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Abstract

Dynamics and uncertainty are essential features of real-life argumen-
tation, and many recent studies have focused on integrating both aspects
into Dung’s well-known abstract Argumentation Frameworks (AFs). This
paper proposes a combination of the two lines of research through a well-
behaved logical tool: Dynamic Logic of Propositional Assignments (DL-
PA). Our results show that the main reasoning tasks of virtually all ex-
isting formalisms qualitatively representing uncertainty about AFs are
encodable in DL-PA. Moreover, the same tool is also useful for capturing
dynamic structures, such as control argumentation frameworks, as well as
for developing more refined forms of argumentative communication under
uncertainty.

1 Introduction

Formal argumentation has been proved to be a successful approach to non-
monotonic reasoning, among many other applications [17, 4, 55]. Within the
studies directed to provide a formal model for argument-based inference, ab-
stract models of argumentation play a crucial role, as they answer a rather
fundamental question: how should a rational agent choose among a conflicting
set of arguments those that are better justified? The adjective abstract stresses
that these models disregard the nature and structure of arguments, in order to
focus on the different semantics through which one could give a precise answer
to the question above. The foremost abstract model of argumentation is the use
of directed graphs, first proposed by Dung in [39] under the name of argumen-
tation frameworks (AFs), where nodes stand for arguments and arrows stand
for attacks among arguments.

∗This is a preliminary version of the paper “Antonio Yuste-Ginel and Andreas Herzig,
Qualitative uncertainty and dynamics of argumentation through dynamic logic, Journal of

Logic and Computation, 2023; exac098, https://doi.org/10.1093/logcom/exac098”. Please,
consult the original publication and use the full reference for citation purposes.
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While being an elegant and powerful tool, AFs have too limited modelling
capabilities for many purposes. Consequently, many extensions of Dung’s model
were proposed in the literature, most prominently support relations [25], recur-
sive forms of attacks [8], and preferences between arguments [3]. Two essential
limitations of all these approaches are: (i) their static character; and (ii) the
assumption that the formalized agent has perfect knowledge about the structure
of the AF, that is, about the relevant arguments and attacks of the debate.

Regarding (i), an AF can be understood as a snapshot of a debate, and this
has been shown useful to provide mathematically precise counterparts of many
interesting argumentative notions. However, a fundamental aspect of argumen-
tation is its dynamic character, since arguments, conflicts among them, and
participants’ opinions typically change during the development of an argumen-
tative dialogue. It is then unsurprising that the dynamics of formal argumenta-
tion systems has been the center of attention of a recent research avenue within
formal argumentation, with an important focus on abstract models; we refer to
[38] and [11] for recent surveys.

As to (ii), it turns out to be a significant shortcoming in adversarial con-
texts where one typically wants to model the information (i.e., the part of an
AF) that an agent thinks her opponent entertains, and thus uncertainty arises
naturally. This assumption of perfect knowledge has been relaxed through the
study of extensions of AFs that account for different forms of uncertainty, be
it probabilistic or more qualitative; see [51] and [52] for recent surveys on the
respective approaches. Among the second group of approaches, incomplete ar-
gumentation frameworks (IAFs) [13, 40, 14, 16, 15] and control argumentation
frameworks (CAFs) [31, 58, 32] have recently received a lot of attention, result-
ing in a precise complexity map of the different associated reasoning tasks as
well as some applications [32].

Concurrently, a considerable amount of work in formal argumentation has
focused on building a suitable logical theory for reasoning about argumenta-
tion formalisms, with a special focus on AFs and their dynamics; see [18] for
a recent survey. The dynamic logic of propositional assignments (DL-PA) [6]
has been shown to be a useful tool for this enterprise [35, 37, 36, 48]. DL-
PA is a well-behaved variant of propositional dynamic logic (PDL) [46], where
atomic programs are restricted to assignments of propositional variables to ei-
ther Truth or Falsity. It is expressive enough to capture all standard argumen-
tation semantics. When compared to encodings in propositional logic, DL-PA
can capture semantics that incorporate minimality or maximality criteria more
succinctly. Moreover, its advantages over equally succinct languages such as
quantified Boolean formulas have been highlighted [36].

This work pushes further the logical encoding of abstract AFs in DL-PA by
pursuing three general aims: (1) to capture argumentation semantics that had
not been captured before, some of them posing challenging encodings methods;
(2) to integrate qualitative uncertainty about AFs and dynamics of argumenta-
tion in DL-PA by reducing reasoning tasks of different extensions of argumen-
tation frameworks to DL-PA model checking problems; and (3) to show that
the chosen logic is also a suitable tool for exploratory purposes, by developing
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new forms of modelling argumentative communication under uncertainty that
are directly inspired by our encodings.

After providing the essential background on AFs and DL-PA (Section 2),
Section 3 provides polynomial encodings of a wide range of AF semantics in
DL-PA. In Section 4 we present several formalisms for qualitatively representing
uncertainty about AFs, as well as the reduction of their main reasoning tasks
to DL-PA model checking problems. In Section 5, we discuss joint approaches
to dynamics and qualitative uncertainty of AFs. Section 6 ends the paper with
some discussion and challenges for future work. Proofs and proof sketches can
be found in the Appendix.

2 Background

Throughout the paper we assume a fixed, finite, non-empty set of arguments
U (the universe). We moreover assume that U is big enough to accommodate
our examples. Sets of arguments (noted A, sometimes with a superscript) are
supposed to be subsets of U ; and all conflict relations (noted R, sometimes with
a superscript) are binary relations on U , i.e., R ⊆ U × U . Given A ⊆ U and
R ⊆ U × U , we use R ↾A to abbreviate R ∩ (A × A) (the restriction of R to
A).

2.1 Abstract Argumentation Frameworks (AFs) and their
Semantics

An argumentation framework (AF) is a directed graph (A,R) [39], where A
stands for a set of arguments and R stands for a conflict-based relation among
them (typically an attack relation).1 We note AF the set of all argumentation
frameworks (over U). Argumentation semantics are meant to capture the infor-
mal notion of reasonable positions in a debate. The literature contains a large
number of such semantics. They are typically presented either in extension-
based terms or in labelling-based terms. For most of the existing semantics,
both approaches (extensions and labellings) were proved equivalent. Here, we
opt for an extension-based presentation and restrict our attention to a limited
number of semantics, but the interested reader is referred to [7] for an overview.

Let us first define some useful concepts. Let (A,R) be an AF and let E ⊆ A.
We define E+ = {x ∈ A | ∃y ∈ E : (y, x) ∈ R} (the set of arguments
attacked by E), and E⊕ = E ∪ E+ (the so-called range of E). A set of
arguments E ⊆ A is conflict-free iff E ∩E+ = ∅. Moreover, E defends a ∈ A

iff for every x ∈ A: if (x, a) ∈ R, then x ∈ E+. Finally, E ⊆ A is admissible
iff it is (i) conflict-free and (ii) self-defended (it defends all its members).

1As A ⊆ U , we actually focus on finite AFs, as most of the literature does. This is an
inherent limitation of our approach: our encodings use quantification over U , which makes
finiteness of U necessary. Capturing some more general argumentation semantics has turned
out to require powerful logical languages, such as the modal µ-calculus for the grounded
semantics [43].
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In [39], Dung introduced four different semantics. A set of arguments E ⊆ A

is said to be:

• a stable extension iff (i) it is conflict-free, and (ii)A\E ⊆ E+ (‘E attacks
every argument outside itself’);

• a complete extension iff (i) it is conflict-free; and (ii) it contains pre-
cisely the arguments of A that it defends;

• a grounded extension iff it is a minimal (w.r.t. set inclusion) complete
extension;

• a preferred extension iff it is a maximal (w.r.t. set inclusion) complete
extension.

It is well known that the existence of complete, grounded and preferred exten-
sions is guaranteed for any AF. However, this does not hold for stable seman-
tics: there exist frameworks lacking stable extensions. Moreover, the grounded
semantics is the only one from the above list belonging to the so-called single-
status approach: each AF has exactly one grounded extension. This is an
advantage when, for instance, modelling the beliefs of an agent as the output of
her argument-evaluation processes. More precisely, if a semantics admits AFs
with several extensions then these extensions are usually logically incompatible
when one works with structured arguments, and there is no clear way to choose
among them.

Besides Dung’s above four semantics we will take into account some others.
Semi-stable semantics was born to solve the problems caused by the absence

of stable extensions under certain conditions. A set E ⊆ A is a semi-stable
extension of (A,R) iff E is a complete extension with maximal (w.r.t. set
inclusion) range among complete extensions. More formally, E is a semi-stable
extension iff

(i) E is a complete extension; and

(ii) there is no other complete extension E′ such that E⊕ ⊂ E′⊕.

Contrarily to what happens with stable extensions, there is at least one semi-
stable extension in every finite AF. Moreover, when the set of stable extensions
is nonempty, stable and semi-stable extensions coincide [23].

Although appealing because of its single-status approach, grounded seman-
tics can be criticised as being too sceptical because it typically leaves many
undecided arguments, i.e., arguments neither belonging to the grounded exten-
sion nor attacked by it. The idea of both the eager and the ideal semantics is to
keep the advantage of returning a single extension while avoiding being overly
sceptical.

Formally, a set E ⊆ A is an ideal set of (A,R) iff it is admissible and it
is contained in every preferred extension. The ideal extension of (A,R) is its
maximal (w.r.t. set inclusion) ideal set.
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Moreover, a set E ⊆ A is an eager set iff it is admissible and it is contained
in every semi-stable extension. The eager extension of (A,R) is its maximal
(w.r.t. set inclusion) eager set.

All the above semantics satisfy the so-called admissibility principle, meaning
that all of their extensions are admissible sets. For some purposes, however, self-
defence could be too strong a requirement, for instance when capturing human
argument evaluation [45]. Alternative semantics selecting specific conflict-free
sets were defined under the denomination naivety-based semantics (see e.g. [30]).
The basis of all these semantics is the notion of naive extension. A naive
extension of (A,R) is just a maximal (w.r.t. set inclusion) conflict-free set.
A more elaborated naivety-based semantics, strongly inspired in the notion of
semi-stability, is stage semantics. Formally, a stage extension of (A,R) is a
conflict-free set with maximal range among conflict-free sets.

We abbreviate the name of each semantics by using the shorthands
{st, co, gr, pr, se, id, ea, na, stg} in the obvious way. For every σ ∈
{st, co, gr, pr, se, id, ea, na, stg}, we note σ(A,R) the set of all σ-extensions of
(A,R). An argument x ∈ A is said to be credulously (resp. sceptically) σ-
accepted iff it belongs to at least one (resp. every) σ-extension.

