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Introduction

Let Ω be a bounded open set with Lipschitz boundary. We want to solve the problem

min k 1 2 ∥T -T target ∥ 2 L 2 (Ω ) , s.t. div(uT ) -div(k∇T ) = f in Ω , T | ∂ Ω = T 0 and k ∈ U ad , (1) 
with f ∈ L 2 (Ω ), u ∈ H 1 (Ω ) given s.t. divu = 0. The set of admissible control U ad contains all k(x) ∈ [a, b] for a.e. x and a > 0 and is chosen such that any sequences (k n ) n ⊂ U ad have a subsequence converging a.e. in Ω . Such k ∈ U ad must be more regular (e.g with bounded variation) and we refer to [9, p. 9, Assumption 1] for an example of such U ad . With all these assumptions, (1) has at least one optimal solution (see e.g. [START_REF] Vieira | Topology optimization for steady-state anisothermal flow targeting solids with piecewise constant thermal diffusivity[END_REF]Theorem 3]).

We will focus on finding ways to compute a solution to (1) on several subdomains. In recent years, a lot of papers started to look at ways to decompose the resolution of optimal control problems. In [START_REF] Gong | Convergence analysis of the Schwarz alternating method for unconstrained elliptic optimal control problems[END_REF], the authors split the optimization problem as two independent optimization problems, splitted by subdomains, with an augmented cost. The necessary (and sufficient) conditions of optimality let us see that it actually reduces to a classical Schwarz method applied to the direct and adjoint systems, where the control could be eliminated (see also [START_REF] Ciaramella | Nonlinear optimized Schwarz preconditioner for elliptic optimal control problems[END_REF][START_REF] Ciaramella | Convergence analysis and optimization of a Robin Schwarz waveform relaxation method for periodic parabolic optimal control problems[END_REF][START_REF] Lagnese | Domain in Decomposition Methods in Optimal Control of Partial Differential Equations[END_REF]).

These papers rely on the huge literature analyzing the different flavors of the Schwarz iterative method: we only refer to [START_REF] Gander | Optimized Schwarz methods[END_REF] for an introduction and to [START_REF] Quarteroni | Domain decomposition methods for partial differential equations[END_REF] for a more in depth presentation of these methods (and other decomposition methods).

In order to decompose the resolution of (1) across several subdomains, we will also adopt an indirect approach: we will decompose the computations of the gradient of the cost, which will be used afterward in a descent method. Since the control needs to be defined on the whole domain Ω , it seems hard to define a decomposition of (1) using an overlap. Therefore, we will focus on finding an optimized Schwarz iteration, without overlap, to compute the gradient of the cost.

Direct and adjoint equations

First of all, we express the gradient of the cost which can be given thanks to an adjoint equation. The next result can be proved using [START_REF] Hinze | Optimization with PDE constraints[END_REF]Corollary 1.3].

Theorem 1 Let J(k) = 1 2 ∥T (k) -T target ∥ 2 L 2 (Ω ) with T (k) ∈ H 1 (Ω ) be the solution to div(uT ) -div(k∇T ) = f in Ω and T | ∂ Ω = T 0 . Then: ∂ k J(k) = ∇T • ∇λ , where λ solves div(k∇λ -uλ ) = T -T target , λ | ∂ Ω = 0.
Therefore, the gradient of J can be computed by solving for fixed k:

-div(k∇T -uT ) = f , T | ∂ Ω = T 0 , div(k∇λ + uλ ) = T -T target , λ | ∂ Ω = 0. (2) 
We now expose our strategy in order to accelerate the resolution of (1): we would like to decompose the resolution of (2) across several subdomains in order to accelerate the computation of the gradient. However, since our optimization parameter k is defined on Ω , it seems hard to imagine a decomposition method using an overlap.

If we were computing a solution of (2) on two subdomains Ω 1 and Ω 2 with an overlap, then we would end with two different gradients ∂ k J(k) on Ω 1 ∩ Ω 2 , depending on which side the gradient is computed. Therefore, using a descent technique would produce two different controls k 1 on Ω 1 and k 2 on Ω 2 , with possibly different values on Ω 1 ∩ Ω 2 . This could prevent the convergence to an optimal solution of (1).

To summarize, we are interested in non-overlapping Schwarz techniques. It should be noted that optimized Schwarz method for an advection-diffusion equation has been done in [START_REF] Dubois | Optimized Schwarz methods for the advection-diffusion equation and for problems with discontinuous coefficients[END_REF] but, to the best of our knowledge, never for (2).

