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1 Introduction

Dynamics of railway tracks have been studied for a long time. Several authors proposed analytical [START_REF] Nordborg | Vertical Rail Vibrations: Pointforce Excitation[END_REF][START_REF] Belotserkovskiy | On The Oscillation of innite periodic beams subjected to a moving concentrated force[END_REF][START_REF] Heckl | Coupled waves on a periodically supported Timoshenko beam[END_REF] models for this purpose. In these studies, the track is generally modelled as periodically supported beam. Other authors developed numerical methods which take advantage on the track periodicity [START_REF] Arlaud | Receptance of railway tracks at low frequency: Numerical and experimental approaches[END_REF][START_REF] Fortunato | Railway Track Transition Zones: Design, Construction, Monitoring and Numerical Modelling[END_REF]. Among these methods, the Wave Finite Element (WFE) method have been widely used to compute the dynamics of periodic structures and waveguides [START_REF] Manconi | Wave motion and stop-bands in pipes with helical characteristics using wave nite element analysis[END_REF][START_REF] Hong | Vibration isolation design for periodically stiened shells by the wave nite element method[END_REF][START_REF] Serra | Wave properties in poroelastic media using a Wave Finite Element Method[END_REF]. This numerical method consists in reducing the dynamics of each spatial period (called pattern) to wave equations at its boundaries. Then, the kinematic and mechanical elds of the whole structure can be found by computing the amplitude of the waves traveling in the structure main direction.

Hoang et al. [START_REF] Hoang | Wave nite element method for vibration of periodic structures subjected to external loads[END_REF][START_REF] Hoang | Wave nite element method for the dynamic analysis of railway tracks[END_REF] successfully used the Wave Finite Element (WFE) method to compute the response of a homogeneous railway track subjected to a constant moving loads. Claudet et al. [START_REF] Claudet | Wave Finite Element Method for Computing the Dynamic Response of Railway Transition Zones[END_REF] developed a method based on the WFE method to compute the response of railway tracks transition zones. Both Hoang et al. and Claudet et al. modeled a railway track by a periodically supported beam and the supports with mass-springs-dampers systems connected to xed points. These simplied models can give global results with very low computational time and strong agreements with analytical models. However, because of their simplicity, they can't give access to some values such as stresses or strains at a ne scale.

In this article, the WFE method is applied to the computation of the response of a ballastless railway track subjected to a constant moving load. In the computation made, a ne three-dimensions model is used to represent the track. This model includes the rail, the support system and the underlying slab. The results obtained with this method are validated by a comparison with experimental strain measurements.

After this introduction, the numerical WFE method will be presented. Then, the numerical results obtained will then be compared with the experimental measurements. The last section will present the conclusion of this work.

Methods

2.1

Wave Finite Element method An innite periodic structure composed of identical patterns is considered.

The WFE method reduced the computation of the dynamics of the structure to a wave problem at one boundary of one of its patterns as follow.

For every pattern (n), in the frequency domain, the following equilibrium relationship can be written:

Dq (n) = F (n) (1) 
Where q (n) contains the nodal displacements of the pattern (n), F (n) its nodal forces and D its stiness matrix.

Let's note with subscripts I , L , R the components respectively corresponding to the inner, left and right boundaries nodes. Eliminating the displacement of the inner node q I , the reduced equilibrium relationship is found:

D LL D LR D RL D RR q L q R = F L F R - D LI F I D RI F I (2) 
Where,

D LL = DLL -DLI D-1 II DIL D LR = DLR -DLI D-1 II DIR D RL = DRL -DRI D-1 II DIL D RR = DRR -DRI D-1 II DIR D LI = DLI D-1 II D RI = DRI D-1 II Let u (n)
, the vector containing the forces and displacements at the left boundary of the pattern (n) be dened as follows:

u (n) = q (n) L -F (n) L (3) 
Using the continuity of the structure at the pattern boundaries, Hoang et al proved the relationship:

u (n+1) = Su (n) + b (n) (4) 
Where,

S = -D -1 LR D LL -D -1 LR D RL -D RR D -1 LR D LL -D RR D -1 LR D qI D f I = -D -1 LR D LI D RI -D RR D -1 LR D LI b (n) = D qI F (n) I D f I F (n) I -F (n) ∂R
As the vector u (n) gives the state of the pattern (n), this equation traduces the propagation of the wave from one pattern to the next one. S can be seen as a propagation matrix and b (n) gives the eect of the loading applied on the pattern. Then, from the propagation relationship, the system of equations ( 5) is obtained. This system reduces the computation of the whole structure dynamics to the computation of u (0) .

           u (n) = S n u (0) + n k=1 S n-k b (k-1) u (-n) = S -n u (0) - n k=1 S -n+k-1 b (-k) (5)
The eigenvalues and eigenvectors {µ j , ϕ j } j of S are computed to compute the power of the S. They follow:

Sϕ j = µ j ϕ j (6) 
The computation of this eigenvalue problem is prone to numerical difculties (see [START_REF] Waki | Numerical issues concerning the wave and nite element method for free and forced vibrations of waveguides[END_REF]). To overcome them, we use the S + S -1 transformation proposed by Zhong and Williams [START_REF] Zhong | On the direct solution of wave propagation for repetitive structures[END_REF].