As an example, for the AF (A0, R0) represented in the picture below we
have st(A0, R0) = pr(A0, R0) = se(A0, R0) = stg(A0, R0) = {{b, e}, {c, d}};
gr(A0, R0) = id(A0, R0) = ea(A0, R0) = {∅}; co(A0, R0) = {∅, {b, e}, {c, d}} and
na(A0, R0) = {{a, c}, {a, e}, {b, e}, {b, d}, {c, d}}.

a

bc(A0, R0)

de

Moreover, (A1, R1), depicted below and borrowed from [23] illustrates the dif-
ference between stable and semi-stable semantics: the framework has no stable
extension, while {c, a} is a semi-stable extension (which is actually the only
one).

ab

d(A1, R1)

c

Finally, to see the difference between (semi-)stable and preferred semantics
consider (A2, R2), borrowed from [7] and depicted below. The set {a} is a
preferred extension, but it is not a (semi-)stable one. Moreover, the example
also illustrates the difference between ideal and eager semantics, as the eager
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extension is {b, d}, while the ideal one is empty. For more examples, the reader
is referred to [7], as well as to the graphic on-line solver ConArg [20].

abcd

e(A2, R2)

2.2 Dynamic Logic of Propositional Assignments (DL-PA)

We use DL-PA as the general logical framework of this paper. The lan-
guage of DL-PA is built from a countably infinite set of propositional variables
Prp = {p1, p2, . . .}. We suppose that Prp contains several kinds of proposi-
tional variables capturing statuses of arguments and relations between them.
First, to every set of arguments A ⊆ U we associate the set of awareness
variables AWA = {awx | x ∈ A} and the set of acceptance variables
INA = {inx | x ∈ A}. Second, to every relation R ⊆ U × U we associate the
set of attack variables ATTR = {rx,y | (x, y) ∈ R}. The set of propositional
variables of our logic therefore contains

PrpU = AWU ∪ INU ∪ ATTU×U .

As PrpU is finite, the countably infinite Prp provides a reservoir of auxiliary
variables that are going to help us to encode e.g. semi-stable and stage semantics.
Formulas and programs of DL-PA are defined by mutual recursion:

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | [π]ϕ,

π ::= +p | −p | ϕ? | (π;π) | (π ∪ π) | π`,

where p ranges over Prp. The formula [π]ϕ reads “ϕ is true after every possible
execution of π”. The program +p makes p true and −p makes p false. The
program ϕ? tests that ϕ is true and fails when it is false. The program π1;π2 is
the sequential composition of π1 and π2; and π1 ∪ π2 is their nondeterministic
composition. Finally, π` is the execution of π ‘the other way round’; for exam-
ple, the program +p` undoes the assignment of p to true: when p is false then
it fails, and when p is true then it nondeterministically either does nothing or
makes p false.

Here are some more examples. The formula [−p]¬p is going to be valid: there
is only one way of executing −p, and p is false afterwards. In contrast, [+p]¬p
is going to be unsatisfiable. Moreover, [+p]q is equivalent to q for syntactically
different p and q. The formula [ϕ?]ψ says that ψ is true after every possible
execution of the test ϕ?. There is at most one such execution, namely when ϕ
is true, and it does not change anything; when ϕ is false then the test fails and
[ϕ?]ψ is vacuously true. Therefore [ϕ?]ψ has to be equivalent to ¬ϕ ∨ ψ. The
formula [π1;π2]ϕ is equivalent to [π1][π2]ϕ and [π1∪π2]ϕ is going to be equivalent
to [π1]ϕ ∧ [π2]ϕ. Finally, the formulas [+p ∪ −p]¬p and [−p`]p are both going
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to be unsatisfiable. The former is the case because there is a nondeterministic
choice (namely that of +p) after which p is true; the latter is the case because
there is an execution of the nondeterministic −p` after which p is still false.

Here are some abbreviations of formulas and programs that are going to
be useful in the rest of the paper. The program ⊤? is abbreviated as skip: it
always succeeds and does not change anything. The program (ϕ?;α)∪ (¬ϕ?;β)
abbreviates if ϕ thenα elseβ. A special case of the latter is when β is skip, where
we just write if ϕ thenπ. (Observe that this is not the same as ϕ?;α: when ϕ

is false then the latter fails while the former succeeds and does nothing.) As to
formulas, the missing Boolean connectives are defined as usual. Moreover, the
formula 〈π〉ϕ abbreviates ¬[π]¬ϕ. It therefore reads “ϕ is true after some pos-
sible execution of π”. In particular, 〈π〉⊤ has to be read “π is executable”. For
example, the formula ϕ → [π]〈π`〉ϕ expresses that every successful execution
of π can be reversed; it is going to be valid. (Observe that the diamond cannot
be replaced by a box, as illustrated by the invalid p→ [+p][+p`]p.)

Our models are classical propositional valuations over Prp, i.e., they are
subsets of Prp. We use v , v ′, v ′′ to denote valuations. Formulas ϕ are interpreted
in a way similar to dynamic logic, and programs π are interpreted as binary
relations on valuations. Just as the syntax, the semantics of DL-PA is defined
by mutual recursion. The interpretation of formulas is:

v |= p if p ∈ v ,
v |= [π]ϕ if (v , v ′) ∈ ||π|| implies v ′ |= ϕ,

and as usual for the Boolean connectives; and the interpretation of programs is:

||+p|| = {(v , v ′) | v ′ = v ∪ {p}},

||−p|| = {(v , v ′) | v ′ = v \ {p}},

||ϕ?|| = {(v , v) | v |= ϕ},

||π;π′|| = ||π|| ◦ ||π′||,

||π ∪ π′|| = ||π|| ∪ ||π′||,

||π`|| = ||π||−1.

The interpretation of +p is the relation that makes p true while not changing
anything else; and similarly for −p. That of the test ϕ? relates every valuation
where ϕ is true with itself; for example, ||⊤?|| = {(v , v) | v ⊆ Prp}. Sequential
composition π1;π2 is naturally interpreted as relation composition and nonde-
terministic composition π1∪π2 as set union of the two relations ||π1|| and ||π2||.
The interpretation of the converse π` is the inverse of the relation ||π|| and
relates a valuation v to all those valuations where π is executable and may lead
to v . For example, ||+p`|| = {(v ′, v) | v ′ = v ∪ {p}}.

A formula ϕ is DL-PA satisfiable if v |= ϕ for some v , and it is DL-PA
valid if v |= ϕ for every v . For example, 〈+p〉⊤ and 〈−p〉⊤ are both valid, while
〈−p`〉p and 〈−p`〉¬p are satisfiable but not valid. It is known that satisfiability,
validity, and model checking are all PSPACE complete decision problems [5].
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Let us now introduce some DL-PA programs that will be useful later on. Let
P = {p1, . . . , pn} ⊆ Prp be a finite set of propositional variables. First of all, we
define

;p∈Pπp = πp1 ; . . . ;πpn
.

By convention, we assume that the abbreviation amounts to skip when P = ∅.
We adopt the same convention for nondeterministic union, i.e.,

⋃

p∈∅ πp = skip.
In principle the order of the elements of P matters, but each time we are going
to use this notation we will make sure that the programs πpi

are such that this
is not the case. This will in particular hold for the following abbreviations:

mkTrueOne(P) =
⋃

p∈P

(¬p?;+p) = (¬p1?;+p1) ∪ . . . ∪ (¬pn?;+pn),

mkFalseOne(P) =
⋃

p∈P

(p?;−p) = (p1?;−p1) ∪ . . . ∪ (pn?;−pn),

mkTrueSome(P) = ;p∈P(+p ∪ skip) = (+p1 ∪ skip); . . . ; (+pn ∪ skip),

mkFalseSome(P) = ;p∈P(−p ∪ skip) = (−p1 ∪ skip); . . . ; (−pn ∪ skip),

vary(P) = ;p∈P(+p ∪ −p) =
(

+p1 ∪−p1
)

; . . . ;
(

+pn ∪−pn
)

.

The program mkTrueOne(P) chooses an element of P, checks that it is false
and makes it true, while mkTrueSome(P) makes true some elements of P that
were false before. The programs mkTrueOne(P) and mkFalseOne(P) are the
converse of each other; same for mkTrueSome(P) and mkFalseSome(P). The se-
quential composition mkTrueOne(P);mkTrueSome(P) makes true at least one
element of P that was false before (possibly more). The last program—
i.e., vary(P)—has the same interpretation as the sequential compositions
mkTrueSome(P);mkFalseSome(P) and mkFalseSome(P);mkTrueSome(P).

Let us state formally the meaning of these programs:2

Proposition 1. We have:

||mkTrueOne(P)|| = {(v , v ′) | v ′ = v ∪ {p} for some p ∈ P\v},

||mkFalseOne(P)|| = {(v , v ′) | v ′ = v \ {p} for some p ∈ P∩v},

||mkTrueSome(P)|| = {(v , v ′) | v ′ = v ∪ P′ for some P′ ⊆ P},

||mkFalseSome(P)|| = {(v , v ′) | v ′ = v \ P′ for some P′ ⊆ P},

||vary(P)|| = {(v , v ′) | v \ v ′ ⊆ P and v ′ \ v ⊆ P}.

From valuations to AFs and backward. Thanks to our hypothesis that
Prp contains PrpU , each valuation v ⊆ Prp represents the AF (Av , Rv ) defined
by:

Av = {x ∈ U | awx ∈ v},

Rv = {(x, y) ∈ U × U | rx,y ∈ v} ↾Av

= {(x, y) ∈ Av ×Av | rx,y ∈ v}.

2The following proposition is a slight correction of [36, Lemma 1].
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The other way round, each AF (A,R) is represented by the valuation

v(A,R) = {awx | x ∈ A} ∪ {rx,y | (x, y) ∈ R}.

Note that the valuation v(A,R) is well defined for any set A ⊆ U and relation
R ⊆ U×U , even when (A,R) is not an AF. (This is the case as soon asR contains
pairs (x, y) ∈ U×U that are not in A×A.) Moreover, notice that if we start with
a valuation v ′ then v(A

v
′ ,R

v
′) = v ′ does not generally hold because a valuation

can contain an attack variable ra,b without containing awa and awb. If we,
however, start with an AF (A′, R′) then (Av(A′ ,R′)

, Rv(A′,R′)
) = (A′, R′) is always

the case. Finally, for each valuation v we define the extension associated to
v by:

Ev = {x ∈ U | inx ∈ v}.

3 Argumentation Semantics in DL-PA

We now show how to capture argumentation semantics in DL-PA. The start-
ing point is to adopt the encoding of AFs in propositional logic as introduced
in [19]. It consists in associating to each semantics σ a formula ϕσ such that
v |= ϕσ if and only if Ev is a σ-extension of (Av , Rv ). This approach was pushed
further in [35, 37, 36, 48], where it was proposed to go beyond the characterisa-
tion of extensions and exploit DL-PA programs to describe the computation of
extensions. The most basic way to do so is a ‘generate and test’ approach: the
generic program

makeExtσ = vary(INU );ϕσ?

nondeterministically builds all possible σ-extensions by first varying the values of
the acceptance variables and then checking that a σ-valuation has been obtained.
As worked out in [36], other, more efficient extension building algorithms can
also be captured as DL-PA programs and can be proved to be equivalent to
makeExtσ.