Optimized Schwarz method for coupled direct-adjoint system

We assume there is open sets

Ω i such that Ω = Ω 1 ∪ Ω 2 with interface Γ ∩ = Ω 1 ∩Ω 2 .
A non-overlapping Schwarz method for (2) can then be roughly defined as 1. Take an initial guess (T 0 i , λ 0 i ) defined on Ω i , 2. Until some stopping criteria are met:

Compute (T n+1 i , λ n+1 i ) satisfying -div(k∇T n+1 i ) + div(uT n+1 i ) = f , on Ω i , T n+1 i | ∂ Ω i \Γ ∩ = T 0 , div(k∇λ n+1 i ) + div(uλ n+1 i ) = T n+1 -T target on Ω i , λ n+1 i | ∂ Ω i \Γ ∩ = 0, (3) 
and the following transmission conditions on the interface

k∂ n T n+1 i λ n+1 i - u • n 2 T n+1 i -λ n+1 i + (-1) i+1 S i T n+1 i | Γ ∩ λ n+1 i | Γ ∩ (4) = k∂ n T n 3-i λ n 3-i - u • n 2 T n 3-i -λ n 3-i + (-1) i+1 S i T n 3-i | Γ ∩ λ n 3-i | Γ ∩ ,
where n is the outer normal to ∂ Ω 1 . In ( 3)-( 4), S i are linear operators acting on traces of (T i , λ i ) (e.g. S i = p i id where p i are some constants and id is the identity operator, or some linear differential operator involving tangential derivatives).

To study the convergence of the non-overlapping Schwarz method as well as its convergence properties, we are going to restrict ourselves to the case k = constant,

Ω = R 2 , Ω 1 = (-∞, 0) × R and Ω 2 = (0, +∞) × R.
In such setting, we can rely on Fourier analysis [START_REF] Gander | Optimized Schwarz methods[END_REF] to study the convergence and also to design optimized transmission operators S i that accelerate the convergence. Without loss of generality, we also suppose that f = T target = 0 since we are interested in the error.

Computation of the optimal transmission operator

We start by applying Fourier transform to (2) along the y axis:

-k∂ xx T n i λ n i + u 1 ∂ x T n i -λ n i + kω 2 -iu 2 ω 0 1 kω 2 + iu 2 ω T n i λ n i = 0, i ∈ {1, 2}.
Along x, this is a second order ordinary differential equation which can be solved explicitly. Define :

r T ± (ω) = u 1 ± u 2 1 + 4k 2 ω 2 -4iku 2 ω 2k , r λ ± (ω) = -u 1 ± u 2 1 + 4k 2 ω 2 + 4iku 2 ω 2k .
Concerning T , using the Dirichlet condition at infinity, there exist functions A n T (ω) and B n T (ω) such that:

T n 1 (x, ω) = A n T (ω)e r T + (ω)x , T n 2 (x, ω) = B n T (ω)e r T -(ω)x .
These solutions are reintroduced into the equation in order to solve it for λ . There, the equation is non-homogeneous, but the right hand-side is of the form C(ω)e D(ω)x , for some functions C and D independent of x. An arbitrary solution is therefore easily found, and one proves that they take the form:

λ n 1 (x, ω) = A n λ (ω)e r λ + (ω)x -A λ T (ω) T n 1 (x, ω), λ n 2 (x, ω) = B n λ (ω)e r λ -(ω)x -B λ T (ω) T n 2 (x, ω),
where

A λ T (ω) = (-kr T + (ω) 2 -u 1 r T + (ω)+kω 2 +iu 2 ω) -1 and B λ T (ω) = (-kr T -(ω) 2 - u 1 r T -(ω) + kω 2 + iu 2 ω) -1 .
We may now derive each solution with x:

∂ x T n 1 (x, ω) = r T + (ω) T n 1 (x, ω), ∂ x T n 2 (x, ω) = r T -(ω) T n 2 (x, ω), ∂ x λ n 1 (x, ω) = r λ + (ω)A n λ (ω)e r λ + (ω)x -A λ T (ω)r T + (ω) T n 1 (x, ω), ∂ x λ n 2 (x, ω) = r λ -(ω)B n λ (ω)e r λ -(ω)x -B λ T (ω)r T -(ω) T n 2 (x, ω).
We now assume that