The eigenvalues come in pair µ j , µ ⋆ j with ∥µ j ∥ ⩽ 1 and µ ⋆ j = 1 µ j (see [START_REF] Zhong | On the direct solution of wave propagation for repetitive structures[END_REF][START_REF] Duhamel | Finite element analysis of the vibrations of waveguides and periodic structures[END_REF]). The corresponding eigenvectors are noted ϕ j , ϕ ⋆ j . We dene the eigenbasis {Φ Φ ⋆ } as:

Φ = [ϕ 1 ... ϕ n ] and Φ ⋆ = [ϕ ⋆ 1 ... ϕ ⋆ n ]
. Φ corresponds to the modes propagating to the right and Φ ⋆ to those propagating to the left.

By a condition of non-divergence at innity, one can show:

u (0) = Φ +∞ k=1 µ k-1 Q (-k) E + Φ ⋆ +∞ k=0 µ k+1 Q ⋆(k) E (7) 
Hoang et al [START_REF] Hoang | Wave nite element method for waveguides and periodic structures subjected to arbitrary loads[END_REF] give the formulas to compute the wave amplitudes

Q (n) E , Q ⋆(n) E .
Computing u (0) with the last equation gives the dynamics of the whole innite structure.

Results

This section presents some results obtained with the WFE method for a ballastless railway track subjected to a constant moving load. The results are then compared to experimental strain measurements.

One pattern of the structure is modeled in three dimensions using the nite element software Abaqus. The geometry includes the rail, the underlying concrete slab and the support system which connects the rail to the slab. The geometry and mesh obtained are shown in Figure 1. The mesh and the mass, damping and stiness matrices obtained are exported to Matlab where the WFE computation is conducted. At each frequency, the dynamic stiness matrix is computed from the mass, damping and stiness matrices. The structure is subjected to constant moving loads representing the load applied by eight wheels moving on the rail at a constant speed. The WFE computation gives the displacements of the nodes of all the patterns in the frequency domain. An inverse Fourier transform is performed to obtain temporal values. Because to Matlab graphical limitations, the three-dimensions results are plotted using Paraview. By a spatial derivation, Paraview is able to compute the strain in the structure. This strain is plotted in gure 2 at a given time. To validate these results, a strain gauge was glued on the rail. In the gure 3 the simulated strain is compared to the measured strain. Although the measured strain shows some experimental noise, a good agreement is found between experimental and numerical values. 

Conclusion

Railway tracks under trac can be modeled as innite periodic structures subjected to moving loads. The Wave Finite Element method can be used to compute the dynamics of these structures. This method is based on a reduction of the problem of the computation of the periodic structure dynamic response to a wave problem at a boundary of one of the structure patterns. Intrinsically including the innite nature of the structure, this reduction can make aordable numerical computations of nely represented complex structures. This method had already been applied successfully to the railway domain for simple one-dimension models of the track. In this article, a threedimensions ne model was used to represent a ballastless railway track. In this model the rail, the support and the underlying slab are represented. The results obtained show a strong agreement with on-site measured strains.
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 1 Figure 1: Cross-sectional view of the geometry and mesh of one pattern.

Figure 2 :

 2 Figure 2: Cross-sectional view of the strain in the track

Figure 3 :

 3 Figure 3: Cross-sectional view of the strain in the track.

Table 1

 1 gives the parameters used in this computation.

	Parameter	Value
	Steel Young modulus	210 GPa
	Steel density	7.8 kg/dm 3
	Under-sleeper pad Young modulus	2 MPa
	Under-sleeper pad density	1 kg/dm 3
	Under-rail pad Young modulus	20 MPa
	Under-rail pad density	1 kg/dm 3
	Concrete Young modulus	50 GPa
	Concrete density	2.4 kg/dm 3
	Support spacing	60 cm
	Rail type	UIC60
	Sleeper mass	60 kg
	Load speed	38 km s -1
	Element per pattern	16075
	Computation maximum frequency	400 Hz
	Computation frequency step	0.66 Hz

Table 1 :

 1 Computation parameters.