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Exploring di�erent possibilities for second-order
well-balanced Lagrange-projection numerical

schemes applied to shallow water Exner equations

C. Chalons∗and A. Del Grosso†

Abstract. This work is devoted to the numerical approximation of the shallow water Exner system.
We investigate three di�erent numerical strategies to discretize the Exner equation which expresses the
evolution in time of the bed sediment. The numerical schemes are all based on the Lagrange-projection
formalism which consists in splitting the mathematical model into the acoustic and transport system.
In particular, the Exner equation is taken into account either in the acoustic and transport steps, or
only at the acoustic or transport level. The methods and their second-order extensions are designed in
such a way to satisfy the well-balanced property, namely the "lake at rest" and the "constant bed slope"
steady states. Numerical evidences are given to validate the numerical schemes.

1 Introduction and governing equations
This work considers several second-order and well-balanced Lagrange-projection schemes applied

to the shallow water system with moving topography. As it will be seen, Lagrange-projection schemes
consist in splitting the acoustic and transport waves of the model in two di�erent systems (and steps),
expedient that can be very useful in practice, for instance in subsonic regimes. This kind of decompo-
sition can also be interpreted as a Lagrange-projection one, in the sense that the considered system is
�rst written in Lagrangian coordinates and solved. Then, the Lagrangian solution is projected again
into Eulerian coordinates. Here we do not give further details and refer the reader for instance to
[15, 14, 5, 11, 16] for �rst-order Lagrange-projection scheme and to [37, 21, 9] for methods of higher
order of accuracy. Our main objective here is to focus on the topography discretization and to compare
several natural approaches in which the bed level is taken into account either partially in both steps, or
entirely in one of the two steps. Notice that, in the previous work [13], it has been described a 1D-2D
second-order well-balanced Lagrange-projection scheme for the shallow water Exner system with bed
level discretization completely taken into account in the transport step, resembling a splitting method.
As such, the present work is considered as its natural extension.
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We underline that often the Saint-Venant equations with moving topography have been numerically
solved by means of splitting methods meaning that the hydrodynamic and morphologic components
are separately solved. Indeed, such methods are easier to implement even if they are known to pro-
duce spurious oscillations in the numerical results. The latter are mainly due to reasons related to the
hyperbolic properties of the coupled systems, for which we directly refer to [20] for further details.
On the other hand, also coupled Riemann solvers have been proposed for the 1D-2D shallow water
Exner system able to remove (at least in part) the above mentioned oscillations, see for instance [39]
where a Roe-type �rst-order scheme was used or [7] in which a path-conservative Roe method and its
high-order extension together with �ux limiters has been presented. Another interesting reference is
[33], where two schemes based on the Roe approach have been described. In particular, the �rst one
is based on a fully coupled approach while the second one consists in a decoupled strategy where the
oscillations are in part stabilized by controlling the stability region. Without being exhaustive, see for
instance [22, 32, 40] for further coupled schemes applied to the shallow water Exner system.

Let us now present the model we are interested in, namely the shallow water Exner system. The �rst
two equations have been extensively used to describe the evolution in time of �uid �ows for instance
in rivers or coastal areas. Whereas, the third equation simulates the bedload sediment transport due to
the mechanical action of the �uid. As such, the system reads

∂th+ ∂x(hu) = 0

∂t(hu) + ∂x(hu
2 + p) + gh∂xz = −ghSf

∂tz + ζ∂xqb = 0,

(1.1)

where h(x, t) > 0 is the water depth, u(x, t) the averaged velocity, z(x, t) the bed level and, in particular,
H = h + z is the free surface elevation. Then, p = gh2

2
is the pressure term with g the gravitational

acceleration, qb = qb(h, u) is the solid transport discharge and ζ a parameter such that ζ = 1
1−ρ0 with

ρ0 the porosity of the sediment layer. Moreover, −ghSf represents the Manning friction term where
Sf =

µ2f |u|u

R
4/3
h

with µf Manning roughness coe�cient and Rh = Lh
L+2h

hydraulic radius, where L is the
length of the channel. Observe that this de�nition of Rh is valid for rectangular channel. Finally, t > 0
represents the time and x the axial coordinate. In compact form, we have

∂tQ + ∂xF(Q) + A(Q)∂xQ = −ghSfE2

where E2 = (0, 1, 0)t,

Q =

 h
hu
z

 , F(Q) =

 hu
hu2 + p
ζqb

 , A(Q) =

0 0 0
0 0 gh
0 0 0

 .

For more details about shallow-water equations with and without moving topography, we refer for
instance to [1, 6, 7, 4] and [42, 2, 8, 11, 38] [34, 32]. Let us know focus on t he solid transport discharge
qb, which can be formulated in di�erent ways depending on the characteristics of the sediment and the
�ow, see for instance [27]. One frequently used formulation is the well-known Grass model, which
expresses the instantaneous sediment transport as a power law of the averaged velocity u, namely

qb = Agu|u|mg−1, 1 ≤ mg ≤ 4, (1.2)

2



where the parameterAg ∈ [0, 1] is computed using empirical relationships based on the local properties
(grain size, cinematic viscosity..). Moreover, it expresses how strong is the interaction between the �ow
and the sediment. For instance, the interaction is considered weak if Ag is of order 10−3 or smaller,
while for values of order 10−1 the �ow is said to be highly erosive, see for instance [7, 33, 39, 31, 3] for
further details. In practice, we will setmg = 3 and we brie�y recall that the Grass closure relation leads
to a strictly hyperbolic system with all real eigenvalues, see again [7]. It is important to underline that,
when using the Grass formulation, we are implicitly supposing that the bed sediments start moving as
soon as the velocity of the water is di�erent from zero. However, in other formulations it is usually
assumed that a critical value has to be overcome. Let us see the details considering for instance the
Meyer-Peter&Müller (MPM) formulation. The latter is given by

qb = 8Qsgn(u)(θ∗ − θ∗c )
3
2
+ with θ∗ =

u2
∗

sgd
and u2

∗ =
gµ2

fu
2

h
1
3

(1.3)

with Q = d
√
gsd the characteristic discharge where s is the relative density and d the sediment di-

ameter. Then, θ∗ represents the non-dimensional shear stress and determines the movement of the
sediments. Indeed, only if it is bigger of the critical stress value θ∗c , qb is di�erent from zero. Here we do
not present further formulations but many have been proposed, see again the previous references. We
also highlight that each formulation has usually its own range of applications which depends on the
characteristics of the �ow and sediments. For instance the MPM formula is only used for weakly erosive
�ow, see directly [7] for details about the range of values for the parameters. Finally, let us specify that,
depending on the particular form of qb, the convective part of system (1.1) could be strictly hyperbolic
or not.

Last but not least, we are interested in numerical schemes able to preserve the stationary solutions
of the system. This property is in general not trivial to satisfy but, at the same time, critical if we want
to obtain accurate numerical methods which do not produce spurious oscillations in their results when
near to stationary solutions. If such a property is met, the numerical scheme is said to be well-balanced,
which, in our speci�c case, means the preservations of the following steady states,

q = hu = constant = q0, ∂x

( q2
0

2h2
+ g(h+ z)

)
+ gSf = 0 and qb = constant.

Here, we are only interested in preserving two particular steady states, namely the so-called "lake at
rest" equilibrium with zero-velocity

u = 0 and h+ z = constant, (1.4)

and the "constant bed slope" equilibrium

∂xh = ∂xu = ∂xxz = 0, and ∂xz + Sf = 0, (1.5)

Let us observe that when using the Grass formulation, these are the only two possible steady states. Be-
ing the well-balancedness of the scheme a crucial property, many studies have been done in this sense,
here we refer for instance to [2, 3, 8, 30] and the references herein. See also [11, 16, 37] for well-balanced
methods in the Lagrange-projection formalism.
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Outline of the paper. We now give the structure of the paper. In the next section we brie�y present the
Lagrange-projection splitting strategy in both Eulerian and Lagrangian variables for the usual shallow
water system, thus for the evolution equations of h and hu. Then, in section 3 we explain three di�erent
strategies to treat the topography equation. In particular, details for the approximate Riemann solver
for the acoustic systems are given. Subsequently, we present the numerical schemes both at �rst and
second-order of accuracy in sections 4 and 5 respectively. Section 6 is devoted to the description of the
well-balanced property for each scheme. Finally, we exhibit several numerical evidences to validate our
numerical schemes in section 7, while concluding remarks are given in section 8.

2 Operator splitting for the shallow water system
This section focuses only on the �rst two equations of system (1.1), namely the updating equations

for the water height h and discharge hu, whereas details for the bed level evolution will be given later.
Thus, here we explain the decomposition which entails the splitting of the Saint-Venant system into
two di�erent ones, the so-called acoustic and transport systems. The former accounts for the acoustic
phenomena and topography variations, while the latter focuses on the transport e�ects. Note that
here we neglect the friction term; its contribution will be included directly at the end of the numerical
methods, see section 4.