F y (S i (T, λ ))(x, ω) = σ i (ω)( T , λ )
, where σ i is a 2 × 2 complex matrix. The transmission conditions then read:

k∂ x T n 1 λ n 1 (x, ω) - u 1 2 T n 1 -λ n 1 (x, ω) + σ 1 (ω) T n 1 λ n 1 (x, ω) = M + r (x, ω) + σ 1 (ω)M + 0 (x, ω) A n T (ω) A n λ (ω)
,

k∂ x T n 2 λ n 2 (x, ω) - u 1 2 T n 2 -λ n 2 (x, ω) + σ 2 (ω) T n 2 λ n 2 (x, ω) = M - r (x, ω) + σ 2 (ω)M - 0 (x, ω) B n T (ω) B n λ (ω) , M + r (x, ω) = (kr T + (ω) -u 1 2 )e r T + (ω)x 0 -(kr T + (ω) -u 1 2 )A λ T (ω)e r T + (ω)x (kr λ + (ω) -u 1 2 )e r λ + (ω)x M + 0 (x, ω) = e r T + (ω)x 0 A λ T (ω)e r T + (ω)x e r λ + (ω)x , M - 0 (x, ω) = e r T -(ω)x 0 -B λ T (ω)e r T -(ω)x e r λ -(ω)x M - r (x, ω) = (kr T -(ω) -u 1 2 )e r T -(ω)x 0 -(kr T -(ω) -u 1 2 )B λ T (ω)e r T -(ω)x (kr λ -(ω) -u 1 2 )e r λ -(ω)x
Using the conditions at x = 0, we get the following recurrence:

A n T (ω) A n λ (ω) = M + r (0, ω) + σ 1 (ω)M + 0 (0, ω) -1 M - r (0, ω) + σ 1 (ω)M - 0 (0, ω) M 1 (ω) M - r (0, ω) -σ 2 (ω)M - 0 (0, ω) -1 M + r (0, ω) -σ 2 (ω)M + 0 (0, ω) M 2 (ω) A n-2 T (ω) A n-2 λ (ω) B n T (ω) B n λ (ω) = M - r (0, ω) -σ 2 (ω)M - 0 (0, ω) -1 M + r (0, ω) -σ 2 (ω)M + 0 (0, ω) M 2 (ω) M + r (0, ω) + σ 1 (ω)M + 0 (0, ω) -1 M - r (0, ω) + σ 1 (ω)M - 0 (0, ω) M 1 (ω) B n-2 T (ω) B n-2 λ (ω)
Therefore, the optimal choice of σ i cancels M 1 (ω)M 2 (ω) and M 2 (ω)M 1 (ω) ; this reads:

σ opt 1 (ω) = -M - r (0, ω) M - 0 (0, ω) -1 = -kr T -(ω) + u 1 2 0 -kB λ T (ω)[r λ -(ω) -r T -(ω)] -kr λ -(ω) -u 1 2 , σ opt 2 (ω) = M + r (0, ω) M + 0 (0, ω) -1 = kr T + (ω) -u 1 2 0 -kA λ T (ω)[r T + (ω) -r λ + (ω)] kr λ + (ω) + u 1 2 .
However, as it is usual concerning the optimal Schwarz operator, an inverse Fourier transform proves that S opt i , the inverse Fourier transform of σ opt i , is a non-local operator [START_REF] Gander | Optimized Schwarz methods[END_REF]. This property can be difficult to handle in a numerical method. This is why we will restrict the set of admissible transmission operator S i to local constant operators.

Computation of optimized transmission operator

Instead of using the optimal (non-local) operator, we will search for an optimal lower-triangular matrix P i , which we will suppose to be constant in ω. All the calculations above can be done similarly with this new assumption, and we may write similarly the new matrices M 1 (ω) and M 2 (ω). Suppose σ 1 = σ 11 0 σ 13 σ 14 and

σ 2 = σ 21 0 σ 23 σ 24 . Then M l (ω)M m (ω) = M 1 1 (ω) 0 M lm 3 (ω) M 1 4 (ω)
, where

M 1 1 (ω) = (2kr T -(ω) + 2σ 11 -u 1 )(-2kr T + (ω) + 2σ 21 + u 1 ) (2kr T + (ω) + 2σ 11 -u 1 )(-2kr T -(ω) + 2σ 21 + u 1 )
,

M 1 4 (ω) = (2kr λ -(ω) + 2σ 14 + u 1 )(2kr λ + (ω) -2σ 24 + u 1 ) (2kr λ + (ω) + 2σ 14 + u 1 )(2kr λ -(ω) -2σ 24 + u 1 )
, and M lm 3 (ω) for l, m = 1, 2 can be computed as above but are not given since their expressions are not needed in the subsequent analysis.