Due to our hypothesis of a background universe of arguments U we need an
encoding of argumentation semantics that takes awareness variables awx into
account. This was done by [37] for stable semantics.3 Here we extend the
encoding to the rest of the semantics presented in Section 2.1. The correctness
of all encodings is formally stated at the end of this section.

We start by defining some formulas that allow us to capture the different
semantics in a compact way.

3.1 Useful DL-PA Formulas

The following DL-PA formula expresses that the arguments identified by ac-
ceptance variables are indeed arguments entertained by the formalised agent

3In [37], the term enablement and the notation Enx are used instead of awareness and awx.
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(arguments she is aware of):

Well =
∧

x∈U

(inx → awx).

This abbreviation allows us to express conflict-freeness and admissibility:

ConFree = Well ∧
∧

x∈U

∧

y∈U

¬(inx ∧ iny ∧ rx,y),

Admissible = ConFree ∧
∧

x∈U

(

inx →
∧

y∈U

(

(awy ∧ ry,x) →
∨

z∈U

(inz ∧ rz,y)
)

)

.

Our characterisation of semi-stable and stage extensions makes use of fresh
copies in′x of the variables inx, one per x ∈ U (which are available because Prp
is countably infinite while U is finite). For these auxiliary variables we define a
program that copies the values of the INU variables:

copy(INU) = ;x∈U((inx?;+in′x) ∪ (¬inx?;−in′x)).

Furthermore, the following two formulas characterise whether the range of the
extension Ev represented by v , in symbols E⊕

v
, is included in the range of the

extension represented by the copies; and vice versa:

IncludedInCp =
∧

x∈U







inx ∨



awx ∧
∨

y∈U

(iny ∧ ry,x)









→



in′x ∨



awx ∧
∨

y∈U

(in′y ∧ ry,x)











 ,

IncludesCp =
∧

x∈U







in′x ∨



awx ∧
∨

y∈U

(in′y ∧ ry,x)









→



inx ∨



awx ∧
∨

y∈U

(iny ∧ ry,x)











 .

Finally, to capture ideal and eager semantics we need to ensure that the
entertained set is admissible and belongs to every preferred extension (for the
case of ideal semantics), or to every semi-stable extension (for the case of eager
semantics). This can be done in a compact way by means of the extension-
building programs makeExtσ:

IdealSet = Admissible ∧
∧

x∈U

(inx → [makeExtpr]inx),

EagerSet = Admissible ∧
∧

x∈U

(inx → [makeExtse]inx).
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Stable = Well ∧
∧

x∈U

(

awx →
(

inx ↔ ¬
∨

y∈U

(iny ∧ ry,x
)

)

,

Complete = ConFree ∧
∧

x∈U

(

inx ↔
∧

y∈U

(

(awy ∧ ry,x) →
∨

z∈U

(inz ∧ rz,y)
)

)

,

Grounded = Complete ∧ [mkFalseOne(INU );mkFalseSome(INU)]¬Complete,

Preferred = Admissible ∧ [mkTrueOne(INU );mkTrueSome(INU )]¬Admissible,

Naive = ConFree ∧ [mkTrueOne(INU )]¬ConFree,

SemiStable = Complete ∧ [copy(INU);makeExtco] (IncludesCp → IncludedInCp) ,

Stage = ConFree ∧

[copy(INU ); vary(INU );ConFree?] (IncludesCp → IncludedInCp) ,

Ideal = IdealSet ∧ [mkTrueOne(INU );mkTrueSome(INU)]¬IdealSet,

Eager = EagerSet ∧ [mkTrueOne(INU);mkTrueSome(INU )]¬EagerSet.

Table 1: Encoding the Semantics of Section 2.1 by DL-PA formulas

3.2 Encoding the Semantics of Section 2.1 in DL-PA

Table 1 lists all the encodings. That of stable and complete semantics slightly
simplifies that of [37, 48]. Our encoding of grounded, complete, and preferred
semantics straightforwardly adapts those of [36] for computing minimality and
maximality criteria. The first four encodings are essentially a combination of
those developed in [37] and [36], with some slight improvements and adapta-
tions. Among the semantics that have not been captured in DL-PA before, our
encoding of naive semantics simplifies the program for checking set maximality
w.r.t. other semantics such as preferred semantics because no superset of a set
containing conflicts can be conflict-free.

Theorem 1. Let σ ∈ {st, co, gr, pr, se, id, ea, na, stg}. Let v ⊆ Prp. Let (A,R)
be an AF. Then:

• v |= ϕσ iff Ev ∈ σ(Av , Rv);

• σ(A,R) =
{

Ev | (v(A,R), v) ∈ ||makeExtσ||
}

.

The proof can be found in the Appendix, just as the proofs or proof sketches
of all other results.

4 Qualitative Uncertainty in Abstract Argu-
mentation through DL-PA

In this section, we review existing formalisms for representing uncertainty about
AFs. We restrict our attention to qualitative forms of uncertainty, that is, rep-
resentations neither using probabilities nor any other kind of numeric device.
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In particular, we cover: incomplete argumentation frameworks [13], their en-
riched version [53], constrained incomplete argumentation frameworks [48, 54],
and incomplete argumentation frameworks with dependencies [41, 42]. The main
motivation for the study of these formalisms is that there are several sources
of uncertainty in real-life argumentation. For instance, arguments can be so
complex that the reasoning agent is not sure whether they are to be taken into
account or whether they attack other arguments. Perhaps more frequently, un-
certainty appears in argumentation when an agent reasons about her opponent’s
argumentative situation. Due to the lack of total knowledge about her adver-
sary, the agent might doubt whether the latter entertains some of the arguments
or sees some of the attacks. And this is in turn crucial for choosing the right
arguments to convince her opponent. We keep this latter intuition in mind as
a guideline for the rest of the paper.

All the formalisms of the present section share the idea of representing uncer-
tainty through the notion of completion. A completion is a hypothetical removal
of uncertainty, such that the formalised agent reasons under the assumption that
her opponent’s AF is such-and-such. In epistemic logic terms, this amounts to
the notion of possible world, as mentioned in [14, 15], and studied in detail in
[59, 50]. For a more elaborated comparison among the formalisms presented in
this section and epistemic logic, the interested reader is referred to Section 6.

After introducing each formalism we explain how the main associated rea-
soning tasks can be reduced to DL-PA model checking problems. We conclude
by providing a comparison of the different approaches.

4.1 Incomplete AFs

An incomplete AF [13] (IAF), is a pair IAF = (F,U), where F = (AF , RF )
is called the fixed part, U = (A?, R?) is called the uncertain part, R,R? ⊆
(AF ∪A?)×(AF ∪A?), AF ∩A? = ∅ and RF ∩R? = ∅. Hence an IAF is basically
an AF where arguments and attacks have been split into two disjoint sets. We
sometimes omit internal parentheses when talking about IAFs, that is, we write
(AF, RF, A?, R?) instead of ((AF , RF ), (A?, R?)). Note that, by definition, there
can be fixed attacks among uncertain arguments (sometimes called conditionally
definite attacks [14]). We can intuitively think about these as attacks the agent
thinks her opponent entertains whenever she thinks that her opponent is aware
of the involved arguments.

A completion of an IAF = (AF, RF, A?, R?) is any AF (A∗, R∗) such that:

• AF ⊆ A∗ ⊆ AF ∪ A?; and

• RF ↾A∗⊆ R∗ ⊆ (RF ∪R?) ↾A∗ .

Given an IAF IAF, we note completions(IAF) the set of all its completions.
A standard AF (A,R) can be identified with the IAF (A,R, ∅, ∅), which is

the unique completion of itself. Two subclasses of IAFs are well-studied in the
literature, namely attack-incomplete AFs (att-IAFs, for short),4 which are

4This subclass was previously studied under the name of partial AFs [24, 28].
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IAFs with empty A?; and argument-incomplete AFs (arg-IAFs, for short),
which are IAFs with empty R?.

Example 1. Let us consider IAF0 = (AF
0 , R

F
0 , A

?
0, R

?
0), where A

F
0 = {a, b, d},

RF
0 = {(b, a), (d, a), (c, b), (e, d), (c, e), (e, c), (f, e)}, A?

0 = {c, e, f} and R?
0 =

{(f, c)}, graphically represented below. The set of completions of IAF0 is the
one depicted in Table 2 except for the cells B2, C2, B4, C4, B5 and C5.

a

bc

de

f

Classic reasoning tasks such as extension enumeration or argument accep-
tance have been generalized from AFs to IAFs. We here focus on acceptance
queries such as the following:

σ-Necessary-Credulous-Acceptance (σ-NCA)

Given: An IAF IAF = (AF, RF, A?, R?) and an argument a ∈ AF .
Question: Is it true that for every (A∗, R∗) ∈ completions(IAF)
there is an E ∈ σ(A∗, R∗) such that a ∈ E?

We can switch quantifiers in the definition above in order to obtain different vari-
ants of the problem, resulting in possible and sceptical variants. Note that the
only difference between these reasoning tasks and standard acceptance problems
in AFs is an added quantification layer, namely quantification over completions.

Our aim now is to reduce these acceptance problems to DL-PA model check-
ing problems. As we already have programs for building the extensions of AFs,
the fundamental step in this reduction consists in designing a DL-PA program,
makeCompIAF, that computes all the completions of IAF.

First, the valuation associated to IAF is determined by its fixed part:

vIAF = v(AF ,RF )

= AWAF ∪ ATTRF

= {awx | x ∈ AF } ∪ {rx,y | (x, y) ∈ RF }.

Note that (AvIAF
, RvIAF

) is already a completion of IAF: it is the smallest
one, where only fixed arguments and fixed attacks between them are consid-
ered. In order to compute all the completions of IAF we make true subsets of
propositional variables representing arguments in A? and attacks in R?:

makeCompIAF = mkTrueSome(AWA?);mkTrueSome(ATTR?).

The next proposition shows that our original target is reached.
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A B C

1

a

b

d

a

bc

d

a

b

de

2

a

bc

de

a

bc

de

a

bc

de

3

a

b

d

f a

bc

d

f a

bc

d

f

4

a

bc

de

f a

bc

de

f a

bc

de

f

5

a

bc

de

f a

bc

de

f a

bc

de

f

6

a

b

de

f

Table 2: Completions of CAF0. The column [1, 2,..., 6] and the row [A, B, C] are just
included for numbering purposes. (Empty cells do not represent the empty completion
(∅, ∅).)
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Proposition 2. Let IAF = (AF, RF, A?, R?). Then:

• If (vIAF, v) ∈ ||makeCompIAF||, then (Av , Rv ) ∈ completions(IAF).