Then, we observe that the �rst two equations of the model can be reformulated as{
∂th+ h∂xu+ u∂xh = 0

∂t(hu) + hu∂xu+ u∂x(hu) + ∂x(
gh2

2
) = −gh∂xz,

where we used the chain rule for space derivatives. Therefore, the so-called acoustic and transport
systems are respectively given by{

∂th+ h∂xu = 0

∂t(hu) + hu∂xu+ ∂x(
gh2

2
) = −gh∂xz,

(2.1)

and {
∂th+ u∂xh = 0

∂t(hu) + u∂x(hu) = 0,

where the latter can be reinterpreted as

∂tX + u∂xX = 0

with X either X = h or X = hu. We also observe that system (2.1) can be expressed as{
∂tτ − ∂mu = 0

∂tu+ ∂mp = − g
τ
∂mz

where τ = 1
h

and the mass variable m is such that 1
h
∂x = ∂m. See for instance [11, 16] for additional

details about this decomposition applied to the shallow water system. It is then clear that the numerical
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method would sum up to �rst solve the acoustic system and, after that, the transport equations with the
acoustic solution as initial data. However, while it is well known how to decompose the shallow water
system, this is not true when considering the Exner equation. Indeed, one could easily imagine at least
three possibilities for numerical treatment. The �rst one would split it inside both steps as we just did
for h and hu, the second one would account for it at the acoustic level, and the last one directly inside
the transport step. The aim of the present contribution is indeed to compare these three approaches,
both at �rst and second order accuracy.

That being said and before going into further details, it is convenient to �rst introduce the La-
grangian coordinates. We �rst de�ne the �uid particle ξ and the characteristic curves{

∂x
∂t

(ξ, t) = u(x(ξ, t), t)

x(ξ, 0) = ξ

which de�ne the trajectory : t → x(ξ, t), of ξ as the time goes on. Therefore, any function : (x, t) →
ϕ(x, t) in Eulerian coordinates can be written in Lagrangian coordinates,

ϕ̄(ξ, t) = ϕ(x(ξ, t), t).

Introducing now the volume ratio
L(ξ, t) =

∂x

∂ξ
(ξ, t)

such that {
∂L
∂t

(ξ, t) = ∂ξu(x(ξ, t), t)

L(ξ, 0) = 1,
(2.2)

it clearly follows
∂tL(ξ, t) = ∂ξu(x(ξ, t), t) = ∂ξū(ξ, t),

and thus

∂ξϕ̄(ξ, t) = L(ξ, t)∂xϕ(x, t) and ∂tϕ̄(ξ, t) = ∂tϕ(x, t) + u(x, t)∂xϕ(x, t).

Focusing �rst on the governing equations for h and hu, it is easy to show that their counterpart in
Lagrangian coordinates reads {

∂t(Lh) = 0

∂t(Lhu) + ∂ξp̄ = −gh̄∂ξz̄.
(2.3)

In the following sections, we shall sometimes omit the bar over the Lagrangian functions to avoid
cumbersome notations. Hence, the two-steps (acoustic and transport) numerical method would now
consist of solving the Lagrangian system (2.3) and then projecting the solution into Eulerian coordinates.
For further details about this decomposition, we refer the reader to [37] and the references therein. Let
us now discuss the three di�erent strategies proposed for the Exner equations.
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3 Treatment of the Exner equation
The treatment of the Exner equation is an important issue due to the complexity of the fully coupled

system. It is known that a fully decoupled scheme, which consists in updating the topography inde-
pendently from the �rst two equations of the model generally produces spurious oscillations inside the
numerical solutions, see for instance [20]. However and in order to avoid this problem, a weak cou-
pling of the equations can lead to satisfying numerical results, see [3]. In this work, we mainly focus on
weakly coupled numerical schemes. In brief, we are going to take into account the �ow and sediment
interactions in three ways:

1. The usual acoustic-transport splitting is considered for the topography equation and therefore
the bed level is taken into account in both steps;

2. The topography is accounted for only at the level of the Lagrangian step;

3. The topography is updated only in the transport step. This approach has already been proposed
in [13] and it resembles the usual splitting (and therefore decoupled) method for shallow water
Exner system, but as we will see, spurious oscillations are often not observed here thanks to the
Lagrange-projection strategy.

3.1 Update the bed level in both steps
The �rst strategy consists in splitting the bed level evolution equation

∂tz + ζ∂xqb = 0

into the following two equations, namely

∂tz − u∂xz + ζ∂xqb = 0

and
∂tz + u∂xz = 0,

so that the complete acoustic system is now given by
∂th+ h∂xu = 0

∂t(hu) + hu∂xu+ ∂x(
gh2

2
) + gh∂xz = 0

∂tz − u∂xz + ζ∂xqb = 0

(3.1)

while the transport system is simply formulated as

∂tX + u∂xX = 0 (3.2)

where now we do not only have X = h, hu but also X = z. It is thus clear that, with this approach,
the evolution of the bed level is taken into account in both the acoustic and transport steps. Then, note
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that the acoustic system (3.1) can be easily reformulated as in the following
∂tτ − ∂mu = 0

∂tu+ ∂mp+ g
τ
∂mz = 0

∂tz − u
τ
∂mz + ζ 1

τ
∂mqb = 0

(3.3)

exploiting once again the notation τ = 1/h and τ∂x = ∂m. Alternatively, the shallow water Exner
system (1.1) in Lagrangian coordinates reads

∂t(Lh) = 0

∂t(Lhu) + ∂ξp̄+ gh̄∂ξz̄ = 0

∂t(Lz)− ∂ξ(zu) + ζ∂ξqb = 0.

(3.4)

3.1.1 Approximate Riemann solver

In order to approximate the solutions of system (3.4) using a Godunov-type method, we de�ne in
this section an approximate Riemann solution of equations (3.3) associated with the initial data

(τ, u, z)T (x, t = 0) =

{
(τL, uL, zL)T if x < 0
(τR, uR, zR)T if x > 0.

Here, the idea is to base the approximate Riemann solver on a relaxation formulation, see for instance
[10, 16] for more details. Thus, as a starting point, we considered the following relaxation system of the
whole (not only acoustic) Saint-Venant-Exner system (1.1),

∂th+ ∂x(hu) = 0

∂t(hu) + ∂x(hu
2 + Π) + gh∂xz = 0

∂tz + ∂xΩ = 0

∂tΠ + u∂xΠ + a2∂xu = 0

∂tΩ + 2u∂xΩ + (b2 − h2

u2
)∂xz = 0,

(3.5)

which was proposed in [1]. Observe that we introduced two new variables, Π and Ω which can be
respectively interpreted as a linearization of p and ζqb. Then, a and b are two constant parameters.
However, in order to build a relaxation system for the acoustic system and, at the same time, to de�ne
a well-balanced approximate Riemann solver, it was convenient to modify system (3.5) in the following
way 

∂tτ − ∂mu = 0

∂tu+ ∂mΠ = − g
τ
∂mz

∂tz − u
τ
∂mz + 1

τ
∂mΩ = 0

∂tΠ + a2∂mu = 0

∂tΩ + u
τ
∂mΩ + u2(b2τ − 1

τ
)∂mz = 0.

(3.6)
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Thus the idea would be to take the exact Riemann solution of the latter relaxation system (3.6) as the
approximate solution of either equations (3.3) or system (3.4). We also underline that now the initial
data are

(τ, u, z,Π,Ω)T (x, t = 0) =

{
(τL, uL, zL,ΠL,ΩL)T if x < 0

(τR, uR, zR,ΠR,ΩR)T if x > 0

and they are taken at equilibrium, that is to say such that

ΠL,R =
g

2
h2
L,R and ΩL,R = ζ(qb)L,R.

Furthermore, the parameters a and b are chosen in such a way to ensure the stability of the relaxation
system. In particular, we ask for the validity of the so-called sub-characteristic condition

a ≥ h
√
∂hp and u2b2 ≥ (hu)2 + gh2ζ∂uqb, b > 0, (3.7)

which is clearly di�erent from the one used for the original relaxation system (3.5). Notice that, in the
relaxation system (3.6), which can be written in compact form as

∂tU + B(U)∂mU = S(U)

with

U =


τ
u
z
Π
Ω

 B(U) =


0 −1 0 0 0
0 0 0 1 0
0 0 −u

τ
0 1

τ

0 a2 0 0 0
0 0 u2(b2τ − 1

τ
) 0 u

τ

 and S(U) =


0
s̃
0
0
0

 ,

the topography term
s̃ = −g

τ
∂mz

is taken into account as a source term and not included in the convective matrix B. This is also a critical
point in order to be able to de�ne a well-balanced approximate Riemann solver, even if is also the reason
why the resulting numerical method will only be weakly coupled and not fully coupled. With this in
mind, it is easy to show that the matrix B has �ve real eigenvalues given by λ0 = 0, λ±a = ±a, λ±b =
±|u|b, and that the associated characteristic �elds are all linearly degenerate. This property is well-
known to make the resolution of the Riemann problem straightforward using the continuity of the
Riemann invariants across each wave, see for instance [1] for more details. Notice, however, that in this
case the eigenvalues are not ordered a priori, so that at a continuous level there exist two di�erent cases
depending on whether a < |u|b or not (recall that a and b are positive). In practice, we will distinguish
between the following two cases a < |uL|b, a < |uR|b and its negation.
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3.1.2 The case a < |uL|b and a < |uR|b

In this �rst case, easy calculations show that the solution of the Riemann problem reads

Û(
m

t
;UL,UR) =



UL if m
t
< λ−b = −|uL|b

U∗b,L if − |uL|b < m
t
< λ−a = −a

U∗a,L if − a < m
t
< λ0 = 0

U∗a,R if 0 < m
t
< λ+

a = a

U∗b,R if a < m
t
< λ+

b = |uR|b
UR if m

t
> |uR|b.

with

U∗b,L =


τL
uL
z∗

ΠL

Ω∗

 , U∗a,L =


τ ∗L
u∗

z∗

Π∗L
Ω∗

 , U∗a,R =


τ ∗R
u∗

z∗

Π∗R
Ω∗

 , and U∗b,R =


τR
uR
z∗

ΠR

Ω∗

 , (3.8)

and on the �rst hand 

τ ∗L = τL +
1

a
(u∗ − uL)

τ ∗R = τR −
1

a
(u∗ − uR)

u∗ =
1

2
(uL + uR)− 1

2a
(ΠR − ΠL)− M

2a

Π∗L =
1

2
(ΠL + ΠR)− a

2
(uR − uL) +

M
2

Π∗R =
1

2
(ΠL + ΠR)− a

2
(uR − uL)− M

2

(3.9)

where the discretizationM of the topography source term reads

M =
g

2
(

1

τL
+

1

τR
)(zR − zL), (3.10)

and on the other hand
z∗ =

|uR|(sign(uR) + bτR)zR − |uL|(sign(uL)− bτL)zL
|uR|(sign(uR) + bτR)− |uL|(sign(uL)− bτL)

− ΩR − ΩL

|uR|(sign(uR) + bτR)− |uL|(sign(uL)− bτL)

Ω∗=
ΩR + ΩL

2
+
|uR|

2
(sign(uR) + bτR)(z∗ − zR) +

|uL|
2

(sign(uL)− bτL)(z∗ − zL).