A way that seems natural is to optimize the transmission conditions consists in solving the min-max problem: min σ 11 ,σ 13 ,σ 14 max ω∈[ω 1 ,ω 2 ] ∥M 1 (ω)M 2 (ω)∥ for some matrix norm ∥•∥ and some constants ω 1 < ω 2 . Solving this min-max problem can be tricky: the result may depend on the chosen norm, and the complicated expression of the components of M 1 M 2 makes the whole analysis inextricable. Furthermore, it is not entirely clear how one could use either the product M 1 M 2 or M 2 M 1 in this min max problem. This could change the nature of the result.

However, we remark that the spectral radius appears to be useful in this case, since ρ(M 1 (ω)M 2 (ω)) = ρ(M 2 (ω)M 1 (ω)) only depend on σ 11 , σ 21 , σ 14 and σ 24 .

Furthermore, optimizing the spectral radius of the matrices may be done in two independent optimization problems:

min σ 11 ,σ 21 max ω∈[ω 1 ,ω 2 ] -u 2 1 + 4k 2 ω 2 -4iku 2 ω + 2σ 11 -u 2 1 + 4k 2 ω 2 -4iku 2 ω + 2σ 21 u 2 1 + 4k 2 ω 2 -4iku 2 ω + 2σ 11 u 2 1 + 4k 2 ω 2 -4iku 2 ω + 2σ 21 , min σ 14 ,σ 24 max ω∈[ω 1 ,ω 2 ] -u 2 1 + 4k 2 ω 2 + 4iku 2 ω + 2σ 14 -u 2 1 + 4k 2 ω 2 + 4iku 2 ω + 2σ 24 u 2 1 + 4k 2 ω 2 + 4iku 2 ω + 2σ 14 u 2 1 + 4k 2 ω 2 + 4iku 2 ω + 2σ 24
.

This kind of min max problem can be solved. Suppose ω 1 = 0, ω 2 = π/h and applying results from [3, p. 35, Eq. (2.11)] prove, assuming h is small enough, that the solution in this case is:

σ 11 = σ 14 = kπ|u 1 | 3 2h 1 4
,

σ 21 = σ 24 = 2 5 k 3 π 3 |u 1 | h 3 1 4 . (5) 
Other similar results can be found in [START_REF] Dubois | Optimized Schwarz methods for the advection-diffusion equation and for problems with discontinuous coefficients[END_REF]. However, this approach of optimizing the spectral radius let the parameters σ 13 and σ 23 free, and M 12 3 (ω) and M 21 3 (ω) both depend on σ 13 and σ 23 . We show below how these parameters can be chosen.

Random tests for the last parameters

In order to see the influence of the parameters σ i3 , we ran a batch of numerical tests with random values for σ i3 . We then solve [START_REF] Ciaramella | Nonlinear optimized Schwarz preconditioner for elliptic optimal control problems[END_REF] on Ω = (-1, 1) × (0, 1) with

k = 1, f = T target = 0, u = (-2, 0), T 0 | x=-1 = 0, T 0 | x=1 = 2 and T 0 | y∈{0,1} = 1.
We first solve the equation on Ω , and compare it with the solution of (3)- [START_REF] Gander | Optimized Schwarz methods[END_REF] where Ω 1 = (-1, 0) × (0, 1), Ω 2 = (0, 1) × (0, 1), Γ ∩ = {0} × [0, 1] and σ i1 , σ i4 are assigned using [START_REF] Gong | Convergence analysis of the Schwarz alternating method for unconstrained elliptic optimal control problems[END_REF]. σ 13 and σ 23 are assigned randomly between -150 and +150. We used second order centered finite differences, a ghost point for the Robin boundary conditions and a 20 × 20 uniform grid for each subdomain. We then run 5 and 10 iterations of (3)-( 4), and compare the result with the solution on the whole domain, which let us compute an error at the end of the iterations. We did this experiment with 250 random couples for σ 13 and σ 23 , and plot the error. The results are given in Figure 1. From these results, we see that the choice σ 13 = σ 23 = 0 seems to give the lowest error (the red line in (1)). Indeed, after 5 (resp. 10) iterations, the lowest error is at 0.0189 (resp. 3.5919 × 10 -5 ) with the random values, while the error with σ 13 = σ 23 = 0 is at 0.0051 (resp. 8.4667 × 10 -6 ). This choice is special since it decouples T and λ at the interface Γ ∩ . It then suggests that the resolution of T first, and then λ , is more efficient, with respect to the number of Schwarz iterations. 

