5 cm, for which we used only one cell. In this way we were legitimized to use ε = 10 -3 . Moreover we took CFL = 0.9 and consequently we had a time step around ∆t = 700µs in the elastic case, 7 times larger than the one used in [START_REF] Alastruey | Pulse wave propagation in a model human arterial network: Assessment of 1-D visco-elastic simulations against in vitro measurements[END_REF]. Instead in the viscoelastic case we had ∆t = 400µs, 20 times larger. For the initial conditions, once again we used (40) and (41). Finally, since we want to obtain periodic solutions, we show graphics from the 14 th cardiac cycle, with period T = 0.827s (refer to [START_REF] Petrella | Uncertainty Quanti cation for Hyperbolic Systems with application to blood ow in arteries[END_REF] for more details).

Boundary conditions. In order to simulate the heart, the heart ow showed in gure ( 40) is imposed at the beginning of the ascending aorta. Then to nd also the boundary values for the area and the relaxation variable, we exploit the right Riemann invariants as before. Regarding the right boundary conditions for terminal vessels, we follow [START_REF] Alastruey | Pulse wave propagation in a model human arterial network: Assessment of 1-D visco-elastic simulations against in vitro measurements[END_REF] and we consider the ow with p out = 3.2 mmHg induced by the over ow reservoir. Using left Riemann invariants and asking for their constancy, we nd

q * = p(A * , Ψ * ) -p out R p (42) 
F 1 (A * , Ψ * ) = RI M A * R p + āR p -p(A * , Ψ * ) + p out = 0 F 2 (A * , Ψ * ) = A M ε + Ψ M -A * ε -Ψ * = 0, (43) 
with RI M = u M -ā A M , where the subscript M indicates the last cell of the vector. Deriving ( 42) and ( 43), for the sensitivity variables we obtain

q * a = p a (A * , Ψ * , A * a , Ψ * a ) R p = p * a R p and F a1 (A * , Ψ * , A * a , Ψ * a ) = RI aM A * R p + RI M A * a R p -p * a = 0 F a2 (A * , Ψ * , A * a , Ψ * a ) = A aM ε -A M ε 2 ε a + Ψ aM - A * a ε + A * ε 2 ε a -Ψ * a with RI aM = u aM + āA aM A 2 M .
Numerical illustrations. First of all we show the numerical results for the pressure and ow computed in four locations, namely in the midpoint of the thoracic aorta I, left renal, right iliac femoral III and right carotid. We compared the outputs obtained with the rst and second order scheme, in both elastic ( gure 41) and viscoelastic ( gure 42) case. Then, using Price-T and MUSCL-Hancock method respectively, in graphics 43 and 44 we observe the dissimilarities between the conservative and non-conservative system. We use the ENO slope for the second-order method.

Both elastic and viscoelastic outcomes appear to have a similar pro le with respect to the ones given by the experimental measurements. Indeed, this is an important achievement as it validates our numerical results. Then, we highlight that the use of the simple resistive boundary conditions produces non-physiological oscillations, as observed for instance in [START_REF] Alastruey | Pulse wave propagation in a model human arterial network: Assessment of 1-D visco-elastic simulations against in vitro measurements[END_REF][START_REF] Petrella | Uncertainty Quanti cation for Hyperbolic Systems with application to blood ow in arteries[END_REF]. As a consequence, high order methods overestimate the actual oscillations present in the experimental solution, leading to the contradictory situation in which the rst-order schemes seem to approximate better the experimental measurements. Indeed, the numerical viscosity entails a damping of the oscillations when using a rst-order method as the Price-T. This kind of problem is eluded by exploiting the viscoelastic formulation, which reduces the oscillations. Note that both the left renal and right carotid are terminal vessels and exhibit large oscillations if compared to the experimental ones.

We are now interested in plotting the average and variance of the ow and pressure, and then their con dence intervals. Regarding the uncertain parameters, we take the ones linked to the arterial sti ness, hence the radius at equilibrium r 0 , the vessel thickness h 0 and the Young modulus E. We assume them to be a ected by the same errors considered in subsection 4.3. Note that assuming a = r 0 means modifying the initial conditions for the SE as well, reminding that for each vessel we use conditions (40) and (41).