• If (A∗, R∗) ∈ completions(IAF), then (vIAF, v(A∗,R∗)) ∈ ||makeCompIAF||.

Using this result together with the general technique to compute extensions
provided in Section 3, we can reduce reasoning problems in IAFs to model
checking problems in DL-PA.

Proposition 3. Let IAF = (F,U), σ ∈ {st, co, gr, pr, se, id, ea, na, stg}, and
a ∈ AF . Then:

• The answer to σ-NSA with input IAF and a is yes iff
vIAF |= [makeCompIAF;makeExtσ]ina.

• The answer to σ-NCA with input IAF and a is yes iff
vIAF |= [makeCompIAF]〈makeExtσ〉ina.

• The answer to σ-PCA with input IAF and a is yes iff
vIAF |= 〈makeCompIAF;makeExtσ〉ina.

• The answer to σ-PSA with input IAF and a is yes iff
vIAF |= 〈makeCompIAF〉[makeExtσ]ina.

4.2 Rich Incomplete AFs

A rich incomplete AF (rIAF) [53] extends an IAF in its uncertain part
U by adding a new (symmetric and irreflexive) uncertainty relation R↔ ⊆
(AF ∪ A?) × (AF ∪ A?) such that R↔ ∩ RF = ∅ and R↔ ∩ R? = ∅. We
sometimes omit internal brackets when talking about rIAFs and note them
(AF , RF , A?, R?, R↔). The new component, R↔, is informally understood as a
set of attacks whose existence is known, but whose direction is unknown. The
introduction of R↔ can be motivated by pointing out that attacks have two es-
sential properties: their existence and their direction. Thus, while R? captures
uncertainty about the former, R↔ captures uncertainty about the latter. Note
that any IAF can be understood as a rIAF with empty R↔. The notion of
completion is easily adapted to rIAFs, capturing the intuitions about R↔ that
we have just mentioned. A completion of rIAF = (AF , RF , A?, R?, R↔) is any
AF (A∗, R∗) such that:

• AF ⊆ A∗ ⊆ (AF ∪ A?);

• RF ↾A∗⊆ R∗ ⊆ (RF ∪R? ∪R↔) ↾A∗ ;

• for every x, y ∈ A∗: (x, y) ∈ R↔ implies (x, y) ∈ R∗ or (y, x) ∈ R∗.

Example 2. Let rIAF0 = (AF
0 , A

?
0, R

F
0 , R

?
0, R

↔
0 ) where AF

0 = {a, b, d}, A?
0 =

{c, e, f}, RF
0 = {(b, a), (d, a), (c, b), (e, d), (f, e)}, R?

0 = {(f, c)}, and R↔
0 =

{(c, e), (e, c)}. We represent rIAF0 graphically as follows:
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a

bc

de

f

The set of completions of rIAF0 is depicted in Table 2.

The computation of the completions of a rich IAF in DL-PA gets slightly
more complicated since the program mkTrueSome does not suffice to deal with
the symmetric attacks of R↔. We can, however, define a specific program for
this purpose.

First of all, given rIAF = (AF , RF , A?, R?, R↔), the valuation associated
to rIAF is determined by its fixed part as before:

vrIAF = v(AF ,RF )

= AWAF ∪ ATTRF

= {awx | x ∈ AF } ∪ {rx,y | (x, y) ∈ RF }.

Note that, contrarily to what happened with IAFs, (AvrIAF
, RvrIAF

) is not al-
ways a completion of rIAF: this fails to be the case as soon as R↔ ∩ (AF ×AF )
is nonempty. Let us now define the program that integrates the elements of R↔

into each completion.
Let ATTR = {rx1,y1 , ..., rxn,yn

} 5 be a set of attack variables, and define the
program

dis(ATTR) = (+rx1,y1 ∪+ry1,x1) ; . . . ; (+rxn,yn
∪+ryn,xn

) .

Intuitively, dis(ATTR) makes true at least one of the variables from the set
{rx,y, ry,x}, for each (x, y) ∈ R. Moreover, when applied to a symmetric relation
R↔, dis makes true either rx,y, or ry,x, or both, for every (x, y) ∈ R↔.

We are now ready to define the program makeComp in its version for rIAFs.
Given rIAF = (AF , RF , A?, R?, R↔), let

makeComprIAF = mkTrueSome(AWA?);mkTrueSome(ATTR?); dis(ATTR↔).

The following proposition states that the above program is correct.

Proposition 4. Let rIAF = (AF , RF , A?, R?, R↔), then:

• If (vrIAF, v) ∈ ||makeComprIAF||, then (Av , Rv ) ∈ completions(rIAF).

• If (A∗, R∗) ∈ completions(rIAF), then (vrIAF, v(A∗,R∗)) ∈ ||makeComprIAF||.

5Remember that ATTR = {rx,y | (x, y) ∈ R}, and that ATTR is a subset of the set of
propositional variables ATTU×U .
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Again, acceptance problems can be reduced to DL-PA model checking prob-
lems. Note that the definition of acceptance problems for rIAFs is just as for
IAFs (we only have to change the input). Let us just state the reduction result
we are after:

Proposition 5. Let σ ∈ {st, co, gr, pr, se, id, ea, na, stg}. Let rIAF =
(AF , RF , A?, R?, R↔) and a ∈ AF . Then:

• The answer to σ-NSA with input rIAF and a is yes iff
vrIAF |= [makeComprIAF;makeExtσ]ina.

• The answer to σ-NCA with input rIAF and a is yes iff
vrIAF |= [makeComprIAF]〈makeExtσ〉ina.

• The answer to σ-PCA with input rIAF and a is yes iff
vrIAF |= 〈makeComprIAF;makeExtσ〉ina.

• The answer to σ-PSA with input rIAF and a is yes iff
vrIAF |= 〈makeComprIAF〉[makeExtσ]ina.

4.3 Shrinking the Set of Completions

Incomplete AFs (and their enriched version) deal with uncertainty about ar-
gumentative situations in a simple and intuitive manner. However, the kind
of situations that we can model with them is rather limited (as we will dis-
cuss in detail later on). This is the main motivation for the development of
more expressive formalisms, and it actually led to concurrent proposals during
the last year, either under the name of constrained incomplete argumentation
frameworks [48, 54] or incomplete argumentation frameworks with dependencies
[41, 42]. We start by presenting our version of constrained incomplete AFs (the
one introduced in [48]), and then move to alternative approaches.

4.3.1 Constrained Incomplete AFs

A constrained incomplete AF (cIAF) is a pair cIAF = (A,ϕ) where A ⊆ U is
a set of arguments and ϕ is a Boolean formula built over the set of propositional
variables AWA ∪ ATTA×A.

6 The set of completions of a given cIAF is

completions(A,ϕ) = {(Av , Rv ) | v ⊆ PrpA and v |= ϕ}.

Example 3. Let us consider cIAF0 = (A,ϕ) with A = {a, b} and ϕ = (awa ∧
awb)∧ (ra,b ∨rb,a)∧¬(ra,b ∧rb,a)∧¬ra,a∧¬rb,b. The completions of cIAF0 are:

a b a b

6We have slightly changed the original definition of cIAFs [48], by switching the domain
from U to an arbitrary A, because it allows for naturally plugging-in argumentation dynamics,
as we will do in Section 5.2.
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Notice that, differently to what happened with previous classes of structures,
the set of completions of a cIAF might be empty, since ϕ can be an inconsistent
formula. Moreover, even being consistent, ϕ might not be satisfied by any
valuation representing a non-empty AF, so that we could get the empty AF
(∅, ∅) as the only completion of a cIAF; e.g., completions(({a},¬awa)) = {(∅, ∅)}.

The need of cIAFs. Besides being mathematically interesting, one may won-
der why one should use cIAFs. As mentioned, our main motivation is that, while
the computational complexity of reasoning tasks associated to the previously in-
troduced formalisms (i.e., (r)IAFs and subclasses) is well-known and relatively
low, their modelling power is rather limited. Consider, for instance, a proponent
reasoning about the view of her opponent in a very simple debate containing
only two arguments {a, b}. Suppose that a is an argument about public health
policies stated by the right-wing presidential candidate. Similarly, b is an argu-
ment stated by the left-wing candidate. Imagine that a and b have contradictory
conclusions, so they are mutually incompatible. Let us informally understand
R as a defeat relation here, that is, a relation based on logical incompatibility
plus some kind of epistemic-based assessment of the involved arguments (for
instance, regarding the reliability of their premisses), as it is usually done in
structured argumentation. Now, suppose our proponent knows that her oppo-
nent is polarized, in the sense that he (the opponent) is already inclined towards
one side of the political spectrum, but she does not know which one; then the
possible AFs that the agent attributes to her opponent are exactly the comple-
tions of cIAF0 (see Example 3). As it will be proved later (Proposition 8), there
is no rIAF (and therefore no IAF) with the exact set of completions of cIAF0.

Let us now show how cIAFs can be captured in DL-PA. Let cIAF = (A,ϕ),
and define its associated valuation simply as the empty set, that is, vcIAF = ∅.
(Actually any valuation over PrpA will do the job.) The program generating all
completions of cIAF is defined as

makeCompcIAF = vary(AWA); vary(ATTA×A);ϕ?.

The behaviour of makeCompcIAF0 (see Example 3) is illustrated in Figure 1.

Proposition 6. Let cIAF = (A,ϕ), then:

• If (vcIAF, v) ∈ ||makeCompcIAF||, then (Av , Rv ) ∈ completions(cIAF).

• If (A∗, R∗) ∈ completions(cIAF), then (vcIAF, v(A∗,R∗)) ∈ ||makeCompcIAF||.

Reasoning problems for (r)IAFs can be easily adapted to cIAFs: we just
have to ensure that the argument about which we formulate the query belongs
to all completions. As an example, consider:
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a bv1 a b v2

∅

Figure 1: Completions of cIAF0 seen as valuations over Prp{a,b}. Dashed double arrows

represent the interpretation of makeCompcIAF0 ; the other valuations over Prp{a,b} are
omitted.

σ-Necessary-Credulous-Acceptance (σ-NCA)
Given: A constrained IAF cIAF = (A,ϕ)
and an argument a ∈ A such that |= ϕ→ awa.
Question: Is it true that for every
(A∗, R∗) ∈ completions(cIAF)
there is an E ∈ σ(A∗, R∗) such that a ∈ E?

Note that requiring |= ϕ → awa amounts to requiring a ∈ A for all (A,R) ∈
completions(A,ϕ).

Once again, we can reduce acceptance problems in cIAFs to DL-PA model
checking problems.