(3.11)
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3.1.3 The case a ≥ |uL|b or a ≥ |uR|b

In this case, the structure of the Riemann solution is the same but the waves are expected to be
ordered in a di�erent way. More precisely, assuming that a > |u∗|b, we have now

Û(
m

t
;UL,UR) =



UL if m
t
< −a

U∗a,L if − a < m
t
< −u∗b

U∗b,L if − u∗b < m
t
< 0

U∗b,R if 0 < m
t
< u∗b

U∗a,R if u∗b < m
t
< a

UR if m
t
> a.

where

U∗a,L =


τ ∗L
u∗

zL
Π∗L
ΩL

 , U∗b,L =


τ ∗L
u∗

z∗

Π∗L
Ω∗

 , U∗b,R =


τ ∗R
u∗

z∗

Π∗R
Ω∗

 , and U∗a,R =


τ ∗R
u∗

zR
Π∗R
ΩR

 . (3.12)

Then, (3.9) and (3.10) are still valid, but (3.11) is replaced by
(z|u|)∗ = |u∗|(sign(u∗) + bτ ∗R)zR − (sign(u∗)− bτ ∗L)zL

b(τ ∗R + τ ∗L)
− ΩR − ΩL

b(τ ∗R + τ ∗L)

Ω∗=
ΩR + ΩL

2
+

1

2
((sign(u∗) + bτ ∗R)((z|u|)∗ − |u∗|zR) + (sign(u∗)− bτ ∗L)((z|u|)∗ − |u∗|zL)).

(3.13)
Let us notice that assuming a ≥ |uL|b or a ≥ |uR|b does not necessarily imply that a > |u∗|b. In

practice, we proceed as in the following. First, we de�ne a and b by

a = max(∆x, hLcL, hRcR) and b = max
(

∆x,

√
h2
L + g

h2
L

u2
L

ζ∂u(qb)L,

√
h2
R + g

h2
R

u2
R

ζ∂u(qb)R

)
,

(3.14)
c =
√
∂hp, as a natural approximation of (3.7). Then, if a and b are such that a ≥ |uL|b or a ≥ |uR|b but

a ≤ |u∗|b, we increase the value of a and rede�ne it as a = (1 + ε)|u∗|b (with typically ε = 0.01). We
underline that, once we have rede�ned a, we have to recompute the value of u∗, and more generally
the quantities in (3.8) and (3.9). In practice, this iterative process converges in one or two iterations. An
easier (and more di�usive) option could be to de�ne a and b such that a is automatically smaller than ub,
in this way we only had to use the star values in section 3.1.2 and no further details would be required.
For instance, this is what have been done in [1] for numerically solving system (3.5). However, we will
see later in section 6.1 that, to distinguish between the two cases, allows us to obtain a well-balanced
numerical scheme.

Notice also that unlike (3.11), we de�ne (z|u|)∗ instead of z∗ in (3.13) in order to avoid any possible
ambiguity related to the value of u∗ which can be zero. As we will see below, this is su�cient as in the
resulting scheme, the update formula of the topography zn+1− only requires (uz)∗ and not z∗.
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At last, observe that for u = 0, the relaxation system (3.6) is not strictly hyperbolic, unlike the La-
grangian system (3.3). However, the values in the star region result to be well-de�ned anyway. Indeed,
if uL = uR = u∗ = 0, then (3.13) gives (uz)∗ = 0 and Ω∗ = 0 as well, as uL = uR = 0 implies
ΩL = ΩR = 0.

3.2 Update the bed level in the acoustic step
The second strategy takes into account the Exner equation only in the acoustic step. As a conse-

quence, we will have a di�erent acoustic system and therefore a di�erent approximate Riemann solver.
Let us give more details.

The acoustic system is now given by
∂th+ h∂xu = 0

∂t(hu) + hu∂xu+ ∂x(
gh2

2
) + gh∂xz = 0

∂tz + ζ∂xqb = 0

(3.15)

while the transport system is simply formulated as ∂tX + u∂xX = 0 with X = h, hu, together with
∂tz = 0. Exploiting the variables τ = 1/h and τ∂x = ∂m, the acoustic system (3.15) also reads

∂tτ − ∂mu = 0

∂tu+ ∂mp+ g
τ
∂mz = 0

∂tz + ζ 1
τ
∂mqb = 0.

(3.16)

3.2.1 Relaxation system and approximate Riemann Solver

We proceed as before to approximate the solutions of (3.16) and to de�ne an approximate Riemann
solution based on a relaxation system. The latter is now de�ned as

∂tτ − ∂mu = 0

∂tu+ ∂mΠ = − g
τ
∂mz

∂tz + 1
τ
∂mΩ = 0

∂tΠ + a2∂mu = 0

∂tΩ + u2b2τ∂mz = 0,

with once again

(τ, u, z,Π,Ω)T (x, t = 0) =

{
(τL, uL, zL,ΠL,ΩL)T if x < 0

(τR, uR, zR,ΠR,ΩR)T if x > 0

the initial data taken at equilibrium, that is to say such that

ΠL,R =
g

2
h2
L,R and ΩL,R = ζ(qb)L,R.

11



As far as the parameters a and b are concerned, we now ask for

a ≥ h
√
∂hp and u2b2 ≥ gh2ζ∂uqb, b > 0. (3.17)

Considering again the topography term in the second equation as a source term, it is easy to show that
the characteristic velocities of the model are still given by λ0 = 0, λ±a = ±a, λ±b = ±|u|b, and that
the associated characteristic �elds are all linearly degenerate again. Let us now discuss the associated
Riemann solution.

3.2.2 Modi�cation of the well-balanced approximate Riemann solver

The procedure is exactly the same as the one presented in section 3.1.1, so that we do not give
other details than the di�erences. In particular, we have to distinguish between the case a < |uL|b and
a < |uR|b and its negation. In this last case, and even if it means increasing the value of a, once again
we will assume that a > |u∗|b.

In both cases, (3.9) and (3.10) are still valid, but the de�nitions of z∗ and Ω∗ in (3.11) and (3.13) are
modi�ed. More precisely, imposing again the continuity of the Riemann invariants across each wave,
easy calculations show that in the case a < |uL|b and a < |uR|b formulas in (3.11) are replaced by

z∗ =
|uR|τRzR + |uL|τLzL
|uR|τR + |uL|τL

− ΩR − ΩL

b|uR|τR + b|uL|τL
Ω∗ =

ΩR + ΩL

2
+
b|uR|τR

2
(z∗ − zR)− b|uL|τL

2
(z∗ − zL),

(3.18)

while, (3.13) now reads
(z|u|)∗ = |u∗|τ

∗
RzR + τ ∗LzL
τ ∗R + τ ∗L

− ΩR − ΩL

b(τ ∗R + τ ∗L)

Ω∗=
ΩR + ΩL

2
+

1

2
(bτ ∗R((z|u|)∗ − zR|u∗|)− bτ ∗L((z|u|)∗ − zL|u∗|)).

(3.19)

At last, instead of using (3.14), here a and b are de�ned by

a = max(∆x, hLcL, hRcR) and b = max
(

∆x,

√
g
h2
L

u2
L

ζ∂u(qb)L,

√
g
h2
R

u2
R

ζ∂u(qb)R

)
, (3.20)

according to condition (3.17).

3.3 Update the bed level in the transport step
For this last strategy we refer to the previous work [13] and we update the bottom height only in

the transport step. Thus, the associated acoustic system is now simply given by{
∂th+ h∂xu = 0

∂t(hu) + hu∂xu+ ∂x(
gh2

2
) + gh∂xz = 0

12



while the transport system has the following form,
∂th+ u∂xh = 0

∂t(hu) + u∂x(hu) = 0

∂tz + ζ∂xqb = 0.

(3.21)

Hence, the water height h and �ow hu are updated as in the classical shallow-water equations, both in
the acoustic and transport steps. In other words, we only need to specify the discretization of the bed
level, which does not a�ect the other two variables. For this reason, this strategy resembles an usual
splitting method.

Note that in this context, the relaxation system associated with the acoustic step is nothing but
∂tτ − ∂mu = 0

∂tu+ ∂mp = − g
τ
∂mz

∂tΠ + a2∂mu = 0

(3.22)

and the intermediate states associated with the Riemann problems are given by (3.9) and (3.10). At last,
let us observe that here the eigenvalues of the relaxation system depend only on the parameter a and
not on b, with a still de�ned as in (3.14).