First of all in graphic 45 we insert the outputs for the sensitivity variables, that is to say the derivative of the ow and pressure with respect to a = h 0 , a = r 0 and a = E. We computed them in the midpoint of the left renal with the MUSCL-Hancock scheme for both the elastic and viscoelastic system. As we said before, neglecting viscoelasticity produces overestimation of the oscillations of the experimental solution and this consequently a ects the behavior of the elastic sensitivity variables. Indeed, especially for the derivative of the ow, we note large oscillations that are damped when using the viscoelastic formulation. Clearly, this leads to the same problem for the average and in particular for the variance of the ow, both of them shown in picture 46. In the same gure we insert the results for the average and variance of the pressure as well. We note that for them the dissimilarities between the two systems are less outstanding. However, we observe that the viscoelastic pressure variance results to be slightly bigger than the elastic one, a fact that could be due to the di erence in values between the derivatives with respect to a = r 0 of the elastic and viscoelastic pressure, see gure 45.(c).

Next, we insert the maximum in absolute value of the standard deviation for the pressure and ow for all the 37 vessels in graphic 47, in the elastic and viscoelastic case respectively. In these graphics we used di erent colors to discriminate the vessels with and without the resistive boundary conditions, in magenta and blue respectively. As we said, we note that in general the standard deviation of the viscoelastic pressure is slightly greater than the one of the elastic pressure. Then, for the elastic model, we observe that the maximum values of the standard deviation of the ow are much bigger than the viscoelastic ow ones. Once again, this could be due to the large oscillations we noted when using the elastic formulation. However, we highlight that in both cases the maximum values for the standard deviation of the ow are greater for nonterminal vessels. This could be related to the fact that these vessels compose the aortic path and therefore are larger and less resistive. Instead terminal vessels are usually smaller, and thus their ow is less pulsatile, where pulse wave speed is proportional to the sti ness, and as such to the uncertain parameters we have considered. This could explain why their ow is less sensitive to changes in the values of the parameters. Di erences in values for the standard deviation of pressure between non-terminal and peripheral vessels are less outstanding.

Then, in order to understand which parameter the pressure and ow are most sensitive to, we show the maximum values of standard deviation considering only one value for a each time, see graphic 48. For both variables we observe larger values when exploiting a = r 0 , in particular when considering non-terminal vessel. We obtained similar results in both viscoelastic and elastic case, therefore we do report the outputs only in the rst case.

Finally, we plot the average for the ow and pressure plus and minus twice the standard deviation. Indeed, gures 49 and 50 show the outputs for the elastic and viscoelastic case respectively. MUSCL-Hancock method was used. In general the pressure seems to be more sensitive than the ow to changes in the values of the parameters. We observe that the predicted interval of the ow computed with MUSCL-Hancock in elastic case is larger than the one in the viscoelastic case. As we already said, this could be due to the large oscillations we noted for both the state and sensitivity elastic variables.

Conclusion and perspectives

In this work we studied the blood ow equations with both elastic [START_REF] Toro | Lecture notes on computational haemodynamics[END_REF] and viscoelastic [START_REF] Montecinos | Hyperbolic reformulation of a 1D visco-elastic blood ow model and ADER nite volume schemes[END_REF] formulations. In the latter case, an additional term is needed in order to express the viscoelastic behaviour of the arteries walls. This term includes a second-order spatial derivative of the ow, yielding to a parabolic advection-di usion-reaction system. In order to transform it into a hyperbolic advection-reaction system as the elastic one, we followed the work of Montecinos et al. [START_REF] Montecinos | Hyperbolic reformulation of a 1D visco-elastic blood ow model and ADER nite volume schemes[END_REF]. Thus, we used a relaxation approach which entails the introduction of a new variable Ψ and relaxation time ε. This step was necessary in order to write these systems with the same formalism and to nd a second-order method which could be applied to both of them.