Proposition 7. Let cIAF = (A,ϕ) and let a ∈ A such that |= ϕ → awa. Let
σ ∈ {st, co, gr, pr, se, id, ea, na, stg}. Then:

• The answer to σ-NSA with input cIAF and a is yes iff
vcIAF |= [makeCompcIAF;makeExtσ]ina.

• The answer to σ-NCA with input cIAF and a is yes iff
vcIAF |= [makeCompcIAF]〈makeExtσ〉ina.

• The answer to σ-PCA with input cIAF and a is yes iff
vcIAF |= 〈makeCompcIAF;makeExtσ〉ina.

• The answer to σ-PSA with input cIAF and a is yes iff
vcIAF |= 〈makeCompcIAF〉[makeExtσ]ina.

We observe that beyond these reasoning problems one may also consider the
reasoning task of checking emptiness of the set of completions of a cIAF.

4.3.2 Closely Related Approaches

As mentioned, the idea of shrinking the set of completions of an IAF led to
concurrent proposals during the last year. In this subsection, we briefly present
the two alternative approaches to our cIAFs of [48].
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A more graph-theoretic version of cIAFs. In [54], Jean-Guy Mailly de-
fined his version of cIAFs that we call cIAFsJM here to avoid confusion. A
cIAFJM is pair of the form (IAF, ϕ) where IAF = (AF, RF, A?, R?) is an IAF and
ϕ is a Boolean formula over PrpIAF = AWA∪A? ∪ ATT(A∪A?)×(A∪A?). Then the

set of completions of cIAFJM = (IAF, ϕ) is defined as

completions(IAF) ∩ {(Av , Rv ) | v ⊆ PrpIAF and v |= ϕ}.

IAFs with dependencies. In [41, 42], the team from the University of Cal-
abria formed by Bettina Fazzinga, Sergio Flesca and Filippo Furfaro introduced
the notion of IAFs with dependencies.7 More precisely, their two proposals
respectively focus on two restricted classes of IAFs that we have already men-
tioned: arg-IAFs, and att-IAFs. For the sake of brevity we only present here
the notion of arg-IAF with dependencies of [41]. Let A be a set of arguments
and let X,Y ⊆ A. First, a dependency over A is either X ⇒ Y or OP(X)
with OP ∈ {OR,NAND,CHOICE}. Second, an arg-IAF with dependencies
(d-arg-IAF, for short) is a pair ((A,A?, R),∆), where (A,A?, R) is an arg-IAF
and ∆ is a set of dependencies over A?. Before defining the completions of a
d-arg-IAF we need to settle how dependencies are to be interpreted in arg-IAFs.
Let (A,R) be an AF and let δ be a dependency over A. We say that (A,R)
satisfies δ8 iff one of the following mutually exclusive clauses holds:

• δ = X ⇒ Y and (if X ⊆ A, then A ∩ Y 6= ∅);

• δ = OR(X) and A ∩X 6= ∅,

• δ = NAND(X) and A ∩X ⊂ X ,

• δ = CHOICE(X) and |A ∩X | = 1.

The completions of ((A,A?, R),∆) are defined as those completions of the
arg-IAF (A,A?, R) that satisfy every dependency δ ∈ ∆.

The three alternative proposals are already compared in [52]. We will provide
some new insights beyond this in the next section. Let us just make a couple
of points here. First, note that both versions of cIAFs as well as IAFs with
dependencies are clearly inspired by the notion of constrained AF [29], which
are pairs ((A,R), ϕ) where ϕ is used to shrink the set of extensions of (A,R).
Second, note that the reasoning tasks associated to both classes of structures
are clearly encodable in DL-PA, but we do not work out the details here. Let us
just point out that each set of dependencies ∆ can be translated into a Boolean

formula t(∆), and then the programmakeComp((A,A?,R),∆) = vary(AWA?); t(∆)?
computes all the completions of ((A,A?, R),∆) when executed at v(A,R).

7The term correlations is used in [41, 42] as the informal counterpart of dependencies. We
stick to the latter term to avoid confusion.

8[41] uses the expression “(A,R) is valid w.r.t. δ”, but our expression is more appropriate
in a logical analysis.
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4.4 Comparison of the Different Approaches

Let us now compare the different approaches to representing qualitative uncer-
tainty about AFs. We start with a couple of general considerations.

Combinatorics vs. logic. The spirit of the seminal works on IAFs was to rep-
resent uncertainty by defining completions as directed graphs whose domains
and relations fall between given intervals. One may qualify this approach as
“combinatorial”, since, once the extremes of the interval are given (e.g. AF and
AF ∪ A?), the task of computing completions amounts to finding all possible
combinations within the interval. Progressively, other reasoning features that
we might qualify as “logical” have been integrated in the definition of comple-
tion. For instance, rIAFs introduce a sort of disjunctive reasoning through the
addition of R↔. We can understand this transition from combinatorics to logic
as a sort of spectrum:

Combinatorial Logical

IAFs rIAFs d-arg-IAFs cIAFsJM cIAFs

Note how at the right-hand extreme (cIAFs), the combinatorial nature of com-
pletions has completely vanished.

Graphic representations. One of the appealing features of IAFs is that they
admit a very intuitive graphic representation (see Example 1). Interestingly,
rIAFs and d-arg-IAFs can also be fully represented in a pictorial manner; see
[49] for examples with d-arg-IAFs. As pointed out in [53], cIAFsJM only admit
a partial graphic representation. Finally, this pictorial representability is lost by
our cIAFs, which completely abstract away from the graph-theoretic definition
of IAFs. Hence, in this respect, IAFs with dependencies compare better to
cIAFs and cIAFsJM .

Expressivity via sets of completions. Following [53], we can compare the
modelling power of each of the previous formalisms for arguing with uncertainty
using the sets of completions they can represent. Let IAF denote the class of
all IAFs, and likewise for att-IAF , arg-IAF , RIAF , d-arg-IAF , d-att-IAF ,
c-IAF and c-IAFJM . Let X and Y be metavariables denoting one of these
classes. We say that X is at least as expressive as Y (in symbols: X � Y) if,
for every Y ∈ Y there is a X ∈ X such that completions(X) = completions(Y ).
We use ≻ to denote the strict part of �, we use � to denote the inverse of �,
and we use ≡ to abbreviate � ∩ �. For instance, it was proved in [53] that
RIAF ≻ IAF .

Proposition 8. cIAFs are strictly more expressive than IAFs and rIAFs. In
other words, for every (r)IAF, there is a cIAF with the same set of completions;
but there is a cIAF such that no (r)IAF has the same set of completions.
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AF

att-IAF d-att-IAF

arg-IAF d-arg-IAF

IAF RIAF c-IAF ,c-IAFJM

Figure 2: Relative expressivity of formalisms for qualitative uncertainty in formal
argumentation. An arrow from X to Y means that X � Y, i.e., Y is at least as
expressive as X . Reflexive and transitive arrows have been omitted.

In the first part of the proof of the previous proposition—see the Appendix—
we have used an argument that works for any set of directed graphs with domain
U (and not only for the completions of a given rIAF), hence we can state that:

Corollary 1. For any set S of directed graphs with domain U there is a cIAF
cIAF such that S = completions(cIAF).

In words, cIAFs are a maximally expressive formalism for representing qual-
itative uncertainty about AFs. Using arguments similar to those employed in
the proof of Proposition 8 we can provide the following general result:

Proposition 9. The relations of Figure 2 hold, where an arrow from X to Y
means that X � Y and where transitive and reflexive arrows are omitted.

Besides providing a full expressivity map, this proposition highlights the fact
that IAFs with dependencies have not been given their most expressive formu-
lation yet. That is, we have arg-IAFs with dependencies [41], and att-IAFs with
dependencies [42], but no IAFs with dependencies. This makes that these kinds
of structures do not yet permit expressing any set of completions (contrarily
to what happens with both cIAFs and cIAFsJM ). It seems clear that a mixed
version of those formalisms would also be maximally expressive. However, some
important design choices are to be made; for instance, whether one permits
mixed dependencies (those involving uncertain arguments and attacks) or not.

5 Encompassing Dynamics and Uncertainty

As argued in the introduction, there are two fundamental aspects of argumenta-
tion that are left out of AFs: the uncertainty about the relevant argumentative
information (that is, which arguments and attacks should be taken into account
during a debate), and the dynamics of such information. In the previous section
we have discussed various ways to represent uncertainty about AFs. As to the
dynamics of AFs, it is a well-studied branch of research by now; see e.g. [38, 11]
for recent surveys. In this section we sketch how both ideas are to be combined.
We start by presenting a well-studied case: control AFs [31], showing that their
main reasoning tasks are also encodable in DL-PA. After mentioning some of its
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limitations, we proceed to study an extension that combines the kind of dynam-
ics captured by CAFs with the flexibility of cIAFs for representing uncertainty.
We close the section by sketching a general theory of dynamics and uncertainty
of AFs that provides conceptual tools for conducting future research.

5.1 Control AFs

Control argumentation frameworks were introduced in [31] and applied to
argument-based negotiation in [32]. They represent a joint approach to un-
certainty and dynamics of AFs. Regarding uncertainty, they are as expressive
as rIAFs (Section 4.2). As to dynamics, they capture a parametrised version of
what has been called normal expansion [9] at the level of each completion.

Formally, a control argumentation framework is a triple CAF =
(F,U,C) where:

• F = (AF , RF ) is the fixed part, with RF ⊆ (AF ∪ A?) × (AF ∪ A?), and
both AF and A? being two finite sets of arguments;

• U = (A?, (R? ∪R↔)) is the uncertain part, where

R?, R↔ ⊆ (AF ∪ A?)× (AF ∪ A?)

and R↔ is symmetric and irreflexive;9

• C = (AC , RC) is the control part, where AC is yet another finite set of
arguments and

RC ⊆ (AC × (AF ∪A? ∪AC)) ∪ ((AF ∪ A? ∪ AC)×AC);

• AF , A?, and AC are pairwise disjoint; and

• RF , R?, R↔, and RC are pairwise disjoint.

We note CAF the class of all control AFs.
Given a CAF = (F,U,C), a control configuration is a subset of control

arguments CFG ⊆ AC . Informally, each control configuration can be seen as
a possible argumentative move for the proponent. The CAF associated to
CFG is CAFCFG = (F,CCFG, U), where CCFG = (CFG,RC ↾AF∪A?∪CFG).

Example 4. Let us consider the CAF CAF0 = (F0, C0, U0) where AF
0 = {a},

RF
0 = {(f, e)}, A?

0 = {c, e, f}, R?
0 = {(f, c)}, R↔

0 = {(c, e), (e, c)}, AC
0 = {b, d},

and RC
0 = {(b, a), (d, a), (c, b), (e, d)}. We represent CAF0 graphically as follows:

a

bc

de

f

9Symmetry and irreflexivity of R↔ are not assumed in the original paper [31], but appeared
later on in the literature about CAFs [58, 56]. Note that both assumptions do not affect
expressivity (in the sense used in Section 4.4) of CAFs.

