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Abstract

Dynamics of railway tracks have been studied for a long time. Many authors
proposed analytical or numerical models to compute the dynamic response
of the tracks. Numerical models often use the track periodicity to reduce
the size of the problem. Among these numerical methods, the Wave Finite
Element (WFE) method was designed to compute the dynamics of periodic
structures composed of identical patterns. It was successfully applied to
simpli�ed models of railway tracks subjected to di�erent types of loads. In
these studies, tracks are modeled by periodically supported beams. In order
to give access to stresses and strains at a �ne scale, a much �ner represen-
tation is needed. This article presents a WFE computation of the dynamics
of a ballastless railway track subjected to constant moving loads. In the
presented computation the rail, the underlying slab and the support system
are all represented in three dimensions. In order to validate this method, the
obtained results are compared to experimental strain measurements.

1 Introduction

Dynamics of railway tracks have been studied for a long time. Several authors
proposed analytical [1, 2, 3] models for this purpose. In these studies, the
track is generally modelled as periodically supported beam. Other authors
developed numerical methods which take advantage on the track periodicity
[4, 5].

Among these methods, the Wave Finite Element (WFE) method have
been widely used to compute the dynamics of periodic structures and waveg-
uides [6, 7, 8]. This numerical method consists in reducing the dynamics of
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each spatial period (called pattern) to wave equations at its boundaries.
Then, the kinematic and mechanical �elds of the whole structure can be
found by computing the amplitude of the waves traveling in the structure
main direction.

Hoang et al. [9, 10] successfully used the Wave Finite Element (WFE)
method to compute the response of a homogeneous railway track subjected
to a constant moving loads. Claudet et al. [11] developed a method based
on the WFE method to compute the response of railway tracks transition
zones. Both Hoang et al. and Claudet et al. modeled a railway track by
a periodically supported beam and the supports with mass-springs-dampers
systems connected to �xed points. These simpli�ed models can give global
results with very low computational time and strong agreements with ana-
lytical models. However, because of their simplicity, they can't give access
to some values such as stresses or strains at a �ne scale.

In this article, the WFE method is applied to the computation of the
response of a ballastless railway track subjected to a constant moving load. In
the computation made, a �ne three-dimensions model is used to represent the
track. This model includes the rail, the support system and the underlying
slab. The results obtained with this method are validated by a comparison
with experimental strain measurements.

After this introduction, the numerical WFE method will be presented.
Then, the numerical results obtained will then be compared with the exper-
imental measurements. The last section will present the conclusion of this
work.

2 Methods

2.1 Wave Finite Element method

An in�nite periodic structure composed of identical patterns is considered.
The WFE method reduced the computation of the dynamics of the structure
to a wave problem at one boundary of one of its patterns as follow.

For every pattern (n), in the frequency domain, the following equilibrium
relationship can be written:

D̃q(n) = F(n) (1)

Where q(n) contains the nodal displacements of the pattern (n), F(n) its
nodal forces and D̃ its sti�ness matrix.

Let's note with subscripts I , L, R the components respectively corre-
sponding to the inner, left and right boundaries nodes. Eliminating the
displacement of the inner node qI , the reduced equilibrium relationship is
found: [

DLL DLR

DRL DRR

] [
qL

qR

]
=

[
FL

FR

]
−
[

DLIFI

DRIFI

]
(2)
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Where,

DLL = D̃LL − D̃LID̃
−1
II D̃IL DLR = D̃LR − D̃LID̃

−1
II D̃IR

DRL = D̃RL − D̃RID̃
−1
II D̃IL DRR = D̃RR − D̃RID̃

−1
II D̃IR

DLI = D̃LID̃
−1
II DRI = D̃RID̃

−1
II

Let u(n), the vector containing the forces and displacements at the left
boundary of the pattern (n) be de�ned as follows:

u(n) =

[
q
(n)
L

−F
(n)
L

]
(3)

Using the continuity of the structure at the pattern boundaries, Hoang
et al proved the relationship:

u(n+1) = Su(n) + b(n) (4)

Where,

S =

[
−D−1

LRDLL −D−1
LR

DRL −DRRD
−1
LRDLL −DRRD

−1
LR

]
[

DqI

DfI

]
=

[
−D−1

LRDLI

DRI −DRRD
−1
LRDLI

]

b(n) =

[
DqIF

(n)
I

DfIF
(n)
I − F

(n)
∂R

]
As the vector u(n) gives the state of the pattern (n), this equation tra-

duces the propagation of the wave from one pattern to the next one. S can
be seen as a propagation matrix and b(n) gives the e�ect of the loading ap-
plied on the pattern. Then, from the propagation relationship, the system
of equations (5) is obtained. This system reduces the computation of the
whole structure dynamics to the computation of u(0).