Subsequently we introduced the centred rst-order Price-T scheme, which is a variant of FORCE method for nonconservative systems [START_REF] Toro | PRICE: Primitive Centred Schemes for Hyperbolic Systems[END_REF]. In particular, we have reformulated the scheme so that it automatically reduces to the FORCE method when considering a conservative system; a crucial request as primitive schemes applied to a conservative system could give a solution which converges to the wrong one. Hence, we needed a second-order scheme written in nonconservative form with this property. We turned to the MUSCL-Hancock Price-T scheme presented in [START_REF] Toro | PRICE: Primitive Centred Schemes for Hyperbolic Systems[END_REF], which however does not reduce to a conservative method. Therefore we modi ed it, adding a correction term, in order to achieve the SLIC scheme [START_REF] Toro | Centered TVD schemes for hyperbolic conservation laws[END_REF] when considering a conservative system as the elastic one. Indeed, for this case we showed that the numerical output of the original MUSCL-Hancock Price-T scheme did not converge to the exact one, contrary to the solution of our version of the method. Considering the ADER approach [START_REF] Toro | Towards very high order to schemes[END_REF][START_REF] Toro | PRICE: Primitive Centred Schemes for Hyperbolic Systems[END_REF] could allow the construction of higher order numerical schemes with this property.

The second goal of this work was to apply the continuous sensitivity equations method [START_REF] Chalons | Sensitivity equation method for Euler equations in presence of shocks applied to uncertainty quanti cation[END_REF] to the blood ow equations, with the aim to exploit it for uncertainty quanti cation. One of the reasons for choosing this method could be its low computational cost, especially if we compare it to probabilistic methods as Monte Carlo. Thus, di erentiating the state equations with respect to an arbitrary uncertain parameter a, we found the so-called sensitivity system. However, an assumption of the CSE method is the regularity of the solution, which could not hold in some cases (e.g. Riemann problems).

The consequence is the appearance of Dirac delta functions, which can be compensated introducing the source term Ŝ in the sensitivity system, refer to [START_REF] Chalons | Sensitivity analysis and numerical di usion e ects for hyperbolic PDE systems with discontinuous solutions. The case of barotropic Euler equations in Lagrangian coordinates[END_REF][START_REF] Chalons | Sensitivity equation method for Euler equations in presence of shocks applied to uncertainty quanti cation[END_REF][START_REF] Fiorini | Sensitivity analysis for nonlinear hyperbolic equations of conservation laws[END_REF]. However special treatment is required to handle this term when applying the numerical schemes. Numerical results for the elastic system show that the addition of Ŝ reduces considerably or completely the large spikes that otherwise would be present in correspondence of the shocks of the state variables. Whereas, regarding the viscoelastic system, there is no need to consider the source term Ŝ for the sensitivities. Indeed, in this case the state solution does not present discontinuities due to the di usive term present in the viscoelastic closure condition (4). We specify that to de ne the term Ŝ we exploited an HLL approach as the elastic system has a two-waves structure and the viscoelastic equations do not require it. However, for systems with three or more equations this strategy would be incomplete and thus, the use of the HLLC approach could lead to an improvement of the results, refer for instance to [START_REF] Toro | Restoration of the Contact Surface in the HLL-Riemann Solver[END_REF][START_REF] Chalons | Sensitivity equation method for Euler equations in presence of shocks applied to uncertainty quanti cation[END_REF].

Finally we computed the con dence intervals for the cross-sectional area and the ow for three di erent Riemann problems. Regarding the uncertain parameters, we considered the initial values A L and A R for the cross-sectional area and then the parameters linked to the arterial sti ness, thus the radius at equilibrium r 0 , the vessel thickness h 0 and the Young modulus E. In general, the numerical outputs were satisfying as the con dence intervals included the samples, with the exception of shock zones. This could be related to the fact that we neglected the dependency of the shock speed on the uncertain parameters. Moreover, in correspondence of the discontinuities of the state variables, we note large spikes that are removed when the source term Ŝ is active. On the other hand, in the majority of the results for the viscoelastic system the samples fall inside the con dence intervals, as in this case the variables do not present shocks and thus the predicted intervals are su ciently wide. Ulterior enhancement on the computation of con dence intervals could be achieved using higher order sensitivities.

The last step of this work was to apply the proposed numerical models and schemes to an arterial network of 37 silicone vessels, for which we refer to [START_REF] Alastruey | Pulse wave propagation in a model human arterial network: Assessment of 1-D visco-elastic simulations against in vitro measurements[END_REF]. This was an important request, as we would be able to validate our results. The rst problem was to de ne the coupling conditions for the sensitivity unknowns. In order to be able to obtain them, we had to simplify the conditions for the state variables, namely doing a relevant linearization. Nevertheless the numerical outputs are satisfying, even if the results for the sensitivity variables are slightly worse as they sum the state and the modeling errors. It could be interesting to attempt to use more complex coupling conditions, with the remarks of paying attention to the computational cost, as the junctions are one of the most expensive part when considering a blood vessels network. Afterwards, we exhibited our results for the state variables in the network case, and showed that the outputs had similar pro les to the experimental ones. An interesting remark is that, when using the elastic formulation, we observe the contradictory result that low-order methods approximate the experimental outcomes better than the high-order ones. This is due to the fact that, to simulate the peripheral resistances, we used simple terminal resistive models which produce nonphysiological oscillations in the numerical results. While in the low-order solutions the numerical viscosity reduces these oscillations, high order methods overestimate the ones present in the experimental results. This problem is overcome using the viscoelastic formulation as it introduces a di usive term which dumps the oscillations.