4 Numerical method
Before getting into the heart of the matter, we give few details about the time and space discretiza-

tions. Given a constant time step ∆t, we de�ne the intermediate times by tn = n∆t for n ∈ N. Then,
the mesh interfaces are xj+1/2 = j∆x for j ∈ Z, where ∆x is the constant space step. Note that
for the Lagrangian variable ξ, we use the same discretization of the one we introduced for x, thus
∆x = ∆ξ, xj+ 1

2
= ξj+ 1

2
and xj = ξj ∀j, where xj is the center of the cell [xj−1/2, xj+1/2). Hence, given

a variable ϕ, ϕnj is its piecewise constant approximation at each point (xj, t
n) with n ∈ N and j ∈ Z. If

ϕnj is known, we look for its approximation at the next time level tn+1, namely ϕn+1
j . The approximate

value obtained at the end of the acoustic step will be denoted by ϕn+1−
j .

Let us note that our numerical schemes are divided into two di�erent steps. First we have the
acoustic (Lagrangian) stage, in which we aim at numerically solving one of the systems (3.4), (3.16) or
(2.3) depending on the strategy for the bed level equation. Then, we exploit the acoustic (Lagrangian)
solution as initial condition for the transport (projection) step, in which we solve either equations (3.2)
(X = h, hu and with/without X = z) or system (3.21), again depending on the chosen strategy.

4.1 Acoustic step
Considering �rst the acoustic systems (3.3), (3.16) and (2.1), let us �rst notice that since we have

de�ned approximate Riemann solutions, we can use a classical Godunov-type method, refer to [23, 24,
29] and the references therein. As it is very well-known, it simply consists in averaging on each cell the
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juxtaposition of these local approximate Riemann solutions, under a CFL restriction which reads

∆t ≤ CFLl
∆x

max
j
{max(τnj , τ

n
j+1) max(aj+ 1

2
, (|u|b)j+ 1

2
)}
, (4.1)

for the acoustic step and
∆t ≤ CFLt

∆x

max
j
{u+

j− 1
2

− u−
j+ 1

2

}
, (4.2)

for the transport step. CFLl and CFLt are respectively the CFL number for the Lagrangian and the
transport system, and

u+
j− 1

2

= max(u∗
j− 1

2
, 0) and u−

j+ 1
2

= min(u∗
j+ 1

2
, 0).

At last, the �nal time step is taken as the minimum between the two. It is clear that the value of b in (4.1)
depends on the numerical treatment of the bottom height z we are employing. Clearly, if z is updated
in both steps, we consider formula (3.14) while if the bed elevation is completely taken into account
at the acoustic level, b is de�ned according to (3.20). In the case of the bed level updated only in the
transport step, the acoustic time step de�nition depends only on a and not on b.

Regarding the �rst two equations which are common to (3.3), (3.16) and (2.1), easy calculations not
reported here give τ

n+1−
j = τnj + ∆t

∆mj
(u∗

j+ 1
2

− u∗
j− 1

2

)

un+1−
j = unj − ∆t

∆mj
(Π∗

j+ 1
2

− Π∗
j− 1

2

)−∆t{ g
τ
∂mz}nj

(4.3)

where ∆mj+1/2 = (∆mj + ∆mj+1)/2, ∆mj =
τnj
∆x

and for all j

{g
τ
∂mz}nj =

1

2

(∆mj+1/2

∆mj

{g
τ
∂mz}nj+1/2 +

∆mj−1/2

∆mj

{g
τ
∂mz}nj−1/2

)
with {g

τ
∂mz}nj+1/2 =

Mn
j+1/2

∆mj+1/2

,

the star values u∗
j+ 1

2

, Π∗
j+ 1

2

andMj+1/2 being locally de�ned at each interface xj+1/2 and for all j thanks
to (3.9) and (3.10). Here of course, the subscripts L and R stand for j and j + 1 respectively.

In Lagrangian coordinates, (4.3) reveals to be strictly equivalent to{
Ln+1−
j hn+1−

j = Lnj h
n
j

Ln+1−
j (hu)n+1−

j = Lnj (hu)nj − ∆t
∆x

(Π∗
j+ 1

2

− Π∗
j− 1

2

)−∆t{gh∂xz}nj
(4.4)

where
Ln+1−
j = Lnj +

∆t

∆x
(u∗

j+ 1
2
− u∗

j− 1
2
) with Lnj = 1

and
s = −gh∂xz, snj =

1

2

(
snj+1/2 + snj−1/2

)
, snj+1/2 = −

Mn
j+1/2

∆x
∀j.
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Let us now brie�y give the update formulas for the topography.

Bed level in both steps. Considering system (3.4), we state

Ln+1−
j zn+1−

j = Lnj z
n
j −

∆t

∆x
((Ω− zu)∗

j+ 1
2
− (Ω− zu)∗

j− 1
2
)

which turns out to be equivalent to

zn+1−
j (1 +

∆t

∆x
(u∗

j+ 1
2
− u∗

j− 1
2
)) = znj +

∆t

∆x
((zu)∗

j+ 1
2
− (zu)∗

j− 1
2
)− ∆t

∆x
(Ω∗

j+ 1
2
− Ω∗

j− 1
2
),

where the star values are easily de�ned from (3.11) and (3.13).

Bed level in the acoustic step. In this case, from system (3.15) we �nd

zn+1−
j = znj −

∆t

∆x
(Ω∗

j+ 1
2
− Ω∗

j− 1
2
), (4.5)

where Ω∗
j± 1

2

are de�ned from (3.18) and (3.19).

Bed level in the transport step. Finally, it is clear that here we simply have zn+1−
j = znj as the bed

level is completely taken into account in the transport step.

4.2 Transport step
Referring to [37], we can approximate ∂tX + u∂xX = 0 by

Xn+1
j = (LX)n+1−

j − ∆t

∆x

(
u∗
j+ 1

2
(LX)n+1−

j+ 1
2

− u∗
j− 1

2
(LX)n+1−

j− 1
2

)
, (4.6)

where

(LX)n+1
j+ 1

2

=

(LX)n+1−
j if u∗

j+ 1
2

≥ 0

(LX)n+1−
j+1 if u∗

j+ 1
2

< 0

with either X = h or X = hu. Notice that this formula can also be explained in an alternative way,
using the Lagrangian coordinates. Indeed, de�ning ξ̂j+ 1

2
(t) such that for all j

x(ξ̂j+ 1
2
(T ), T ) = xj+ 1

2
, with T ≥ 0,

it is enough to recall that

Xj(t) =
1

∆x

∫ x
j+1

2

x
j− 1

2

X(x, t)dx =
1

∆x

∫ x(ξ̂
j+1

2
,t)

x(ξ̂
j− 1

2
,t)

X(x, t)dx =
1

∆x

∫ ξ̂
j+1

2

ξ̂
j− 1

2

L(ξ, t)X̄(ξ, t)dξ
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and then split the last integral into three parts to de�ne Xn+1
j , namely

Xn+1
j =

1

∆x

∫ ξ
j− 1

2

ξ̂
j− 1

2

L(ξ, tn+1−)X̄(ξ, tn+1−)dξ+

+
1

∆x

∫ ξ
j+1

2

ξ
j− 1

2

L(ξ, tn+1−)X̄(ξ, tn+1−)dξ +
1

∆x

∫ ξ̂
j+1

2

ξ
j+1

2

L(ξ, tn+1−)X̄(ξ, tn+1−)dξ

(4.7)

where we approximate xj+ 1
2

at �rst-order, xj+ 1
2

= x(ξ̂j+ 1
2
(T ), T ) ' x(ξ̂j+ 1

2
(T ), 0)+T∂tx(ξ̂j+ 1

2
(T ), 0) '

ξ̂j+ 1
2

+ Tu∗
j+ 1

2

, for a �xed time T ≥ 0. Then, it is clear that formula (4.6) can be seen as a �rst-order
approximation of the integrals in (4.7). Note that the second-order scheme will be obtained by approx-
imating the three integrals in (4.7) at second-order of accuracy in space. Since this procedure has been
explained in details in [37], here we do not provide further information.

As before, let us now give the update formulas for the topography.

Bed level in both steps. In this case, similarly to the formulas for h, hu, we have for all j

zn+1
j = (Lz)n+1−

j − ∆t

∆x

(
u∗
j+ 1

2
zn+1−
j+ 1

2

− u∗
j− 1

2
zn+1−
j− 1

2

)
with the only di�erence that we use the values of zn+1−

j+ 1
2

and not of its Lagrangian counterpart.

Bed level in the acoustic step. Since in this numerical method the bottom height is completely con-
sidered in the acoustic step, here we simply have

zn+1
j = zn+1−

j .