23



The notion of completion is defined as follows for CAFs:

• (AF ∪ AC) ⊆ A∗ ⊆ (AF ∪AC ∪ A?);

• (RF ∪RC) ↾A∗⊆ R∗ ⊆ (RF ∪RC ∪R? ∪R↔) ↾A∗ ; and

• for every x, y ∈ A∗: (x, y) ∈ R↔ implies (x, y) ∈ R∗ or (y, x) ∈ R∗.

According to this definition, control arguments/attacks behave like fixed
arguments/attacks once they have been communicated. Hence, the completions
of CAF0 coincide with those of rIAF0 (Example 2), i.e., those depicted in Table 2.

Regarding CAFs, defining relevant reasoning tasks gets slightly more com-
plicated because we have to take into account their dynamic dimension. In this
context, a natural reasoning task is to find a control configuration (that is, a
set of control arguments) such that a certain argument gets accepted by the
opponent after the latter learns about them. As before, acceptability is then
relative to quantification over completions and extensions. Here is an example:

σ-Necessary-Sceptical-Controllability (σ-NSCon)
Given: A control argumentation framework
CAF = (F,U,C) and an argument a ∈ AF .
Question: Is it true that there is a configuration
CFG ⊆ AC such that for every completion (A∗, R∗)
of CAFCFG and for every E ∈ σ(A∗, R∗), a ∈ E?

We now move on to explain how to reason about CAFs in DL-PA. Since,
uncertainty-wise, control argumentation frameworks are essentially rich incom-
plete argumentation frameworks, the delicate part in the encoding process comes
with their dynamic component, i.e., the control part.

First, given a CAF CAF = (F,U,C), we define its associated valuation as

vCAF = v(AF ,RF∪RC)

= AWAF ∪ ATTRF ∪ ATTRC

= {awx | x ∈ AF } ∪ {rx,y | (x, y) ∈ RF } ∪ {rx,y | (x, y) ∈ RC}.

Note that vCAF contains all attack variables corresponding to control attacks,
but none of them appear in (AvCAF , RvCAF) since none of the control arguments
has been communicated yet. This highlights the fact that in an epistemic in-
terpretation of CAFs, the proponent knows how the opponent will perceive the
attack relations regarding all communicable arguments.

To capture the dynamic component of CAF we define the following program:

controlCAF = mkTrueSome(AWAC ).

Intuitively, controlCAF nondeterministically chooses some of the possible control
configurations of CAF, i.e., some subset of control arguments.
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Once we have computed some control configuration, we use the same pro-
gram as for rIAFs in order to compute completions:

makeCompCAF = mkTrueSome(AWA?);mkTrueSome(ATTR?); dis(ATTR↔).

We again state a correctness result:

Proposition 10. Let CAF = (F,U,C).

• If (vCAF, v) ∈ ||controlCAF;makeCompCAF|| then there is a control config-
uration CFG ⊆ AC and a completion (A∗, R∗) of CAFCFG such that
(Av , Rv ) = (A∗, R∗).

• For every control configuration CFG ⊆ AC and every (A∗, R∗) ∈
completions(CAFCFG) there is a valuation v ∈ 2Prp such that (vCAF, v) ∈
||controlCAF;makeCompCAF|| and (Av , Rv ) = (A∗, R∗).

We can then combine the previous programs with makeExt in order to reduce
controllability problems to DL-PA model checking problems.

Proposition 11. Let σ ∈ {st, co, gr, pr, se, id, ea, na, stg}. Let CAF = (F,U,C)
and a ∈ AF . Then:

• The answer to σ-NSCon with input CAF and a is yes iff
vCAF |= 〈controlCAF〉[makeCompCAF;makeExtσ]ina.

• The answer to σ-NCCon with input CAF and a is yes iff
vCAF |= 〈controlCAF〉[makeCompCAF]〈makeExtσ〉ina.

• The answer to σ-PCCon with input CAF and a is yes iff
vCAF |= 〈controlCAF;makeCompCAF;makeExtσ〉ina.

• The answer to σ-PSCon with input CAF and a is yes iff
vCAF |= 〈controlCAF;makeCompCAF〉[makeExtσ]ina.

We close this section by highlighting and making precise two of the main
modelling limitations of CAFs that we have already mentioned. Regarding
uncertainty, they cannot go further than rIAFs. As to dynamics, the form of
communication that they model assumes that uncertainty does not increase.
More formally:

Remark 1. CAF ≡ RIAF .

Remark 2. Let CAF = (F,U,C) and let CFG,CFG
′

⊆ AC . Then
|completions(CAFCFG)| = |completions(CAFCFG

′ )|.
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5.2 Control Constrained Incomplete AFs

One of the advantages of the approaches presented so far is that they can be
freely combined. Moreover, the encoding of these formalisms in DL-PA can
easily be extrapolated to combined classes of structures. In this subsection,
we give evidence of such flexibility by mixing the kind of uncertainty modelled
by cIAFs with the kind of dynamics modelled by CAFs. Formally, a control
constrained incomplete AF (CcIAF) is a tuple CcIAF = (AC , RC , AS , ϕ)
with:

• AC (control arguments) and AS (static arguments) are disjoint,

• RC ⊆ (AC × (AC ∪ AS)) ∪ ((AC ∪ AS)×AC),

• ϕ is a Boolean formula over AWAS ∪ ATTAS×AS .

Given CcIAF = (AC , RC , AS , ϕ), the pair (AS , ϕ) is its underlying cIAF.
The notion of completion is adapted to CcIAFs by combining the intu-

ition behind CAFs and cIAFs, i.e., a completion of (AC , RC , AS , ϕ) is any AF
(A∗, R∗) such that:

• A∗ = AC ∪ A′,

• R∗ = (RC ∪R′) ↾A∗ ,

• (A′, R′) is a completion of the underlying cIAF.

The notion of control configuration is also straightforwardly adapted to our
new class of structures. More in detail, a control configuration of CcIAF =
(AC , RC , AS , ϕ) is any CFG ⊆ AC . The CcIAF associated to CFG is defined
as CcIAFCFG = (CFG,RC ↾CFG, A

S , ϕ). We can extrapolate controllability
problems to CcIAFs:

σ-Necessary-Sceptical-Controllability (σ-NSCon)
Given: A control constrained incomplete argumentation framework
CcIAF = (AC , RC , AS , ϕ) and an argument a ∈ AS s.th. |= ϕ→ awa.
Question: Is it true that there is a configuration
CFG ⊆ AC such that for every completion (A∗, R∗)
of CcIAFCFG and for every E ∈ σ(A∗, R∗), a ∈ E?

Regarding the DL-PA encoding of the reasoning problems that we have just
defined, we start by assigning to each CcIAF its associated valuation, in a
similar way to what we did both with CAFs and with cIAFs:

vCcIAF = ATTRC

= {rx,y | (x, y) ∈ RC}.

The control part of a CcIAF is encoded with the same DL-PA program as in
CAFs:

controlCcIAF = mkTrueSome(AWAC ).
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Something analogous happens with the programs for computing completions,
where we take over the program we used for cIAFs:

makeCompCcIAF = vary(AWAS ); vary(ATTAS×AS );ϕ?.

Proposition 12. Let CcIAF = (AC , RC , AS , ϕ).

• If (vCcIAF, v) ∈ ||controlCcIAF;makeCompCcIAF||, then there is a control con-
figuration CFG ⊆ AC and a completion (A∗, R∗) of CcIAFCFG such that
(Av , Rv ) = (A∗, R∗).

• For every control configuration CFG ⊆ AC and every (A∗, R∗) ∈
completions(CcIAFCFG) there is a valuation v ∈ 2PrpAS∪AC such that
(vCAF, v) ∈ ||controlCcIAF;makeCompCcIAF|| and (Av , Rv ) = (A∗, R∗).

Once again, we can also reduce reasoning tasks involving CcIAFs to DL-PA
model checking problems. Details are left to the reader.

5.3 Towards a General Theory

In [38], a general theory of the dynamics of abstract argumentation systems is
developed. The focus of the paper is the dynamics of AFs but, as pointed out by
the authors, the theory is prima facie applicable to other kinds of argumentation
frameworks. In this subsection we apply their categorisation to the formalisms
for representing qualitative uncertainty about AFs studied in Section 4. At the
same time, we show how DL-PA works as a good logical candidate for formalising
many parts of this general theory.

Structural constraints. According to [38], there are different kinds of con-
straints that one might want to enforce in an argumentation system. The
first kind of constraint is concerned with the structure of an AF. [38] distin-
guishes between elementary and global structural constraints. The former are
defined directly on the components of the framework (adding/removing some
arguments/attacks); the latter require some property that the output AF must
satisfy, e.g., being odd-loop-free, acyclic, etc. Both kinds of constraints make
perfect sense in the kind of structures that we have studied in Section 4. Inter-
estingly, the richer nature of these formalisms allows for further distinctions.

Elementary structural constraints. While in AFs elementary constraints
amount to addition/removal of arguments/attacks (or combinations of these,
as in the case of AF expansions [9]), we can perform more subtle actions in
argumentation frameworks with qualitative uncertainty. Let us illustrate some
of these actions for the case of IAFs.

Settling uncertain arguments/attacks. In a debate, an agent may want
to promote the epistemic status of an uncertain argument/attack by “settling
it”. Formally, and restricting our attention to arguments and incomplete AFs,
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given IAF = (AF, RF, A?, R?) and a ∈ A?, define the partial function settle :
(IAF × U) → IAF by:

settle(IAF, a) = (AF ∪ {a}, A \ {a}, RF , R?).

In DL-PA we can compute the completions of the resulting IAF straightfor-
wardly:

completions(settle(IAF, a)) = {(Av, Rv) | (vIAF, v) ∈ ||makeCompIAF; +awa||}.

Communicating arguments that become uncertain. Another kind of
dynamics, formally modelled by moving arguments from U \ (AF ∪ A?) to A?,
can be used to model situations in which argumentation takes place through a
communication channel which is not fully trustworthy (say, a messaging app), so
that the proponent is not sure whether the opponent received the arguments that
were sent. Again, the completions of the resulting IAF can be easily computed
within DL-PA, and the same ideas can be applied to communicating attacks
instead of arguments.

Communicating arguments with uncertain effects. Yet another kind of
action is to communicate arguments whose effects on the opponent’s framework
are not known. For instance, and within the context of CAFs, one can relax
their definition by extending the domain and range of R? or R↔ so as to include
AC .