Finally, we computed the con dence intervals using the uncertain parameters linked to the arterial sti ness, as it is associated to many human illnesses. Then, we observed that the maximum standard deviation for terminal vessels' ow reaches lower values than that of the vessels which compose the aortic path. This could be due to the fact that their ow is less pulsatile, where pulse wave speed is linked to the arterial sti ness. An ulterior step could be the study of the sensitivity of the blood ow and pressure not only in relation to the arterial sti ness, but also with respect to the inlet and outlet ow, as they can depend on many parameters which are di cult to estimate as well.
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 1 Figure 1: Staggered grid for Price-T and MUSCL-Hancock schemes, refer to [34].

  (a) Test 1 -Left shock, right rarefaction (b) Test 2 -Two rarefactions (c) Test 3 -Two shocks
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 2 Figure 2: Comparison among Price-T (blue symbol), MUSCL-Hancock (green symbol) and exact solution (red line). Reference area A/A 0 (left) and ux q (right) for the Riemann Problems in table 2. Mesh with M = 100 cells, Γ = 0.
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 334 Figure 3: Converged mesh solution for the reference area A/A 0 (left) and the ow q (right) computed with MUSCL-Hancock method (dashed line) against exact solution (red line). Test 1 of table 2, mesh with M = [62, 125, 250, 500, 1000, 2000] cells, Γ = 0.
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 5 Figure 5: Price-T (blue symbol '*') and MUSCL-Hancock (green symbol 'o') solution computed using a mesh with M = 200 cells, reference solution (red line) with M = 2000 cells. Reference area A/A 0 (left) and ux q (right) for Riemann Problems in table 2, Γ = 1 Pa s m.
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 167 Figure 6: Price-T (blue symbol '*') and MUSCL-Hancock (green symbol 'o') solution computed using a mesh with M = 200 cells, reference solution (red line) with M = 2000 cells. Reference area A/A 0 (left) and ux q (right) for Riemann Problems in table 2, Γ = 1 Pa s m.
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 89 Figure 8: Comparison among Price-T (blue symbol '*'), MUSCL-Hancock (green symbol 'o') and exact solution (red line). Derivative of the area Aa and ux qa with a = A L for test 1 of table 2. Mesh with M = 200 cells, Γ = 0.
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 10111213 Figure 10: Comparison among Price-T (blue symbol '*'), MUSCL-Hancock (green symbol 'o') and exact solution (red line). Derivative of the area Aa and ux qa with a = h 0 for test 1 of table 2. Mesh with M = 200 cells, Γ = 0.
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 141516 Figure 14: Comparison between MUSCL-Hancock (green symbol) and exact solution (red line). Derivative of area Aa and ux qa for test 2 of table 2. Mesh with M = 200 cells, Γ = 0.

  17.(b), 18.(b) and 19.(b), spikes are much smaller and compared to test 1, they go in the same direction as without Ŝ.
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 171819 Figure 17: Comparison between MUSCL-Hancock (green symbol 'o') and exact solution (red line). Derivative of the area Aa and ux qa with a = h 0 for test 3 of table 2. Mesh with M = 200 cells, Γ = 0, CFL = 0.5.

Figure 20 :Figure 21 :Figure 22 :

 202122 Figure 20: Price-T (blue symbol '*') and MUSCL-Hancock (green symbol 'o') solution computed using a mesh with M = 200 cells, reference solution (red line) with M = 2000 cells. Derivative of the area Aa and ux qa for test 1 of table 2. Γ = 1 Pa s m.
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 2324 Figure 23: Test 1 with Price-T scheme. Average and Average plus and minus twice the standard deviation in black. Four samples in magenta dashed line. Graphics for A in (a) and (b), for q in (c) and (d). M = 500 and Γ = 0.
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 2526 Figure 25: Test 2 MUSCL-Hancock schemes. Average and Average plus and minus twice the standard deviation in black. Four samples in magenta dashed line. Graphics for A in (a) and (c), for q in (b) and (d). M = 500 and Γ = 0.