Bed level in the transport step. In this case, it is a matter of discretizing the full Exner equation, which
can be done following at least two options. Referring to the previous work [13], a �rst option called
decoupled consists in simply updating the topography as in the following

zn+1
j = znj − ζ

∆t

∆x

(
u∗
j+ 1

2

(qb(u)

u

)n
j+ 1

2

− u∗
j− 1

2

(qb(u)

u

)n
j− 1

2

)
, (4.8)

with

(
qb(u)

u
)nj+1/2 =

( qb(u)
u

)
(
hnj+1, (hu)nj+1

)
if u∗

j+ 1
2

≤ 0

( qb(u)
u

)
(
hnj , (hu)nj

)
if u∗

j+ 1
2

> 0.
(4.9)

Note that ( qb(u)
u

)nj+1/2 can be de�ned with no ambiguity since we either suppose the solid transport
discharge to be given by the Grass formula (1.2) with mg = 3 (and therefore u simpli�es) or by the
MPM formula (1.3) where qb is consider null for u = 0. It is clear that this updating formula depends
only on the solution at the initial time, and not on the solution obtained at the end of the acoustic step,
which justi�es the term decoupled.
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As a second option called weakly coupled, one can also exploit the values of Lu obtained at the end
of the acoustic step and thus set

zn+1
j = znj − ζ

∆t

∆x

(
u∗
j+ 1

2

(qb(Lu)

Lu

)n+1−

j+ 1
2

− u∗
j− 1

2

(qb(Lu)

Lu

)n+1−

j− 1
2

)
. (4.10)

and
( qb(Lu)

Lu

)n+1−
j+ 1

2

de�ned as the corresponding value in the (xj, t
n+1−) or (xj+1, t

n+1−) point respec-
tively if u∗

j+ 1
2

> 0 or u∗
j+ 1

2

≤ 0 and according to (4.9). Since a de�nition of (Lu)n+1− is needed, we
observe that an evolution equation for Lu in the Lagrangien step reads

∂t(Lu)− ∂ξ
u2

2
= −g∂ξ(h+ z),

and can be discretize as

(Lu)n+1−
j = (Lu)nj +

∆t

2∆x
((u∗

j+ 1
2
)2 − (u∗

j− 1
2
)2) + ∆t

ŝj+ 1
2

+ ŝj− 1
2

2
(4.11)

where ŝj+ 1
2

= −g((h+ z)j+1 − (h+ z)j)/∆x, which concludes the de�nition of the schemes.

4.3 Friction term approximation
As far as the friction term approximation is concerned, here we refer to the work of Audusse et al.

[3]. Hence, we brie�y recall the discretization they used and refer to their paper for more details. In
particular, we exploit an implicit splitting strategy. Once the solution hun+1 from the projection step
has been obtained, we state

h̄u
n+1

= hun+1 − g∆t
µ2
f |h̄u

n+1|h̄un+1

hn+1R
4/3
h

(4.12)

which gives us the �ux hu at the new time level with the friction contributions included. Note that,
imposing h̄un+1 and hun+1 to have the same sign, it is possible to obtain the explicit solution of equation
(4.12) so that the computational cost is not high. Moreover, as explained in [3], this discretization will
also allow us to preserve the "constant bed slope" equilibrium (1.5).

5 Increasing the order of accuracy
So far we presented three di�erent �rst-order numerical schemes for the shallow water Exner sys-

tem. The discretizations for the water height and �ow appeared to be the same in all the methods, only
the manner in which we updated the bottom height changed. We now aim to develop second-order
numerical methods, which could lead to the construction of even higher order schemes. As we will
see, we do not achieve the second-order of accuracy for all the three schemes in the same way. This is
mainly due to the fact that we also ask for the well-balanced property and it cannot be obtained in the
same manner as it depends on the underlying �rst-order scheme. However, the heart of the method is
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the same, namely we exploit polynomial reconstructions [41] and Runge-Kutta TVD approach [26] in
order to reach the second order of accuracy in space and time respectively. Indeed, what will change
is mainly the way we de�ne the slopes for the reconstruction polynomials in space as the Runge-Kutta
procedure does not a�ect the ability of the scheme of preserving the well-balanced property. We spec-
ify that the Runge-Kutta scheme is used at second order and applied to the overall scheme, namely the
acoustic and transport step together.

5.1 Update the bed level in both steps
Let us start with the numerical scheme which entails a splitting of the Exner equation in both steps.

Regarding the acoustic step, we �rst proceed in a very classical way by making use of conservative and
�rst-order polynomial reconstructions of the form

Pj(x) = Qn
j + ∆j(x− xj), (5.1)

where Q = (h, hu, z)t is the vector of unknowns and ∆j =
(
∆j(h),∆j(hu),∆j(z)

)t denotes the
corresponding slopes. Motivated by the well-balanced property, we compute the slopes using standard
ENO or MINMOD limiters applied to the free surfaceH = h+z, hu and z. Then, we simply set ∆j(h) =
∆j(H) −∆j(z). Indeed, notice that H is constant under the "lake at rest" condition and therefore the
slopes ∆j(H) automatically reduce to zero in this case. Then, it clearly follows ∆j(h) = −∆j(z), which
is necessary for the well-balanced property.

Finally, the Lagrangian step reads
Ln+1−
j hn+1−

j = Lnj h
n
j

Ln+1−
j (hu)n+1−

j = Lnj (hu)nj − ∆t
∆x

(Π∗
j+ 1

2

− Π∗
j− 1

2

) + ∆t(snj + snC,j)

Ln+1−
j zn+1−

j = Lnj z
n
j − ∆t

∆x
((Ω− zu)∗

j+ 1
2

− (Ω− zu)∗
j− 1

2

)

(5.2)

where we compute the interface values using the �rst-order formulas but applied to the left and right
traces of the reconstruction polynomials, namely

Qj+ 1
2
L = Pj(xj+ 1

2
) and Qj+ 1

2
R = Pj+1(xj+ 1

2
), (5.3)

instead of Qj and Qj+1. Notice that an additional term snC,j de�ned by

snC,j = −g
hj− 1

2
R + hj+ 1

2
L

2

zj+ 1
2
L − zj− 1

2
R

∆x

and representing the in-cell second-order contribution of the source term is introduced to make the
scheme well-balanced. Of course, we note that snC,j = 0 for all j if the slopes are null.

Regarding the transport step, we exploit again polynomial reconstructions but now we �rst recon-
struct the Lagrangian variables (Lh)n+1−

j and (Lhu)n+1−
j obtained at the end of the Lagrangian step.

Then, the updating formula for h and hu are given by a second-order approximation of the three inte-
grals that appear in (4.7). This is achieved by using a classical mid-point rule. As far as the topography
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is concerned, the procedure is similar, the only di�erence is that we reconstruct its values zn+1−
j instead

of (Lz)n+1−
j . Hence, the reconstructed polynomial is given by

Pj(z, ξ) = zn+1−
j + ∆j(ξ − ξj),

and the second-order updating formula for z simply reads

zn+1
j = (Lz)n+1−

j − ∆t

∆x

(
u∗
j+ 1

2
Pj+ 1

2

(
z,
ξj+ 1

2
+ ξ̂j+ 1

2

2

)
− u∗

j− 1
2
Pj− 1

2

(
z,
ξj− 1

2
+ ξ̂j− 1

2

2

))
,

with

Pj− 1
2
(z, ξ) =

{
Pj−1(z, ξ) if ξj− 1

2
> ξ̂j− 1

2

Pj(z, ξ) if ξj− 1
2
≤ ξ̂j− 1

2
.

5.2 Update the bed level in the acoustic step
Let us proceed with the numerical scheme that takes into account the bed level z only at the acoustic

level. Here, we follow exactly the same above-described procedure to obtain a second-order discretiza-
tion for the variables h and hu. The only di�erence is related to the bottom height approximation for
which we use formula (4.5) and either (3.18) or (3.19) for the star values. We underline that, in the
acoustic step, the same reconstruction procedure is considered for the variables h, hu and z whereas,
in the transport step, nothing has to be done for z.

5.3 Update the bed level in the transport step
For this last strategy we refer again to [13] and we give few details. The Lagrangian step simply

reads {
Ln+1−
j hn+1−

j = Lnj h
n
j

Ln+1−
j (hu)n+1−

j = Lnj (hu)nj − ∆t
∆x

(Π∗
j+ 1

2

− Π∗
j− 1

2

) + ∆tsnj ,

where again the star values are computed using left and right traces of piecewise linear approximations
of the solution at each interface, instead of piecewise constant approximation like in the �rst-order
method. Here, and in order to maintain the well-balanced property, we exploit the so-called �uctuations
[37, 12] to de�ne the slopes of the reconstructed polynomials. In particular, notice that here the bed
level is kept constant in the Lagrangian step and therefore no reconstruction is applied to this variable
(the corresponding slopes are considered to be zero). As far as the transport step is concerned, the
water height h and the discharge hu are updated like in the two other methods and thus we do not
further discuss it. Regarding the topography, we consider (4.10) and, in order to make it second order
in space, in place of the piecewise constant approximation of Lu given by (4.11) we use its polynomial
reconstructed values.
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6 Overall discretization and well-balanced property
This section is devoted to the illustration of the �rst-order overall discretizations of the previous

schemes and their well-balanced property. Here we also take advantage of this section to observe that
the three �rst-order methods we presented are also positivity-preserving under suitable conditions.

Remark 1. Is it possible to prove that the three �rst-order methods are also positivity-preserving, meaning
that they are able to preserve the strict positivity of the water height under the associated CFL conditions
4.1 and 4.2 with CFLl ≤ 1

2
and CFLt ≤ 1. See also [11] for more details.