Belief change methods for logical structures. As for cIAFs (and this
applies also to cIAFsJM ), elementary changes amount to either augment-
ing/shrinking the domain A or, more interestingly, changing the epistemic con-
straint ϕ. Regarding the latter, methods imported from the belief change litera-
ture can be used; for instance, if a new piece of information ψ that is inconsistent
with ϕ is to be added, one could do so by means of an AGM belief revision oper-
ator [1]. In that respect, DL-PA has been shown useful to capture belief change
operators [47], and these have been applied in turn to AFs [35, 36].

Types of elementary structural changes. Several interesting criteria can
be applied to provide a classification of elementary structural changes within
frameworks for arguing with qualitative uncertainty. Let us just point out a
couple of them. Regarding awareness of arguments, we can distinguish between
internal actions, argument-gaining actions, and argument-losing actions. Infor-
mally, as the outcome of an internal action, agents neither become aware nor
unaware of any new argument.10 A bit more formally, and restricting our atten-
tion to IAFs, we say that the action transforming IAF0 = (AF

0 , A
?
0, R

F
0 , R

?
0) into

IAF1 = (AF
1 , A

?
1, R

F
1 , R

?
1) is internal whenever A

F
0 ∪A?

0 = AF
1 ∪A?

1. For example,
the partial function settle : (IAF×U) → IAF defined above is clearly internal.

10However, they might change the epistemic status of arguments they are aware of.
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Argument-gaining actions formally amount to requiring that AF
0 ∪A

?
0 ⊂ AF

1 ∪A
?
1,

so that the agent becomes aware of at least one novel argument. The action of
communicating uncertain arguments that we have explained above is an exam-
ple of an argument-gaining action. Finally, in argument-losing actions we have
that AF

1 ∪A?
1 ⊂ AF

0 ∪A?
0, that is, the agent has become unaware of at least one

argument.11 A second criterion for categorizing elementary structural changes
would be measuring their impact on the number completions, since, intuitively,
the more completions we have, the more uncertainty the formalised agent is
dealing with. As examples, the settle function described above always results
in a reduction of the number of completions; computing control configurations
of CAFs keeps the number of completions constant (see Remark 2 for a precise
formulation); and communicating uncertain arguments (also described above)
increases the number of completions.

Global structural constraints. In AFs, global structural constraints
amount to things like obtaining an acyclic graph, or an odd-loop-free graph,
etc. These constraints are motivated by the appealing mathematical properties
implied by them. For instance, it is known since [39] that in acyclic AFs, all the
four classic semantics collapse. Interestingly, DL-PA can capture many of these
constraints. For example, in [36] polynomial formulas characterising the exis-
tence of odd- and even-length-loops are constructed. When extrapolated to the
more complex formalisms studied here, global constraints can be required either
possibly (that is, in at least one completion) or necessarily (in all of them). Fur-
thermore, DL-PA can be used to check if the constraint is satisfied possibly or
necessarily. To be more precise, and focusing on IAFs for simplicity: let ϕ be the
formula characterising a targeted global constraint and let IAF be an IAF; then
we have that ϕ is satisfied possibly (resp. necessary) iff vIAF |= 〈makeCompIAF〉ϕ
(resp. iff vIAF |= [makeCompIAF]ϕ). In AFs, global constraints are usually en-
forced through elementary changes (those described above). Once again, this
relation can be studied in DL-PA. For instance, if we want to know if a global
constraint ϕ is possibly enforced in IAF as the result of settling a ∈ A?, it is
enough to model-check whether vIAF |= 〈makeCompIAF; +awa〉ϕ holds.

Acceptability constraints. The second kind of constraint distinguished by
[38] is concerned with the output of the argument evaluation process in an argu-
mentation system. The distinction elementary/global applies here, too. When
restricted to AFs, one might want to enforce a set of arguments to be part of (or
equal to) at least one (or every) extension; this is an elementary acceptability
constraint. This kind of enforcement is probably the most studied through-
out the literature on abstract argumentation, since the work of [9], as it has

11The last type of action connects with a recent thoughtful study of the notion of forget-
ting an argument in the context of AFs [12]. Interestingly, we can capture within IAFs the
distinction, made in [33], between forgetting-as-becoming-unaware (moving an argument from
AF ∪ A? to U \ (AF ∪ A?)), and forgetting-as-becoming-ignorant (moving an argument from
AF to A?).

29



a clear informal counterpart in real-life argumentation: persuading an oppo-
nent basically amounts to enforcing some targeted arguments. Furthermore,
and from a more technical perspective, one might also want to enforce some
kind of global acceptability constraint: controlling the cardinality of the set of
extensions, its structure, etc. Again, qualitative uncertainty introduces a new
layer of quantification: acceptability enforcement can be pursued possibly (i.e.,
in at least one completion) or necessarily (in all of them). Just as it happens
with AFs, acceptability constraints are usually enforced through a (combina-
tion of) structural changes such as the ones we have described above. As an
example, the reasoning tasks of both CAFs and CcIAFs are a way of enforc-
ing a possible/necessary acceptability constraint through the performance of a
combination of elementary structural changes that do not increase uncertainty
(activating control arguments).

Semantic constraints. Finally, the third kind of constraint distinguished by
[38] affects the semantics that has been chosen to evaluate arguments. Infor-
mally, enforcing a semantic constraint amounts to a change in the standards
applied within the argument evaluation process. To this respect, not only the
parameter σ can be switched to σ′, but one could also move from credulous to
sceptical acceptability, and vice versa. Just as before, the formalisms studied in
Section 4 introduce an additional layer of quantification to be taken into account
when formulating semantic constraints: we can move from a ‘possible’ seman-
tics (arguments should be accepted in at least one completion) to a ‘necessary’
semantics (they should be accepted in all), and backwards. As we have shown
throughout the paper (e.g., in Proposition 3), the distinction between possible
and necessary acceptability can be transparently captured in DL-PA.

6 Discussion, Related Work and Future Direc-
tions

We have taken the logical encoding of AFs and their extensions a step further by
moving from encodings in propositional logic and quantified Boolean formulas
(QBF) to encodings in a simple version of dynamic logic DL-PA. Approaches to
argumentation reasoning problems based on SAT-solvers typically use Besnard
and Doutre’s encoding of AFs and their semantics in propositional logic [19], as
well as its extension to QBF for semantics requiring maximality checking; see e.g.
[57] for a recent such approach, and [26] for a review of approaches to abstract
argumentation reasoners. Based on our work, one could use DL-PA model
checkers instead of SAT-solvers in order to automatically decide the reasoning
problems that we have investigated here. This would however have to await
such model checkers, which for the time being do not exist yet. Alternatively,
one could resort to translations from DL-PA to QBF and use solvers for the
latter. This is currently pursued in the LILaC group at IRIT.

On the whole, all we have done in DL-PA can as well be done in equally
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expressive logical frameworks like propositional logic or QBF. The advantage
over the former is that (1) some semantics can be expressed more compactly in
DL-PA, such as the preferred semantics: it is one level higher in the polynomial
hierarchy than the other semantics and can therefore not be captured by a poly-
nomial propositional logic formula, while a polynomial DL-PA formula is given
in [36],12 and (2) the reasoning problems can be expressed directly as DL-PA
programs. The advantage over QBFs is that the DL-PA encoding of reasoning
problems by means of programs is more natural than the rather complex QBF
encodings that one can find in the literature. Actually, most of the works on
arguing with qualitative uncertainty use QBF encodings and algorithms for de-
termining the complexity of associated reasoning tasks (see e.g. [13] or [58]). All
advantages already pointed out by [36] of using DL-PA instead of QBF for en-
coding argumentative semantics are preserved by our encodings. In particular,
“extension construction programs such as makeExtσ capture things in a more
general, flexible and natural way than a QBF encoding”.

Getting closer to a theorem proving approach. Our encoding of for-
malisms for arguing with qualitative uncertainty can be qualified as hybrid,
since it combines some previous semantic reasoning with reasoning inside DL-
PA. For instance, in order to compute the completions of an IAF, one first needs
to find its associated valuation (which is reasoning outside the logic, using se-
mantic objects), then has to write down the makeComp program, and finally one
reasons in DL-PA to find the makeComp-successors of the associated valuation.
We followed this hybrid method because we found intuitive the identification of
directed graphs with propositional valuations over Prp. However, we can adopt
results from [35, 37, 36] to get a more homogeneous method here. For instance,
given IAF = (F,U), instead of computing its associated valuation we can write
down a propositional formula that characterizes its fixed elements (similar to
what is done in [35] for standard AFs and in our proof of Proposition 8 in the
Appendix):

Th(IAF) =
∧

x∈AF

awx ∧
∧

x∈U\AF

¬awx ∧
∧

(x,y)∈RF

rx,y

∧

(x,y)∈U×U\RF

¬rx,y.

If we combine this formula with the makeComp program and the converse op-
erator we obtain a formula whose models completely characterize the set of
completions of IAF:

completions(IAF) = {(Av, Rv) | v ∈ ||〈
(

Th(IAF)?;makeCompIAF
)

`

〉⊤||}.

Novel contents w.r.t. our conference paper [48]. This work is based on
our previous conference paper [48], which we have improved and extended in
three main different directions. First, in Section 3, (i) we capture argumentation

12Remember that our adaptation of the formula Preferred of [36] captures preferred seman-
tics in the more general setting of a set of background arguments U and is also polynomial in
the size of U .
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semantics in DL-PA that had not been captured before (naive, semi-stable,
stage, ideal and eager semantics), and (ii) we also adapt previous encodings to
our more general setting (in particular, we adapt the encodings of complete,
preferred and grounded semantics [36] to the assumption of the existence of
a background universe of arguments U , which is in turn useful for modelling
both dynamics and uncertainty about AFs). Second, we discussed some closely
related works that appeared since (sections 4.3.2 and 4.4). Third, we provided
new results regarding the combination of dynamics and uncertainty in abstract
argumentation: sections 5.2 and 5.3 are entirely new. Finally, there are also
several small improvements w.r.t. the conference version, some of which are
signalled throughout the paper.