Figure 27 :

 27 Figure 27: Test 1 with Price-T scheme. Average and average plus and minus twice the standard deviation in black line for cross-sectional area A (left) and ow q (right). Four samples in magenta dashed line. M = 500 cells and Γ = 1 Pa m s.
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 28 Figure 28: Test 1 with MUSCL-Hancock scheme. Average and average plus and minus twice the standard deviation in black line for cross-sectional area A (left) and ow q (right). Four samples in magenta dashed line. M = 500 cells and Γ = 1 Pa m s.
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 29 Figure 29: Test 2 with MUSCL-Hancock scheme. Average and average plus and minus twice the standard deviation (black line) for cross-sectional area A (left) and ow q (right). Four samples in magenta dashed line. M = 500 cells and Γ = 1 Pa m s.

Figure 30 :

 30 Figure 30: Test 3 with MUSCL-Hancock scheme. Average and average plus and minus twice the standard deviation (black line) for cross-sectional area A (left) and ow q (right). Four samples in magenta dashed line. M = 500 cells and Γ = 1 Pa m s.
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 31 Figure 31: Idealised model for vessel junction (N = 3).

Table 3 :

 3 Vessel name L [m] r0 [m]Parameters for di erent vessels in subsection (5.1).
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 32 Figure 32: Flow and pressure obtained with MUSCL-Hancock method. Red symbol 'o' for the unique vessel, green and magenta symbol 'x' for the two coupled vessels. Mesh with M = 120 cells for the unique vessel.

Figure 33 :

 33 Figure 33: Derivative of ow and pressure with respect to a = h 0 obtained MUSCL-Hancock method. Red symbol 'o' for the unique vessel, green and magenta symbol 'x' for the two coupled vessels. Mesh with M = 120 cells for the unique vessel.

Figure 34 :

 34 Figure 34: Derivative of ow and pressure with respect to a = r 0 obtained with MUSCL-Hancock method. Red symbol 'o' for the unique vessel, green and magenta symbol 'x' for two coupled vessels. Mesh with M = 120 cells for the unique vessel.

Figure 35 :

 35 Figure 35: Derivative of ow and pressure with respect to a = E obtained with MUSCL-Hancock method. Red symbol 'o' for the unique vessel, green and magenta symbol 'x' for two coupled vessels. Mesh with M = 120 cells for the unique vessel.
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 36 Figure 36: Flow and pressure obtained with MUSCL-Hancock method. Green, blue and magenta symbols represent v 2 , v 3 and v 4 respectively. Mesh with M = 60 cells for each vessel.

Figure 37 :

 37 Figure 37: Derivative of ow and pressure with respect to a = h 0 obtained MUSCL-Hancock method. Green, blue and magenta symbols represent v 2 , v 3 and v 4 respectively. Mesh with M = 60 cells for each vessel.
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 38 Figure 38: Derivative of ow and pressure with respect to a = r 0 obtained with MUSCL-Hancock method. Green, blue and magenta symbols represent v 2 , v 3 and v 4 respectively. Mesh with M = 60 cells for each vessel.
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 39 Figure 39: Derivative of ow and pressure with respect to a = E obtained with MUSCL-Hancock method. Green, blue and magenta symbols represent v 2 , v 3 and v 4 respectively. Mesh with M = 60 cells for each vessel.
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 40 Figure 40: Heart ow imposed at the beginning of the ascending aorta.

Figure 41 :

 41 Figure 41: Comparison among experimental (exp, red line), Price-T (black line) and MUSCL-Hancock (MH, blue line) results for pressure (left) and ow (right) computed in the midpoint of the thoracic aorta I, left renal, r. iliac femoral III and right carotid. Elastic case (Γ = 0).
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 42 Figure 42: Comparison among experimental (exp, red line), Price-T (black line) and MUSCL-Hancock (MH, blue line) results for pressure (left) and ow (right) computed in the midpoint of the thoracic aorta I, left renal, r. iliac femoral III and right carotid. Viscoelastic case (Γ = 0).
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 43 Figure 43: Comparison among experimental (exp, red line), numerical elastic (elas, black line) and viscoelastic (visc, dashed black line) pressure (left) and ow (right) computed in the midpoint of the thoracic aorta I, left renal, r. iliac femoral III and right carotid. Results obtained with Price-T method.