Schwarz iteration as critical points of an optimization problem

We conclude this proceeding by showing that each iteration of the Schwarz method can be obtained by computing the critical points of some specific Lagrange functional. We restrict ourselves to transmission conditions (4) where S i are lowertriangular matrices with constant coefficients and recall that n is the outer normal to ∂ Ω 1 . We consider the next sub-domain problem

-div(k∇T i -uT i ) = f in Ω i , k∂ n T i + a i u • nT i + (-1) i+1 p i T i = (-1) i+1 g i on Γ ∩ , T i = T 0 on ∂ Ω i \ Γ ∩ . (6) 
Its variational formulation is:

Find T ∈ H 1 (Ω i ) such that T i | ∂ Ω i \Γ ∩ = T 0 and a i (T i , λ i ) := Ω i k∇T i • ∇λ i -T i u • ∇λ i dx - Γ ∩ p i + (-1) i+1 (1 + a i )u • n T i λ i ds = Ω i f λ i dx + Γ ∩ g i λ i ds, ∀λ i ∈ V i := ϕ ∈ H 1 (Ω i ) | ϕ| ∂ Ω i \Γ ∩ = 0 .
We then have the next result whose proof can formally be done by direct computation.

Theorem 2 Given α i ∈ L ∞ (Γ ∩ ), β i ∈ L 2 (Γ ∩ ), we consider the Lagrangian L i (T i , λ i ) = 1 2 ∥T i -T target ∥ 2 L 2 (Ω i ) + a i (T i , λ i ) - Ω i f λ i dx - Γ ∩ g i λ i ds + Γ ∩ α i 2 T 2 i + β i T i ds, ∀ T i -T 0,i , λ i ∈ V i , where T 0,i ∈ V i is an extension of T 0 . Let (T i , λ i ) satisfying ∂ T i ,λ i L i (T i , λ i ) = 0.
Then T i is a weak solution to (6) and λ i ∈ V i is a weak solution to the (adjoint) problem

div(k∇λ i + uλ i ) = T i -T target in Ω i , λ i = 0 on ∂ Ω i \ Γ ∩ ,
k∂ n λ i + (1 + a i )u • nλ i + (-1) i+1 p i λ i = (-1) i+1 (α i T i + β i ) on Γ ∩ .

From Theorem 2, we see that chosing a i = -1 2 , p i = σ i1 , α i = -σ i3 , g i = k∂ n T n 3-i + a i u•nT n 3-i +(-1) i+1 p i T n 3-i , β i = k∂ n λ n 3-i + (1 + a i )u • nλ n 3-i + (-1) i+1 p i λ n 3-i + α i T n 3-i , yields that (T k+1 i -T 0,i , λ k+1 i ) ∈ V i ×V i is a critical point of L i . Each iterate of the DDM can then be obtained by solving an optimization problem on each subdomain (see also e.g. [START_REF] Ciaramella | Convergence analysis and optimization of a Robin Schwarz waveform relaxation method for periodic parabolic optimal control problems[END_REF][START_REF] Gong | Convergence analysis of the Schwarz alternating method for unconstrained elliptic optimal control problems[END_REF]).

Conclusion

Using a Schwarz method on (2) appears to be harder than expected. The transmission conditions found in [START_REF] Dubois | Optimized Schwarz methods for the advection-diffusion equation and for problems with discontinuous coefficients[END_REF] can be adapted to this case, but only gives a partial clue to define some optimized transmission operator. Furthermore, solving (2) only let us compute the gradient of the cost which only accelerates the computation of the gradient, but not necessarily the resolution of (1). Concerning (2), we still wonder if one can take advantage of the triangular structure of (1): is it better to solve first for T alone, and then for λ , or could we find efficient iterations to compute the couple (T, λ )? Additional works in this direction are on-going projects.
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 1 Fig.1: Number random values between -150 and +150 generated for σ i3 VS Error (infinity norm) on λ at the 5th (Left) and 10th (Right) iteration using random antidiagonal elements (blue dots) or just 0 (red line).