6.1 Bed level in both steps
Considering the numerical treatment which update z in both the acoustic and transport step (sec-

tions 3.1, 4 and 5.1), it is easy to see that the whole scheme at �rst-order takes the following �nal form,
hn+1
j = hnj − ∆t

∆x

(
u∗
j+ 1

2

(Lh)n+1−
j+ 1

2

− u∗
j− 1

2

(Lh)n+1−
j− 1

2

)
(hu)n+1

j = (hu)nj − ∆t
∆x

(
u∗
j+ 1

2

(Lhu)n+1−
j+ 1

2

+ Π∗
j+ 1

2

− (u∗
j− 1

2

(Lhu)n+1−
j− 1

2

+ Π∗
j− 1

2

)
)

+ ∆tsnj ,

zn+1
j = znj − ∆t

∆x

(
(Ω− zu)∗

j+ 1
2

− (Ω− zu)∗
j− 1

2

)
− ∆t

∆x

(
u∗
j+ 1

2

zn+1−
j+ 1

2

− u∗
j− 1

2

zn+1−
j− 1

2

) (6.1)

with

Xn+1−
j+ 1

2

=

X
n+1−
j if u∗,n+1−

j+ 1
2

> 0

Xn+1−
j+1 if u∗,n+1−

j+ 1
2

≤ 0
(6.2)

and X = Lh, Lhu, z. Note that the evolution equation for the topography z can also be reformulated
as

zn+1
j = znj −

∆t

∆x

(
Ω∗
j+ 1

2
− Ω∗

j− 1
2

)
+

∆t

∆x

(
u∗
j+ 1

2
(z∗
j+ 1

2
− zn+1−

j+ 1
2

)− u∗
j− 1

2
(z∗
j− 1

2
− zn+1−

j− 1
2

)
)
.

It is clear that without the source term present in the evolution equation for hu, the whole numerical
scheme would be conservative.

Let us now prove that both the �rst and second-order schemes are well-balanced.

Theorem 1. The numerical method with updating formula (6.1) and star values given in section 3.1.1 is
well-balanced under the "lake at rest" condition (1.4).

Proof. Referring to [16], it can be easily seen that u∗j+1/2 = 0, hn+1−
j = hnj and (hu)n+1−

j = (hu)nj ∀j.
Let us now consider the topography z. Since we are under the hypothesis that unj = u∗j+1/2 = 0 ∀j,
it appears clear that we are in the case |u∗j+1/2|bj+1/2 < aj+1/2. Consequently we should use formulae
(3.13) in order to update zn+1−

j , which leads us to (|u|z)∗j+1/2 = 0 and Ω∗j+1/2 = 0 ∀j. Thus the scheme
is well-balanced for z as well.

Theorem 2. The second-order numerical method which update the bed level z in both the acoustic and
transport step (formulas in section 5.1) preserves the "lake at rest" stationary solution (1.4).
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Proof. First of all, we observe that u∗
j+ 1

2

= 0 ∀j when the variables at time tn satisfy the "lake at rest"
solution. Indeed, we have

u∗
j+ 1

2
=

1

2
(uj+ 1

2
L + uj+ 1

2
R)− 1

2aj+ 1
2

(Πj+ 1
2
R − Πj+ 1

2
L)− 1

2aj+ 1
2

(
g

2
(hj+ 1

2
L + hj+ 1

2
R)(zj+ 1

2
R − zj+ 1

2
L))

but ∆t
j(u) = 0 ∀j and thus uj+ 1

2
L = uj+ 1

2
R = uj = uj+1 = 0. Thus, we only have to prove that

Πj+ 1
2
R − Πj+ 1

2
L = −g

2
(hj+ 1

2
L + hj+ 1

2
R)(zj+ 1

2
R − zj+ 1

2
L) (6.3)

but
Πj+ 1

2
R − Πj+ 1

2
L =

g

2
(hj+ 1

2
R

2 − h2
j+ 1

2
L
) =

g

2
(hj+ 1

2
L + hj+ 1

2
R)(hj+ 1

2
R − hj+ 1

2
L)

and �nally (6.3) is equivalent to

hj+ 1
2
R − hj+ 1

2
L = −(zj+ 1

2
R − zj+ 1

2
L).

Exploiting de�nitions (5.1)-(5.3), we write

hj+ 1
2
R − hj+ 1

2
L = hj+1 −

∆t
j+1(h)∆x

2
− (hj +

∆t
j(h)∆x

2
) =

−zj+1 + zj +
∆t
j+1(z)∆x

2
+

∆t
j(z)∆x

2
= −zj+ 1

2
R + zj+ 1

2
L.

Thus, we proved that u∗
j+ 1

2

= 0 ∀j. Next, if the "lake at rest" condition holds true, from the second
equation of system (5.2) we observe

−(Π∗
j+ 1

2
− Π∗

j− 1
2
) + ∆x(snj + snC,j) = 0

and thus Ln+1−
j (hu)n+1−

j = Lnj (hu)nj = 0. Let us give the details. Since we know uj± 1
2
L = uj± 1

2
R = 0

∀j, we can write

Π∗
j+ 1

2
− Π∗

j− 1
2

=
1

2
(Πj+ 1

2
R + Πj+ 1

2
L)− 1

2
(Πj− 1

2
R + Πj− 1

2
L) =

=
1

2

(
(Πj+ 1

2
R − Πj+ 1

2
L) + (Πj− 1

2
R − Πj− 1

2
L)
)

+ Πj+ 1
2
L − Πj− 1

2
R

(6.3)
= ∆xsnj + Πj+ 1

2
L − Πj− 1

2
R.

With similar computations, it is straightforward to see that Πj+ 1
2
L − Πj− 1

2
R = ∆xsnC,j. Finally, since

u∗
j± 1

2

= 0 ∀j, we also know that Ω∗
j± 1

2

= 0 ∀j and thus zn+1−
j = znj .

Regarding the transport step, it does not modify the unknowns’ values as u∗
j± 1

2

= 0 ∀j. Similarly,
since we already know that the Runge-Kutta procedure does not prevent the scheme to be well-balanced,
the property is proved.
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Theorem 3. The numerical method with updating formula (6.1) and star values given in section 3.1.1
is well-balanced under the "constant bed slope" equilibrium (1.5). This statement remains true even if we
consider its second-order accurate version presented in section 5.1.

Proof. Assuming to be under the "constant bed slope" equilibrium (1.5), namely to have constant velocity
uni = uni+1 ∀i, constant water height hni = hni+1 ∀i and constant bed slope zni+1 − zni = −∆xSf,i = K
∀i with constant K , we want to prove that such a steady state is preserved, namely that hn+1

i = hni ,
hun+1

i = huni and zn+1
i = zni ∀i. Let us start seeing what are the star values in this case. We consider

only the case a < |uL|b, a < |uR|b as for the other one the procedure is analogous. Thus, it easy to
see that we obtain Π∗i+1/2 = Πn

i = Π∗ = constant and u∗i+1/2 = uni − 1
2a
Mi+1/2 = u∗ = constant

as also the parameter a and b are clearly constant in all the domain. Moreover, we also have z∗i+1/2 =
zni+1+zni

2
+ u

2|u|bτ (zni+1 − zni ) and Ω∗i+1/2 = Ω∗ = constant. Then, it is easy to see that we obtain hn+1
i =

Lhn+1−
i = hni , while for the discharge we get

hun+1
i = huni + ∆tghni Sf,i

where the friction has not yet been taken into account and which compensates the presence of the term
∆tghni ∆xSf , leading to h̄un+1

i = huni , see also [3]. Finally, as far as the topography is concerned, we
have

zn+1
i = zni −

∆t

∆x

(
Ω∗
i+ 1

2
− Ω∗

i− 1
2

)
+

∆t

∆x

(
u∗
i+ 1

2
(z∗
i+ 1

2
− zn+1−

i+ 1
2

)− u∗
i− 1

2
(z∗
i− 1

2
− zn+1−

i− 1
2

)
)

= zni + u∗
∆t

∆x

(
(z∗
i+ 1

2
− zn+1−

i+ 1
2

)− (z∗
i− 1

2
− zn+1−

i− 1
2

)
)
.

Then, since u∗ is constant, it is clear that we have zn+1−
i+ 1

2

− zn+1−
i− 1

2

= zn+1−
i+1 − zn+1−

i = zn+1−
i − zn+1−

i−1 =

zni+1 − zni = zni − zni−1 = K and thus

zn+1
i = zni + u∗

∆t

∆x

(zni+1 + zni
2

−
zni + zni−1

2
−K

)
= zni + u∗

∆t

∆x

(zni+1 − zni
2

+
zni − zni−1

2
−K

)
= zni ,

which concludes the proof for the �rst-order method. Concerning the second-order extension, it is
enough to check that the slopes of the polynomial reconstruction are either null or constant and similar
computations lead to the same result; thus we do not insert further details here.

6.2 Bed level in the acoustic step
The �rst-order numerical method, which takes into account the bed level z only in the acoustic step

(sections 3.2, 4 and 5.2), has an overall form similar to the one (6.1) seen in the previous section, the
only di�erence related to the update equation for z. In practice, we write

hn+1
j = hnj − ∆t

∆x

(
u∗
j+ 1

2

Lhn+1−
j+ 1

2

− u∗
j− 1

2

Lhn+1−
j− 1

2

)
hun+1

j = hunj − ∆t
∆x

(
u∗
j+ 1

2

Lhun+1−
j+ 1

2

+ Π∗
j+ 1

2

− (u∗
j− 1

2

Lhun+1−
j− 1

2

+ Π∗
j− 1

2

)
)

+ ∆tsnj ,

zn+1
j = znj − ∆t

∆x

(
Ω∗
j+ 1

2

− Ω∗
j− 1

2

) (6.4)

with Xn+1−
j+ 1

2

given by formula (6.2) and X = Lh, Lhu.