Figure 44 :

 44 Figure 44: Comparison among experimental (exp, red line), numerical elastic (elas, black line) and viscoelastic (visc, dashed black line) pressure (left) and ow (right) computed in the midpoint of the thoracic aorta I, left renal, r. iliac femoral III and right carotid. Results obtained with MUSCL-Hancock method.

Figure 45 :

 45 Figure 45: Derivative of pressure and ow in the midpoint of left renal in elastic (magenta line) and viscoelastic case (blue line). Results obtained with MUSCL-Hancock method.

Figure 48 :

 48 Figure 48: Maximum absolute value of standard deviation of pressure (left) and ow (right) using a = h 0 (top), a = r 0 (middle) and a = E (bottom) in the midpoint of each vessels of the network (identi ed with numbers from 1 to 37). Magenta color for terminal vessels. Viscoelastic case, MUSCL-Hancock method.

Figure 49 :

 49 Figure 49: Comparison among experimental results (exp, red line), average (black line) plus and minus twice the standard deviation (magenta line) of pressure (left) and ow (right) computed in the midpoint of the thoracic aorta I, left renal, r. iliac femoral III and right carotid. MUSCL-Hancock method, elastic case.

Figure 50 :

 50 Figure 50: Comparison among experimental results (exp, red line), average (black line) plus and minus twice the standard deviation (magenta line) of pressure (left) and ow (right) computed in the midpoint of the thoracic aorta I, left renal, r. iliac femoral III and right carotid. MUSCL-Hancock method, viscoelastic case.

  

  

Table 1 :

 1 Parameters for Riemann problems in sections 2.3 and 4.3.

Table 2 :

 2 Values for area A, velocity u and nal time for the proposed Riemann problems.

Note that the continuity of the total pressure is nothing but the Bernoulli relation which is easily recovered from the state equations assuming that the ow is incompressible (A is constant) and stationary at the junction. As far as the constancy of the generalized Riemann invariants is concerned, it means implicitly that the nonlinear waves created at the junctions and propagating in the vessels are rarefaction waves. Then, for N = 2 we obtain the following system

whereas, if we have a single incoming vessel that divides into two di erent outgoing ones (N = 3), we will have three more equations, namely

Note that in the rst equation of system [START_REF] Toro | Restoration of the Contact Surface in the HLL-Riemann Solver[END_REF] the ux in the incoming vessel has to be equal to the sum of the uxes in the two outgoing vessels. Instead the pressure is assumed to be the same in all three vessels, as we can see from the second equation.

Linearization and sensitivity variables. It is observed that the proposed coupling conditions are highly nonlinear due to the integral terms, which poses di culties to compute explicitly the intermediate states, but also to de ne the coupling conditions for the sensitivity variables. With this in mind, we suggest to linearize [START_REF] Toro | PRICE: Primitive Centred Schemes for Hyperbolic Systems[END_REF] and [START_REF] Toro | Restoration of the Contact Surface in the HLL-Riemann Solver[END_REF]. In the spirit of pressure relaxation methods, see for instance the pioneering work [START_REF] Jin | The relaxation schemes for systems of conservation laws in arbitrary space dimension[END_REF][START_REF] Suliciu | On the thermodynamics of uids with relaxation and phase transitions[END_REF], or more recently [START_REF] Chalons | Relaxation approximation of the Euler equations[END_REF], we suggest to replace the real wave speed c(A) by

where ā is a constant de ned by the so-called sub-characteristic condition

Therefore, relations [START_REF] Toro | PRICE: Primitive Centred Schemes for Hyperbolic Systems[END_REF] become

and analogously for system [START_REF] Toro | Restoration of the Contact Surface in the HLL-Riemann Solver[END_REF]. Therefore and compared to [START_REF] Müller | Consistent treatment of visco-elastic e ects at junctions in one-dimensional blood ow models[END_REF], our procedure to couple two or more vessels is simpler. We highlight that it is important to reduce the computational cost for the junctions as they would be the most expensive part when computing the outputs of a network. In addition and as we will see in the numerical experiments, the simpli cation gives good results.