Epistemic aspects of argumentation. In recent years, a few papers deal-
ing with the combination of epistemic logic and formal argumentation have ap-
peared. Broadly speaking, these works can be divided into two main branches:
(i) those trying to provide a formalisation of the notion of justified belief based
on argumentative tools such as [44, 62, 63, 61, 21, 22]; and (ii) those using epis-
temic models for reasoning about uncertain AFs such as [60, 59, 49, 50]. Clearly,
the second one is strongly connected—both conceptually and technically—to
some of the ideas presented here. The main first difference is that the for-
malisms used in this paper lack a tool for capturing higher-order epistemic
attitudes, that is, a tool capable of representing not only what an agent thinks
of her opponent’s argumentative situation (her AF), but also about what the
agent thinks that her opponent thinks about the agent’s argumentative situa-
tion, and so on. This is an important point, since this kind of mental attitude
has been successfully employed under the name of recursive opponent models
within the sub-field of strategic argumentation (see, e.g., [64]). However, the
incorporation of this type of multiple agency together with a full dynamic tool-
kit would mean to replace DL-PA by the strong modelling power of dynamic
epistemic logic [34]. This comes at the price of a blow-up in the computational
complexity of the associated reasoning tasks. One might however follow [27] and
employ lightweight epistemic logics where disjunctions in the scope of epistemic
operators are forbidden. That would represent a compromise between modelling
multiple agency/dynamics, on the one side, and modelling uncertainty, on the
other side, since any form of uncertainty that goes beyond IAFs (see Figure
2) would have to be excluded from this approach. A second important differ-
ence is that, unlike epistemic logic, none of the formalisms studied in this paper
allow for modelling the actual world, i.e., what is true independently of what
the formalised agent thinks. This notion is in turn needed for distinguishing
between knowledge (which is usually required to be true) and belief (which is
often merely required to be consistent). However, this limitation seems eas-
ier to be overcome: It suffices to augment IAFs (and their extensions) with a
distinguished completion, informally accounting for what the actual AF is.
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Further semantics. Yet another direction for future work is extending our
DL-PA encoding to semantics that have not been considered in Section 3. A
specially interesting case is the recently introduced family of weak admissibility-
based semantics [10], since most of the associated reasoning tasks have been
shown to be PSPACE-complete, matching the complexity of the DL-PA model
checking problem [5].

An alternative notion of expressivity. In a very recent paper [2], Alfano
et al. invented a rewriting technique in order to reduce general IAFs to their
strict subclasses arg-IAFs and att-IAF, and yet to a proper subclass of arg-
IAFs.13 More concretely, they show [2, Theorem 7] that the completions of
the rewritten incomplete AF can be mapped (through another transformation)
to the completions of the original one. They moreover claim that “This result
entails that arg-IAFs (resp. farg-IAF, att-IAF) have the same expressivity of
general IAFs, though arg-IAFs (resp. farg-IAF, att-IAF) have a simpler struc-
ture”. This clearly conflicts with the expressivity map that we provided in
Proposition 9 and Figure 2, which is based on the notion of expressivity first
introduced in [53] and later used in [52, 48]. Although a detailed comparison
of both notions of expressivity is out of the scope of this discussion, we would
just like to mention that the one employed here seems more useful for intuitive
modelling purposes (i.e., to find out what kind of situations the formalised agent
is able to represent in her mind), while Alfano et. al’s seems more interesting
from a technical perspective (actually, it is used to extend complexity results
regarding IAFs to their proper subclasses). Be as it may, the work done in [2]
opens an interesting research question: can the rewriting technique be extended
to more expressive formalisms (in our sense), such as rIAFs or cIAFs?
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Appendix

In this appendix, we provide selected proofs and proof sketches for the results
found throughout the paper.

[Theorem 1]

Proof. We shall just prove the first bullet for σ = se. The other cases are simpler
and follow similar arguments, while the second bullet follows easily from the first
one and the meaning of makeExt. Let us first state without proof a couple of
needed lemmas

Lemma 1. (v , v1) ∈ ||copy(INU );makeExtσ|| implies Ev = {x | in′x ∈ v1} and
(Av , Rv ) = (Av1 , Rv1).

Lemma 2. Let v ⊆ Prp s.th. v |= Well and {x | in′x ∈ v} ⊆ {x | awx ∈ v},
then:

• v |= IncludesCp iff {x | in′x ∈ v}⊕ ⊆ E⊕
v
.

• v |= IncludedInCp iff E⊕
v
⊆ {x | in′x ∈ v}⊕.

(⇒) Suppose that v |= Semistable, which amounts to
v |= Complete and v |= [copy(INU);makeExtco] (IncludesCp → IncludedInCp).
The first conjunct is equivalent, by the same item we are proving but for σ = co,
to Ev ∈ co(Av, Rv). So, we just need to show that Ev has a maximal range
among complete extensions. Suppose E′ ∈ co(Av , Rv). By by the same item
that we are proving but for σ = co and Lemma 1, we have that E′ = Ev1 and
Ev = {x | in′x ∈ v1} for some (v , v1) ∈ ||copy(INU );makeExtco||. Suppose that
E⊕
v
⊆ E⊕

v1
. Note that v1 satisfies the antecedent of Lemma 2 (this is deducible

from v |= Complete and Lemma 1). Hence, we have that E⊕
v
⊆ E⊕

v1
is equivalent

to v1 |= IncludesCp. Since we know that v1 |= IncludesCp → IncludedInCp, we
can deduce v1 |= IncludedInCp, which by Lemma 2 again, amounts to E⊕

v1
⊆ E⊕

v
.

Since Ev1 was an arbitrary complete extension of (Av, Rv), we can conclude that
the range of Ev is maximal among the ranges of complete extensions.

(⇐) Suppose that Ev ∈ se((Av , Rv )), which amounts to
(i) Ev ∈ co(Av , Rv ) and (ii) the range of Ev is maximal among those of the
complete extensions of (Av , Rv). From (i) and the same item we are proving
but for σ = co, we obtain v |= Complete. Hence we just need to show that
the second conjunct of Semistable is true at v . For doing so, suppose that
(v , v1) ∈ ||copy(INU );makeExtco|| and v1 |= IncludesCp. From both lemmas and
the previous assertion, we can arrive to v1 |= IncludedInCp.
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[Proposition 2]

Proof. For the first item, suppose (vIAF, v) ∈ ||makeCompIAF||. We recall from
Proposition 1 that ||mkTrueSome(P)|| = {(v ′, v ′′) | v ′′ = v ′ ∪ S, S ⊆ P} for
any set of atoms P. By the semantics of the sequential composition operator
“;”, (vIAF, v) ∈ ||makeCompIAF|| amounts to saying that v = vIAF ∪ P for some
P ⊆ AWA?∪ATTR? . From this statement, and applying the definition of (Av, Rv)
and the one of completion, we obtain that (Av , Rv ) ∈ completions(IAF).

For the second item, suppose that (A∗, R∗) ∈ completions(IAF), which
amounts to AF ⊆ A∗ ⊆ AF ∪ A? and RF ↾A∗⊆ R∗ ⊆ (RF ∪ R?) ↾A∗ . Now,
remember that v(A∗,R∗) = AWA∗ ∪ ATTR∗ . From the two previous statements
and the definition of vIAF, we can deduce that the set of variables whose truth
values differ from v to v(A∗,R∗) must be a subset of AWA? ∪ ATTR? , which, as

argued before, amounts to saying that (vIAF, v(A∗,R∗)) ∈ ||makeCompIAF||.

[Proposition 3]

Sketch of proof. The result follows from the definition of the reasoning task, the
correctness of each makeExtσ (Theorem 1), Proposition 2, and the interpretation
of [.] and 〈.〉 in DL-PA.

[Proposition 4]

Sketch of proof. The proof is analogous to that of Proposition 2, but takes into
account the observation that, when applied to the symmetric relation R↔ =
{(x1, y1), (y1, x1), ..., (xn, yn), (yn, xn)}, every execution of dis(ATTR↔) makes
true either rxi,yi

, or ryi,xi
or both, for every 1 ≤ i ≤ n. This ensures that the

last clause of the definition of completion for rIAFs is captured in the DL-PA
program makeComprIAF.

[Proposition 5]

Sketch of proof. The result follows from the definition of the reasoning prob-
lem, the correctness of makeExtσ (Theorem 1), the correctness of makeComprIAF

(Proposition 4), and the semantics of DL-PA.

[Proposition 6]

Sketch of proof. The interpretation of vary(AWA); vary(ATTA×A), when re-
stricted to 2PrpA\INA , is actually the total relation 2PrpA\INA × 2PrpA\INA . Hence
from vcIAF = ∅ we have an execution of vary(AWA); vary(ATTA×A) that goes to
any valuation in 2PrpA\INA . Then the execution of ϕ? filters those valuations
of 2PrpA\INA that satisfy the constraint of cIAF, i.e., the set of valuations of
2PrpA\INA representing the set of completions of cIAF.
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[Proposition 7]

Sketch of proof. The result follows from from the definition of the reasoning
task, the correctness of makeExtσ (Theorem 1), Proposition 6, and the semantics
of DL-PA.

[Proposition 8]

Proof. We only have to prove c-IAF ≻ RIAF because c-IAF ≻ IAF follows
from RIAF ≻ IAF [53] and the transitivity of ≻.

To prove c-IAF � RIAF , suppose rIAF is a rIAF with completions(rIAF) =
{(A∗

1, R
∗
1), ..., (A

∗
n, R

∗
n)}. For every AF (A,R) defined over U we can write its

theory (see e.g. [37]), that is, the propositional formula

Th(A,R) =
∧

x∈A

awx ∧
∧

x∈U\A

¬awx ∧
∧

(x,y)∈R

rx,y ∧
∧

(x,y)∈U×U\R

¬rx,y.

It is then easy to show that for any valuation v ⊆ Prp, we have that v |=
Th(A,R) iff (Av , Rv) = (A,R). Now, letting ρ =

∨

1≤i≤n Th(A∗
i , R

∗
i ), we have

that

completions(U , ρ) = completions(rIAF).

In order to prove that RIAF 6� c-IAF it suffices to show that the cIAF of
Example 3 (called cIAF0) cannot be expressed as a rIAF. Reasoning towards a
contradiction, suppose that there is a rIAF rIAF = (AF , RF , A?, R?, R↔) with
the same set of completions as cIAF0. Then we would have (a, b) ∈ RF ∪R?∪R↔

(since (a, b) appears in a completion of rIAF). We show that the last statement
is absurd. If (a, b) ∈ RF then (a, b) should appear in all completions of rIAF
where a and b are present, but this is not true. If (a, b) ∈ R? then we reason by
cases on (b, a) ∈ RF ∪ R? ∪ R↔: the first one is impossible, since (b, a) would
be in every completion where a and b appear, and that is not the case; the
second one is absurd because we would have an extension with neither (a, b)
nor (b, a), and this is not the case; the third one is impossible because it would
imply (a, b) ∈ R↔, but we have assumed that (a, b) ∈ R?, and we know that
R? ∩ R↔ = ∅ by definition. Finally, suppose that (a, b) ∈ R↔, which implies
(b, a) ∈ R↔ (by symmetry of R↔), which is impossible because we would have
a completion containing both (a, b) and (b, a), but this is not the case.

[Proposition 10]

Sketch of proof. The proof is analogous to those of propositions 2 and 4. The
essential difference lies in the fact that the previous execution of controlCAF is
needed to nondeterministically choose a control configuration of CAF. Also,
note that ATTRC ⊆ vCAF is essential for obtaining the needed control attacks in
the corresponding completion.

[Proposition 11]
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Sketch of proof. The result follows from the definition of the reasoning task,
the correctness of makeExtσ (Theorem 1), Proposition 10, and the semantics of
DL-PA.
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