22



Theorem 4. The numerical method with updating formula (6.4) and star values given in section 3.2.2 is
well-balanced under the "lake at rest" condition (1.4).

Proof. Proof analogous to the one of theorem 1.

Theorem 5. The second-order numerical method which update the bed level z only in the acoustic step
(section 5.2) preserves the "lake at rest" stationary solution (1.4).

Proof. Proof analogous to the one of theorem 2.

Theorem 6. The numerical method with updating formula (6.4) and star values given in section 3.2.2
is well-balanced under the "constant bed slope" equilibrium (1.5). This statement remains true even if we
consider its second-order accurate version presented in section 5.2.

Proof. Proof analogous to the one of theorem 3.

6.3 Bed level in the transport step
Finally, let us brie�y comment on the numerical scheme which resembles to the usual splitting

method (sections 3.3, 4 and 5.3). The bed level is updated only in the transport step and, as such, the
�rst-order overall discretization reads

hn+1
j = hnj −

∆t

∆x

(
u∗
j+ 1

2
Lhn+1−

j+ 1
2

− u∗
j− 1

2
Lhn+1−

j− 1
2

)
hun+1

j = hunj −
∆t

∆x

(
u∗
j+ 1

2
Lhun+1−

j+ 1
2

+ Π∗
j+ 1

2
− (u∗

j− 1
2
Lhun+1−

j− 1
2

+ Π∗
j− 1

2
)
)

+ ∆tsnj

zn+1
j = znj − ζ

∆t

∆x

(
u∗
j+ 1

2

(qb(Lu)

Lu

)n+1−

j+ 1
2

− u∗
j− 1

2

(qb(Lu)

Lu

)n+1−

j− 1
2

)
,

(6.5)

see formulas (4.4), (4.6) and (4.10). Referring to [13], we state that both the �rst and second-order
accurate versions of this method are well-balanced.

Theorem 7. The �rst-order numerical scheme with updating formula (6.5) preserves the "lake at rest"
stationary solution (1.4).

Proof. Refer to the previous work [13].

Theorem 8. The second-order numerical method which update the bed level z only in the transport step
(section 5.3) preserves the "lake at rest" stationary solution (1.4).

Proof. Refer to the previous work [13].

Theorem 9. The �rst-order numerical scheme with updating formula (6.5) preserves the "constant bed
slope" equilibrium (1.5). This statement remains true even if we consider its second-order accurate version
presented in section 5.3.

Proof. Proof analogous to the one of theorem 3.

23



7 Numerical evidences
Here we test the numerical schemes we presented so far; for the sake of conciseness we distinguish

them by calling them as in the following:

• "AcTrZ": scheme with bed level z updated in both the ACoustic and the TRansport step (see
sections 3.1, 4 and 5.1);

• "AcZ": scheme with bed level z updated in the ACoustic step (see sections 3.2, 4 and 5.2);

• "TrZ": scheme with bed level z updated in the TRansport step (see sections 3.3, 4 and 5.3), using
in particular discretization (4.10).

If not otherwise speci�ed, we take ζ = 1, qb = Agu
3 withAg = 0.005 for the Exner equation, µf = 0

and transmissive boundary conditions. For the CFL number we use CFLl = 0.45 and CFLl = 0.25 for
the �rst and second order schemes respectively, while CFLt = 1. With the exception of the accuracy
test case, when the reference solution is inserted, it is computed exploiting the second-order AcTrZ
scheme with M = 1000 cells, where ∆x = L

M
with L the length of the channel.

7.1 Test of order of accuracy
Here we test the order of accuracy of the numerical schemes described previously. Let us consider

a channel of length L = 20m, Ag = 0.3, m = 3. The initial condition is given by null velocity and{
zIC = 0.1− 0.01e−(x−10)2

hIC = 2− 0.1e−(x−10)2 .

We refer to paper [7] for this test case. The reference solution is computed using M = 2048 cells and
TrZ-second-order "decoupled" method (formula (4.8)). In table 1 we insert the errors and the EOA in
norm L1 for all the three schemes. We can see that the second-order of accuracy is reached in each case.

7.2 Riemann problem: dam break on movable bottom
For this Riemann problem we refer to [1]. The length of the channel is L = 10m and the dam is

placed in the middle. The ending time is tend = 1s. The initial condition is given by null velocity, �at
topography and water height hL = 2m if x < L/2, hR = 0.125m if x > L/2. First of all in �gure 1
we compare the �rst and second order method, in particular we use LP-AcZ but similar results can be
found with the other two schemes. Clearly, the second-order version of the method gives more accurate
results for the same value of the mesh. On the right we used M = 2000 cells to show that the �rst-
order solution converges to the second-order one in general, even if we can observe a small di�erence
of order 10−2 in the shock position. However, this is not surprising but natural, as the shallow water
Exner system is not conservative. Then, in �gure 2 we insert the bed level solution of all the three
second-order numerical schemes in order to be able to sum up the merits and �aws of each of them. As
expected, the more di�usive numerical scheme is the one in which the bed level is updated in both steps,
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Method Mesh M Variable err L1 O(L1) Variable err L1 O(L1) Variable err L1 O(L1)

AcTrZ-scheme 64 h 0.0269 − hu 0.1174 − z 0.1372× 10−3 −
128 0.0083 1.6927 0.0354 1.7294 0.0639× 10−3 1.1030
256 0.0027 1.6190 0.0115 1.6236 0.0218× 10−3 1.5529
512 0.0007 1.8757 0.0031 1.8773 0.0061× 10−3 1.8456
1024 0.0002 1.9786 0.0008 1.9819 0.0016× 10−3 1.9532

AcZ-scheme 64 h 0.0269 − hu 0.1174 − z 0.1370× 10−3 −
128 0.0083 1.6931 0.0354 1.7301 0.0592× 10−3 1.2115
256 0.0027 1.6186 0.0115 1.6236 0.0198× 10−3 1.5780
512 0.0007 1.8754 0.0031 1.8772 0.0056× 10−3 1.8329
1024 0.0002 1.9785 0.0008 1.9820 0.0014× 10−3 1.9427

TrZ-scheme 64 h 0.0268 − hu 0.1175 − z 0.1824× 10−3 −
128 0.0083 1.6955 0.0354 1.7320 0.0550× 10−3 1.7296
256 0.0027 1.6182 0.0115 1.6248 0.0183× 10−3 1.5890
512 0.0007 1.8755 0.0031 1.8781 0.0050× 10−3 1.8734
1024 0.0002 1.9782 0.0008 1.9818 0.0013× 10−3 1.9792

Table 1: Errors and empirical convergence rates for norm L1. Mesh of size M = (64, 128, 256, 512, 1024), CFL = 0.25.

namely the AcTrZ-scheme. On the other hand, the TrZ-method appears to be the less di�usive scheme
but it is the only one which presents some oscillations in the solution. Of course, they could be related
to the fact that the TrZ-method entails a decoupled numerical approximation of the shallow-water-
Exner system, even if this kind of oscillations are not observed in the �rst-order version of TrZ-scheme.
However, we underline that these oscillations reduce themselves when re�ning the mesh, refer to the
previous work [13]. Finally, the AcZ-scheme is slightly more di�usive than the TrZ one but less than
the AcTrZ-method.

7.3 Transient Riemann problems
Next, we consider three di�erent transient Riemann problems to test the ability of our schemes to

reproduce the correct solutions in this kind of situation as well. In table 2 we insert the initial conditions
and the value for the coe�cient Ag present in the Grass formulation. We underline that in the third
Riemann problem, Ag is not constant anymore as it depends on the water height h. Moreover, we take
ρ0 = 0.4, M = 200 cells and tend = 0.2s as ending time. We refer to the works [39, 32] for more details
and for the analytical solutions reported in �gures 3, 4, 5. In particular, we plot the free surface and bed
elevation outputs using both �rst and second order method. Let us see the details. For the �rst RP (test
A) represented in �gure 3, on the left side we insert the AcTrZ solution while the TrZ one is shown on
the right. We can generally observe that the numerical outputs follow closely the reference one even
if the TrZ solution presents some small oscillations in correspondence of the middle discontinuity. The
AcZ output is not inserted as it is very close to the AcTrZ one, even if less di�usive. Similar observations
can be inferred for test B, thus we only show the AcTrZ solution on the left side of �gure 4. We underline
the neither the AcTrZ nor the AcZ solutions produce oscillations for these two RPs at both �rst and
second order of accuracy. Finally, let us see test C outputs. On the right side of �gure 4, we inserted the
AcTrZ solution both at �rst and second order of accuracy. Once again, the numerical solution appear to
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(a) M = 100 cells (b) M = 2000 cells

Figure 1: RP: dam break on movable bottom; free surface (left-top) and bed level (left-bottom and right). Comparison between
the �rst (magenta) and second-order (blue) LP-AcZ scheme with M = 100 cells (left) and M = 2000 cells (right). Reference
solution in red line.

Figure 2: RP: dam break on movable bottom, bed level. Comparison among the three second-order schemes AcTrZ (magenta
symbol), AcZ (yellow symbol) and TrZ (blue line) with M = 100 cells. Reference solution in red line.
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Test hL hR uL uR zL zR Ag

A 2 2 0.25495 2.3247449 3.0 2.846848 0.01
B 2.25 1.18868612 0.2050 2.4321238 5.0 5.124685 0.01
C 6 5.2 0.30037 15.16725 3.0 4.631165 0.01/h

Table 2: Data for the transient Riemann problems.

reproduce correctly the reference one. However, while neither the �rst-order AcTrZ nor the �rst-order
AcZ show any oscillations, the latter can be observed when using the second-order schemes. Thus, in
�gure 5 we compare the three second-order solutions and we zoom in the areas of interest to show
that some small perturbations are present in the numerical outputs, probably due to the fact that less
numerical di�usion is present. However, the correct solution is generally reproduced, even if Ag is not
constant anymore. We conclude saying that we veri�ed that the numerical outputs converge to the
analytical one when re�ning the mesh.