u
(n) = S

n
u
(0) +

n∑
k=1

S
n−k

b
(k−1)

u
(−n) = S

−n
u
(0) −

n∑
k=1

S
−n+k−1

b
(−k)

(5)

The eigenvalues and eigenvectors {µj , ϕj}j of S are computed to compute
the power of the S. They follow:

Sϕj = µjϕj (6)

The computation of this eigenvalue problem is prone to numerical dif-
�culties (see [12]). To overcome them, we use the S + S−1 transformation
proposed by Zhong and Williams [13].
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The eigenvalues come in pair
(
µj , µ

⋆
j

)
with ∥µj∥ ⩽ 1 and µ⋆

j = 1
µj

(see

[13, 14]). The corresponding eigenvectors are noted
(
ϕj , ϕ

⋆
j

)
. We de�ne the

eigenbasis {ΦΦ⋆} as: Φ = [ϕ1 ... ϕn] and Φ⋆ = [ϕ⋆
1 ... ϕ

⋆
n]. Φ corresponds to

the modes propagating to the right and Φ⋆ to those propagating to the left.
By a condition of non-divergence at in�nity, one can show:

u(0) = Φ
+∞∑
k=1

µk−1Q
(−k)
E +Φ⋆

+∞∑
k=0

µk+1Q
⋆(k)
E (7)

Hoang et al [15] give the formulas to compute the wave amplitudes

Q
(n)
E ,Q

⋆(n)
E . Computing u(0) with the last equation gives the dynamics of

the whole in�nite structure.

3 Results

This section presents some results obtained with the WFE method for a
ballastless railway track subjected to a constant moving load. The results
are then compared to experimental strain measurements.

One pattern of the structure is modeled in three dimensions using the
�nite element software Abaqus. The geometry includes the rail, the under-
lying concrete slab and the support system which connects the rail to the
slab. The geometry and mesh obtained are shown in Figure 1. The mesh and
the mass, damping and sti�ness matrices obtained are exported to Matlab
where the WFE computation is conducted. At each frequency, the dynamic
sti�ness matrix is computed from the mass, damping and sti�ness matrices.
The structure is subjected to constant moving loads representing the load
applied by eight wheels moving on the rail at a constant speed.

X

Y

Z

Z

Y

X

X

Y

Z

Figure 1: Cross-sectional view of the geometry and mesh of one pattern.

Table 1 gives the parameters used in this computation.
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Parameter Value

Steel Young modulus 210GPa
Steel density 7.8 kg/dm3

Under-sleeper pad Young modulus 2MPa
Under-sleeper pad density 1 kg/dm3

Under-rail pad Young modulus 20MPa
Under-rail pad density 1 kg/dm3

Concrete Young modulus 50GPa
Concrete density 2.4 kg/dm3

Support spacing 60 cm
Rail type UIC60

Sleeper mass 60 kg
Load speed 38 km s−1

Element per pattern 16075
Computation maximum frequency 400Hz

Computation frequency step 0.66Hz

Table 1: Computation parameters.

The WFE computation gives the displacements of the nodes of all the
patterns in the frequency domain. An inverse Fourier transform is performed
to obtain temporal values. Because to Matlab graphical limitations, the
three-dimensions results are plotted using Paraview. By a spatial derivation,
Paraview is able to compute the strain in the structure. This strain is plotted
in �gure 2 at a given time.

Figure 2: Cross-sectional view of the strain in the track

To validate these results, a strain gauge was glued on the rail. In the
�gure 3 the simulated strain is compared to the measured strain. Although
the measured strain shows some experimental noise, a good agreement is
found between experimental and numerical values.
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Figure 3: Cross-sectional view of the strain in the track.

4 Conclusion

Railway tracks under tra�c can be modeled as in�nite periodic structures
subjected to moving loads. The Wave Finite Element method can be used
to compute the dynamics of these structures. This method is based on
a reduction of the problem of the computation of the periodic structure
dynamic response to a wave problem at a boundary of one of the structure
patterns. Intrinsically including the in�nite nature of the structure, this
reduction can make a�ordable numerical computations of �nely represented
complex structures.

This method had already been applied successfully to the railway do-
main for simple one-dimension models of the track. In this article, a three-
dimensions �ne model was used to represent a ballastless railway track. In
this model the rail, the support and the underlying slab are represented. The
results obtained show a strong agreement with on-site measured strains.
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