Remark 2. Moreover, even if without reporting here the data, even bigger values ofAg have been considered
to simulate highly erosive �ow for the �rst dam break problem (section 7.2) and these three transient test
cases. The interest in trying bigger values of Ag resides in the fact that greater values means a change in
the �ow structure of the coupled model and consequently more instabilities could appear if the numerical
scheme is decoupled. Using the value Ag = 0.5, we indeed veri�ed the presence of great oscillations when
using the TrZ method. On the other hand, the other two �rst-order methods AcTrZ and AcZ do not produce
any oscillations and remain stable. However, some oscillations have been observed using their second-order
extension, even if su�ciently controlled to keep the schemes stable. One could envisage a strategy to remove
them by combining the �rst-order and second-order version in order to keep the second-order of accuracy in
the stable parts of the solution, resembling a kind of �ux-limiter approach (if a priori) or a MOOD approach
(if a posteriori).

7.4 Sub-critical test case
For the following two numerical tests we refer to paper [20]. As initial condition we consider the

sub-critical steady state 
hu(x, t = 0) = 0.5

z(x, t = 0) = 0.1(1 + e−(x−5)2)
u2

2
+ g(h+ z) = 6.386,

while the length of the channel is L = 10.0m. In �gure 6 we insert the results for Ag = 0.05 and
Ag = 0.007. In the latter case, AcZ-solution is not inserted for the sake of clarity as it is very sim-
ilar to the AcTrZ-one. We observe that the three schemes give similar solutions, which con�rm the
observations of the previous test case; in order, from the least di�usive to the most di�usive, we have
TrZ, AcZ and AcTrZ-scheme. It is also important to underline that, in these two numerical simulations,
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(a) Method AcTrZ (b) Method TrZ

Figure 3: Test A; free surface (up) and bed elevation (bottom) computed with AcTrZ method (left) and TrZ scheme (right).
Reference solution (red line), �rst-order solution (blue symbol -.) and second-order solution (black dashed line). M = 200
cells.

no oscillations appear even if, in the work [20], it has been explained that decoupled methods usually
present oscillations in these two test cases.

7.5 "Lake at rest" solution and perturbation
Referring to [16], here we test the ability of the schemes to preserve the "lake at rest" steady state.

First of all we consider the following stationary solution where u = 0, h(x, t = 0) + z(x, t = 0) = 3m
and

z(x, t = 0) =

{
2 + 0.25(cos(10π(x− 0.5)) + 1) if 1.4 < x < 1.6

2 otherwise.

The length of the channel is L = 2.0m. The numerical schemes were able to preserve this steady state
up to an error of order 10−15. Then, we introduce some small perturbations in the initial data, namely
we impose

h(x, t = 0) =

{
3− z(x, t = 0) + 0.001 if 1.1 < x < 1.2

3− z(x, t = 0) otherwise.

In �gure 7 we compare the results of �rst and second-order AcZ-scheme against the reference solution.
We show the outputs of only the AcZ-method as the other two schemes give analogous results. We
observe that the outcomes are indeed satisfying as they are in agreement with the ones showed in [16]
and no unphysical oscillations appear.
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(a) Test B (b) Test C

Figure 4: Test B (left) and C (right); free surface (up) and bed elevation (bottom) computed with AcTrZ method. Reference
solution (red line), �rst-order solution (blue pointed line) and second-order solution (black dashed line). M = 200 cells.

7.6 "Constant bed slope" equilibrium for steady �ow regimes
In this section we numerically show that our method is capable of preserving the "constant bed

slope" equilibrium and that the solution evolves to the steady state if steady boundary conditions are
imposed. We refer to [32] and we take µf = 0.020006460818026 s m−1/3, Ag = 0.01, L = 100 m
and M = 100 cells so that ∆x = 1m. Then, for the equilibrium, we consider the following slope
Seq = −0.002 for z. Our numerical methods are able to preserve it with an error machine of 10−12. We
underline that at the left and right boundaries, for the variable z we need to impose that the slope is
constant. For instance, for the right boundary, this means that the value in the ghost cell is given by
zout−zend = zend−zend−1,where by zend and zend−1 we indicate the value of z in the last and second-last
cell.

Then, we move away from the steady state and consider as initial condition h(x, t = 0) = 0.943m,
q(x, t = 0) = 1 m3/s and either S0 = −0.007 or S0 = 0. As for the boundary conditions, at the inlet
we impose zIn = 2 m and qIn = 1 m3/s, while at the outlet we use hOut = 0.943 m. Once again, at the
right boundary, for the variable z we imposed that the slope is constant. Then, in �gure 8 we insert
the results using S0 = −0.007 (left) and S0 = 0 (right). In both cases, we observe that the numerical
solution converges towards the exact one, namely the "constant bed slope" equilibrium. The outputs
have been computed with the �rst-order LP-AcTrZ scheme, but all the numerical methods we presented
give analogous results.
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Figure 5: Test C; free surface (up) and bed elevation (bottom) computed with the three second order schemes. AcTrZ (blue
line), AcZ (black dashed line), TrZ (magenta pointed line) and reference solution (red line). M = 200 cells.

7.7 Dam break with experimental values
Here we present the last numerical test, in which we compare our numerical solution against ex-

perimental data. We consider once again a Riemann problem performed at the Université catholique de
Louvain with initial condition given by zero-velocity, hL = 0.1 m, hR = 1e− 3 m for the water height
and �at topography. Then we take L = 2.5m, MPM formula (1.3) for the solid transport discharge with
d = 3.2 mm, ρ0 = 0.4, s = 0.540, µf = 0.03 and θ∗c = 0.045. Refer to [27] for more details about this
experiment. In �gure 9 we insert the free surface and bed elevation numerical and experimental outputs
computed at di�erent times tend = 5t0, 7.5t0, 10t0 swith t0 =

√
gh0 ≈ 0.101. In particular, we used the

AcZ scheme but analogous solution can be found using the AcTrZ or TrZ method, where once again
the TrZ solution would be the less di�usive while the AcTrZ output the most di�usive. The results are
considered satisfying as they appear to match the experimental data and are comparable to the ones ob-
tained in [27]. Note that the di�erence between the numerical and experimental output could be related
to the fact that we are both neglecting erosion processes (meaning that smaller fractions of sediment
could be in suspension into the water) and non-hydrostatic e�ects, refer also to [25]. Then, when using
the second-order schemes we observed the production of some small oscillations which were dumped
as time went on. Thus, in �gure 11 we inserted the second-order solutions using the AcTrZ and AcZ
schemes at times tend = 5t0, 7.5t0, 10t0 s, while in �gure 10 at time tend = 1.5t0 to better show the
presence of oscillations. Note that we did not inserted the second-order TrZ solution as it gave complex
number. Concluding, even if small oscillations are present, probably due to the fact that at second-order
of accuracy there is less di�usion, the solutions are considered satisfying. Moreover, at this stage we
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(a) Ag = 0.005

(b) Ag = 0.07

Figure 6: Flow over a movable bump; free surface and bed level. Values Ag = 0.005 (up) and Ag = 0.07 (bottom). Schemes
AcTrZ (magenta), AcZ (yellow) and TrZ (blue) with M = 100 cells.

31



Figure 7: Propagation of perturbation; bed level z and free surface z + h (top), velocity (bottom). Comparison between the
�rst (magenta) and second-order (blue) LP-AcZ scheme with M = 200 cells. Reference solution in red line.

Figure 8: "Constant bed slope" equilibrium for steady �ow regimes; bed level z and free surface z+h. Initial condition (blue
line), numerical steady state (green symbol) and exact steady state (red line). LP-AcTrZ scheme with M = 100 cells.
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are still neglecting source terms related to the erosion phenomena of the sediment, which could help
stabilizing the numerical output, see [25].

8 Conclusions
In the previous work [13], it has been introduced a well-balanced second-order Lagrange-projection

scheme for the shallow water Exner model which takes into account the topography z only in the
projection step. In the present work, we described two more di�erent ways of discretizing the bed level,
by considering z only in the acoustic step or in both of them. Both methods have been constructed in
such a way to be well-balanced and second-order accurate at the same time. Here by well-balanced
we mean that the schemes preserve the "lake at rest" and the "constant bed slope" equilibrium steady
states. Moreover, both Grass and MPM formulation have been considered. We tested these methods
considering several numerical experiments and we generally observed that when using their �rst-order
version no oscillations are present in the numerical results. When moving to second-order of accuracy
however this is not always true. In particular, the TrZ scheme (z only in the transport step) revealed
itself to be the worst method among the three in this sense. On the other hand, the other two methods
AcTrZ and AcZ performed a lot better, showing only minor and controlled oscillations in some of the
numerical tests. Further improvements could be related to the extension of these numerical schemes to
two dimensions (following the lines of [13]), higher order of accuracy and the use of other formulations
for the solid transport discharge. Finally, it would be interesting to consider the implicit version of such
numerical methods, especially in situations of weak interaction between the �ow and the sediments,
where long-time simulations are needed. Indeed, such a topic is already subject of an ongoing work.
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